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Abstract

An extensive collection of continuous-time models of the short-term interest rate is

evaluated over data sets that have appeared previously in the literature. The analysis, which

uses the simulated maximum likelihood procedure proposed by Durham and Gallant (2002),

provides new insights regarding several previously unresolved questions. For single factor

models, I find that the volatility, not the drift, is the critical component in model specification.

Allowing for additional flexibility beyond a constant term in the drift provides negligible

benefit. While constant drift would appear to imply that the short rate is nonstationary, in

fact, stationarity is volatility-induced. The simple constant elasticity of volatility model fits

weekly observations of the three-month Treasury bill rate remarkably well but is easily

rejected when compared with more flexible volatility specifications over daily data. The

methodology of Durham and Gallant can also be used to estimate stochastic volatility models.

While adding the latent volatility component provides a large improvement in the likelihood

for the physical process, it does little to improve bond-pricing performance.
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1. Introduction

Understanding the dynamics of the short-term interest rate is of fundamental
importance for many financial applications. Although these data have been
subjected to extensive analysis, some basic issues remain unresolved. This may stem
in part from the difficulties associated with the statistical analysis of continuous-time
processes.
However, a great deal of progress has been made recently in developing efficient

tools for estimating and testing continuous-time models. In this paper, I use some of
these tools to evaluate the performance of various models of the short rate. The
analysis serves as an illustration of the new techniques, while at the same time
shedding new light on several issues of interest.
I begin by examining scalar models of the short rate. The models are defined in

terms of a stochastic differential equation (SDE) of the form

dX ¼ mðX ; yÞ dt þ sðX ; yÞ dW : ð1Þ

I follow the standard procedure of looking at a nested sequence of models. The
innovation is that I am able to compute maximum likelihood estimates, test
hypotheses using likelihood ratio statistics, and rank the models in terms of various
information criteria. Some of my results differ dramatically from previous findings in
the literature and are of particular interest given the well-known optimality
properties of likelihood-based techniques.
The difficulty is that the likelihood function is not available in closed form for

most models, and so one is required to approximate it. The simulation approach
suggested by Pedersen (1995) and Santa-Clara (1995) (see also Brandt and Santa-
Clara, 2002), which is based on integrating out unobserved states of the process
between each pair of observations, has great intuitive appeal. However, implementa-
tions available until recently have been computationally burdensome. Durham and
Gallant (2002) examine a number of numerical techniques and find that the
convergence of the simulation-based method can be greatly accelerated. Using these
techniques, very accurate approximations can be quickly and conveniently obtained
to the maximum likelihood estimator across a wide range of continuous-time
models. This is the approach used in this paper.
While being able to efficiently fit and test scalar models is an essential first step,

short-term interest rates (along with many other financial time series) are known to
exhibit properties such as fat tails and volatility persistence that are inconsistent with
these models (see, e.g., Ghysels et al., 1996). Thus I also examine several stochastic
volatility models of the form

dX ¼ mX ðX Þ þ sX ðX Þ expðHÞ dW1

dH ¼ mH ðHÞ dt þ sH ðHÞ dW2: ð2Þ

Durham and Gallant (2002) show that the simulation-based approach can be
extended to approximate the likelihood of these models.
The econometric techniques used in this paper are closely related to the Markov

Chain Monte Carlo methods used by Eraker (2001), Jones (1999), Elerian et al.
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(2001), and Kim et al. (1998). These authors also simulate sample paths across
unobserved intermediates points between each pair of observations, but within a
Bayesian instead of maximum likelihood framework.
An alternative approach to maximum likelihood estimation of the scalar diffusion

models described by Eq. (1) has been proposed by Aı̈t-Sahalia (2001). This approach
approximates the transition density using Hermite expansions calibrated to match
approximate model moments. While A.ıt-Sahalia’s approach can be useful for some
models, it is of little help for many of the models examined in this paper. In
particular, it requires that the integral

R
1=sðx; yÞ dx be available in closed form,

which is often not the case. Also, the approach cannot be used for multivariate or
latent variable models such as Eq. (2).
The empirical work builds on a large body of literature. Chan et al. (1992) examine

a number of models that can be nested within the class

dX ¼ ðaþ bX Þ dt þ kX g dW : ð3Þ

The specification sðxÞ ¼ kxg is commonly referred to as constant elasticity of
volatility (CEV). Chan et al. obtain estimates using the generalized method of
moments (GMM) on the discrete-time (Euler) approximation to the SDE. Using
monthly observations of the one-month Treasury bill rate from June 1964 to
December 1989 ðN ¼ 307Þ; they find that the mean reversion parameter b is
insignificantly different from zero and that the volatility function is the critical
component in model specification. The drawback of this approach is that estimates
based on the discrete-time approximation are known to be biased (see, e.g., Elerian
et al., 2001). The GMM estimator used by Chan et al. is also inefficient (for example,
their standard error on the estimate of k is so large that the parameter is not
significantly different from zero).
A.ıt-Sahalia (1996) tests parametric models of the short rate by comparing the

unconditional density implied by the model to a nonparametric estimate of the
empirical density of the data. He uses a larger encompassing model,

dX ¼ ða1 þ a2X þ a3X 2 þ a4=X Þ dt þ ðb1 þ b2X þ b3X
b4 Þ1=2 dW ; ð4Þ

and daily observations of the seven-day Eurodollar rate from June 1, 1973 to
February 25, 1995 ðN ¼ 5; 505Þ: A.ıt-Sahalia finds that strong evidence exists for
nonlinearity in the drift; that this nonlinearity makes the process stationary; that the
volatility function is lowest for interest rates around 10% and higher at both
extremes; and that the drift, not the volatility function, is the critical element in
model specification.
Conley et al. (1997) use an estimation procedure based on moment conditions

obtained using the infinitesimal generator and a collection of test functions. They
look at daily observations of the federal funds overnight interest rate from January
2, 1970 to January 29, 1997. While this paper is often cited as finding evidence in
favor of nonlinearity, in fact, the results are ambiguous. If the parameter governing
the elasticity of volatility is fixed at around 1.5–2, which is the range for which they
find the most support, then little evidence of nonlinearity in the drift is found. The
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authors point out that stationarity depends not only on the drift but on the volatility
function as well.
Tauchen (1995) uses the efficient method of moments estimator with data

