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Abstract 

One- and two-factor stochastic volatility models are assessed over three sets of stock returns 
data: S&P 500, DJIA, and Nasdaq. Estimation is done by simulated maximum likelihood 
using techniques that are computationally efficient, robust, straightforward to implement, and 
easy to adapt to different models. The models are evaluated using standard, easily 
interpretable time-series tools. The results are broadly similar across the three data sets. 
The tests provide no evidence that even the simple single-factor models are unable to capture 
the dynamics of volatility adequately; the problem is to get the shape of the conditional returns 
distribution right. None of the models come close to matching the tails of this distribution. 
Including a second factor provides only a relatively small improvement over the single-factor 
models. Fitting this aspect of the data is important for option pricing and risk management. 

 

  

1. Introduction 

Equity returns data commonly exhibit volatility clustering and non-Gaussian 
distributions. A huge literature devoted to analyzing models that try to account for 
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these characteristics has developed. Such models are important for pricing derivative 
securities and risk management. 
The literature has several dominant strands. The bulk of applied work has used 

some version of the ARCH/GARCH class of models. Such models can generate data 
possessing the features mentioned above, and statistical analysis is straightforward 
since the volatility state is easily deduced from the data. On the other hand, these 
models imply a deterministic link between the return and volatility processes that 
may be difficult to justify on either empirical or theoretical grounds. An alternative is 
the class of stochastic volatility (SV) models. While the additional source of 
randomness in SV models provides more flexibility in fitting the data, statistical 
analysis is more complicated since the state is not uniquely determined by the data. 
Regime-switching models provide a third alternative (e.g., Hamilton, 1990). Recent 
work by Geweke and Amisano (2001) suggests the idea of using compound Markov 
mixtures of normals. This approach provides a highly flexible modeling framework, 
lending a nonparametric flavor to the endeavor. Other approaches to volatility 
modeling include using the information available in high-frequency data (Andersen 
et al., 2003; Barndorff-Nielsen and Shephard, 2002), hi-lo quotes (Alizadeh et al., 
2002) or option prices (Jones, 2003; Koopman et al., 2005). 

This paper demonstrates tools for likelihood-based analysis of standard one- and 
two-factor SV models used in finance, building on work by Kim et al. (1998), 
Shephard and Pitt (1997), Durbin and Koopman (1997, 2000), and Sandmann and 
Koopman (1998). The likelihood function is approximated by using simulation to 
integrate out an unobserved ‘‘auxiliary’’ variable (the volatility process in this case). 
Estimation is carried out by maximizing the approximate likelihood. This approach 
is commonly referred to as simulated maximum likelihood estimation (SMLE). It 
has a great deal in common with the Bayesian Markov chain Monte Carlo (MCMC) 
approach that has become popular in recent years. SMLE is loosely related to 
simulated method of moments (Duffie and Singleton, 1993) and efficient method of 
moments (Gallant and Tauchen, 1996), which also rely upon simulation as a tool to 
approximate estimation criteria that are unavailable in closed form. 
Other related work on maximum likelihood estimation of SV models includes 

Danielson and Richard (1993), Danielson (1994), and Liesenfeld and Richard (2003), 
who also use Monte Carlo methods to integrate out the unobserved states, and 
Fridman and Harris (1998), who use recursive numerical integration. 
The tools used in this paper are robust, computationally efficient, straightforward 

to implement, and easy to adapt to different models. Log volatility models with one 
and two factors, affine models, and a new formulation of the SV-t model are 
examined. All the models allow for the possibility of leverage effects. In addition to 
estimation, issues related to filtering, smoothing, model diagnostics, and numerical 
performance are considered. 

Using these tools, the likelihood of a standard single factor SV model on a data set 
of several thousand observations can be approximated in a fraction of a second on a 
typical PC. The algorithm can be implemented in a few dozen lines of Fortran code. 
Adapting the code to a new model is simply a matter of providing a few model-
specific functions, code for which is easily obtained using symbolic manipulation 
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software such as Maple. The smoothers, filters, and model diagnostics are also easy 
to implement in a few lines of Fortran code. 

The critical requirement for being able to use the tools described in this paper is 
that it be possible to specify in closed form the joint density of the observed and 
unobserved variables conditional on their past. While this is often possible (such as 
with the SV models considered in this paper), there are many interesting models used 
in economics where it is not. In such cases, the simulated method of moments 
approach—which requires only that one be able to generate synthetic data from the 
model—may still be feasible. 

With any simulation-based estimator, a careful examination of numerical issues is 
essential. Such estimators are based on simulations generated using sequences of 
pseudorandom numbers. The estimator is a function not only of the data, but also of 
the seed used to generate the pseudorandom sequence. Given a fixed data set, each 
choice of seed implies a different parameter estimate. A common approach is to fix a 
particular pseudorandom sequence and report the corresponding estimates. The 
hope is that the estimates corresponding to other sequences would not differ by 
much. Convincing evidence is often not provided, and in some cases may be costly to 
obtain. 

For each of the models considered in this paper, estimates based on many different 
seeds for the random number generator are computed. The mean and standard 
deviation of the individual estimates is reported. This provides information as to the 
numerical stability of the estimator with respect to different seeds. By taking an 
increasing sequence of simulation lengths, it is possible to observe the rate at which 
the simulation-induced variance dissipates. By checking for systematic patterns in 
location shifts for the parameter estimates with increasing simulation length, it is 
also possible to address the issue of simulation-induced bias. 

It should be noted that simulation error is an issue not just with SMLE, but with 
simulated method of moments and Bayesian MCMC estimators as well. The 
problem is that assessing simulation error may be difficult given the high 
computational demands of some of these estimators. One of the advantages of the 
computational efficiency of the tools used in this paper is that careful studies of their 
numerical properties (as well as their small sample statistical properties) are feasible. 

This paper is the first time that several of the models considered have been 
estimated using likelihood-based tools. While similar (and yet more sophisticated 
models) have been estimated using the efficient method of moments (e.g., Chernov et 
al., 2003), parameter estimates obtained using the two approaches—as well as the 
precision of those estimates—can differ substantially. The model diagnostics 
examined in this paper are also substantially different from those provided by 
EMM. And finally, EMM is more computationally demanding than the techniques 
considered in this paper. The merits of EMM are well-documented in the literature. 
This paper is intended to further explore alternatives. 

The empirical work looks at three data sets: S&P 500 index returns over the period 
June 23, 1980 through September 2, 2002; Dow Jones Industrial Average returns 
over the period January 1953 through July 30, 1999; and Nasdaq returns from 
October, 1984 through September 15, 2004. A variety of models is estimated over 
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each data set. The availability of the log likelihood means that models can be 
evaluated using Kullback–Leibler and related information criteria. The models are 
also subjected to a battery of diagnostic tests. 

The results are qualitatively similar for all the data sets: 
•
 I find no evidence that even the simple single factor models are unable to capture 
the dynamics of the volatility process. In contrast, Gallant et al. (1997) using a 
longer data set (1928–1987) find evidence of more complex dynamics in the 
volatility process. Their results suggest modeling volatility as a fractionally 
differenced AR(2) process. Bollerslev and Mikkelsen (1996), Ding et al. (1993) and 
others also find evidence of long memory in stock returns. Andersen et al. (2002), 
Chernov et al. (2003) and others find evidence in favor of a second volatility 
factor. The failure of the diagnostics used in this paper to find evidence of such 
behavior may be due to the shorter sample period or to lack of power in the tests. 

•
 The more critical problem is to capture the shape of the conditional returns 

distribution. While including a second volatility factor helps some, all of the 
models fail in a similar manner: none is able to explain the extreme left tail of the 
distribution. This is in agreement with earlier findings of Gallant et al. (1997) and 
others, though some of the diagnostic information presented in this paper is new. 
In addition to formal statistical tests, QQ-plots clearly illustrating the nature of 
the models’ failure are provided. 

Surprisingly good results are obtained using a new formulation of the SV-t model. 
Performance is comparable to the more commonly used two-factor models. This 
model differs from those considered previously in the literature in the way that 
correlation between returns and the volatility process is introduced. The 
volatility process inherits some of the kurtosis found in returns. In particular, large 
absolute returns (e.g., ‘‘crash’’ days) are associated with simultaneous ‘‘jumps’’ 
in volatility, an effect that Eraker et al. (2003) argue is an important feature of 
the data. Using t rather than normal errors adds kurtosis to the returns distribution. 
But skewness is needed as well. The SV-t model is unable to account for the long left 
tail. 

