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Abstract 

Understanding both the dynamics of volatility and the shape of the distribution of returns 
conditional on the volatility state is important for many financial applications. A simple single-factor 
stochastic volatility model appears to be sufficient to capture most of the dynamics. It is the shape of 
the conditional distribution that is the problem. This paper examines the idea of modeling this 
distribution as a discrete mixture of normals. The flexibility of this class of distributions provides 
a transparent look into the tails of the returns distribution. Model diagnostics suggest that the 
model, SV-mix, does a good job of capturing the salient features of the data. In a direct comparison 
against several affine-jump models, SV-mix is strongly preferred by Akaike and Schwarz information 
criteria. 
1. Introduction 

Equity returns are typically highly non-Gaussian. Time-varying volatility accounts for 
much of this non-Gaussianity. But even after allowing for time-varying volatility, model 
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residuals are likely to be fat-tailed and left-skewed. Because these features of the data are 
important for option pricing, risk management, and other applications, much work has 
been done trying to model them. This paper introduces a new model and demonstrates 
some recently developed techniques for assessing model performance. The model is built 
on a standard stochastic volatility (SV) framework but takes a semiparametric approach 
(mixture of normals) toward fitting the distribution of returns conditional on the volatility 
factor. Results suggest that the model is largely successful in capturing not only the 
dynamics of volatility but also the shape of the distribution of returns. 

Two main classes of models are used to explain time-varying volatility: generalized 
autoregressive conditional heteroskedasticity (GARCH) and SV. In both, volatility is a 
random process. In GARCH models, the link between the data and this volatility process 
is deterministic, while in SV models the volatility process incorporates an additional source 
of noise. Given a model, Bayes’ rule can be used to infer the distribution of the volatility 
variable conditional on the data. In GARCH models, this distribution is singular (up to an 
initial condition). The deterministic link between the data and the volatility process posited 
by GARCH models is difficult to justify, either theoretically or empirically. However, it 
makes estimation and analysis of such models much simpler, accounting for their 
widespread use. 

This paper restricts attention to SV models. The tools used for estimation and inference 
are both computationally efficient and straightforward to implement. Standard & Poor’s 
(S&P) 500 index returns have been widely studied and thus provide a useful test case. 

The basic SV model is given by 

dSt ¼ mS dt þ sS expðVt =2ÞdW 1t,
 

dV t ¼ cV t dt þ sV dW 2t, ð1Þ
 

where St represents log price, Vt is the latent volatility process, and W 1t and W 2t are 
(possibly correlated) Brownian motions. The Euler scheme approximation of this model is 
given by 

X t ¼ mX þ sX expðV t-1 =2Þst,
 

Vt ¼ fVt-1 þ sV Zt, ð2Þ
 

where X t ¼ St - St-1, mX ¼ mS, sX ¼ sS, f ¼ c þ 1, and st and Zt are independently 
and identically distributed (iid) standard normal with corrðst; Z Þ ¼ r. 1 While thet 
continuous-time version of this model is useful for deriving theoretical results, statistical 
analysis proceeds much more simply with the discrete-time approximation. If V t is highly 
persistent, the two differ by little. This is the case in many applications (including the one 
considered here). It is Eq. (2) and variations of it that are the subject of this paper. 

This simple model appears to do a good job of capturing volatility clustering, i.e., 
explaining Var½X tþ1jX t;X t-1; . . .]. However, it is unable to adequately capture other 
features of the conditional distribution of returns, such as skewness and kurtosis.2 The idea 
1For the purposes of this paper, the data are observed daily, time is measured in days, and the Euler scheme is 
based on a discretization interval equal to one day. 

2Although the conditional returns distribution implied by the Euler scheme approximation is normal, the 
continuous-time version allows for some non-normality. In particular, correlation between W 1 and W 2 induces 
skewness in this conditional distribution, which could be important in fitting the data. This issue is examined in 
more detail in Appendix A. 
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of this paper is to use a highly flexible functional form, a mixture of normals, for the 
distribution of st, enabling the model to reflect more accurately the features of the 
conditional distribution of returns presented by the data. The proposed model also sets pffiffiffiffiffiffiffiffi ffiffiffiffi ffi 
Z ¼ rst þ 1 - r2ut, where ut is Nð0; 1Þ and uncorrelated with st. Thus, Z still has mean t t 
zero, variance one, and corrðZ ; stÞ ¼ r, but it inherits some non-Gaussianity from st. At 
potentially useful implication of this specification is that a large move in the price of the 
asset implies a large move in the volatility as well. In particular, volatility jumps following 
a market crash. Eq. (2) with these specifications for st and Z is referred to as the stochastic t 
volatility mixture (SV-mix) model. 
The mixture distribution is constructed as follows. Suppose the distribution is given by 

a mixture of K normals with means mk, standard deviations sk, and weights pk for 
k ¼ 1; . . . ;K . A draw from this distribution is obtained by first drawing from the discrete 
distribution on 1; . . . ;K with weights p1; . . . ; pK , and then drawing from the corresponding PKnormal distribution. The density of the mixture is given by fðmk; skÞ, where fðm;sÞk¼1pk 
is the density of a Gaussian random variable with mean m and standard deviation s. 
The appeal of the SV-mix approach is the way in which it combines the structure of the 

standard SV model with a flexible approach to modeling the conditional distribution of 
returns. This flexibility gives the approach an almost nonparametric flavor. Given a 
sufficient number of components, the mixture distribution can approximate any 
distribution to an arbitrary degree of precision (e.g., McLachlan and Peel, 2000). The 
number of components used determines the degree of smoothing, similar to the bandwidth 
choice in a kernel method. A wide range of density shapes can be obtained using mixtures 
with three or four components. In practice, the problem is generally to estimate some 
unknown density based on sample information. The appropriate number of mixture 
components to use can be determined by some information criterion, e.g., Schwarz 
criterion or Akaike information criterion. As the amount of data increases, more 
information regarding the true distribution is available, justifying a mixture with more 
components.3 A closely related idea to the modeling framework used in this paper is the 
compound Markov mixture of normals used by Geweke and Amisano (2001). 
The SV-mix model can be thought of as the Euler-scheme approximation of a 

continuous-time model with regime switching, i.e., 

dSt ¼ mX dt þ sX expðV t =2ÞdZ1t 

dVt ¼ cVt dt þ sV dZ2t, ð3Þ pffiffiffiffiffiffiffiffi ffiffiffiffi ffi 
where dZ1t ¼ mkt 

dt þ skt dW 1t and dZ2t ¼ r dZ1t þ 1 - r2 dW 2t with W 1t and W 2t 

independent Brownian motions. On each interval ½t; t þ 1Þ for t ¼ 1; 2; . . ., an iid draw, 
denoted kt, from the discrete distribution on 1; . . . ;K with weights p1; . . . ; pK determines 
the particular values mkt 

and skt used to generate Z1t and Z2t on that interval. 
One possible extension of this model would be to draw the kt from a stationary Markov 

chain instead of assuming them to be iid. Another extension might be to treat the timing of 
the draws as random. These extensions are left for future research. 
An alternative would be to think of the SV-mix model simply as descriptive of the 

dynamics of daily returns and saying nothing regarding the detailed structure of the 
underlying continuous-time data-generating process. 
3When the number of components is allowed to increase with sample size, the model is referred to as a Gaussian 
mixture sieve (see, e.g., Priebe, 1994). 
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The SV-mix approach is similar in spirit to the affine-jump models studied by Bates 
(1996) and many others. A low-probability, high-variance component in the mixture of 
the SV-mix model plays a similar role to the jumps in the affine-jump models. Because the 
mixture term is also included in the volatility innovations in the SV-mix model, the 
approach of this paper is most similar to a model proposed by Eraker, Johannes, and 
Polson (2003) which has correlated jumps in both the volatility and returns processes. But 
the jumps in that model are independent of the volatility factor (in both size and intensity), 
whereas the mixture term of the SV-mix model is scaled by volatility. Affine-jump models 
where the jump intensity (but not size) depends upon the volatility factor have been studied 
by, e.g., Bates (2005), Andersen, Benzoni, and Lund (2002), and Pan (2002), but without 
the inclusion of jumps in the volatility process. 