composed of weekly observations of the 30-day Eurodollar rate from January 3,
1975 to October 28, 1994 (N ¼ 1; 035). His results corroborate A.ıt-Sahalia’s finding
of nonlinearity in the drift.
Both Conley et al. (1997) and Tauchen (1995) use the encompassing model

dX ¼ ða1 þ a2X þ a3X 2 þ a4=X Þ dt þ b1X
b2 dW : ð5Þ

That is, they allow for nonlinearity in the drift but use a relatively restrictive
volatility specification. Both papers find the criterion function to be flat in the
direction of b2; making precise estimation of this parameter difficult.
Stanton (1997) obtains nonparametric estimates of the drift and diffusion using

daily observations of the three-month Treasury bill rate from January 4, 1965 to July
28, 1995. He, too, finds evidence of substantial nonlinearity in the drift.
However, Pritsker (1998) examines the specification test of A.ıt-Sahalia (1996) and

finds that it rejects true models too often. If the size of the test is corrected, then it
has little power. Chapman and Pearson (2000) find that the estimators used by A.ıt-
Sahalia (1996) and Stanton (1997) are prone to find evidence of nonlinearity where
none exists (because of small-sample bias). And finally, Jones (2003b) uses Bayesian
techniques to conclude that whether or not one finds nonlinearity in the drift of the
short rate may depend largely on the prior that is used.
The upshot of all this is that a great deal of uncertainty remains regarding how to

appropriately specify even simple scalar models of the short rate. Attention has
focused primarily on the drift component. While most authors favor nonlinearity in
the drift, recent work has raised interesting questions. Also, while A.ıt-Sahalia (1996)
finds compelling evidence in favor of a more flexible volatility specification, other
studies have remained within the CEV framework.
Going beyond the class of scalar models, one encounters a bewildering array of

multifactor alternatives, ranging from the two-factor stochastic volatility models
studied by Gallant and Tauchen (1998) and Andersen and Lund (1997) to models
with several unobserved factors, possibly including jump components (e.g., Ahn
et al., 2002; Boudoukh et al., 1998; Chacko, 1996; Dai and Singleton, 2000; Duffie
and Kan, 1996). This paper considers models of the form given by Eq. (2), which
includes the models studied by Gallant and Tauchen (1998) and Andersen and Lund
(1997) as special cases.
Models are evaluated over several of the data sets used in previous studies:

daily observations of the seven-day Eurodollar interest rate (A.ıt-Sahalia, 1996), daily
observations of the three-month Treasury bill rate (Stanton, 1997), and
weekly observations of the three-month Treasury bill rate (Gallant and Tauchen,
1998). This allows my results to be directly compared with the existing literature.
I find no significant evidence of nonlinearity in the drift. I do not even find the

linear term to be significant. While constant drift would appear to result in a
nonstationary process, it turns out that stationarity is volatility-induced (see also
Conley et al., 1997). The volatility function is the critical component of model

ARTICLE IN PRESS



specification; the choice of drift function is largely irrelevant. In contrast to some of
the existing literature, I am able to estimate the parameters of the volatility function
precisely. Although the CEV specification works remarkably well for weekly
observations of the three-month Treasury bill rate, it is soundly rejected over both
sets of daily data by models using a more flexible volatility specification.
The seven-day Eurodollar data appear to be very noisy and are probably not a

reliable proxy for the true short rate. These data exhibit volatility roughly twice that
of either of the Treasury bill data sets. While this may not make much difference for
bond pricing, it will be important for pricing securities that depend more critically on
the volatility of the short rate and lends additional credence to the idea that the
choice of proxy used for short-rate modeling can have important consequences (see
also Chapman et al., 1999).
Some authors have proposed models in which the short rate fluctuates about a

slow-moving target rate (see, e.g., Balduzzi et al., 1998; Bass and Farnsworth, 2000).
Such models may provide an explanation for the shortcomings of the CEV model
over daily data and may be especially useful in dealing with very short-term rates
such as the seven-day Eurodollar.
Introducing a stochastic volatility factor results in a huge jump in the likelihood

over the scalar models. The findings for the drift of the short rate carry over
unchanged from the scalar case; that is, I again find negligible evidence in favor of
including anything beyond a constant term. In contrast to Andersen and Lund
(1997), I do not find that including a stochastic volatility component substantially
changes the estimated elasticity of volatility.
The paper concludes by looking at implications of some of these models for bond

pricing. Risk-neutral models are estimated by minimizing mean squared pricing
errors for bonds with one, two, five, and 10-year maturities. Computing bond prices
implied by the stochastic volatility (SV) model requires estimates of the spot
volatility. A convenient feature of the estimation methodology used in this paper is
that estimates for the spot volatility are readily available.
As with the physical process, little evidence exists in favor of including terms

beyond the constant in the drift of the risk-neutral process. While stochastic
volatility is certainly important for modeling the dynamics of the short rate and will
likely be important for pricing fixed-income securities with a more option-like
character, it is of limited usefulness in explaining bond prices.
The remainder of this paper is organized as follows: Section 2 examines scalar

models of the short rate, Section 3 considers stochastic volatility models, Section 4
looks at implications for bond prices, and Section 5 concludes.