The rest of this paper is organized as follows: Section 2 describes the estimation 
approach used, Section 3 looks at the numerical performance of the estimators, 
Section 4 discusses the issues of filtering and smoothing, Section 5 is the application, 
and Section 6 concludes. 
2. Estimation methodology 

The basic idea underlying SMLE is as follows. Suppose that x ¼ ðx1; . . . ;xnÞ is a 
realization from some random vector X ¼ ðX 1; . . . ;X nÞ for which direct evaluation 
of the density function pðxÞ is infeasible, but that there exists some collection of 
(unobserved) auxiliary variables V ¼ ðV 1; . . . ;VnÞ such that the joint density pðx; vÞ 
is easy to evaluate. The likelihood of a parameter vector y can then be obtained by 
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integrating out the auxiliary variables: Z 
LðyjxÞ ¼  pðx; v; yÞdv. (1) 

This is generally a very high-dimensional integral that must be evaluated using 
ð1ÞMonte Carlo techniques. The idea is to draw samples v ; . . . ; vðSÞ from some density 

q, referred to as an importance density, and compute Z 
pðx; v; yÞ 

LðyjxÞ ¼  dQðvÞ 
qðvÞ
 X ðsÞÞ


S1 pðx; v
� . ð2Þ 

ðsÞÞS qðv
s¼1 

Thus the likelihood is approximated by a weighted average across ‘‘simulated’’ 
draws from q. Although q will usually depend on x and y, this will be suppressed in 
the notation. The dependence of p on y will usually be supressed as well. The 
estimation step is performed by maximizing the approximate likelihood thus 
obtained. 

The theory of Monte Carlo integration is well understood (e.g., Judd, 1998). 
Convergence of the sum on the right-hand side of (2) follows from a straightforward 
application of the strong law of large numbers (treating x and y as fixed). It is 
sufficient to verify that the integral in Eq. (2) exists. In practice, one would also like 
for the variance of pðx;V Þ=qðV Þ (with respect to q) to be finite, so that a central limit pffiffiffiffi 
theorem may be applied to show that convergence is at rate S. The issue is 
essentially whether the tails of q are sufficiently thick with respect to those of p. This 
is not just of theoretical concern, but a very practical problem. If the tails of q are too 
thin, very large values of p=q will be drawn occasionally and the sum will be erratic 
over repeated trials. 

While a theoretical verification that the regularity conditions are satisfied is of 
course useful, it is easy to design importance samplers that satisfy them yet perform 
so poorly that they are of little use in practice (e.g., Geweke, 1989). It is also possible 
to take an importance density which works well over most of its range and fix 
problems far out in the tails by truncation (e.g., Kloek and van Dijk, 1978). A careful 
examination of the convergence properties of the sum in (2) for the particular 
problem at hand is essential (indeed, providing an estimate of the numerical error 
should be part of the standard operating procedure for any simulation-based 
estimator). 

The SV models examined in this paper are of form 

X tþ1 ¼ mX ðX t;V tÞ þ sX ðX t;V tÞ8tþ1, 

Vtþ1 ¼ mV ðV tÞ þ sV ðVtÞZtþ1, ð3Þ 

where X t is an nx-dimensional observed component, V t is an nv-dimensional latent 
volatility component, and ð8t; Z Þ is an ðnx þ nvÞ-dimensional random variable with t 
mean zero and variance O. By setting t equal to either t or t þ 1, the above model 
encompasses the different timings that appear in the literature. 
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The importance sampler is based on the Laplace approximation to pðx; vÞ (see e.g., 
Gelman et al., 1995). One first computes 

v ¼ argmax 
v 

and 

^ log pðx; vÞ 

vÞ. 

The importance density is given by the multivariate normal with mean

^
2 q

H ¼ log pðx;
2qv

v̂ and variance 
v, of  pðx; vÞ is obtained using Newton’s method. Although this 

would appear to be costly since it involves solving a nnv dimensional system of linear 
equations, the Hessian is positive definite symmetric banded (with nv off-diagonals). 
Efficient techniques are available to solve linear systems with this structure. Note 
that there is never any need to obtain H-1 explicitly. 

This approach is similar to that used by Durbin and Koopman (1997, 2000), but 
the implementation is more straightforward, especially for models involving 
correlation between 8t and Z . Durbin and Koopman approximate the model by a t 
linear Gaussian state-space model. The approximating model is computed iteratively 
using the Kalman filter and smoother. 

It is easy to write this importance sampler down. As discussed above, the critical 

^

step is to verify its performance in practice for the particular model at hand. This 
issue is addressed in Section 3. 

The estimation procedure is very efficient computationally and can be 
implemented in just a few lines of Fortran code. The only model dependent code 
involves the computation of log pðx; vÞ and its first and second derivatives with 
respect to v. In practice, log pðx; vÞ is obtained as the sum of terms of form 
log pðxtþ1; vtþ1jxt; vtÞ. The derivatives of log pðx; vÞ are constructed by stacking up 
the derivatives of these terms blockwise. The formulae are typically easy to obtain. 
The simplest way to do so is using Maple or some other symbolic manipulation 
software. Code and detailed implementation notes are available upon request. 

Jacquier et al. (1994) (JPR hereafter) compare the performance of their MCMC 
estimator for SV models against several other approaches in an extensive simulation 
study that has become a standard benchmark in this literature. They look at the 
model 

X t ¼ expðV t =2Þ8t, 

Vt ¼ a þ fV t-1 þ sV Zt, 

where the ð8t; ZtÞ are iid standard normal. 
Following JPR, I estimate (4) over synthetic data generated using 

ð4Þ 

various 
parameter settings that they argue are representative of much financial data. The 
distribution of the estimates obtained using the approach described in this paper is 
essentially the same as found by JPR and others. Details are available upon request. 
The estimator is very well-behaved with these models. Experiments over thousands 
of simulated data sets never resulted in any apparent problems with convergence. 

-H-1 . The mode,
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Computational cost for this model is about 0.05 s per evaluation of the likelihood 
function (on a 2 GHz PC) with n ¼ 1000 observations and S ¼ 64 draws from the 
importance sampler. Time required to maximize the likelihood is more variable. 
Using two-sided numerical derivatives, the Broyden–Fletcher–Goldfarb–Shapiro 
optimizer, and a reasonable start value, times of around 3 s are typical. 

It is sometimes found in empirical work that negative returns are associated with a 
subsequent increase in volatility. This is often referred to as the ‘‘leverage effect’’. No 
changes in the main body of code are needed to include correlation between returns 
and the volatility process in (4). The only thing needed is a minor change in the 
Maple code used to obtain expressions for log pðxt; vtjxtþ1; vtþ1Þ and its first and 
second derivatives. The resulting estimator works with essentially the same efficiency 
and robustness as for the uncorrelated case. Some simulation results are shown in 
Table 1. Parameter settings for f, sX and sV are taken from the ‘‘middle’’ case of 
JPR. Various settings for the correlation parameter r are tried. 

An alternative formulation of this model is 

X t ¼ m þ sX expðVt-1 =2Þ8t, 

Vt ¼ fVt-1 þ sV nt ð5Þ 

with corrð8t; ntÞ ¼ r. This is a different way of organizing the parameters, but more 
critically, the timing is different (depending upon whether V t or V t-1 appears in the 
returns equation). The model in (5) is a martingale difference sequence 1 (after 
subtracting off the unconditional mean, m). It also represents the Euler scheme 
approximation of the underlying continuous-time model. 

The model in (4), on the other hand, has the feature that large absolute returns are 
associated with concurrent shifts in the level of volatility, introducing an additional 
source of non-Gaussianity into the model. In particular, the distribution of X tjV t-1 

is skewed if ra0 with this timing. Jacquier et al. (2002) argue that this effect may 
help to explain the extremely large negative returns that are seen occasionally in the 
data (‘‘crash’’ days). 

Whether the asymmetry introduced by the JPR timing is important in practice can 
only be determined empirically. That the model with this timing is not the Euler 
scheme approximation to the underlying continuous-time model does not appear to 
be critical. The Euler scheme is one approximation; it is neither the only one nor 
necessarily the best. And while this model is not a martingale difference sequence, the 
departure from ‘‘martingale-ness’’ may be small. Furthermore, it is typically not 
obvious that the true data generating process has this characteristic. A careful 
empirical assessment of the timing issue is undertaken in Section 5. Both timings of 
1To see why the model in (4) is not a martingale difference sequence, rewrite it as 

pffiffiffiffiffiffiffiffiffiffiffiffi ffi 
X t ¼ expðVt =2Þð 1 - r2Zt þ r8tÞ; 

V t ¼ a þ fV t-1 þ sV Zt 

and note that E½expðVt =2ÞZ jVt-1] ¼ expða þ fVt-1 =2ÞE½expðsV Z =2ÞZt]a0. The same reasoning holds t t 

even if the conditioning is with respect to X 1; . . . ;X t-1 rather than Vt-1. 
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Table 1 
Simulation studies 

Single-factor (see Eq. (4)) 

sX f 

True 0.0252 0.9500 
0.0253 0.9476 
(0.0015) (0.0124) 

True 0.0252 0.9500 
0.0253 0.9476 
(0.0015) (0.0120) 

True 0.0252 0.9500 
0.0253 0.9479 
(0.0014) (0.0106) 