Because the model is estimated over daily data, it is impossible to distinguish whether 
the large negative returns that appear occasionally in the data are the result of jumps or if 
the price path is instead continuous. This paper makes no claims about this. Moreover, 
although one could compute filtered estimates of the probability that a return is a 
realization from a particular component of the mixture (i.e., whether it includes a jump or 
not), no attempt to do so is made in this paper. The mixture is regarded simply as a 
mechanism for generating a flexible family of distributions and the mixture components 
are not themselves considered to be of interest. 

In standard jump-diffusion models, jumps occur in addition to the diffusive part of 
returns. Hence, unless one were willing to accept that jumps occur nearly every day and 
explain a larger part of returns than does the diffusion part of the model, it is difficult for 
these models to capture the full range of shapes for the conditional returns density possible 
with the SV-mix model.4 

In a direct comparison with the affine-jump models considered by Eraker, Johannes, and 
Polson, the SV-mix model provides a large increase in log likelihood and is strongly 
preferred by standard information-based model choice criteria. The techniques used in this 
paper corroborate the findings of Eraker, Johannes, and Polson regarding the importance 
of including jumps in volatility. The results also support speculation by Eraker, Johannes, 
and Polson that allowing for time-varying jump intensity would further improve the 
performance of their models. 

For option-pricing and risk-management applications, the flexibility provided by the 
mixture of normals approach looks to be especially useful. For example, given a panel of 
put and call options with varying strike prices, information regarding the predictive density 
of the underlying security under the risk-neutral measure can be inferred. Out-of-the
money option prices are highly informative about the tails of the risk-neutral measure. The 
relationship between this risk-neutral measure and the physical measure governing the 
returns process is of interest. In particular, differences between the physical and risk-
neutral measures are associated with risk premia. 

But, strong parametric assumptions implied by standard SV models essentially force a 
certain structure on the tails of the physical measure. If these parametric assumptions do not 
4It is easy to find a jump-diffusion model with the same Euler-scheme approximation as the SV-mix model. The 
diffusion part of the model would play the role of the mixture component with smallest variance. Adding in jumps 
would give rise to the larger variance components. Writing the preferred model of this paper in this form would 
require two jump processes. Jumps would be expected to occur on 86% of days and explain over half of the 
standard deviation of conditional returns. 
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accurately reflect the true returns-generating process, difficulties in trying to reconcile the tail-
shapes of physical and risk-neutral measures would be expected, potentially resulting in 
incorrect inference regarding risk premia. If comparisons between these two measures are to be 
meaningful, models that accurately reflect the distributions seen in the data are needed. The 
SV-mix modeling approach looks to be a promising way to proceed in this direction. 
An extensive literature examining the relationship between physical and risk-neutral 

measures exists. For example, Bates (2000), using S&P 500 futures and futures option 
prices to fit a variety of affine and affine-jump models, finds the risk of large negative 
returns implied by option prices difficult to reconcile with the absence of such events in the 
returns data. He also finds that a square-root diffusion process driving instantaneous 
volatility and jump risk is unable to account for the large and typically positive volatility 
shocks implied by option prices (and speculates that including jumps in volatility could 
help), that the volatility of volatility needed to match volatility smiles implied by option 
prices is too high to be consistent with the time-series properties of option prices, and that 
the models have difficulty simultaneously matching the volatility smiles implied by both 
short- and long-maturity options. Pan (2002) uses S&P 500 index option prices and returns 
data to assess some of the same models considered by Bates. She finds evidence of a 
substantial jump-risk premium and that this jump-risk premium is highly correlated with 
the level of volatility. In addition to helping explain the volatility smile implied by short-
maturity options, she finds this jump-risk premium to explain much of the inconsistency 
between the level of volatility implied by near-the-money options versus that observed in 
the spot market. Using S&P 500 index returns alone, Eraker, Johannes, and Polson (2003) 
find that, once jumps in volatility are included, large risk premia are no longer needed to 
generate steep IV curves as seen in the data. Building on this work, Eraker (2004), using 
both returns and option price data, finds little evidence of a significant jump-risk premium. 
He does find evidence supporting a jump-risk premium in a model with time-varying jump 
intensity as well as jumps in volatility, but the size of the premium is much smaller than 
that found by Pan. However, Eraker also finds that none of the models he considers 
improves much over the basic affine model in fitting option prices. Andersen, Benzoni, and 
Lund (2002), using S&P index returns data and models that include time-varying jump 
intensity but not jumps in volatility (similar to Bates and Pan), also find that they are able 
to generate implied volatility curves similar to those observed in the data without large risk 
premia. They do not find evidence of state-dependent jump intensity. 
There is much variation in both the methodologies and results in this literature. To avoid 

the analysis being dependent on a specific representation of the risk premia as well, this 
paper restricts attention to a careful study of the physical measure. Among other things, 
the paper looks at predictive distributions of cumulative returns over various horizons. 
Although SV-mix does better than the other models at matching these distributions, some 
evidence of minor mis-specification is uncovered here that is not apparent using other 
diagnostics. However, at the 20-day forecast horizon and beyond, there is not much 
difference among the various models. Analogous forecast distributions under the risk-
neutral measure are what determine European option prices with corresponding times to 
maturity. Thus although the models described in this paper could be helpful in 
understanding the relationship between physical and risk-neutral measures at short 
horizons, they are not likely to be of much help at longer horizons. 
The SV-mix approach also provides a useful tool for investigating the implications 

of some interesting hypothetical scenarios. For example, suppose that one wishes to 
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think about the implications of a peso-type situation involving a low-probability, 
high-impact event. It is both easy and transparent to add a small lump of mass to one tail 
of the distribution. One can experiment with the implications of changing the location, 
scale, and weight of this lump. Conversely, the approach could also be useful in studying 
what option prices have to say about the market’s assessment of the risk of such events. 
The SV-mix framework provides an alternative to purely nonparametric techniques such 
as, for example, that proposed by Jackwerth and Rubinstein (1996), imposing some 
structure while still allowing a great deal of flexibility to match observed option prices. 

The rest of this paper is organized as follows. Section 2 gives an overview of the 
statistical methodology used, Section 3 introduces the models under consideration and fits 
them to data, Section 4 examines some diagnostics of model fit, Section 5 looks at 
forecasting performance, Section 6 provides a comparison with some affine/affine-jump 
models, and Section 7 concludes. An online supplement is available that includes some 
additional tables and figures ass well as appendices examining conditional densities of 
some continuous-time models (as opposed to their Euler-scheme approximations) and 
assessing the out-of-sample performance of the SV-mix model. 

2. Methods 

The techniques used for estimation, filtering, and specification analysis in this paper are 
described in detail in  Durham (2006). For completeness, a brief sketch of the techniques is 
provided here, as well as some details regarding implementation with the SV-mix model. These 
techniques are closely related to ideas used in Durbin and Koopman (1997, 2000), Sandmann 
and Koopman (1998), Shephard and Pitt (1997), and  Liesenfeld and Richard (2003). 

2.1. Estimation 

Estimation is based on the simulated maximum likelihood approach. The idea is that 
x ¼ ðx1; . . . ;xnÞ is a realization from some random vector X ¼ ðX 1; . . . ;X nÞ for which 
direct evaluation of the density function is infeasible, but that there exists an (unobserved) 
auxiliary random vector V ¼ ðV1; . . . ;V nÞ such that the joint density pðx; vÞ is easy to 
evaluate. The likelihood function can then be evaluated at a candidate model parameter 
vector y by integrating out the auxiliary variable, Z 

LðyjxÞ ¼  pðx; v; yÞdv. (4) 

This is generally a very high-dimensional integral that must be evaluated using Monte 
ð1ÞCarlo techniques. One draws samples v ; . . . ; v ðSÞ from some density q, referred to as the 

importance density, and computes Z 
pðx; v; yÞ 

LðyjxÞ ¼  dQ 
qðvÞ 

S X ðsÞÞ1 pðx; v
� . ð5Þ 

ðsÞÞS qðv
s¼1 

Thus, the likelihood is approximated by a weighted average across ‘‘simulated’’ draws 
from q. The estimation step is performed by maximizing the approximate likelihood. 
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The problem is simply to find a good importance sampler. The importance sampler used 
in this paper is based on a Laplace approximation to pðx; vÞ. One first computes 

v ¼ argmax 
v 

and 

2 

^ log pðx; vÞ (6) 

q 
log pð

2 
vÞ

The importance density is given by the multivariate normal with mean

^H ¼ (7)x; . 
qv

v̂ and variance 
x; vÞ is obtained using Newton’s method. Although this would -1. The mode, v, of log pð

appear to be costly because each step involves solving a high-dimensional system of linear 
equations, the Hessian is positive definite, symmetric, and banded (with the number of sub-
and super-diagonals equal to the number of volatility factors). Efficient techniques are 
available to solve linear systems with this structure. There is never any need to obtain H -1 

explicitly. This is important because the inverse does not maintain the banded structure 
and would require a great deal of effort to compute and an enormous amount of memory 
to store. 
As demonstrated by Durham (2006), this approach is very efficient computationally for 

standard one- and two-factor SV models. It works equally well with the SV-mix models 
proposed by this paper. Computational cost for the SV-mix model using a mixture with 
three components is around 2 second for one evaluation of the likelihood using S ¼ 256 on 
a data set of 5,615 observations (2 GHz PC). Numerical error can be assessed by repeating 
the estimation many times using different seeds for the random number generator used in 