2. Scalar models of the short rate

This section evaluates the performance of a variety of scalar models of the U.S.
short-term interest rate over three data sets that have appeared previously in the
literature. The first data set was used by Gallant and Tauchen (1998) and consists of
1,809 weekly observations (January 5, 1962–August 30, 1996) of the three-month
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Treasury bill rate in the secondary market. Rates are annualized and quoted on a
discount basis. Friday rates are used when available, otherwise the Thursday rate is
used. The second data set was used by Stanton (1997) and consists of 7,555 daily
observations (January 4, 1965–July 28, 1995) of the three-month Treasury bill rate.
Quotes are converted from discounts to annualized interest rates. The third was used
by A.ıt-Sahalia (1996) and consists of 5,505 daily observations (June 1, 1973–
February 25, 1995) of the seven-day Eurodollar deposit spot rate. The bid-ask
midpoint is used. No adjustments are made for weekends or holidays in either of the
daily data sets. The data are plotted in Fig. 1.
The model specifications considered are displayed in Table 1. They include the

affine model (e.g., Dai and Singleton, 2000), the constant elasticity of volatility
model (e.g., Conley et al., 1997), and the preferred model of A.ıt-Sahalia (1996). Note
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Fig. 1. Scalar models of the U.S. short-term interest rate over three data sets: (a) weekly observations of

three-month Treasury bill rate, January 5, 1962 to August 30, 1996; (b) daily observations of three-month

Treasury bill rate, January 4, 1965 to July 28, 1995; and (c) daily observations of seven-day Eurodollar

rate, June 1, 1973 to February 25, 1995.



that the affine model subsumes the Ornstein-Uhlenbeck model proposed by Vasicek
(1977) and the square-root model proposed by Cox et al. (1985) as special cases.
Although stochastic differential equations provide a convenient way to describe

the dynamics of interest rates and other financial data, finding effective ways to
estimate these models has proven to be a difficult task.
A variety of moment-based approaches have been proposed, including Chan et al.

(1992), Duffie and Singleton (1993), Gallant and Tauchen (1997), Bibby and S^rensen
(1995), Gouri!eroux et al. (1993), Hansen and Scheinkman (1995), and Duffie and
Glynn (1996). Bayesian techniques using Markov Chain Monte Carlo methods have
been proposed by Eraker (2001), Jones (1999), and Elerian et al. (2001).
However, maximum likelihood estimation has desirable optimality properties and

is the approach that I shall use in this paper. The transition density is generally not
available in closed form, so the problem is to approximate it efficiently. Pedersen
(1995) and Santa-Clara (1995) propose a simulation approach (SMLE) based on
integrating out intermediate unobserved states of the process between each pair of
observations (see Brandt and Santa-Clara, 2002 for a multivariate application).
Florens-Zmirou (1989) suggests using the first-order Gaussian approximation of the
process. Shoji and Ozaki (1998), Kessler (1997), Elerian (1998), Nowman (1997), and
A.ıt-Sahalia (1999, 2001) provide a variety of closed-form improvements to this first-
order approximation.
Although the simulation-based approach has great intuitive appeal, it can be

computationally burdensome. Durham and Gallant (2002) examine a variety of
numerical techniques that greatly accelerate its convergence. Using synthetic data
generated by a Cox–Ingersoll–Ross (CIR) model calibrated to match monthly
observations of the U.S. short-term interest rate as a test case, they find that the log
likelihood function may be approximated with negligible error for N ¼ 10; 000
observations in about one second on a 750 MHz PC. This approach allows accurate
maximum likelihood estimates to be obtained quickly and conveniently and is the
one that I shall employ in this paper.
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Table 1

Scalar model specifications for short rate

The specifications of each of the models considered in this section are shown together with the labels by

which they are referred in the text. AFF is the affine model. CEV1, CEV2, and CEV4 are constant of

elasticity of volatility models with various drift specifications. GEN1, GEN2, and GEN4 use a more

general volatility specification together with various drift specifications.

AFF: dX ¼ ða1 þ a2X Þ dt þ ðb1 þ b2X Þ1=2 dW

CEV1: dX ¼ a1 dt þ b1Xb2 dW

CEV2: dX ¼ ða1 þ a2X Þ dt þ b1Xb2 dW

CEV4: dX ¼ ða1 þ a2X þ a3X 2 þ a4=X Þ dt þ b1Xb2 dW

GEN1: dX ¼ a1 dt þ ðb1 þ b2X þ b3Xb4 Þ1=2 dW

GEN2: dX ¼ ða1 þ a2X Þ dt þ ðb1 þ b2X þ b3Xb4 Þ1=2 dW

GEN4: dX ¼ ða1 þ a2X þ a3X 2 þ a4=X Þ dt þ ðb1 þ b2X þ b3Xb4 Þ1=2 dW



The preferred model of A.ıt-Sahalia (1996) is GEN4. All of the scalar models
that I consider may be nested within this specification, allowing the use of
conventional means of specification testing. Since likelihoods are available for all of
the models, the likelihood ratio (LR) test can be applied. This test is known to
have attractive optimality properties (see, e.g., Lehmann, 1986). I also rank the
models in terms of the Akaike Information Criterion (AIC) and the Schwarz
Criterion (SC).

2.1. Weekly observations of the three-month Treasury bill rate

Table 2 shows parameter estimates, log likelihood, AIC, and SC for various
models evaluated over weekly observations of the three-month Treasury bill rate.
Several fitted drift and volatility functions are plotted in Fig. 2.
The affine model, and thus CIR and Vasicek models as well, is overwhelmingly

rejected. These models have been used largely because of their analytical tractability.
However, they are known to fit the data poorly.
The next set of models uses the constant elasticity of volatility specification

together with various parameterizations for the drift. CEV1, which uses a constant
drift function, is preferred by all three criteria (AIC, SC, and LR) over the larger
CEV models. This finding is particularly remarkable in light of Chapman and
Pearson (2000), who argue that there may be a small-sample bias toward finding
nonlinearity where none exists.
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Table 2

Weekly observations of the three-month Treasury bill rate, January 5, 1962 to August 30, 1996

Parameter estimates and standard errors for the models defined in Table 1 are shown. The Akaike information criterion

(AIC) is given by �2=n½logð#yjX1;y;XnÞ � K � and the Schwarz Criterion (SC) is given by logð#yjX1;y;XnÞ � ðK=2Þ log n;
where K is the number of free parameters. The AIC should be minimized, and the SC should be maximized. The

likelihood ratio test statistic for comparing nested models is given by log Lu � log LrB1
2
w2ðdfÞ; where df ¼ number of

restrictions. The 95% critical values are
df 1 2 3 4

1
2
w2ðdfÞ 1:92 3:0 3:91 4:75

:

Model logL �n
2
AIC SC a1 a2 a3 a4 b1 b2 b3 b4

AFF 417.15 413.15 402.15 1.2473 �0.1875 �1.8091 0.7090

(0.3682) (0.0789) (0.0338) (0.0114)

CEV1 511.86 508.86 500.61 0.3932 0.1027 1.4531

(0.1655) (0.0037) (0.0204)

CEV2 512.32 508.32 497.32 0.8277 �0.1049 0.1032 1.4502

(0.5004) (0.1167) (0.0038) (0.0210)

CEV4 512.65 506.65 490.15 �3.6093 0.8382 �0.0593 6.3199 0.1030 1.4515

(8.1016) (1.4646) (0.0798) (13.5912) (0.0038) (0.0210)

GEN1 513.52 508.52 494.77 0.3978 �0.4011 0.1929 0.0015 3.6648

(0.1678) (0.1620) (0.0637) (0.0012) (0.3391)

GEN2 513.99 507.99 491.49 0.8372 �0.1056 �0.4084 0.1957 0.0015 3.6647

(0.5041) (0.1165) (0.1625) (0.0640) (0.0012) (0.3427)

GEN4 514.26 506.26 484.26 �4.0224 0.8893 �0.0608 7.1945 �0.3959 0.1908 0.0015 3.6474

(8.4580) (1.5608) (0.0880) (13.9818) (0.1664) (0.0659) (0.0013) (0.3518)



A Monte Carlo study (available upon request) suggests that the small-sample bias
pointed out by Chapman and Pearson exists to some extent even in the maximum
likelihood framework. But even without taking this bias into consideration, I find
little evidence in favor of nonlinearity.
The various GEN models, which use a more flexible volatility specification, follow

a similar pattern: The benefit of going from constant drift to the most general drift
specification remains negligible.
Overall, the evidence points heavily in favor of the relatively parsimonious CEV1

model. This is in dramatic contrast to A.ıt-Sahalia (1996), who finds (using different
data and methods) strong evidence for the largest model (GEN4).
In all of the models with free exponents in the volatility function, I am able to

estimate the exponent precisely. The exponent in the CEV specification is estimated
at 1.45 with a standard error of 0.02. This estimate is robust to choice of drift
specification, and is close to the estimate of 1.5 originally argued for by Chan et al.
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Fig. 2. Fitted drift and volatility functions for weekly Treasury bill data: (a) drift, (b) volatility, and (c)

drift superimposed on scatter plot of rtþD � rt versus rt:



(1992). The precision of the estimate is of particular interest given that several papers
using moment-based estimators have found the criterion function to be flat in this
dimension (see, e.g., Tauchen, 1995; Conley et al., 1997) and provides a nice
demonstration of the relative efficiency of likelihood-based estimation.
Some confusion is found in the literature regarding the issue of stationarity. While

a constant drift would seem to imply that the short-rate process is nonstationary, this
is not the case. For the CEV1 specification with parameter estimates shown in Table
2, it is easy to show that stationarity is volatility-induced (see also Conley et al., 1997;
Jones, 2003a). Essentially what is happening is that, in the absence of drift, the
volatility pushes the process downward. A small positive drift is needed to keep the
process from collapsing to zero. For higher levels of the interest rate, the volatility
effect dominates, and whether the model exhibits zero, positive, or negative drift
makes little difference.
Sufficient conditions for a scalar diffusion process to have a stationary solution

are well known (e.g., Karatzas and Shreve, 1991, exercise 5.40). For the CEV2 model
with b2 > 1; for example, it is sufficient that a1 > 0: There is no restriction on a2:
The fitted nonlinear drift that I obtain [Fig. 2(a)] has a shape similar to the drift

functions obtained by A.ıt-Sahalia (1996), Stanton (1997), Ahn and Gao (1999), and
others (i.e., positive at low rates, negative at high rates, and near zero in the middle).
However, I differ from these papers in interpretation. In particular, I do not find the
nonlinearity to be statistically significant. Fig. 2(c), which superimposes the drift plots on
top of a scatter plot of rtþD � rt against rt; provides intuitive support for this
interpretation. Regardless of the specification used, the estimated drift is essentially zero.
Fig. 2(b) shows that the CEV volatility is very close to the more flexible

specification through the range where most of the data occurs. The additional
flexibility provided by the two additional parameters results in only a small upward
shift in the volatility function for high interest rates, where data are relatively scarce.
That the simple CEV specification is able to perform so well is remarkable. Again,
these plots provide intuitive support for the likelihood-based tests, which
unanimously prefer the CEV specification over less parsimonious models.
Fig. 3 displays synthetic data generated using the CEV1, CEV2, and CEV4

models. The plots correspond to 10,000 observations at the weekly frequency (i.e.,
about 200 years of data). The same sequence of innovations is used to generate each
set of data. The data generated by the three models are similar in regions where the
interest rate is at levels for which historical data are available. They differ in the
extent to which very high interest rates are generated in rare events. Because no
empirical observations are available that correspond to such events, the model that
one might prefer depends largely on prior beliefs. If one believes that interest rates
can virtually never go much above 20%, then the nonlinear drift specification might
be appealing.

2.2. Daily observations of the three-month Treasury bill rate

Table 3 displays parameter estimates, log likelihood, AIC, and SC for various
models estimated over the daily Treasury bill data used by Stanton (1997).
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The findings with respect to the drift are virtually identical to those obtained for
the weekly data: negligible evidence exists in favor of including additional terms
beyond the constant.
But while the CEV models perform nearly as well as the GEN models over weekly

data, they do much worse over daily data. The additional two parameters in the
volatility function buy an increase of nearly 50 points in the log likelihood. The fitted
volatility functions for CEV1 and GEN1 are shown in Fig. 4. For comparison, a
nonparametric fit is also shown. The nonparametric model is estimated by applying a
local linear smoother (see, e.g., Fan and Gijbel, 1996) to the squared differences of
the data, ðrtþD � rtÞ