True 0.0252 0.9500 
0.0253 0.9486 
(0.0011) (0.0080) 

sV 

0.260 
0.256 
(0.028) 
0.260 
0.257 
(0.027) 
0.260 
0.258 
(0.025) 
0.260 
0.259 
(0.021) 

r 

0.000 
0.000 
(0.074) 
-0.250 
-0.255 
(0.071) 
-0.500 
-0.507 
(0.062) 
-0.750 
-0.757 
(0.043) 

SV-t (see Eq. (6)) 

m 

True 0.0000 
-0.0000 
(0.0002) 

sX 

0.0070 
0.0070 
(0.0005) 

f 

0.980 
0.976 
(0.010) 

sV 

0.100 
0.103 
(0.022) 

r 

-0.500 
-0.515 
(0.116) 

n 

8.00 
8.45 
(1.83) 

Two-factor (see Eq. (8)) 

m sX 

True 0.00000 0.00800 
-0.00002 0.00806 
(0.00019) (0.00043) 

fV 

0.980 
0.970 
(0.023) 

sV 

0.090 
0.103 
(0.032) 

r21 

-0.400 
-0.390 
(0.154) 

fU 

0.20 
0.15 
(0.30) 

sU 

0.500 
0.435 
(0.071) 

r31 

0.000 
0.005 
(0.103) 

Affine (see Eq. (9)) 

m 

True 0.00000 
0.00000 
(0.00032) 

f 

0.030 
0.041 
(0.030) 

a 

0.000200 
0.000200 
(0.000012) 

s 

0.0010 
0.0011 
(0.0003) 

r 

-0.500 
-0.501 
(0.149) 

The mean and standard deviation of parameter estimates are shown. For the single-factor model with 
correlation, the data generating parameters correspond to the middle cell of the simulation study in 
Jacquier et al. (1994). For the remaining models, the data generating parameters correspond 
approximately to parameter estimates obtained in the empirical sections of this paper. All results are 
based on 5000 replications with N ¼ 2000 observations each. The single-factor and SV-t models use 
S ¼ 64 draws from the importance sampler; the two-factor and affine models use S ¼ 256. 
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the model can be estimated with just a minor modification in the code. There is 
essentially no effect on the numerical performance. 

Another model of interest is the SV-t model, which uses t in place of normally 
distributed errors in the returns process. The idea is to model the excess kurtosis in 
returns that remains even after allowing for time-varying volatility. The specification 
used in this paper is given by 

X t ¼ m þ sX expðVt-1 =2Þ8t, ( pffiffiffiffiffiffiffiffi ffiffiffiffi ffi )
Vt ¼ fVt-1 þ sV r8t þ 1 - r2Z , ð6Þt 

where 8t�tn, Zt�Nð0; 1Þ, and 8t and Z are independent. Correlation between returns t 
and volatility is introduced by including 8t in the innovations of both. 

An alternative formulation of the model is estimated by Jacquier et al. (2002) 
using Bayesian MCMC techniques. The specification they use is given by 

X t ¼ sX expðVt =2Þlt8t, 

Vt ¼ fVt-1 þ sV Zt, ð7Þ 

2where n=lt�w , 8t and Zt are Nð0; 1Þ, and corrð8t; ZtÞ ¼ r. Note that the product lt8tn 
has the tn distribution. 

There are two key differences between these models. First, there is a timing issue 
analogous to the one discussed above. But also, the presence of 8t in the volatility 
equation of (6) implies that the volatility process inherits some of the kurtosis found 
in returns. In particular, large absolute returns (e.g., ‘‘crash’’ days) are associated 
with simultaneous ‘‘jumps’’ in the volatility level. Eraker et al. (2003) argue that this 
is an important feature of the data. 

SV-t models have also been estimated using likelihood-based techniques by Chib 
et al. (2002), Sandmann and Koopman (1998) and Liesenfeld and Richard (2003), 
but only with uncorrelated errors (note that (6) and (7) are equivalent if the errors 
are not correlated). As will be shown in Section 5, the models without correlation are 
not empirically relevant, at least for the data sets examined in this paper. 

Implementing the estimator for the model shown in (6) requires no changes in the 
main body of code. Expressions for the transition density and its derivatives are 
easily obtained using Maple. Performance and robustness of the estimator are 
similar to the case with normally distributed errors. See Table 1 for some results 
from a small simulation study. 

Another approach to capturing the non-Gaussianity of returns is to include a 
second volatility factor. The first factor is highly persistent and captures volatility 
clustering. The second factor has little persistence. Its role is primarily to control the 
shape of the distribution of returns. Engle and Lee (1998) use a two-factor GARCH 
model. Two-factor SV models have been explored (using different techniques) by 
Gallant et al. (1999), Alizadeh et al. (2002), and Chernov et al. (2003) among others. 
Liesenfeld and Richard (2003) estimate and assess a two-factor model (but without 
leverage effects) using likelihood-based tools. 
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A standard two-factor model is given by 

X t ¼ m þ sX expðUt-1 =2 þ V t-1 =2Þ81t, 

Vt ¼ fV Vt-1 þ sV 82t, 

Ut ¼ fU Ut-1 þ sU 83t, ð8Þ 

where 8it Nð0; 1Þ and corrð8it; 8jtÞ ¼ rij . In addition to (8), two alternative timings are 
of interest for this model. The first uses the JPR timing for both factors, i.e., Ut and 
V t in place of Ut-1 and Vt-1 in the returns equation. The other timing of potential 
interest is a hybrid using the Euler-scheme timing for the persistent factor and the 
JPR timing for the non-persistent factor. 
The approach used to estimate this model is basically the same as for the one-

factor model, but the implementation is more involved. It is primarily a matter of 
‘‘bookkeeping’’. The Hessian required in the construction of the importance sampler 
is constructed blockwise from the second derivatives of pðxt; ut; vtjxt-1; ut-1; vt-1Þ 

with respect to ðut; vt; ut-1; vt-1Þ. To maintain the banded form for the Hessian of the 
transition matrix, the latent factors must be interleaved, ðu1; v1; u2; v2; . . . ; un; vnÞ. 
Also, the blocks of the second derivative matrix are 4 x 4 (versus 2 x 2 for the single-
factor case), which means that there are ten cells to fill in for each block (rather than 
three for the single-factor case; recall that the Hessian is symmetric). Otherwise, the 
algorithm differs little from the single-factor case. 

Computational cost is greater than for the single-factor model but remains 
modest. More data is needed to obtain reasonably precise estimates for some of the 
parameters (the rate of mean reversion of the non-persistent factor is difficult to 
estimate precisely even with several thousand observations). Also, more draws from 
the importance sampler are needed to obtain acceptable levels of numerical 
precision. The simulation studies reported in Table 1 are based on n ¼ 2000 
observations and S ¼ 256 draws from the importance sampler. Computational cost 
is less than 1 s (on a 2 GHz PC) per evaluation of the likelihood function. 

The estimation approach described above can also be used with the affine class of 
SV models, but slightly more work is required. First, the model should be 
transformed to one where the coefficient of the Brownian motion in the latent 
process is constant. Given the continuous-time version of the model pffiffiffiffiffiffi 

dY t ¼ m dt þ Vt dW 1t, pffiffiffiffiffiffi 
dV t ¼ fða - VtÞdt þ s Vt dW 2t, 

where W 1 and W 2 are (possibly correlated) Brownian motions, use Ito’s rule with 
pffiffiffiffiffiffi 

the transformation ht ¼ Vt to get 

dY t ¼ m dt þ ht dW 1t ( )
f s2 s 

dht ¼ a - - h2 dt þ dW 2t.t2ht 4f 2 

This is the same ‘‘volatility-stabilizing transformation’’ used in Durham and Gallant 
(2002). The idea is the same in either context. The transformed model is closer to 
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Gaussian and the performance of the importance sampler is dramatically improved. 
For the generic case where the coefficient of W 2t is sV ðvÞ, the desired transformation R 

s -1is given by h ¼ ðvÞdv.V 
The form of the model that is actually estimated is the Euler approximation 

X t ¼ m þ ht-18t, ( )
f s2 s 

ht ¼ ht-1 þ a - - h2 
þ Z ð9Þt-12ht-1 4f 2 t, 

where 8t and Z are both Nð0; 1Þ and corrð8t; Z Þ ¼ r. Once the model is in this form, t t 
adapting the estimator to work with it again requires some modification of the 
Maple code used to obtain pðxt; vtjxt-1; vt-1Þ and its derivatives, but no changes to 
the main body of code. Results of a simulation study are shown in Table 1. 

It seems plausible that the estimation approach used in this paper can be extended 
to work with affine models with jumps and/or more than a single volatility factor. 
However, such work is not undertaken here. 