^

ðconstructing the v sÞ. Given the computational efficiency of the estimator, such studies are 
relatively painless. Numerical performance of the approach was found to be even better for 
the SV-mix models than for the models with Gaussian errors and about the same as for the 
SVt model. 
Furthermore, the approach is easy to implement, requiring just a few dozen lines of 

Fortran code. All that is needed to adapt the estimator to a new model are subroutines 
providing log pðx; vÞ and its first and second derivatives with respect to v. For models of 
form Eq. (2), log pðx; vÞ can be obtained as the sum of terms of form log pðxtþ1; vtþ1jvtÞ. The 
gradient is thus constructed from elements of form 

q 
½log pðxtþ1; vtþ1jvtÞ þ log pðxt; vtjvt-1Þ]. (8) 

qvt 

The Hessian has diagonal elements of form 

2 q 
½ log pðxtþ1; vtþ1jvtÞ þ log pðxt; vtjvt-1Þ] (9) 

qv2 
t 

and off-diagonal elements of form 

2 q 
log pðxtþ1; vtþ1jvtÞ. (10) 

qvtqvtþ1 

The formulae for these derivatives can be obtained using Maple or some other symbolic 
manipulation software. Alternatively, it is tedious though straightforward to obtain them 
by hand. 

-H 
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2.2. Filtering 

It is often useful to know the filtered distribution of Vt conditional on x1; . . . ;xt. Among 
other things, this is needed to compute predictive distributions for returns. An easy way to 
do this is by means of a particle filter. The particle filter consists of a collection of points 
ðsÞ
fv ; s ¼ 1; . . . ;Sg for each t ¼ 1; . . . ; n. The discrete uniform distribution on these points t 

approximates the filter distribution VtjX 1; . . . ;X t. The filter is constructed recursively. For 
simplicity, the discussion below is specialized to models of form Eq. (2). 

ð1Þ ðSÞ
To initialize the filter, let v0 ; . . . ; v0 be draws from the marginal distribution of the 

volatility factor.5 To construct the recursion, we need to be able to advance to time t þ 1 
given the (approximate) filter at time t. This proceeds as follows. First, compute weights 
ðsÞ ðsÞ 

wt proportional to pðxtþ1jvt Þ, normalizing so that they sum to one. Next, resample from 
ðsÞ ðsÞ

the points v using the newly constructed weights. Denote the resampled points v~ .t t 
ðsÞ ðsÞ

Finally, draw vtþ1 from pðvtþ1jv~t ; xtþ1Þ. The particle filter has nice convergence properties 
as S !1 (e.g., Crisan, 2001). 

The particle filter described above is somewhat different from the one used in Durham (2006). 
The filter in that paper was intended to work with SV models with different timing conventions. 
The one described here is optimized for the model timing used in this paper. In addition to being 
simpler to implement and more efficient, using this filter also makes it possible to provide results 
for the SVt model, which was not feasible using the filter from the other paper. 
The particle filter is fast to compute and easy to code. For the SV-mix model with three 

components and a sample with 5,615 observations, computational cost is about two minutes 
for a filter with ten thousand particles (2 GHz PC), which is sufficient to provide a very high 
level of accuracy with this filter. Accuracy is assessed by repeating the computations with 
different settings for the random number seed and checking that the results do not vary by 
much. Once again, the computational efficiency of the technique makes such studies relatively 
painless. Such checks are often omitted when more computationally demanding techniques are 
used, leading to results that might not be reliable. 
 

 

2.3. Diagnostics 

The model diagnostics used in this paper are based on standard time-series residual analysis 
techniques. The problem is that, due to the presence of the latent state variable, it is not 
obvious how to obtain the residuals. The idea here is to construct ‘‘generalized residuals’’ using 
the output of the particle filter. In particular, the density of X tþ1jx1; . . . ;xt can be estimated by 

S1 ðsÞ 
X 

p̂ðxtþ1jx1; . . . ;xtÞ ¼  pðxtþ1jv Þ.  (11)
S t 

s¼1 

Similarly, its cumulative distribution function can be estimated by 

X1 S 
ðsÞ 

ztþ1 ¼ probðX tþ1pxtþ1jx1; . . . ; xtÞ ¼  probðX tþ1pxtþ1jv Þ.  (12)
S t 

s¼1 
5For the standard SV models, the volatility factor is AR(1) with Gaussian innovations, so the marginal 
distribution is easy to determine. For the SV-mix model, the marginal distribution can be approximated by 
simulation (because the process is ergodic). 
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If the model is correctly specified, the zt should be iid uniform(0,1). The generalized residuals 
are obtained by applying the inverse of the normal cumulative distribution function, 
z~t ¼ F-1ðztÞ. For a correctly specified model, these should be iid Nð0; 1Þ. The usual kinds of 
tests can now be done to test the hypothesis that the model is correctly specified, e.g., Jarque-
Bera or some other test to assess the unconditional distribution of the z~t and Box-Pierce tests 
or standard tests for autoregressive conditional heteroskedasticity (ARCH) behavior to look 
for dynamic structure. 
A great deal of work has appeared recently dealing with more sophisticated approaches 

to specification testing based on generalized residuals. Papers include Bontemps and 
Meddahi (2005), Duan (2003), Bai (2003), Hong and Li (2002), and Diebold, Gunther, and 
Tay (1998). Many of the ideas proposed in these papers could be applied within the context 
described above. But such work is not undertaken here. 
3. Data and estimation 

This section examines the performance of the SV-mix model over daily S&P 500 index 
data from June 23, 1980 to September 2, 2002 (n ¼ 5; 616). The data exhibit a small 
amount of autocorrelation, possibly stemming from nonsynchronous trading of the 
individual stocks comprising the index. One way to remove this correlation is by passing 
the data through an autoregressive moving average (ARMA) filter. This is the approach 
taken by, for example, Andersen, Benzoni, and Lund (2002). The empirical results 
reported in this paper are all based on data that have been prefiltered using an ARMA(2,1) 
model. Whether filtered or unfiltered data are used makes little difference in either the 
parameter estimates or the diagnostics discussed in Section 4. Fig. 1 shows some plots of 
the data. 
The models under consideration are described in Table 1. SV1 and SV2 are, respectively, 

the standard one- and two-factor log volatility models with normal errors. SVt is a one-
factor model, but with Student-t instead of normal errors in the returns process. SV0, 
which treats returns as iid normal, is included for reference. SV-mix models with two and 
three components are referred to as MIX2 and MIX3, respectively. All of the models 
include correlation between returns and volatilities. This correlation has been found to be 
an important feature of the data (commonly referred to as the leverage effect). 
Estimates and log likelihoods for the models are shown in Table 2. Because the models 

are not nested, it is not straightforward to test one model against the other directly using, 
e.g., likelihood ratio tests. However, the log likelihood still provides a means of assessing 
model fit in terms of the Kullback-Leibler information of the data relative to the fitted 
model. 
The danger here is over-fitting, that is, favoring models that describe artifacts of the 

sample that are neither features of the actual data-generating process nor economically 
useful. One approach to the problem of model choice is to use some information criterion 
based on the log likelihood plus a penalty function that depends on the number of 
estimated parameters. Common choices include the Akaike information criterion (AIC) 

pffiffiffi 
and Schwarz criterion (SC), which call for penalties of one and log n points per 
parameter, respectively (the SC penalty is 4.31 points per parameter for the data set under 
consideration here). The results of this paper are mostly clearcut enough to render the 
choice of information criterion moot. 
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Fig. 1. Standard & Poor’s 500 index, June 23, 1980 to September 2, 2002. 
In practice, none of these models might be the true data-generating process. Of interest is 
whether they describe the data in an economically useful manner. This issue is addressed in 
more detail in subsequent sections. 