2:
One is left to speculate as to why the more flexible volatility specification is

needed to fit the daily but not the weekly data. The problem is that the CEV
volatility function, which is constrained to approach zero at low interest rates, is
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Fig. 3. Synthetic data calibrated to weekly observations of the three-month Treasury bill rate, N ¼
10; 000: This represents about 200 years of synthetic data. Panels (a)–(c) use CEV1, CEV2, and CEV4,

respectively.



unable to account for the relatively high volatility found in the daily data
at low interest rates. Trying to match the low end of the curve causes the CEV
volatility function to have too little curvature at high rates. If, for example, the
CEV1 and GEN1 models are refitted with the 1,008 observations (out of 7,555)
where rto4 is excluded, the difference in log likelihood between the two models is
only 7 points.
That different models are needed to fit the data depending upon sampling

frequency implies that these single-component Markovian models are misspecified.
The models could be extended in several directions to try to capture this behavior.
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Table 3

Daily observations of the three-month Treasury bill rate, January 4, 1965–July 28, 1995

Parameter estimates and standard errors for the models defined in Table 1 are shown. The Akaike information criterion

(AIC) is given by �2=n½logð#yjX1;y;XnÞ � K � and the Schwarz Criterion (SC) is given by logð#yjX1;y;XnÞ � ðK=2Þ log n;
where K is the number of free parameters. The AIC should be minimized, and the SC should be maximized. The

likelihood ratio test statistic for comparing nested models is given by log Lu � log LrB1
2
w2ðdfÞ; where df ¼ number of

restrictions. The 95% critical values are
df 1 2 3 4

1
2
w2ðdfÞ 1:92 3:0 3:91 4:75

:

Model logL �n
2
AIC SC a1 a2 a3 a4 b1 b2 b3 b4

CEV1 7766.55 7763.55 7753.16 0.3498 0.1175 1.3465

(0.1902) (0.0017) (0.0085)

CEV2 7766.98 7762.98 7749.12 0.8617 �0.1092 0.1177 1.3459

(0.5387) (0.1120) (0.0018) (0.0086)

CEV4 7767.24 7761.24 7740.45 �0.1499 0.2372 �0.0278 0.3271 0.1176 1.3463

(8.8730) (1.4961) (0.0755) (15.8000) (0.0018) (0.0086)

GEN1 7813.79 7808.79 7791.47 0.3381 0.3633 �0.0262 0.0030 3.3783

(0.2033) (0.1114) (0.0430) (0.0011) (0.1432)

GEN2 7814.14 7808.14 7787.35 0.8508 �0.1048 0.3613 �0.0254 0.0030 3.3788

(0.6588) (0.1276) (0.1113) (0.0430) (0.0011) (0.1433)

GEN4 7814.34 7806.34 7778.62 �3.3157 0.7328 �0.0503 6.2555 0.3667 �0.0275 0.0030 3.3732

(10.7120) (1.8083) (0.0939) (19.4659) (0.1118) (0.0432) (0.0011) (0.1434)
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Fig. 4. Comparison of volatility functions for CEV1 and GEN1 models estimated over daily Treasury bill

data.



One possibility is to let the short rate fluctuate in a narrow band about a slow-
moving target rate (the high-frequency fluctuations would tend to disappear as the
length of the sampling interval increases). Models of this sort have been examined by
Bass and Farnsworth (2000), Piazzesi (2001), Andersen and Lund (1996), Balduzzi
et al. (1998), and Jones (2003b).
An easy way to generate discretely sampled data exhibiting high frequency

fluctuations about a central tendency is by means of a measurement error model,

Xt ¼ rt þ et;

rt ¼ a1 þ a2rt�1 þ b1r
b2
t�1Zt; ð6Þ

where etBNð0; seÞ and ZtBNð0; 1Þ: Suppose that Xt is the observable proxy for rt:
Informal experiments suggest that behavior similar to that found empirically can be
obtained with se on the order of 0.02; i.e., a root mean squared fluctuation of about
two basis points. This corresponds to a pricing error of well under one cent on a $100
bond with three months to maturity.
The existence of these high-frequency fluctuations suggests that daily data should

be used with caution. Ideally, the high-frequency component should be modeled
explicitly. This is especially important for modeling very short-term bonds for which
the fluctuations can be large (see Section 2.3). At the least, one should consider using
a more flexible volatility specification than CEV. Using weekly data simplifies
modeling but loses information. There is a tradeoff. The decision on what sampling
frequency to use will depend on the particular application.

2.3. Daily observations of the seven-day Eurodollar rate

Comparison of the seven-day Eurodollar and three-month Treasury bill data
(Fig. 1) immediately suggests that the Eurodollar data are noisy, especially in the
early part of the sample. Jumps of 3–5 percentage points in a single day are not
uncommon in the Eurodollar data. In contrast, there is only a single jump exceeding
two percentage points in a week in the three-month Treasury bill data.
Panels (a) and (b) of Fig. 5 show the Eurodollar and three-month Treasury bill

data on the same axes for the years 1980 and 1981, respectively. These plots provide
a clearer view of the noise present in the Eurodollar data. They also demonstrate that
most of the very high observations of the interest rate in that data are the results of
spikes that last only a single day. The highest observed rates are thus almost always
followed immediately by large drops. This pattern is largely a feature of the noise
component instead of the underlying short-rate process, and will result in a
downward bias in the estimated drift at high interest rates.
This effect is different from the one discussed by Chapman and Pearson (2000),

who conclude that the particular estimators used by Stanton (1997) and A.ıt-Sahalia
(1996) are likely to find spurious evidence of nonlinearity in the drift because of
small-sample bias (even though the samples contain more than 5,000 observations,
few observations are made at the high interest rates where the issue of nonlinearity is
important). As demonstrated by the results in Sections 2.1 and 2.2, the small sample
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problem does not result in significant evidence of nonlinearity for the three-month
Treasury bill data.
Also, Fig. 5(c), which displays the Eurodollar data for 1993, demonstrates that the

data for low interest rates are severely contaminated by discreteness effects. The
three-month Treasury bill data are omitted from this plot for clarity, but they suffer
little from this problem.
The noisiness of very short-term bond yields is a well-known phenomenon.