A summary of the models is shown in Table 2. 
�

3. Numerical performance 

While it is easy to demonstrate that the estimators used in this paper are 
asymptotically equivalent to the corresponding maximum likelihood estimators as S 
goes to infinity, (e.g., Gouriéroux and Monfort, 1996, Proposition 3.2), what is really 
needed is some understanding of the nature of the approximation error given the 
simulation lengths used in practice. 

Recall that Z 
LðyjxÞ ¼  pðx; vÞdv Z 

pðx; vÞ 
¼ dQðvÞ 

qðvÞ 

S sÞÞ1 X pðx; vð
, ð10Þ 

ðS qðv sÞÞ 
s¼1 

ð1Þwhere v ; . . . ; v ðSÞ are iid samples from the importance density q and the dependence 
of both p and q on y is suppressed in the notation. The almost sure convergence of 
the sum follows from the strong law of large numbers since LðyjxÞo1 by definition. 
Note that the choice of q does not come into play here. pffiffiffiffi 

A central limit theorem can be applied to get S convergence if additionally " # ( )2 Z (  )2 
pðx;V Þ pðx; vÞ 

EQ ¼ dQðvÞo1. 
qðV Þ qðvÞ

It is generally difficult to assess whether this integral is finite analytically, but a 
numerical investigation into the issue is straightforward. In particular, it is easy to 
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Table 2 
Models 

SV1-EUL 
X t ¼ m þ sX expðV t-1 =2Þ8t 8t; Z Nð0; 1Þt 

V t ¼ fVt-1 þ sV Z corrð8t; Z Þ ¼ rt t 

SV1-JPR 
X t ¼ m þ sX expðV t =2Þ8t 8t; Z Nð0; 1Þt 

V t ¼ fVt-1 þ sV Z corrð8t; Z Þ ¼ rt t 

SV-t 
X t ¼ m þ sX expðV ( t-1 =2Þ8t ) 8t tn; Zt Nð0; 1Þ pffiffiffiffiffiffiffiffiffiffiffiffi ffi 

corrð8t; Z Þ ¼ 0Vt ¼ fVt-1 þ sV r8t þ 1 - r2Z t 
t 

SV2-EUL 
X t ¼ m þ sX expðUt-1 =2 þ Vt-1 =2Þ81t 8it Nð0; 1Þ 
V t ¼ fV Vt-1 þ sV 82t corrð8it; 8jtÞ ¼ rij 

Ut ¼ fU Ut-1 þ sU 83t 

SV2-JPR 
X t ¼ m þ sX expðUt =2 þ V t =2Þ81t 8it Nð0; 1Þ 
V t ¼ fV Vt-1 þ sV 82t corrð8it; 8jtÞ ¼ rij 

Ut ¼ fU Ut-1 þ sU 83t 

SV2-HYB 
X t ¼ m þ sX expðUt =2 þ V t-1 =2Þ81t 8it Nð0; 1Þ 
V t ¼ fV Vt-1 þ sV 82t corrð8it; 8jtÞ ¼ rij 

Ut ¼ fU Ut-1 þ sU 83t 

AFF (pffiffiffiffiffiffiffiffiffiffiffiffi ffi )
X t ¼ m þV t-1 1 - r28t þ rZt 

8t; Zt Nð0; 1Þ ( )
f a - s2 

þ s Z corrð8t; ZtÞ ¼ 0
V t ¼ Vt-1 þ 2Vt- 4f - V2 
t-1 2 t
1 
obtain a large number of draws from pðx;V Þ=qðV Þ, where V has density q. Suppose 
that the right tail of logðpðx;V Þ=qðV ÞÞ is thinner than that of Z, a Gaussian random 
variable with the same mean and variance. Since expðZÞ has a finite second moment, 
one could conclude that pðx;V Þ does also. 

Note that we may write 

( ) ( )n-1 Xpðx;V Þ pðV 1jxÞ pðViþ1jV i;xÞ 
log ¼ log pðxÞ þ log þ log . 

qðV Þ qðV1Þ qðV iþ1jViÞ i¼1 

Since this is a sum of many random variables, it seems plausible to hope that 
logðpðx;V Þ=qðV ÞÞ might be approximately normally distributed. Fig. 1 shows 
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Fig. 1. Histograms and QQ-plots for 100,000 draws from logðpðx;V Þ=qðV ÞÞ, where V has the importance 
density, q. 
histograms and QQ-plots of 100,000 draws from logðpðx;V Þ=qðV ÞÞ using the data 
and two of the models considered in Section 5. These figures are supportive of the 
argument outlined above. It seems reasonable to expect that the sum in (10)pffiffiffiffi 
converges at rate S, at least eventually. 

On the other hand, if the variance of logðpðx;V Þ=qðV ÞÞ is large, then pðx;V Þ=qðV Þ will 
be severely skewed, and ‘‘eventually’’ could be a long time coming. Furthermore, between 
the computation of the likelihood and the evaluation of the estimator lies an optimization 
step. Therefore, the preceding argument, while possibly of interest, is less than conclusive. 

The simplest way to address the issue of simulation error is possibly the best: re
estimate the model many times using different seeds for the random number 
generator. This provides direct and unambiguous evidence on the variability of the 
estimator as a function of the sequence of random numbers used. 

Ultimately, what is needed is a single parameter estimate for a given data set. 
Rather than arbitrarily choosing the estimate corresponding to one particular seed, it 
is better to report the mean of the entire collection of estimates computed. The 
standard deviation of the individual estimates serves as an indication of the 
simulation error. Since the variance of the mean will be much less than the variance 
of the individual estimates, this will be a conservative estimate of the numerical error 
associated with the parameter estimate actually reported. 

The simulation estimator may also be biased with respect to the true maximum 
likelihood estimator (this is a different issue from possible bias in the MLE itself). A 
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careful analysis requires repeating the procedure described above for each of several 
different settings for S. The results can be used to see if there is any drift in the 
estimates as S increases. 

Table 3 shows the results from trying this idea using the S&P 500 data examined in 
Section 5. The mean and standard deviation of the estimates obtained using each of 
500 different seeds are shown. Several different values for S are tried. Histograms of 
the estimates provide further insight and are available upon request. 

For the single-factor model, the estimator is reasonably stable even with a small pffiffiffiffi 
number of draws. This is fortunate, because if S convergence is setting in, it is 
doing so slowly. Notice that there is some movement in the mean of the estimates 
with increasing S. This suggests the presence of a small amount of simulation-
induced bias that disappears as S gets large. 

For the two-factor model, there is a moderate amount of variation across 
simulations in the estimates for several of the parameters. There is also a shift in 
location for some of the estimates with increasing S, especially for fU and r31. It
seems likely that larger settings for S would yield estimates closer to zero for both of 
these parameters. 

The issue of numerical error should be addressed with any simulation-based 
estimator, including simulated method of moments and Bayesian MCMC 
estimators. The advantage of the techniques used in this paper is that they are 
efficient enough that a careful investigation of numerical issues is possible. 
4. Smoothing, filtering and diagnostics 

It is straightforward to obtain estimates of the smoothed volatilities, 
EðV 1; . . . ;Vnjx1; . . . ;xnÞ. One again simulates many draws from the importance 
sampler q. For each sample path, v ðsÞ, one computes the weight 

ðsÞÞpðx; vðsÞÞ=qðv
ws ¼ ; s ¼ 1; . . . ;S. PS ðiÞÞ
i¼1 pðx; v

ðiÞÞ=qðv


The collection of sample paths and weights may be thought of as defining a discrete 
probability measure which approximates that of V1; . . . ;V njx1; . . . ;xn. The 
smoothed volatilities are estimated by the mean of the approximating distribution, 

S
 

V̄ ¼ v ðsÞ ws.
 
s¼1
 

X 
Other expectations, such as the variance, can be estimated in a similar manner. 