SV2 provides a substantial increase in log likelihood over SV1. Somewhat surprisingly, 
SVt does even better than the more complicated (and more commonly used) two-factor 
model. The log likelihood of MIX2, the simplest of the mixture models, is about the same 
as that of SVt. Both SC and AIC prefer SVt because it has two fewer parameters. MIX3 
provides a large increase in log likelihood over MIX2 and is the preferred model overall. 
Adding a fourth component to the mixture was found to provide essentially no further 
benefit. 

All of the models show volatility to be highly persistent with autoregressive 
coefficients around 0.98–0.99. This is robust to model specification. The correlation 
between returns and innovations to this persistent volatility process is around -0:5. This is 
also robust. 

http:0.98�0.99
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Table 1 
Model specifications 

Model Specification Error terms 

SV0 X t ¼ mX þ sX st st�Nð0; 1Þ 
SV1 X t ¼ mX þ sX expðVt-1 =2Þst st; Z �Nð0; 1Þt 

Vt ¼ fVt-1 þ sV Zt corrðst; ZtÞ ¼ r 
SV2 X t ¼ mX þ sX expðUt-1 =2 þV t-1 =2Þst st; Z ; zt�Nð0; 1Þt 

corrð Þ ¼ rV 

Ut ¼ fU Ut-1 þ sU zt corrðst; ztÞ ¼ rU 

SVt X t ¼ mX þ sX expðVt-1 =2Þst st�tn; zt�Nð0; 1Þ 

Vt ¼ fV V t-1 þ sV Zt st; Zt 

Vt ¼ fVt-1 þ sV Z corrðst; ztÞ ¼ 0t pffiffiffiffiffiffiffiffiffiffiffiffi ffi 
Z ¼ rst þ 1 - r2ztt 

SV-mix X t ¼ mX þ sX expðVt-1 =2Þst st�Normal mixtureð0; 1Þ 
Vt ¼ fVt-1 þ sV Z zt�Nð0; 1Þt 

corrðst; ztÞ ¼ 0 pffiffiffiffiffiffiffiffiffiffiffiffi ffi 
Z ¼ rst þ 1 - r2ztt 
Fig. 2 shows the log forecast density of X tþ1 that is implied by each of the fitted models 
conditional on Vt ¼ 0. Conditioning on a different value for Vt would change the scale of 
the densities but have little effect on the shape. This conditional distribution is of 
considerable interest for option-pricing and risk-management applications. The mixture 
models are particularly interesting because they provide something close to a nonpara
metric look at this distribution. The long left tail of the mixture distributions captures the 
occasional crash days. Over the rest of their support, the mixture distributions are 
remarkably close to normal. As shown by the estimates in Table 2, the mixture 
distributions exhibit skewness around -0:5 and kurtosis around 6. These estimates are 
reasonably robust to the number of mixture coefficients. 
In MIX3, the crash state (k ¼ 2) has a mean of -3:6, standard deviation of 2.7, and 

probability of 0.004. Thus this state would be expected to occur about once per year on 
average. In particular, this state captures not just the well-known crashes such as October 
19, 1987 and October 13, 1989, but many less extreme events as well. 
For comparison, Fig. 2 also shows the conditional log densities corresponding to the 

SV1, SV2, and SVt models. The SV1 conditional density is Gaussian. The conditional 
density of SV2 is obtained by integrating across the marginal density of Ut. These densities 
are all symmetric. They lack the long left tail of the mixture densities. The densities implied 
by SVt and SV2 are similar in shape. Both are substantially fatter than the mixture models 
in the right tail. 
Panel C of Fig. 2 zooms in on the region around the mode of the conditional 

densities. MIX3 includes a component that is concentrated around zero (k ¼ 3). 
This makes the density slightly more peaked than the normal. In fact, it is very 
close to the SVt model (t with about 8 degrees of freedom) in this region. In 
standard jump-diffusion models, jumps occur in addition to the diffusive part of 
returns. Thus, although it would be possible to construct a jump-diffusion model with the 
same Euler-scheme approximation as MIX3, it would require two jump components, with 
jumps expected to occur on 86% of days and explaining over half of the standard deviation 
of conditional returns. 
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Table 2 
Parameter estimates, Standard & Poor’s 500 index returns, June 23, 1980 to September 2, 2002 
Data are prefiltered using an ARMA(2,1) model. The skewness and kurtosis columns for the mixture models 

(Panel C) correspond to the densities implied by the estimated mixture parameters. The parameter estimates for 
the mixture components are shown in Panel D. No standard errors are associated with the first mixture 
component. These parameters are implied by the constraints that the mixture probabilities sum to one and that 
the mixture have mean zero and variance one. 

Panel A 
Model Log L m sX fV sV r21 fU sU r31 

SV0 

SV1 

SV2 

17569.66 

18533.34 

18575.86 

0.00000 
(0.00000) 
0.00007 
(0.00011) 
0.00008 
(0.00010) 

0.01059 
(0.00000) 
0.00855 
(0.00041) 
0.00830 
(0.00063) 

0.9762 
(0.0045) 
0.9905 
(0.0027) 

0.170 
(0.015) 
0.101 
(0.014) 

-0.432 
(0.047) 
-0.459 
(0.088) 

0.15 
(0.27) 

0.468 
(0.066) 

-0.215 
(0.112) 

Panel B 
Model Log L m sX fV sV r21 n 

SVt 18582.24 0.00008 
(0.00010) 

0.00755 
(0.00052) 

0.9895 
(0.0026) 

0.103 
(0.011) 

-0.488 
(0.052) 

8.09 
(0.89) 

Panel C 
Model Log L m sX fV sV r21 skew kurt 

MIX2 

MIX3 

18583.99 

18604.57 

-0.00003 
(0.00011) 
-0.00004 
(0.00011) 

0.00893 
(0.00055) 
0.00902 
(0.00058) 

0.98551 
(0.00311) 
0.9872 
(0.0029) 

0.129 
(0.012) 
0.118 
(0.010) 

-0.579 
(0.045) 
-0.577 
(0.047) 

-0.46 

-0.46 

5.55 

6.37 

Panel D 
Model log p1 m1 s1 log p2 m2 s2 log p3 m3 s3 

MIX2 

MIX3 

-0.011 

-0.176 

0.023 

0.015 

0.947 

1.029 

-4.558 
(0.572) 
-5.504 
(0.411) 

-2.195 
(1.062) 
-3.611 
(1.247) 

2.440 
(0.381) 
2.651 
(0.595) 

-1.848 
(0.242) 

0.015 
(0.048) 

0.444 
(0.058) 
One problem with the mixture of normals approach is how to assess the precision of the 
estimated mixture density in an intuitively meaningful way. Although the usual standard 
errors are available for the parameter estimates, the complex interactions between the 
model parameters make it difficult to gauge the extent to which parameter uncertainty 
translates into uncertainty regarding the shape of the density itself. 

Bayesian techniques provide a useful approach to addressing this issue (see, e.g., 
Escobar and West, 1995). Let c denote the vector of parameters that determines the 
mixture density, and let W denote the remaining model parameters. Let f ð-;cÞ be the 
mixture density implied by c. The goal is to assess the range of shapes for f corresponding 
to choices for c that are consistent with the data. Fixing W at the maximum likelihood 

ðsÞestimate, and given a prior for c, it is possible to draw a sample, fc ; s ¼ 1; . . . ;Sg, 
from the posterior distribution of c conditional on the data using, e.g., the Metropolis-
Hastings algorithm. Examination of the collection of densities implied by this sample, 
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Fig. 2. Log density of X tþ1 conditional on Vt ¼ 0 for various models. Models are defined in Table 1. MIX2 and 
MIX3 are SV-mix models with 2 and 3 components, respectively. Panel C zooms in on the region near the mode. 
ðsÞ
ff ðsÞ ¼ f ð - ;c Þ; s ¼ 1; . . . ;Sg, provides information regarding the range of plausible 
shapes for f . 
A convenient way to summarize this information is as follows. Given a fixed point, u0, 

and a 2 ð0; 1Þ, let f ðu0Þ be the a quantile of ff ðsÞðu0Þ; s ¼ 1; . . . ;Sg. Then, for example, the a 
interval ðf :025ðu0Þ; f :975ðu0ÞÞ can be interpreted as a 95% Bayesian confidence interval for 
the value of the mixture density evaluated at u0. 