Although the yield may change significantly, little impact is felt on the price of the
bond because it is held only for a short time. For this reason, longer-term bonds
(e.g., one-month or three-month Treasury bills) are often used as proxies for the
short rate (see Chapman et al., 1999, for a discussion of the resulting biases).
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Fig. 5. Daily observations of seven-day Eurodollar and three-month Treasury bill. Data for the years

1980, 1981, and 1993 are shown in panels (a)–(c), respectively. For clarity, panel (c) displays the

Eurodollar rates only.



Clearly, the simple scalar processes considered in this section are poorly equipped
to model the sort of transient spikes common in the seven-day Eurodollar data. A
careful analysis should probably include an additional component to model the high-
frequency fluctuations, as discussed in Section 2.2 (see also Jones, 2003b).
Panels (a) and (b) of Fig. 5 also show a significant difference in the levels of the

Treasury bill and Eurodollar rates. This difference is frequently in the range of 2–4
percentage points. It is almost certainly too large to be attributed to the term
structure and is more likely the result of institutional or microstructure effects of
some sort (e.g., Longstaff (2000) points out that short-term Treasury-bill rates may
be lower than the true riskless rate).
Despite the problems with the Eurodollar data, I estimate several of the models

shown in Table 4 in order to better evaluate the results of A.ıt-Sahalia (1996).
As with the daily Treasury bill data, the CEV models are soundly beaten by the

models using the more general volatility specification. I estimate the elasticity of
volatility at about 1.35 for the CEV models, which is virtually identical to that of the
daily Treasury bill data. However, the coefficient of the volatility term is over twice as
large for the Eurodollar data as compared with the Treasury bill data (0.29 versus 0.12).
Fig. 6 plots estimated volatility functions for the three data sets on the same set of axes.
The difference in the volatility of the Treasury bill and Eurodollar data is clearly
evident. Note that the frequency at which the Treasury bill data is sampled makes
comparatively little difference. This provides reassurance that sampling frequency is not
at the root of the much higher volatility exhibited by the Eurodollar data.
Fig. 7(b) compares my estimated volatility function for the GEN4 model with the

one reported by A.ıt-Sahalia (1996). These fits are quite different. A.ıt-Sahalia finds
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Table 4

Daily observations of the seven-day Eurodollar rate, June 1, 1973 to February 25, 1995.

Parameter estimates and standard errors for the models defined in Table 1 are shown. The Akaike information criterion

(AIC) is given by 2=n½logð#yjX1;y;XnÞ � K� and the Schwarz Criterion (SC) is given by logð#yjX1;y;XnÞ � ðK=2Þ log n;
where K is the number of free parameters. The AIC should be minimized, and the SC should be maximized. The

likelihood ratio test statistic for comparing nested models is given by log Lu � log LrB1
2
w2ðdfÞ; where df ¼ number of

restrictions. The 95% critical values are
df 1 2 3 4

1
2
w2ðdfÞ 1:92 3:0 3:91 4:75

:

Model logL �n
2
AIC SC a1 a2 a3 a4 b1 b2 b3 b4

CEV1 �961.11 �964.11 �974.03 1.9351 0.2897 1.3560

(0.6700) (0.0051) (0.0087)

CEV2 �960.76 �964.76 �977.99 3.1769 �0.2495 0.2906 1.3545

(1.6232) (0.3005) (0.0051) (0.0087)

CEV4 �957.54 �963.54 �983.38 �29.3131 5.8966 �0.3307 50.0541 0.2894 1.3568

(5.3062) (0.5410) (0.0011) (11.9785) (0.0051) (0.0087)

GEN1 �942.61 �947.61 �964.14 0.49843 �5.4489 2.2971 0.0012 4.2310

(0.2391) (0.3959) (0.1146) (0.0003) (0.1071)

GEN2 �941.09 �947.09 �966.93 3.4128 �0.2619 �5.4482 2.2983 0.0012 4.2310

(1.6677) (0.3004) (0.4701) (0.1395) (0.0004) (0.1376)

GEN4 �938.70 �946.70 �973.15 �28.8908 5.6030 �0.3119 52.4248 �5.3686 2.2718 0.0013 4.2011

(0.6235) (0.0650) (0.0001) (1.0170) (0.2538) (0.0636) (0.0001) (0.0300)



that volatility is lowest when the short rate is around 10–12% and that volatility is
about the same when the short rate is at 3% as when it is at 18%. It is difficult to see
much evidence for A.ıt-Sahalia’s estimates in the scatter plot shown in Fig. 7(d). They
are also counterintuitive.
For the drift function, there is more evidence in favor of nonlinearity than with

either of the Treasury bill series, but none of the additional terms beyond the
constant is significant at the 95% level (LR test).
Fig. 7(a) compares A.ıt-Sahalia’s estimated drift function for the GEN4 model

with that of this paper. My drift function exhibits much stronger nonlinearity
(albeit statistically insignificant) than does that of A.ıt-Sahalia. A.ıt-Sahalia’s
estimated nonlinear drift function is positive for interest rates up to 22% (interest
rates greater than 22% were observed on only four days). In any event, Fig. 7(c)
shows that, as with the Treasury bill data, the drift is essentially zero regardless of
specification.