While this approach to smoothing is simple, it is not very efficient. For the two-
factor SV models, numerical error in the smoothed volatility is still readily apparent 
over test runs using 10,000 sample paths each (one can check the numerical error by 
repeating the exercise several times with different seeds for the random number 
generator). Using one million paths seems to be sufficient to reduce the numerical 
error to insignificance. On a data set with 5000 observations, computational cost is 
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Table 3 
Numerical error 

SV1-EUL 
S log L m sX f sV r 

32 18,532.62 0.0000693 0.0085533 0.97663 0.1685 -0.4331 
(0.0001059) (0.0004175) (0.00442) (0.0144) (0.0476) 

(1.15) (0.0000018) (0.0000040) (0.00048) (0.0021) (0.0030) 

128 18,533.21 0.0000688 0.0085516 0.97633 0.1699 -0.4323 
(0.0001059) (0.0004182) (0.00439) (0.0143) (0.0475) 

(0.94) (0.0000015) (0.0000033) (0.00042) (0.0019) (0.0026) 

512 18,533.41 0.0000685 0.0085508 0.97616 0.1707 -0.4320 
(0.0001059) (0.0004088) (0.00460) (0.0149) (0.0468) 

(0.64) (0.0000013) (0.0000030) (0.00039) (0.0017) (0.0021) 

2048 18,533.58 0.0000684 0.0085496 0.97601 0.1714 -0.4314 
(0.0001059) (0.0004145) (0.00445) (0.0144) (0.0475) 

(0.45) (0.0000010) (0.0000022) (0.00030) (0.0014) (0.0017) 

8192 18,533.73 0.0000682 0.0085487 0.97585 0.1722 -0.4310 
(0.0001059) (0.0004140) (0.00449) (0.0146) (0.0476) 

(0.37) (0.0000008) (0.0000021) (0.00029) (0.0013) (0.0014) 

32,768 18,533.78 0.0000681 0.0085482 0.97578 0.1725 -0.4307 
(0.0001059) (0.0004116) (0.00454) (0.0147) (0.0474) 

(0.24) (0.0000006) (0.0000018) (0.00024) (0.0011) (0.0012) 

SV2-EUL 
S log L m sX fV sV r21 fU sU r31 

32 18,572.09 0.000087 0.00836 0.9913 0.0957 -0.429 0.311 0.424 -0.279 
(0.000104) (0.00055) (0.0029) (0.0121) (0.061) (0.199) (0.033) (0.069) 

(2.62) (0.000006) (0.00006) (0.0012) (0.0075) (0.042) (0.204) (0.036) (0.073) 

128 18,573.86 0.000085 0.00833 0.9909 0.0984 -0.445 0.236 0.445 -0.249 
(0.000104) (0.00071) (0.0025) (0.0139) (0.105) (0.137) (0.052) (0.077) 

(2.34) (0.000007) (0.00005) (0.0010) (0.0065) (0.035) (0.186) (0.030) (0.065) 

512 18,575.34 0.000083 0.00831 0.9906 0.1005 -0.457 0.167 0.462 -0.223 
(0.000103) (0.00063) (0.0025) (0.0120) (0.074) (0.152) (0.042) (0.072) 

(2.10) (0.000007) (0.00004) (0.0009) (0.0057) (0.027) (0.169) (0.022) (0.056) 

2048 18,576.59 0.000081 0.00829 0.9904 0.1016 -0.465 0.132 0.473 -0.208 
(0.000103) (0.00062) (0.0025) (0.0115) (0.068) (0.168) (0.040) (0.074) 

(1.89) (0.000006) (0.00003) (0.0008) (0.0051) (0.023) (0.146) (0.016) (0.047) 

Each model is estimated 500 times for each setting of S, each time using a different seed for the random 
number generator used to construct the simulations. The S&P 500 data is used. The mean of the estimates, 
the standard error corresponding to one particular set of estimates, and the standard deviation of the 500 
individual estimates are reported. 
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about 1 h (2 GHz PC). For the single-factor SV models, the sampler is more efficient 
and 100,000 sample paths appear to be enough. This runs in a matter of several 
minutes. 

Using the MCMC approach to sample directly from the density of V jX may be a 
more efficient solution to the smoothing problem (e.g., Kim et al., 1998; Shephard 
and Pitt, 1997; Eraker, 2001; Jacquier et al., 1994). On the other hand, the approach 
described above may be less costly in terms of programming effort, which could 
ultimately be more important. 

In practice, one may be more interested in the filtered volatilities, EðVtjFtÞ, where 
Ft denotes the information set generated by X 1; . . . ;X t. One way to obtain these is 
by means of a particle filter (e.g., Gordon et al., 1993 or Pitt and Shephard, 1999). 
Kim et al. (1998) use a particle filter for a single factor model without leverage effect. 
The version described below works for the one- and two-factor models with leverage 
effects and various timings considered in this paper. 

A particle filter is comprised of a collection of discrete probability distributions 
F̂ ðvtjFtÞ that approximate the exact densities F ðvtjFtÞ. For each t, the approximat

ðsÞ ðsÞ
ing density is defined by a collection of points v and probability weights w ,t t 

s ¼ 1; . . . ;S. These are constructed recursively. 
Heuristically, the idea at each step is to draw ‘‘particles’’ from the time t filter 

F̂ ðvtjFtÞ, advance the particles by drawing from F ðvtþ1jvt;FtÞ, and then weight to 
adjust for the new information implied by X tþ1. 

More formally, suppose that p̂ðvtjFtÞ is known and the goal is to obtain 
p̂ðvtþ1jFtþ1Þ. First, notice that Z 

pðvtþ1jFtþ1Þ ¼  pðvtþ1; vtjFtþ1Þdvt Z 
pðvtþ1; vtjFtþ1Þ 

¼ dPðvtjFtÞ. ð11Þ 
pðvtjFtÞ 

Also, from pðvtþ1; vt;xtþ1jFtÞ ¼ pðvtþ1; vtjFtþ1Þpðxtþ1jFtÞ, we get 

pðvtþ1; vt;xtþ1jFtÞ 
pðvtþ1; vtjFtþ1Þ ¼  

pðxtþ1jFtÞ 

pðxtþ1jvtþ1; vt;FtÞpðvtþ1jvt;FtÞpðvtjFtÞ 
¼ . ð12Þ 

pðxtþ1jFtÞ 

Plugging (12) into (11) gives Z 
pðxtþ1jvtþ1; vt;FtÞpðvtþ1jvt;FtÞ 

pðvtþ1jFtþ1Þ ¼  dPðvtjFtÞ. 
pðxtþ1jFtÞ 

ðsÞ ðsÞ
Thus, to advance the filter, first draw a point vt from p̂ðvtjFtÞ, then draw vtþ1 

from pðvtþ1jvt;FtÞ. Repeat for s ¼ 1; . . . ;S. These are the new particles. The weights 
are given by ,

S
 
ðsÞ ðsÞ ðsÞ ðsÞ ðsÞ
 

X 
w ¼ pðxtþ1jvtþ1; vt Þ pðxtþ1jvtþ1; vt Þ.
 

s¼1
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Note that the conditioning must be on both vtþ1 and vt since the innovations in the 
observed and unobserved components of the model may be correlated. Without 
correlation, the preceding argument would be much simpler. 

The algorithm described above is reasonably efficient, can be written in just a few 
lines of Fortran code (available on request), and works for all of the models 
considered in this paper. More efficient implementations are possible. 

A standard approach to specification analysis of time series models is to look at 
the residuals. Of interest is their unconditional distribution and dynamic structure. 
Due to the presence of the latent factor, it is not obvious how to go about doing this 
in the current setting. However, the construction of the particle filter suggests the 
following idea. The density of X tþ1jFt can be estimated by 

X1 S 
ðsÞ ðsÞ 

pð Þ^ xtþ1jFtÞ ¼  pðxtþ1j
S 

s¼1 

v ; vtþ1 t . 

Similarly, its cdf can be estimated by 

X1 S 
ðsÞ ðsÞ 

zt ¼ probðX tþ1pxtþ1jFtÞ ¼  probðX tþ1pxtþ1jvtþ1; vt Þ. 
S 

s¼1 

If the model is correctly specified, these quantities should be iid uniformð0; 1Þ. While 
it would be possible to base analysis directly upon these, it is useful first to transform 

1ðthem by the inverse of the normal cumulative distribution function, ~zt ¼ F-

a correctly specified model, these generalized residuals should be iid Nð0; 1Þ. 
ztÞ. For 

~zt 

for the various models under consideration. The Box–Pierce test and the standard 
LM test for ARCH behavior (e.g., Greene, 2002) are used to look for dynamic 
structure. The Box–Pierce test is done on the squared residuals, since this is the 
feature of the data that is of interest. It is a good idea to try computing these 
statistics several times using different sequences of random numbers to construct the 
particle filter. If the statistics differ significantly across replications, more precision 
will be needed in the filter. Although 10,000 particles were enough to obtain good 
estimates of the filtered volatilities, the test statistics were not sufficiently stable 
across replications. The results reported in Section 5 were constructed using 100,000 
particles for the single-factor models and one million particles for the two-factor 
models. 

Kim et al. (1998) use a similar approach to assess a single-factor model without 
2leverage effect. However, they look at zt ¼ probðX 2 

tþ1pxtþ1jFtÞ. This formulation, 
which makes it impossible to disentangle the right and left tails of the distribution, 
seems to be less useful. Similar diagnostics are also used by Liesenfeld and Richard 
(2003), but again only for models with uncorrelated errors. They use the 
Kolmogorov–Smirnoff test rather than Jarque–Bera to assess the unconditional 
density. But that test turns out to have little power in this context. They also use a 
different approach for filtering. This approach to model diagnostics is also discussed 
by Berkowitz (2001) and Bontemps and Meddahi (2005) among others, but not 
applied in the context of models with latent state variables. 

This paper uses the Jarque–Bera test to assess the unconditional distribution of
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Unfortunately, there does not appear to be an easy way to compute these 
diagnostics for the SV-t model. Obtaining zt requires that one first evaluate the 
density pðxtþ1jvtþ1; vtÞ. But for the SV-t model, this involves the density of a linear 
combination of normal and t random variables, which is not available analytically 
(note that this problem does not come up if r ¼ 0). It should be possible to overcome 
the numerical problems, but doing so would be computationally costly and is not 
addressed in this paper. 