6 Repeating this process across some range 
6Bayesian confidence intervals (also referred to as credible intervals or credible sets) are closely related to 
classical confidence intervals. The advantages in the present context are that the Bayesian confidence intervals are 
more straightforward to compute, and they are (in some sense) exact, whereas the classical analogs are based on 
asymptotics that are not likely to be good in this case because the log likelihood surface is highly nonquadratic in 
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of values for u0, it is possible to construct a pointwise confidence interval for the entire 
density. 

The procedure described above was implemented for the MIX3 model. A simple random 
walk Metropolis-Hastings algorithm was used to obtain draws from c conditional on the 
data, with W fixed at its maximum likelihood estimate, and a flat prior on c. 7 The algorithm 
was run for ten thousand iterations and the output was checked to confirm that the 
parameter space was adequately covered. 

The upper panel of Fig. 3 shows a selection of some of the densities obtained in this 
manner. The (pointwise) interquartile range and 95% confidence band for the mixture 
density corresponding to the MIX3 model is plotted in the lower panel of Fig. 3. The 
density is estimated precisely in the center of the distribution, where there are many 
observations. Not surprisingly, the tails are estimated less precisely, because the data are 
much sparser. Nonetheless, the basic shape of the density is well defined. Most of the 
uncertainty occurs beyond 4 standard deviations from the mean. 

The same draws for the mixture parameter can also be used to compute confidence 
intervals for other quantities of interest. For example, the posterior density for the 
probability of the event ðso - 4Þ has mean 0.0017 and interquartile range ½0:0012; 0:0021]. 
The 95% confidence interval is ½0:0006; 0:0032]. The point estimate of the probability of 
this event (based on the maximum likelihood parameter estimates) is 0.0021. 

The event ðso - 4Þ corresponds loosely to crash days (for MIX3, this is equivalent to a 
return of less than -0:0362 conditional on Vt ¼ 0). For comparison, the maximum 
likelihood estimates for the probability of this event are 0.000011 for SV1, 0.00029 for SV2, 
and 0.00065 for SVt. Thus, a practitioner whose analysis was based on the SV1 model, for 
example, would believe the risk of such crash days to be more than one hundred times less 
likely than the practitioner using the MIX3 model. 
4. Diagnostics 

This section looks at some diagnostics for model fit based on ideas discussed in 
Section 2. Fig. 4 plots the generalized residuals for several models. Correlograms for the 
squared generalized residuals are shown in Fig. 5. QQ-plots of the generalized residuals 
against the standard normal distribution are shown in Fig. 6. Table 3 shows results of 
Jarque-Bera tests for normality of the generalized residuals, Box-Pierce tests for 
autocorrelation in the squared generalized residuals, and LM tests for the presence of 
ARCH effects in the generalized residuals. 
(footnote continued) 
the mixture parameters (McLachlan and Peel, 2000). Wald confidence intervals computed using the delta method 
are likely to be particularly poor. Carlin and Louis (2000, Section 4.3) show that in some applications Bayesian 
confidence intervals can have better frequentist properties than the usual frequentist confidence intervals. 
Furthermore, given some regularity conditions, the posterior distribution for large n is approximately normal with 
mean equal to the posterior mode and covariance equal to the negative inverse Hessian, thus the Bayesian 
confidence interval is asymptotically equivalent to commonly used frequentist confidence intervals. 

7Fixing W at its maximum likelihood estimate focuses attention on uncertainty in the mixture density itself, 
isolating it from interactions with the remaining model parameters. Alternatively, it would be possible to integrate 
across the posterior of W (given some prior). Although this does not pose any technical difficulties, it is less clear 
how to interpret the results. At any rate, for the application examined here, it does not make much difference 
because W is precisely estimated. 



ARTICLE IN PRESS

-6 -4 -2 0 

-10 

-8 

-6 

-4 

-2 

0 

x 

lo
g

 p
(x

) 

-10 

-8 

-6 

-4 

-2 

0 

lo
g
 p

(x
) 

Median 
First and third quartiles 
0.025 and 0.975 quantiles 

2 4 

-6 -4 -2 0 2 4 

x 

Fig. 3. Panel A shows a sample of MIX3 log mixture densities corresponding to draws from the posterior 
distribution of the mixture parameters. Panel B shows Bayesian confidence bands for the log mixture density 
corresponding to MIX3. 
As expected, the correlogram corresponding to the SV0 model indicates a great deal of 
persistence in volatility. In contrast, the correlograms corresponding to the other models 
suggest that they are all largely successful in filtering out this persistence. The Box-Pierce 
test on 20 lags rejects none of the models at conventional significance levels. However, if 
more lags are considered, a small amount of long-term persistence in the squared residuals 
can be detected. All of the models have p-values around 0.01 for the Box-Pierce test on 250 
lags. This is consistent with long memory in volatility, as suggested by Ding and Granger 
(1996), Bollerslev and Mikkelsen (1996), Gallant, Hsieh, and Tauchen (1997), and others. 
None of the models successfully captures this feature of the data. 
I now turn to the marginal distribution of the generalized residuals. Looking at the 

qq-plots in Fig. 6, the results are much in line with what one might expect from the density 
plots in Fig. 2. Although SV1, SVt, and SV2 improve enormously upon SV0, they fail to 
capture the fat left tail of the conditional returns distribution adequately. SVt does slightly 
better than SV2 in the left tail but is too fat in the right tail. It is easy to see from these plots 
where the models and the data begin to diverge. It is even possible to determine exactly 



ARTICLE IN PRESS

Fig. 4. Generalized residuals, Standard & Poor’s 500 index returns, June 23, 1980 to September 2, 2002. 
which observations are involved. The lack of fit affects considerably more than just the 
several well-known extreme events that appear in the sample. 

The SV-mixture models do a much better job of matching the data. Although neither 
MIX2 nor MIX3 is able to explain the crashes of October 19, 1987 or October 13, 1989 
completely, the MIX3 model is almost perfect over the rest of the distribution. The MIX2 
model does slightly worse at explaining the two crash days and is also too thin in the 
right tail. 

Looking at the Jarque-Bera tests in Table 3, SV1 and SV2 are overwhelmingly rejected. 
SVt is barely rejected at the 99% level. MIX2 is rejected at the 95% but not the 99% level, 
while MIX3 is not in danger of rejection at any conventional level. 
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Fig. 5. Correlograms for squared generalized residuals. Two hundred lags are shown. The dashed lines mark the 
rejection region (5% significance level) for the individual correlation coefficients. 
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The qq-plot for the SV0 model in Fig. 6 shows that the frequency of large 
positive returns is similar to that of large negative returns (see also Schwert, 1990). 
Thus it is surprising that the mixture densities fatten the left tail but not the right. The 
explanation for this appears to be that large positive returns tend to occur when volatility 
is already relatively high. Once the volatility state is accounted for, it looks as though the 
innovations driving the price process, st ¼ ðX t - mX Þ=½sX expðVt-1 =2Þ]; are about what 
would be predicted by a normal distribution in the right tail (but not the left). This 
explanation is supported by the qq-plot for SV1 in Fig. 6, which shows little evidence of 
misspecification in the right tail. A close examination of the time series of returns in the 
bottom panel of Fig. 1 lends additional support. Thus, although the right and left tails of 
the unconditional returns distribution could be similar, the tails of the conditional 
distribution are not. 
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Fig. 6. QQ-plots of generalized residuals against the standard normal, Standard & Poor’s 500 index returns, June 
23, 1980 to September 2, 2002. 
The SV-mix model follows the work of EJP in that large negative returns (jumps) are 
associated with large increases (jumps) in volatility. The flip side of this is that large 
positive returns are associated with decreases in volatility. It is unclear if this is a feature of 
the data or just an artifact of the linear correlation relationship between st and Z , the t 
innovations driving the price and volatility processes, respectively. Although some 
evidence regarding the possibility of nonlinearity in this relationship is provided in 
Section 5, a more detailed investigation is left for future work. At any rate, because the 
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Table 3 
Tests for autoregressive conditional heteroskedasticity (ARCH) effects and normality of generalized residuals, 
Standard & Poor’s 500 index returns, June 23, 1980 to September 2, 2002 
The ARCH test is based on 20 lags. Box-Pierce tests are based on 20 and 250 lags of the squared generalized 

residuals. P-values are shown in parentheses. 