3. Stochastic volatility models

While being able to accurately evaluate scalar models is an essential first step, the
short rate (along with many other financial time series) is known to exhibit properties
such as fat tails and persistant volatility patterns that are inconsistent with these
models. A variety of latent variable models have been proposed as alternatives. In
this section, I consider models of the form

dX ¼ mX ðX Þ dt þ sX ðX Þ expðHÞ dW1

dH ¼ mH ðHÞ dt þ sH ðHÞ dW2: ð7Þ

The second factor corresponds to the unobserved volatility.
To obtain a likelihood, the unobserved factor must be integrated out. For discrete

time models, several approaches have been proposed (e.g., Danielson and Richard,
1993; Richard and Zhang, 2000; Durbin and Koopman, 1997; Kim et al., 1998; Pitt
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and Shephard, 1999). In the continuous-time context, this has not been feasible until
recently and alternative approaches have been used. The efficient method of
moments approach has been used by Gallant and Tauchen (1998) and others.
Methods based on the empirical characteristic function have been proposed by
Chacko and Viceira (2003) and Singleton (2001). Markov Chain Monte Carlo
approaches have been used by Jones (2003a), Elerian (1999), and Eraker (2001).
Another approach to estimating the volatility process is to use the information
present in high-frequency data (e.g., Andersen et al., 2001). Alizadeh et. al. (2002)
suggest a technique using information from the high-low range.
The approach used in this paper does compute the likelihood of the continuous-

time latent factor model. The latent variable is integrated out using a technique
based on particle filtering (see, e.g., Pitt and Shephard, 1999, and the references
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therein). Given draws from the latent variable, one proceeds as before by simulating
paths across unobserved values of the state variable at intermediate points between
each pair of observations. Computational cost is relatively low, with reasonably
accurate estimates obtained within several minutes. A detailed description of the
methodology may be found in Durham and Gallant (2002). For simplicity, I assume
that W1 and W2 are independent.
One of the nice features of the estimation technique proposed by Durham and

Gallant (2002) is that estimates of the latent volatility process H1;y;Hn are readily
available. This is highly useful for pricing derivative securities.
Parameter estimates for several models over weekly observations of the three-

month Treasury bill rate from January 5, 1962 to August 30, 1996 (as used in Section
2) are shown in Table 5. All of these models result in a huge jump in the likelihood as
compared with the scalar models considered in Section 2. As with the scalar models,
the evidence in favor of nonlinearity in mX is negligible. The CEV parameters b1 and
b2 are close to those found for the scalar model. The parameter g; which determines
the rate of mean reversion for H; is about 4, implying that innovations have a half-
life of around two months. Several more flexible specifications for sH ; the volatility
of volatility, were tried, but none was found to provide a significant improvement
over the models shown in Tables 5 and 6.

4. Implications for bond pricing

This section examines bond-pricing implications of some of the models considered
in previous sections. Consider first the single factor model

dr ¼ mðrÞ dt þ sðrÞ dW ð8Þ

and suppose that Pðr; tÞ is the price of a security whose value depends on only the
spot rate and time to maturity. Given standard regularity conditions, Ito’s rule
implies

dP ¼Pr dr � Pt dt þ 1
2
s2Prr dt

¼ ½mðrÞPr � Pt þ 1
2
s2ðrÞPrr� dt þ sðrÞPr dW : ð9Þ

Standard no-arbitrage arguments (see, e.g., Duffie, 1992) imply that the expected
excess return of P should equal the security’s factor loading times the associated
market price of risk; i.e.,

mðrÞPr � Pt þ 1
2
s2ðrÞPrr ¼ rP þ lðrÞPr; ð10Þ

where lðrÞ is the market price of risk. This may be rewritten as

*mðrÞPr � Pt þ 1
2
s2ðrÞPrr ¼ rP; ð11Þ

where *m ¼ mðrÞ � lðrÞ: One typically refers to *m as the risk-neutral drift and to

dr ¼ *mðrÞ dt þ sðrÞ dW ð12Þ
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as the risk-neutral process. For clarity, Eq. (8) is often referred to as the physical or
objective process.
Given *mð	Þ; sð	Þ; and a boundary condition, the partial differential equation

Eq. (11) can be used to compute P: Alternatively, given some observations of P; one
can estimate *m and s: In practice, a convenient way to solve for P is by means of the
Feynman–Kac formulation

Pðr; tÞ ¼ ERN Be
�
R t

0
rðuÞ du þ

Z t

0

CðsÞe�
R s

0
rðuÞ du

ds

� �
; ð13Þ

where B is the terminal payoff of the security at maturity, CðsÞ is the cash flow paid
out by the security, and the expectation is taken under the risk-neutral dynamics (see,
e.g., Karatzas and Shreve, 1991). If P is the price of a zero coupon bond that pays
out $1 in all states at time T ; this simplifies to

Pðr; tÞ ¼ ERN e
�
R t

0
rðuÞ du

� �
: ð14Þ

Either Eq. (13) or (14) is easy to compute using Monte Carlo techniques.
For multifactor models, suppose that rðX Þ and PðX Þ are both functions of a state

vector X ¼ ðX1;X2;y;XK Þ satisfying

dX ¼ mðX Þ dt þ sðX Þ dW ; ð15Þ
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Table 6

Stochastic volatility models over weekly observations of the three-month Treasury bill rate, January 5,

1962 to August 30, 1996

Model logL a1 a2 a3 a4 b1 b2 g d

SV1 913.92 0.250 0.097 1.292 �4.077 1.683

(0.100) (0.028) (0.162) (0.744) (0.139)

SV2 913.93 0.188 0.016 0.098 1.287 �4.099 1.685

(0.295) (0.067) (0.028) (0.159) (0.745) (0.140)

SV3 913.99 �0.168 0.027 0.003 0.952 0.100 1.276 �4.035 1.676

(5.395) (0.998) (0.057) (8.940) (0.029) (0.162) (0.740) (0.140)

Table 5

Stochastic volatility models

The specifications of each of the models considered in this section are shown together with the labels by

which they are referred in the text.

SV1: dX ¼ a1 dt þ b1Xb2 eH dW1

dH ¼ gH dt þ d dW2

SV2: dX ¼ ða1 þ a2X Þ dt þ b1Xb2 eH dW1

dH ¼ gH dt þ d dW2

SV3: dX ¼ ða1 þ a2X þ a3X 2 þ a4=X Þ dt þ b1Xb2 eH dW1

dH ¼ gH dt þ d dW2



where now m is K-dimensional, s is K 
 L-dimensional and W is L-dimensional. A
similar argument to that above holds. The result is again Eq. (13), but in this case the
expectation is taken over rðX Þ according to the risk-neutral dynamics

dX ¼ *mðX Þ dt þ sðX Þ dW ; ð16Þ

where *mðX Þ ¼ mðX Þ � lðX Þ and l is the vector of risk prices associated with X :
Table 7 shows parameter estimates for several models of the physical and risk-

neutral processes using data obtained via the Nelson–Siegel–Bliss methodology
described in Bliss (1997) and implemented in software available from Bliss. This data
consists of 2,064 observations each for the yields of three-month and one, two, five,
and ten-year zero coupon bonds at a weekly frequency over the period June 16, 1961
to December 29, 2000. The three-month bond serves as a proxy for the risk-free rate.
The risk-neutral models are estimated by minimizing squared pricing errors. Given

a parameter vector y and the spot rate, Eq. (14) is used to compute the implied prices
of bonds with maturity m ¼ 1; 2; 5; and 10 years. Let PtðmÞ denote the observed price
of a $1 bond at time t and *Pðr;m; yÞ denote the implied price. The idea is to minimize
the criterion function