It would be possible to undertake a similar analysis using smoothed rather than 
filtered residuals, i.e., with 

wt ¼ probðX tpxtjx1; . . . ; xt-1;xtþ1; . . . ;xnÞ. 

However, this approach seems to be less useful. These is no reason to expect these wt 

to be independent. Also, the smoothing effect causes the Jarque–Bera test to be badly 
sized (the test almost never rejects). 
5. Application 

5.1. S&P 500 

In this subsection, some of the models described in Section 2 are estimated over 
daily S&P 500 index returns from June 23, 1980 to September 2, 2002 (N ¼ 5616). 
The data are plotted in Figs. 2 and 3. 

The data exhibit a small amount of autocorrelation, possibly due to non-
synchronous trading of the individual stocks comprising the index. One way to 
remove this correlation is by passing the data through an ARMA filter. This is the 
approach taken by, for example, Andersen et al. (2002). An alternative approach 
would be to include an additional factor to capture mean dynamics (e.g., Chernov 
et al., 2003). 

The empirical results reported in this subsection are all based on data that has 
been prefiltered using an ARMAð2; 1Þ model. Whether filtered or unfiltered data are 
used makes little difference in either the parameter estimates or diagnostics. The 
models under consideration are summarized in Table 2. Parameter estimates are 
shown in Table 4. 

The first thing to notice is that in all of the models r is highly significant (leverage 
effect). This is important because this parameter is often set to zero for reasons of 
computational simplicity. The results of such studies are likely to be of limited 
practical use. 

For the SV1 models, the JPR timing provides a significant improvement over the 
Euler scheme timing (model comparisons are based on Kullback–Leibler informa
tion, i.e., the difference in log likelihood; note that both models have the same 
number of free parameters). This is supportive of the Jacquier et al. (1994) argument 
that the non-Gaussianity introduced by this timing is empirically useful. On the 
other hand, Yu (2004) finds in favor of the Euler-scheme timing (using S&P 500 
index data from 1980–87 and a Bayesian estimator), so this result may not be robust. 
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Fig. 2. (a) S&P 500 index prices, 6/24/1980–9/2/2002; (b) DJIA prices, 1/2/1953–7/30/1999; and 
(c) Nasdaq prices, 10/11/1984–9/15/2004. 

1985 1990 1995 2000 
In practice, it may not make much difference which version of the model one uses: 
parameter estimates as well as the associated forecasts and diagnostics are similar 
either way. Given that the persistence of the volatility factor is over 0.98, it is not 
surprising that the timing issue makes little difference. 

For the two-factor models, the Kullback–Leibler information criterion suggests 
that there is little reason to prefer one of these models over the others, at least on this 
data set. Nonetheless, SV2-EUL does slightly better than the alternatives; given its 
appealing theoretical properties, it should probably be considered the preferred 
model. 

The parameter fU governs the persistence of the less persistent factor and r31 
controls the size of the leverage effect with respect to this factor. For all of the two-
factor models, these parameters are marginally significant at best. For SV2-EUL, fU 
is not significantly different from zero at any conventional significance level, while 
r31 has a p-value of 0.048. Table 4 also includes estimates for SV2-EUL with both of 
these parameters pinned to zero. Although the likelihood ratio test rejects the 
restriction, the Bayesian information criterion prefers the smaller model (the 
reduction in log likelihood is around 6 points on over 5000 observations). 

Note that SV2-EUL with fU ¼ r31 ¼ 0 may be rewritten as 

X t ¼ m þ sX expðVt-1 =2Þnt, 

Vt ¼ fVt-1 þ sV zt, ð13Þ 
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Fig. 3. (a) S&P 500 index returns, 6/24/1980–9/2/2002; (b) DJIA returns, 1/2/1953–7/30/1999; and 
(c) Nasdaq returns, 10/11/1984–9/15/2004. 

Table 4 
Parameter estimates, S&P 500 

-0.3 

-0.2 
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0 

0.1 

0.2 

Model Log L m sX f sV r n 

SV1-EUL 18,533.34 0.00007 0.00855 0.9762 0.170 -0.432 
(0.00011) (0.00041) (0.0045) (0.015) (0.047) 

(0.87) (0.00000) (0.00000) (0.0004) (0.002) (0.002) 

SV1-JPR 18,538.84 0.00024 0.00872 0.9828 0.148 -0.462 
(0.00010) (0.00050) (0.0035) (0.012) (0.049) 

(0.62) (0.00000) (0.00001) (0.0002) (0.001) (0.003) 

SV1 18,503.12 0.00025 0.00862 0.9816 0.151 * 
(0.00010) (0.00048) (0.0040) (0.013) 

(0.77) (0.00000) (0.00000) (0.0003) (0.002) 

SVt 18,582.24 0.00008 0.00755 0.9895 0.103 -0.488 8.09 
(0.00010) (0.00052) (0.0026) (0.011) (0.052) (0.89) 

(0.11) (0.00000) (0.00000) (0.0000) (0.000) (0.001) (0.01) 

SVt 18,553.50 0.00020 0.00773 0.9934 0.085 * 7.68 
(0.00010) (0.00068) (0.0022) (0.010) (0.83) 

(0.07) (0.00000) (0.00000) (0.0000) (0.000) (0.01) 

http:18,553.50
http:18,582.24
http:18,503.12
http:18,538.84
http:18,533.34


ARTICLE IN PRESS

  

Table 4 (continued) 

Log L m sX fV sV r21 fU sU r31 

SV2-EUL 18,575.86 0.00008 0.00830 0.9905 0.101 -0.459 0.15 0.468 -0.215 
(0.00010) (0.00063) (0.0027) (0.014) (0.088) (0.27) (0.066) (0.112) 

(1.81) (0.00001)	 (0.00003) (0.0008) (0.005) (0.020) (0.14) (0.017) (0.048) 

SV2-EUL 18,569.78 0.00008 0.00827 0.9885 0.113 -0.506 * 0.468 * 
(0.00010) (0.00055) (0.0027) (0.011) (0.053) (0.032) 

(1.82) (0.00001) (0.00002) (0.0004) (0.002) (0.011) (0.009) 

SV2-JPR 18,575.21 0.00011 0.00838 0.9878 0.119 -0.536 -0.25 0.439 0.076 
(0.00011) (0.00055) (0.0030) (0.012) (0.051) (0.11) (0.037) (0.036) 

(2.06) (0.00001)	 (0.00002) (0.0005) (0.003) (0.011) (0.05) (0.014) (0.008) 

SV2-HYB 18,572.85 0.00011 0.00837 0.9880 0.118 -0.527 -0.19 0.449 -0.066 
(0.00011) (0.00055) (0.0030) (0.012) (0.051) (0.15) (0.036) (0.033) 

(1.97) (0.00001)	 (0.00002) (0.0005) (0.003) (0.012) (0.06) (0.013) (0.005) 

SV2 18,543.92 0.00020 0.00833 0.9921 0.093 * -0.13 0.493 * 
(0.00010) (0.00067) (0.0024) (0.010) (0.12) (0.034) 

(2.08) (0.00000) (0.00001) (0.0003) (0.002) (0.04) (0.011) 

Log L m a f s r 

AFF 18,473.44	 0.00003 0.000100 0.0186 0.00129 -0.464 
(0.00011) (0.000009) (0.0039) (0.00013) (0.051) 

(2.49) (0.00001) (0.000000) (0.0010) (0.00004) (0.010) 

The data are prefiltered using an ARMA(2,1) model. The sample period is 6/23/1980–9/2/2002 (N ¼ 5616 
observations). A ‘*’ indicates that the parameter has been fixed at zero. The SV1 and SV-t models are 
estimated using S ¼ 256 draws from the importance sampler; the SV2 and affine models use S ¼ 1024. 
Each model is estimated 100 times using different seeds for the random number generator used to 
construct the simulations (as described in Section 3). The mean of these estimates is reported. Standard 
errors are immediately below each set of estimates. Finally, the standard deviation of the 100 individual 
estimates is reported (this provides information as to the numerical uncertainty of the estimates). 
where nt ¼ expðUt-1 =2Þ81t is an iid scale mixture of normals. The volatility 
innovations, zt, are normal. The SV-t model is also of form (13). The return 
innovations are iid scale mixtures of normals (but with a different mixing 
distribution) and each volatility innovation is a linear combination of a normal 
and a t. Given that neither fU nor r31 differ from zero by much in the two-factor 
model, it is not surprising that the performance of the SV-t and SV2 models is 
similar. The particular form of the mixing distributions implied by these two 
alternatives does not make a great deal of difference empirically. Nonetheless, the 
SV-t model dominates. This is not meant to imply that the SV-t model is the 

http:18,473.44
http:18,543.92
http:18,572.85
http:18,575.21
http:18,569.78
http:18,575.86
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‘‘correct’’ model; only that it may have empirical advantages (as well as being much 
easier to estimate) compared to the commonly-used SV2 model, at least on this data 
set. 