Model Jarque-Bera ARCH(20) Box-Pierce(20) Box-Pierce(250) 

SV0 439,869.1 272.70 368.10 479.4943 
(0.0000) (0.0000) (0.0000) (0.0000) 

SV1 248.19 13.09 13.28 316.44 
(0.0000) (0.8735) (0.8651) (0.0028) 

SV2 51.94 24.92 25.60 307.48 
(0.0000) (0.2046) (0.1794) (0.0076) 

SVt 10.96 18.65 19.36 305.43 
(0.0042) (0.5446) (0.4983) (0.0095) 

MIX2 8.13 15.48 16.22 301.33 
(0.0171) (0.7485) (0.7030) (0.0145) 

MIX3 0.19 17.92 18.70 305.96 
(0.9079) (0.5926) (0.5412) (0.0090) 
�

right tail of the mixture density is close to Gaussian, the link between positive returns and 
volatility decreases in the SV-mix model is about the same as that implied by the usual 
leverage effect in, say, the standard SV1 model. 

5. Forecasting 

The conditional distributions for returns described in Section 4 are all based on the idea 
that V t is known (i.e., Vt ¼ 0 for the plots in Fig. 2). In practice, this information is not 
available and must be inferred from past returns. The appropriate forecast density 
operationally is pðxtþ1jxt;xt-1; . . . ;x1Þ. Fortunately, the output of the particle filter provides 

ð1Þ ðSÞ 
t tan easy way to estimate this. For each t, the particle filter provides draws fv ; . . . ; v g from 

VtjX t;X t-1; . . . ;X 1. The desired forecast density can thus be computed as Z 
pðxtþ1jxt;xt-1; . . . ; x1Þ ¼  pðxtþ1jvtÞdpðvtjxt; xt-1; . . . ;x1Þ 

X1 S 
ðsÞ 

pðxtþ1jv Þ. ð13Þ 
S t 

s¼1 

As these expressions show, the forecast density is a mixture of the conditional densities 
pðxtþ1jvtÞ across possible realizations of V t, weighted according to their likelihood based on 
past returns. 
Forecast densities for August 1, 1991 computed using this approach with various 

models are shown in Fig. 7 (this arbitrarily chosen date is at the midpoint of the sample 
period). As compared with the densities shown in Fig. 2 (which treat Vt as known with 
certainty), accounting for uncertainty in the level of volatility fattens the tails of all 
the models. Relative differences between the various models, however, remain qualitatively 
similar. 
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Fig. 7. Forecast densities. Panel A shows forecast density for X tþ1jX t; . . . ;X 1 for August 1, 1991. Panel B shows 
the filtered density for VtjX t; . . . ;X 1 for the same date. 
�

The filtered densities of V tjX t;X t-1; . . . ;X 1 implied by various models for the date 
August 1, 1991 are shown in the lower panel of Fig. 7. Time-series plots of filtered volatility 
estimates are shown in Fig. 8 (see also Fig. 20 in Appendix A). The models differ mostly in 
how they react to extreme returns. In particular, because it has a thinner-tailed conditional 
returns distribution, SV1 requires higher levels of volatility to accommodate such 
observations. But, overall, volatility estimates are reasonably robust to model specification. 

A similar approach can be used to compute predictive densities over longer time periods. 
Let X tþk denote the cumulative log return over a period of k days, beginning at time t, and t 

suppose the predictive density of X tþkjX 1; . . . ;X t is desired. For simplicity, restrictt 
ðsÞ

attention to the SV1 model for now. As before, let fv ; s ¼ 1; . . . ;Sg be draws from the t 
ðsÞ ðsÞ

particle filter. For each particle, simulate a volatility path, fvt ; . . . ; vtþkg (do not condition 
on values of X t for t4t). Now, the problem is to compute Z 

tþk pðx jx1; . . . ;xtÞ ¼  pðxtþkjvt; . . . ; vtþkÞdpðvt; . . . ; vtþkjx1; . . . ;xtÞt 

X1 S 
tþk ðsÞ ðsÞ 

pðxt jv ; . . . ; vtþkÞ. ð14Þ 
S t 

s¼1 



ARTICLE IN PRESS

Fig. 8. Filtered volatility estimates for various models. 
But this is straightforward to do because the conditional distributions are Gaussian. Fixing 
ðsÞs for the moment, let ZðsÞ be the innovation used to generate v for totpt þ k. Then the t t 

predictive distribution for the daily log return X t conditional on the simulated path 
ðsÞ ðsÞ ðsÞ ðsÞ2vt ; . . . ; vtþk is normal with mean mX þ sX expðvt-1 =2ÞrZt and variance sX expðvt-1Þ 

ð1 - r2Þ. The cumulative log return X tþk conditional on the simulated volatility path is t 
normal with mean and variance equal to the sum of the daily means and variances, 
respectively. 
Predictive densities for the other models can be constructed in a similar manner but with 

a little more work. For example, for the SV-mix model, the mixture states need to be 
simulated in addition to the volatility. The same idea works for the SVt model, because a t 
distribution is just an inverse gamma mixture of normals. For the SV2 model, paths for 
both volatility factors must be simulated. 
This idea of computing an unconditional distribution by averaging over conditional 

distributions is commonly referred to as Rao-Blackwellization (e.g., Robert and Casella, 
2004, Section 4.2). 
Predictive distributions for five- and ten-day cumulative returns are shown for the date 

August 1, 1991 in Fig. 9 (see Fig. 21 in Appendix A for 15- and 20-day forecast 
distributions). Compared with the one-day predictive densities shown in Fig. 7, the 
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Fig. 9. Forecast densities of cumulative returns at five- and ten-day horizons for August 1, 1991. 
predictive densities for all of the models become closer to normal as the prediction interval 
grows. Nonetheless, the left tail of the SV-mix predictive density remains somewhat fatter 
than the other models out to at least ten days (two weeks). By 20 days out, not much 
difference between the various models remains. 

It is possible to assess how well these predictive densities fit the data using an approach 
along the lines of the diagnostics described in Section 4. In particular, because the 
predictive densities can be computed, it is also straightforward to compute the quantities 

z tþk ¼ probðX tþkpx tþkjx1; . . . ;xtÞ, (15)t t t 

tþkwhere x is the observed cumulative log return. As before, the generalized residuals, t 
tþk tþkz~ ¼ F-1ðz Þ, should be normally distributed with mean zero and variance one if the t t 
model is correctly specified. But in contrast to the previously discussed situation, they 
would be autocorrelated (because the periods over which the cumulative returns are 
computed overlap).8 

Figs. 10 and 11 show qq-plots for the generalized residuals of five- and ten-day 
cumulative returns, respectively. At the five-day horizon, the MIX3 model fits the left tail 
of the data better than the other models, but, somewhat surprisingly, all of the models have 
some trouble in the right tail. At the ten-day horizon, all of the models miss the left tail and 
continue to have a small amount of difficulty in the right tail. At the 20-day horizon (see 
Fig. 22 in Appendix A), all of the models have about the same difficulties fitting the right 
tails as at the five- and ten-day horizons. The lack of fit in the left tail is still apparent, 
though substantially less than at ten days (MIX3 does slightly better than the other 
8A nonautocorrelated subsample could be obtained by taking only every kth generalized residual. But this has 
its own problems. In particular, k different subsamples are possible, depending on whether the subsampling was 
begun on day 1; 2; . . ., or  k - 1. It turns out that the diagnostics can vary considerably between subsamples. 
A better idea might be to use the specification test of Bontemps and Meddahi (2005), which accounts for possible 
autocorrelation. 
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Fig. 10. QQ-plots for generalized residuals of five-day cumulative returns. 
models; SV2 is worst). Because of the presence of autocorrelation, the Jarque-Bera test is 
no longer valid, so it is difficult to judge the extent to which these problems represent 
model mis-specification as opposed to sample variation. 
Figs. 10 and 11 are mildly supportive of the idea of a nonlinear relationship between 

returns and changes in volatility. The evidence suggests that estimated volatility increases 
too little in response to large negative returns and that it decreases too much in response to 
large positive returns (that is, the model-implied leverage effect is too weak for large 
negative returns and too strong for large positive returns). In both cases, the result is that 
subsequent generalized residuals are slightly exaggerated. This is possibly related to results 
found by Ghysels, Santa-Clara, and Valkanov (2004). Using their mixed data sampling 
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Fig. 11. QQ-plots for generalized residuals of ten-day cumulative returns. 
(MIDAS) approach with different weights for the effects of positive and negative returns 
on volatility, they find that negative shocks have a larger immediate impact on volatility 
than do positive shocks, but the impact of negative shocks is short-lived while that of 
positive shocks is extremely persistent. 