#y ¼ argmin
y

X
t¼1;y;T

m¼1;2;5;10

ð *Pðrt;m; yÞ � PtðmÞÞ2: ð17Þ

An alternative approach would be to minimize the errors in implied yields. One
might also try different weighting schemes. Using a standard GMM-style weighting
matrix would place most of the weight on short-term bonds (because they have much
smaller pricing errors). It is unclear whether this is desirable from an economic point
of view (see, e.g., Cochrane, 2001). The approach described by Eq. (17) is simple,
intuitively appealing, and robust. In any event, the results do not appear to be
sensitive to the particular weighting scheme used.
As with the physical process, little is gained by including additional terms beyond

a constant in the drift. Adding a stochastic volatility component also provides little
improvement in bond-pricing performance. Notice that a3; the coefficient of H in the
drift of the observed component of the SV-RN model, is significantly positive. This
corresponds to a positive risk premium for the latent volatility component. The
mean reversion parameter of the latent component is large, which implies that the
impact of spot volatility on bond prices dissipates rapidly. Physical and risk-neutral
drift functions for the single factor models are plotted in Fig. 8. The market price of
risk can be obtained via the identity lðrÞ ¼ mðrÞ � *mðrÞ:
A nonparametric estimate of the market price of risk can be computed as follows.

Suppose that the price of a security satisfies

dP ¼ m�ðrÞ dt þ s�ðrÞ dW : ð18Þ

Comparing Eqs. (9) and (18), one obtains

s�ðrÞ ¼ sðrÞPr: ð19Þ
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Recalling that the expected excess return of a security should equal its factor loading
times l;

m�ðrÞ � r ¼ lðrÞPr; ð20Þ

one can eliminate Pr; yielding

lðrÞ ¼ ðm�ðrÞ � rÞsðrÞ=s�ðrÞ: ð21Þ
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Table 7

Estimation results for physical and risk-neutral models, Nelson–Siegel–Bliss data, June 16, 1961 to

December 29, 2000

Physical models

Model Log L a1 a2 a3 a4 b1 b2

CEV1 796.07 0.3919 0.1034 1.4003

(0.1368) (0.0034) (0.0181)

CEV2 796.94 0.8918 �0.1211 0.1038 1.3977

(0.3725) (0.0903) (0.0034) (0.0183)

CEV4 797.07 �0.8101 0.2730 �0.0265 2.1768 0.1037 1.3984

(4.4979) (0.8868) (0.0511) (6.7726) (0.0034) (0.0187)

Model logL a1 a2 b1 b2 g d

SV2 1261.16 0.2027 0.0295 0.0803 1.3425 �5.6435 1.9870

(0.2527) (0.0570) (0.0192) (0.1340) (0.8730) (0.1397)

Risk-natural models

Model RMSEa a1 a2 a3 a4

CEV1b 0.0353 0.3614

(0.0247)

CEV2b 0.0351 0.4700 �0.0182
(0.1031) (0.0167)

CEV4b 0.0350 0.2771 0.0494 �0.0045 �0.0788
(1.3774) (0.2079) (0.0089) (2.6486)

Model RMSEa a1 a2 a3 g1 g2

SV-RNc 0.0340 7.6878 �0.0453 14.5699 �20.3447 �9.9618
(1.8570) (0.0150) (3.6913) (4.5587) (2.4160)

aRMSE ¼ ð1=4T
P

t¼1;y;T
m¼1;2;5;10

ð *Pðrt;m; #yÞ � PtðmÞÞ2Þ1=2:

bComputed with b1 ¼ 0:1038 and b2 ¼ 1:3977 fixed.
cThe SV-RN model is given by

dr ¼ða1 þ a2r þ a3HÞ dt þ b1rb2 eH dW1

dH ¼ðg1H þ g2Þ dt þ d dW2:

Estimates are computed with b1 ¼ 0:0803; b2 ¼ 1:3425; and d ¼ 1:9870 fixed.



Each of the functions on the right-hand side of Eq. (21) is estimated using a local
linear smoother on the first-order approximation of the continuous-time model (see,
e.g., Fan and Gijbel, 1996). This is similar to the approach suggested by Stanton
(1997).
The result is four different estimates for lðrÞ; one for each maturity considered.

Fig. 8(c) shows that the nonparametric estimates depend strikingly little upon the
maturity of the bond used in the computation. If these estimates differed
significantly, it would provide evidence against the single factor model (for a formal
test of this hypothesis, see Cheng, 2001).
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5. Conclusions

While there is a great deal of interest in using stochastic differential equations to
model financial time series data, it has been difficult to find effective ways to estimate
these models. This paper demonstrates procedures by which highly accurate
approximations to the maximum likelihood estimator may be quickly and
conveniently obtained.
In addition to the wellknown optimality properties of MLE, availability of the

likelihood provides a convenient tool for specification analysis. Although the data
and models examined in this paper are for the most part well known, the statistical
techniques are novel and allow a number of new, and in some cases surprising,
results to be obtained.
Several models for the risk-neutral measure are estimated by minimizing the

squared differences between observed and implied bond prices. Computing the bond
prices implied by stochastic volatility models requires estimates of the spot volatility.
A convenient feature of my estimation procedure is that volatility estimates are
readily available.
While adding the latent volatility component provides a large improvement in the

likelihood as compared with single component models for the physical process, it
does little to improve bond-pricing performance.
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