Fig. 4 shows predictive densities for X tjV t-1 for several models. The densities are 
computed by fixing Vt-1 ¼ 0 and integrating across Vt;Ut;Ut-1jVt-1. For SV1
EUL, this predictive density is exactly Gaussian. Using the JPR timing adds a small 
amount of skewness. The SV-t model fattens the tails. There is not much difference 
in the predictive densities implied by the SV-t and various SV2 models. Note that all 
of these densities are close to symmetric and thus offer little in the way of explaining 
the occasional large negative returns present in the data. 

Table 4 also displays estimates for a single-factor affine model. These results 
confirm the findings of Andersen et al. (2002) and Chernov et al. (2003) that this 
model is of little empirical relevance, at least for S&P index returns (while both of 
those papers find that including jumps in the affine model can greatly improve 
matters, such models pose additional difficulties that are beyond the scope of this 
paper). 

The Box–Pierce and ARCH tests (see Table 5) suggest that even the simple single-
factor models may be able to capture the volatility dynamics adequately. The issue of 
timing (SV1-JPR vs. SV1-EUL) makes little difference here. The correlograms in 
Figs. 5 and 6 tell much the same story. 

Turning to the Jarque–Bera test, the results imply that none of the models is able 
to capture the shape of the returns distribution. The situation is more clearly 
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Fig. 4. Predictive densities for X tjVt-1, based on estimates for S&P 500 data. 
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Table 5 
Model diagnostics, S&P 500 

Jarque–Bera Kolmogorov–Smirnoff Box–Pierce(20) ARCH(20) 

Raw data 439,771.42 
(0.0000) 

0.071 
(0.0000) 

272.70 
(0.0000) 

368.60 
(0.0000) 

Affine 2722.82 
(0.0000) 

0.028 
(0.0002) 

59.79 
(0.0000) 

63.74 
(0.0000) 

SV1-EUL 288.93 
(0.0000) 

0.025 
(0.0021) 

12.35 
(0.9036) 

12.70 
(0.8898) 

SV1-JPR 168.42 
(0.0000) 

0.023 
(0.0050) 

12.66 
(0.8915) 

13.08 
(0.8740) 

SV2-EUL 42.56 
(0.0000) 

0.015 
(0.1637) 

20.50 
(0.4269) 

21.04 
(0.3948) 

SV2-EUL (fU ¼ r31 ¼ 0) 53.05 
(0.0000) 

0.014 
(0.1917) 

20.91 
(0.4023) 

21.54 
(0.3662) 

SV2-JPR 34.89 
(0.0000) 

0.012 
(0.4048) 

20.46 
(0.4298) 

20.91 
(0.4022) 

SV2-HYB 30.26 
(0.0000) 

0.012 
(0.3743) 

17.86 
(0.5963) 

18.27 
(0.5695) 

Test statistics and p-values are reported. The Jarque–Bera and Kolmogorov–Smirnoff tests assess the 
unconditional distribution of the generalized residuals. The Box–Pierce and ARCH tests check for 
dynamic structure. Both use 20 lags. The Box–Pierce test is based on the squared residuals. 
illustrated by the QQ-plots in Figs. 7 and 8. Although including the second volatility 
factor helps somewhat, all of the models under consideration fail in a similar 
manner. None is able to capture the extreme left tail of the distribution. The two-
factor models are all slightly too thick in the right tail; SV1-EUL gets the right tail 
almost perfectly. These findings are in accord with earlier work (e.g., Gallant et al., 
1997). 

The affine model does poorly in both dimensions (dynamic structure and 
distribution), as shown by the test statistics in Table 5 and more clearly by the 
graphics in Figs. 5 and 7. 

5.2. DJIA 

This subsection examines returns on the Dow Jones Industrial Average (DJIA) 
index from January 2, 1953–July 30, 1999 (see Figs. 2 and 3). This is the same data as 
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Fig. 5. Correlograms for squared generalized residuals, S&P 500 data. The dashed lines mark the rejection 
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Fig. 7. QQ-plots for generalized residuals, S&P 500 data. 
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Fig. 8. QQ-plots for generalized residuals, S&P 500 data. 
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used by Chernov et al. (2003). Andersen et al. (2002) use DJIA returns from January 
1953 to December 1996. The data is first passed through an AR(2) pre-filter. 

Overall, the findings are similar to those of the previous subsection. Since DJIA 
and S&P 500 returns are similar, the differences should be primarily due to the 
longer sample period of the DJIA data. Parameter estimates are shown in Table 6. 

For the single-factor models, the JPR timing is again slightly better than the Euler
scheme timing, and both are soundly trounced by the SV-t model. This is the same 
relative ranking as with the S&P 500 data. The parameter estimates also differ by 
little between the two data sets. 
Table 6 
Parameter estimates, DJIA 

Model Log L m sX f sV r n 

SV1-EUL 40,693.19 

(0.87) 

0.00004 
(0.00006) 
(0.00000) 

0.00723 
(0.00026) 
(0.00000) 

0.9803 
(0.0027) 
(0.0002) 

0.149 
(0.009) 
(0.001) 

-0.441 
(0.033) 
(0.002) 

SV1-JPR 40,696.47 

(0.77) 

0.00018 
(0.00006) 
(0.00000) 

0.00734 
(0.00030) 
(0.00000) 

0.9847 
(0.0022) 
(0.0001) 

0.136 
(0.008) 
(0.001) 

-0.457 
(0.035) 
(0.002) 

SVt 40,741.26 

(0.27) 

0.00005 
(0.00006) 
(0.00000) 

0.00663 
(0.00029) 
(0.00000) 

0.9883 
(0.0019) 
(0.0001) 

0.106 
(0.008) 
(0.000) 

-0.491 
(0.036) 
(0.001) 

11.84 
(1.26) 
(0.04) 

Log L m sX fV sV r21 fU sU r31 

SV2-EUL 40,756.43 

(1.18) 

0.00005 
(0.00006) 
(0.00000) 

0.00724 
(0.00049) 
(0.00001) 

0.9960 
(0.0013) 
(0.0003) 

0.057 
(0.009) 
(0.002) 

-0.283 
(0.088) 
(0.022) 

0.84 
(0.03) 
(0.01) 

0.238 
(0.020) 
(0.007) 

-0.447 
(0.047) 
(0.011) 

SV2-JPR 40,732.74 

(1.01) 

0.00023 
(0.00006) 
(0.00000) 

0.00758 
(0.00069) 
(0.00002) 

0.9978 
(0.0009) 
(0.0001) 

0.042 
(0.008) 
(0.002) 

-0.245 
(0.118) 
(0.028) 

0.94 
(0.01) 
(0.00) 

0.166 
(0.013) 
(0.003) 

-0.411 
(0.056) 
(0.013) 

SV2-HYB 40,744.91 

(1.19) 

0.00019 
(0.00006) 
(0.00000) 

0.00743 
(0.00048) 
(0.00002) 

0.9958 
(0.0022) 
(0.0004) 

0.066 
(0.015) 
(0.003) 

-0.463 
(0.053) 
(0.011) 

0.89 
(0.05) 
(0.01) 

0.187 
(0.023) 
(0.005) 

-0.352 
(0.061) 
(0.012) 

The data are prefiltered using an AR(2) model. The sample period is 1/2/1953–7/30/1999 (N ¼ 11; 726 
observations). The SV1 and SV-t models are estimated using S ¼ 256 draws from the importance sampler; 
the SV2 models use S ¼ 1024. Each model is estimated 100 times using different seeds for the random 
number generator used to construct the simulations (as described in Section 3). The mean of these 
estimates is reported. Standard errors are immediately below each set of estimates. Finally, the standard 
deviation of the 100 individual estimates is reported (this provides information as to the numerical 
uncertainty of the estimates). 
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For the two-factor models, the Euler-scheme timing does much better than the 
others (in contrast to the S&P data, the differences between timings are substantial). 
For the model with this timing, the persistent volatility factor is about twice as 
persistent as was the case for the S&P 500 data (autoregressive coefficient of 0.996 
versus 0.991). The volatility of this factor (sV ) is about half as large as for the S&P 
500 data (implying that the unconditional variance of this factor is about the same 
for both data sets). Whereas the ‘‘nonpersistent’’ factor had an autoregressive 
coefficient which was not significantly different from zero with the S&P data, it is 
highly significant (0.84 with a standard error of 0.03) for the DJIA data. 