The approach described above, whereby forecast densities are computed by integrating 
across the filtered distribution of the latent volatility factor, is also important for correctly 
computing option prices implied by a risk-neutral model (see also Bates, 2005). For 
example, a risk-neutral forecast density generated by initializing the volatility factor at its 
expected value conditional on past returns (instead of integrating over the full distribution) 
has tails that are too thin. Option prices are biased downward and volatility smiles are less 
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pronounced relative to those based on the correct forecast density. Furthermore, all of the 
models provide less than perfect fits to the data at the horizons examined. Imputing risk 
premia based on differences between these models and the risk-neutral models implied by 
option prices is thus an exercise that should be undertaken with a great deal of caution (see 
also Bates, 2003). 

6. Comparison with affine models 

Affine and affine-jump models are commonly used in the literature. This section takes 
some of the tools applied elsewhere in this paper and applies them to several members of 
the affine and affine-jump class. For concreteness, the same models and data as Eraker, 
Johannes, and Polson (2003) (EJP hereafter) are used. The data are made up of S&P 500 
index returns from January 2, 1980 to December 31, 1999. This sample period differs only 
slightly from the data set used throughout the rest of this paper. The general form of the 
model is pffiffiffiffiffiffi 

dY t ¼ m dt þ V t dW 1t þ xY dN1t, pffiffiffiffiffiffi 
dVt ¼ kða - VtÞdt þ sV Vt dW 2t þ xV dN2t, ð16Þ 

where W 1 and W 2 are Brownian motions with correlation r, and N1 and N2 are Poisson 
processes (possibly identical) with constant arrival intensities lY and lV and jump sizes xY 

and xV , respectively. To distinguish them, the SV models considered in the preceding 
sections of this paper are sometimes referred to as log volatility models. 
EJP looked at the following special cases: 

AFF: No jumps, i.e., lY ¼ lV ¼ 0.
 
AFF-J: Jumps in returns with size xY NðmY ;sY Þ; no jumps in volatility.
 
AFF-CJ: Contemporaneous jumps in both returns and volatility (i.e., N1 ¼ N2) with
 

correlated sizes, xV expðmV Þ and xY jxV NðmY þ rJ xV ;sY Þ. 
AFF-IJ: Jumps in returns and volatility driven by independent Poisson processes and with 

sizes xV expðmV Þ and xY NðmY ;sY Þ. 

Following EJP (and the approach used elsewhere in this paper), the Euler scheme 
approximation to the models is used throughout. Although the estimation technique 
described in Section 2 works for the AFF and AFF-J models, it works poorly for the 
models with jumps in volatility. This is because the importance sampler relies on a normal 
approximation to the true distribution of the volatility factor conditional on the data. The 
presence of jumps in volatility throws the approximation off by enough that the Monte 
Carlo integration is no longer practically feasible (though it remains theoretically valid). 
However, an alternative estimation strategy based on the particle filter can be used. The 
particle filter is easily implemented for all of these models and allows the likelihood to be 
approximated for any candidate parameter vector. The only drawback is that the resulting 
criterion function is not smooth (because of the nature of the particle filter). However, 
optimization can still proceed using, e.g., simulated annealing. Standard errors can be 
obtained by fitting a quadratic surface to the log likelihood function in a neighborhood 
of the mode. While this approach is easy to implement and works with a great deal of 
generality, it is computationally intensive. Nonetheless, letting things run for a day or so, 
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it is possible to get accurate estimates. The optimization is made easier because the EJP 
estimates provide good start values. In fact, EJP’s estimates differ only slightly from the 
final estimates obtained using the approach outlined above. This is not surprising because 
the EJP estimates are given by the mean of the posterior with an uninformative prior while 
the maximum likelihood estimates are given by the mode of the likelihood, which is 
equivalent to the mode of the posterior with a flat prior. The closeness of the estimates 
provides corroboration of EJP’s work. The log likelihoods corresponding to the two sets of 
estimates (MLE versus EJP) differ by only around one point at most, and the diagnostics 
obtained using either set of estimates are similar. For ease of comparison, the EJP 
estimates are used throughout the rest of this section (see Table 4). 

As found by EJP (and others), including jumps in returns provides a large improvement 
in model fit over the basic affine model. Further corroborating EJP’s findings, including 
jumps in volatility provides additional improvement. Both the AFF-IJ and AFF-CJ are 
preferred over AFF-J by both the AIC and SC (the SC imposes a penalty of 4.26 points per 
parameter with this data set). However, in contrast to EJP, who find evidence in favor of 
independent jumps, I do not find much difference between the AFF-IJ and AFF-CJ 
models (both have the same number of parameters). 

To compare the affine and affine-jump models with the models used throughout the rest of 
this paper, those models were reestimated over the EJP data. The parameter estimates differed 
only slightly from those displayed in Table 2 and so are not reported (but are available upon 
request). The log likelihoods are displayed in Table 4. 9 The log likelihood of the MIX3 model 
exceeds that of the best of the affine-jump models by 46 points (this model has one additional 
parameter versus either AFF-IJ or  AFF-CJ) and  is clearly preferred by both the SC and AIC. 
SVt and SV2 are also preferred over all of the affine-jump models by safe margins. The affine-
jump models are all preferred over the basic SV1 model. 

Correlograms for the squared generalized residuals are shown in Fig. 12. The affine 
models without jumps in volatility show significant autocorrelation through the first 
several lags. Box-Pierce tests on 20 lags reject AFF and AFF-J (see Table 5). Introducing 
jumps in volatility takes care of this problem, providing additional evidence in favor of the 
findings of EJP. None of the log volatility models was rejected by this test. All of the affine 
and affine-jump models are rejected on Box-Pierce tests with 250 lags (as were the log 
volatility models). 

QQ-plots for the generalized residuals are shown in Fig. 13. 10 The model without jumps 
is too thin in the left tail, as expected, but all of the models with jumps do much better, 
missing only the crash of October 1987. Nonetheless, all of the models are rejected by the 
Jarque-Bera test (Table 5). 

Forecast densities for X tþ1jVt are shown in Fig. 14. For the log volatility models, Vt 

affects only the scaling but not the shape of this density. However, for the 
affine-jump models, the diffusion term but not the jump size is scaled by V t, so the 
shape of the density varies depending on the level of volatility. Forecast densities are 
9To assure the results were comparable, log likelihoods were computed using both the Monte Carlo integration 
described in Section 4 and the particle filter (100,000 particles). The results were nearly identical. 

10Similar qq-plots are shown in Eraker, Johannes, and Polson (2003), but they are different from those shown 
in this paper in an important way: The EJP qq-plots use smoothed residuals, whereas the plots in this paper 
use filtered residuals. That is, the EJP residual z~tþ1 is computed by integrating over the distribution of V t 

conditional on the full data set, while this paper integrates over the distribution of Vt conditional on data 
observed up to time t. 
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Table 4 
Parameter estimates for affine and affine-jump models, Standard & Poor’s 500 index returns, January 2, 1980 to 
December 31, 1999 
The data set is the same as used by Eraker, Johannes, and Polson (2003) (EJP hereafter). EJP use percentage 

returns, whereas the results reported elsewhere in this paper are based on decimal returns. Although the estimates 
reported below are reproduced from EJP, the log likelihoods are based on transforming the returns to decimal 
form to be comparable with results elsewhere in this paper. 
For the log volatility models (Panel B), log likelihoods are obtained using the particle filter after reestimating 

the models over the EJP data set. Estimates are similar to those in Table 2 and are available upon request. 