In contrast to the S&P data, SV2 beats SV-t on this dataset, though not by a huge 
amount (15 points in the log likelihood on over 10,000 observations). The problem 
appears to be the persistence of the second volatility factor with the DJIA data. The 
SV-t model has no way to capture this feature of the data. 
Results of the diagnostic tests are similar to those for the S&P 500 data (see 

Table 7 and Figs. 9 and 10). For the ARCH test and the Box–Pierce test on the 
squared generalized residuals, SV1-JPR is rejected at the 5% significance level (p
values of 0.04 on both), but none of the other models are rejected at conventional 
levels. Examination of the correlograms in Fig. 9 provides supporting evidence that 
all of the models are again doing a good job at capturing the dynamics of volatility. 
The Jarque–Bera test and QQ-plots also tell much the same story as for the S&P 500 
data: including the second volatility factor helps a small amount, but all of the 
models fail badly at matching the conditional distribution of the data. 

Chernov et al. (2003) estimate continuous-time versions of the SV1 and SV2 
models, but parameterized differently and with the addition of a stochastic 
mean factor (obviating the ARMA prefilter). They also find these models inade
quate to fit the data and go on to fit a more complicated SV2 model with 
Table 7 
Model diagnostics, DJIA 

Jarque–Bera Kolmogorov–Smirnoff Box–Pierce(20) ARCH(20) 

SV1-EUL 660.309 
(0.0000) 

0.013 
(0.0427) 

24.517 
(0.2205) 

25.006 
(0.2012) 

SV1-JPR 443.150 
(0.0000) 

0.015 
(0.0119) 

32.056 
(0.0427) 

32.651 
(0.0368) 

SV2-EUL 266.277 
(0.0000) 

0.009 
(0.3607) 

16.129 
(0.7086) 

16.672 
(0.6742) 

SV2-JPR 287.855 
(0.0000) 

0.016 
(0.0043) 

22.688 
(0.3044) 

23.112 
(0.2833) 

Test statistics and p-values are reported. The Jarque–Bera and Kolmogorov–Smirnoff tests assess the 
unconditional distribution of the generalized residuals. The Box–Pierce and ARCH tests check for 
dynamic structure. Both use 20 lags. The Box–Pierce test is based on the squared residuals. 
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Fig. 9. Correlograms for squared generalized residuals, DJIA data. The dashed lines mark the rejection 
region (5% significance level) for the individual correlation coeffecients. 
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Fig. 10. QQ-plots for generalized residuals, DJIA data. 
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‘‘volatility-in-volatility’’. They argue that this extension takes care of the conditional 
distribution problem. 
5.3. Nasdaq 

This subsection looks at Nasdaq returns from October 11, 1984 to September 15, 
2004 (see Figs. 2 and 3). For both the one- and two-factor models, the JPR timing 
dominates on this data. SV1-JPR even beats SV-t (by almost 30 points in the log 
likelihood). In comparison to the S&P 500 and DJIA data, volatility is both slightly 
higher on average (sX ) and more variable (sV and sU ) (Table 8). 
Table 8 
Parameter estimates, NASDAQ 

Model Log L m sX f sV r n 

SV1-EUL 15,958.75 

(1.01) 

0.00047 
(0.00011) 
(0.00000) 

0.00926 
(0.00087) 
(0.00000) 

0.9851 
(0.0029) 
(0.0002) 

0.197 
(0.014) 
(0.002) 

-0.299 
(0.046) 
(0.003) 

SV1-JPR 16,001.09 

(0.91) 

0.00057 
(0.00011) 
(0.00000) 

0.00956 
(0.00098) 
(0.00001) 

0.9858 
(0.0027) 
(0.0001) 

0.207 
(0.013) 
(0.001) 

-0.480 
(0.036) 
(0.003) 

SVt 15,971.48 

(0.35) 

0.00053 
(0.00011) 
(0.00000) 

0.0082 
(0.0010) 
(0.0000) 

0.99115 
(0.00235) 
(0.00017) 

0.150 
(0.015) 
(0.002) 

-0.323 
(0.049) 
(0.002) 

11.82 
(2.24) 
(0.21) 

Log L m sX fV sV r21 fU sU r31 

SV2-EUL 16,018.20 
(0.00) 
(1.33) 

0.00054 
(0.00011) 
(0.00001) 

0.00943 
(0.00263) 
(0.00010) 

0.9982 
(0.0010) 
(0.0001) 

0.064 
(0.012) 
(0.003) 

-0.082 
(0.110) 
(0.022) 

0.82 
(0.03) 
(0.01) 

0.313 
(0.024) 
(0.007) 

-0.473 
(0.050) 
(0.008) 

SV2-JPR 16,058.90 
(0.00) 
(0.85) 

0.00076 
(0.00011) 
(0.00000) 

0.01004 
(0.00369) 
(0.00006) 

0.9987 
(0.0008) 
(0.0001) 

0.061 
(0.011) 
(0.002) 

-0.175 
(0.111) 
(0.023) 

0.89 
(0.02) 
(0.00) 

0.266 
(0.019) 
(0.004) 

-0.519 
(0.044) 
(0.008) 

SV2-HYB 16,058.90 
(0.00) 
(0.85) 

0.00076 
(0.00011) 
(0.00000) 

0.01004 
(0.00369) 
(0.00006) 

0.9987 
(0.0008) 
(0.0001) 

0.061 
(0.011) 
(0.002) 

-0.175 
(0.111) 
(0.023) 

0.89 
(0.02) 
(0.00) 

0.266 
(0.019) 
(0.004) 

-0.519 
(0.044) 
(0.008) 

The data are prefiltered using an AR(2) model. The sample period is 10/11/1984–9/15/2004 (N ¼ 5027 
observations). The SV1 and SV-t models are estimated using S ¼ 256 draws from the importance sampler; 
the SV2 models use S ¼ 1024. Each model is estimated 100 times using different seeds for the random 
number generator used to construct the simulations (as described in Section 3). The mean of these 
estimates is reported. Standard errors are immediately below each set of estimates. Finally, the standard 
deviation of the 100 individual estimates is reported (this provides information as to the numerical 
uncertainty of the estimates). 
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Table 9 
Model diagnostics, NASDAQ 

Jarque–Bera Kolmogorov–Smirnoff Box–Pierce(20) ARCH(20) 

SV1-EUL 108.134 
(0.0000) 

0.029 
(0.0004) 

24.445 
(0.2235) 

24.464 
(0.2227) 

SV1-JPR 14.598 
(0.0007) 

0.013 
(0.3230) 

21.798 
(0.3516) 

21.985 
(0.3413) 

SV2-EUL 90.824 
(0.0000) 

0.027 
(0.0011) 

23.558 
(0.2623) 

24.946 
(0.2035) 

SV2-JPR 7.429 
(0.0244) 

0.010 
(0.7359) 

25.416 
(0.1860) 

25.708 
(0.1757) 

Test statistics and p-values are reported. The Jarque–Bera and Kolmogorov–Smirnoff tests assess the 
unconditional distribution of the generalized residuals. The Box–Pierce and ARCH tests check for 
dynamic structure. Both use 20 lags. The Box–Pierce test is based on the squared residuals. 
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Fig. 11. Correlograms for squared generalized residuals, NASDAQ data. The dashed lines mark the 
rejection region (5% significance level) for the individual correlation coeffecients. 
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Fig. 12. QQ-plots for generalized residuals, NASDAQ data. 
The first factor is yet more persistent than was the case with the DJIA data. 
Because this factor is so persistent, there is virtually no difference between the JPR 
and hybrid timings. Looking at the plot of returns in Fig. 3, there is a clear long-term 
trend in volatility: low in the late-1980s, increasing slowly up to around 2001, and 
then falling again. It is this pattern that the first factor captures. What one typically 
thinks of as volatility clustering is captured largely by the second factor, which has 
an autoregressive coefficient of 0.89 (SV2-JPR). 

As with both the S&P 500 and DJIA data, the tests shown in Table 9 and QQ-
plots in Fig. 11 suggest that all of the models perform well in capturing the dynamic 
structure of volatility. The models with the JPR timing do much better at fitting the 
conditional distribution of returns than was the case with either the S&P 500 or 
DJIA data (Jarque–Bera test in Table 9 and QQ-plots in Fig. 12). Indeed, SV2-JPR, 
while rejected at the 5% significance level, is not rejected at the 1% level. 
6. Conclusion 

This paper demonstrates some easily implemented tools for estimating and 
assessing one- and two-factor SV models. Monte Carlo studies demonstrating their 
small sample statistical properties and numerical properties are provided. Such 
studies are made feasible by the computational efficiency of the tools considered. The 
model diagnostics are based on standard time-series techniques. 
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The application looks at returns for the S&P 500, DJIA, and Nasdaq. In contrast 
to several preceding studies, I find no evidence that even the simple single-factor 
models are unable to capture the dynamics of the volatility process. The more critical 
problem is to capture the shape of the conditional returns distribution. Here, all of 
the models fall badly short. 

Of course the usual caveats apply: failure to find evidence regarding the dynamics 
of the volatility process may be simply due to the inadequacy of the sample or lack of 
power of the tests. 
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