Panel A 

AFF AFF-J AFF-CJ AFF-IJ 

m 

a 

k 

sV 

mY 

rJ 

sY 

mV 

r 

lY 

lV 

Log L 

0.04443 
(0.0110) 
0.9052 
(0.1077) 
0.0231 
(0.0068) 
0.1434 
(0.0128) 

-0.3974 
(0.0516) 

16894.01 

0.0496 
(0.0109) 
0.8136 
(0.1244) 
0.0128 
(0.0039) 
0.0954 
(0.0104) 
-2.5862 
(1.3034) 

4.0720 
(1.7210) 

-0.4668 
(0.0579) 
0.0060 
(0.0021) 

16957.41 

0.0554 
(0.0112) 
0.5376 
(0.0539) 
0.0260 
(0.0041) 
0.0790 
(0.0074) 
-1.7533 
(1.5566) 
-0.6008 
(0.9918) 
2.8864 
(0.5679) 
1.4832 
(0.3404) 
-0.4838 
(0.0623) 
0.0066 
(0.0020) 

16968.20 

0.0506 
(0.0111) 
0.5585 
(0.0811) 
0.0250 
(0.0057) 
0.0896 
(0.0115) 
-3.0851 
(3.2485) 

2.9890 
(0.7486) 
1.7980 
(0.5737) 
-0.5040 
(0.0661) 
0.0046 
(0.0020) 
0.0055 
(0.0032) 
16968.95 

Panel B 

Model SV1 SVt SV2 MIX3 

Log L 16945.08 16996.01 16992.67 17014.53 
shown for three different levels of volatility, corresponding to the tenth, 50th, and 90th 
percentiles of volatility.11 

On low volatility days, the jumps are very large relative to the diffusive part of the 
distribution. The left tail is much fatter than MIX3. At higher levels of volatility, the jumps 
are much smaller relative to the diffusive part of the distribution. At high levels of 
11Volatility quantiles were obtained by taking the volatility estimates from the particle filter and sorting. 

http:volatility.11
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Fig. 12. Correlograms for squared generalized residuals, Eraker, Johannes, and Polson (2003) data. The dashed 
lines mark the rejection region (5% significance level) for the individual correlation coefficients. 
volatility, the left tails of the AFF-CJ and AFF-IJ predictive densities are comparable to 
(but slightly thinner than) that of MIX3. 

Because this feature of the affine-jump models is an important difference relative to 
MIX3, some additional experiments were performed to see if it is supported by the data. 
Figs. 15 and 16 show qq-plots of the generalized residuals corresponding to the 
observations in the highest and lowest decile with respect to volatility (the plots for 
AFF-IJ are almost identical to those for AFF-CJ and are thus omitted from the figure). 
Because the full set of generalized residuals should be iid Nð0; 1Þ if the model is correctly 
specified, any subset should be as well. In both the high and low volatility cases, the qq
plots suggest that MIX3 matches the data well, whereas the affine and affine-jump models 
show evidence of mis-specification. Furthermore, this mis-specification corresponds to 
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Table 5 
Tests for autoregressive conditional heteroskedasticity (ARCH) effects and normality of generalized residuals, 
Standard & Poor’s 500 index returns, January 2, 1980 to December 31, 1999 
The data set is the same as used by Eraker, Johannes, and Polson (2003). The ARCH test is based on 20 lags. 

Box-Pierce tests are based on 20 and 250 lags of the squared generalized residuals. P-values are shown in 
parentheses. 

Model Jarque-Bera ARCH(20) Box-Pierce(20) Box-Pierce(250) 

MIX3 0.22 16.26 16.98 307.78 
(0.8978) (0.7002) (0.6543) (0.0074) 

AFF 1455.28 36.73 37.37 300.59 
(0.0000) (0.0126) (0.0106) (0.0156) 

AFF-J 22.12 46.50 53.98 350.23 
(0.0000) (0.0007) (0.0001) (0.0000) 

AFF-CJ 23.21 14.16 14.92 338.99 
(0.0000) (0.8222) (0.7809) (0.0002) 

AFF-IJ 19.59 13.32 14.24 335.14 
(0.0001) (0.8634) (0.8179) (0.0003) 
about what one might expect from looking at the density plots in Fig. 14 under the belief 
that MIX3 was the true data generating model.12 The Jarque-Bera test rejects the affine-
jump models on the high volatility subset but not the low volatility subset (the Jarque-Bera 
test only looks at third and fourth moments so failure to reject on the low volatility subset 
could reflect lack of power in the relevant direction; the qq-plots seem fairly suggestive). 
Models with time-varying jump intensity (but not size) have been studied by Bates 

(2005), Andersen, Benzoni, and Lund (2002), and Pan (2002), but without jumps in 
volatility. Bates fits the model to S&P 500 index returns over 1953–1996 using an 
approximate maximum likelihood technique. He finds significant evidence in favor of time-
varying jump intensity (an improvement of about 15 points in log likelihood). Andersen et 
al., using the same data set but a simulated method of moments estimator, find the time-
dependence parameter for jump intensity to differ negligibly from zero. Pan uses both 
returns and option prices and finds the state-dependence of jump intensity to be important. 
This is consistent with EJP’s finding that the constant intensity model cannot explain 
differences in the shape of the option price smirk on low versus high volatility days. 
To summarize, the log volatility models significantly outperform the affine models 

according to two commonly used information criteria. Among the affine models, models 
with jumps in volatility as well as returns are preferred. Additional evidence supporting 
jumps in volatility is provided by the diagnostic tests. But there appears to be a need for 
time-variation in either the size or intensity of jumps in returns, a feature possessed by 
none of the affine models under consideration in this paper. 
12Among the low-volatility days, there are no observations corresponding to the extreme left tail in the region 
where it is thicker under the affine and affine-jump models than under MIX3. Given that such events would be 
expected to be rare, this does not necessarily represent evidence against this tail shape, but only a lack of evidence 
in support of it. 

http:model.12
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Fig. 13. QQ-plots of generalized residuals against the standard normal, Eraker, Johannes, and Polson (2003) 
data. 
7. Conclusions 

Understanding both the dynamics of volatility and the shape of the distribution of 
returns conditional on the volatility state is important for many financial applications. A 
simple single-factor SV model is largely sufficient to capture the dynamics. It is the shape 
of the conditional distribution that is the problem. Commonly used models lack sufficient 
flexibility to capture important features of this distribution. Although the SVt and SV2 
models capture some of the kurtosis exhibited by returns, they are unable to catch the 
asymmetry in tail thickness and miss much of the mass in the extreme left tail. The mixture 
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Fig. 14. Log density of X tþ1 conditional on Vt for various models estimated over Eraker, Johannes, and Polson 
(2003) data. Volatility levels are equal to the tenth, 50th and 90th percentiles of volatility. 
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Fig. 15. QQ-plots for the observations with volatility in the lower decile. 
distributions used in the SV-mix models provide something close to a nonparametric look 
at the conditional distribution of returns. Model diagnostics suggest that it is successful in 
reflecting key features of the data. 

The SV-mix model also suffers to some extent from the drawbacks of nonparametric 
estimation: It is difficult to obtain precise estimates in regions of the state space 
when there are few observations. However, the model does impose some structure 
compared with a truly nonparametric estimator such as, say, a kernel estimator. This 
balance between structure and ‘‘letting the data speak for itself’’ is an appealing feature of 
the model. 



ARTICLE IN PRESS

Fig. 16. QQ-plots for the observations with volatility in the top decile. 
Jump-diffusion models represent another path toward the same goal. The jump process 
plays much the same role as a low probability, high variance component in the mixture 
distribution. It is easy to find a jump-diffusion model with the same Euler-scheme 
approximation as the SV-mix model. But, unless one is willing to accept multiple jump 
processes, with jumps occurring nearly every day and explaining most of the distribution of 
returns, such models have trouble achieving the flexibility of the SV-mix models. In any 
event, this paper takes no position on the issue as to whether the returns process is 
continuous or includes jumps (or on any other intra-daily feature of the returns process). 
The mixture distribution is regarded simply as a mechanism to generate a flexible family of 
distributions for daily returns. 
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In a direct comparison with several affine-jump models studied by Eraker, Johannes, 
and Polson (2003), an SV-mix model with three mixture components was strongly 
preferred by Akaike and Schwarz information criteria. Diagnostics support the evidence 
provided by Eraker, Johannes, and Polson in favor of jumps in volatility as well as returns, 
but there is also evidence in favor of time-varying jump intensity, a feature included in 
models examined by several other authors, but not those of Eraker, Johannes, and Polson. 

There is a great deal of interest in understanding the relationship between the physical 
measure, which governs returns, and the risk-neutral measure, from which options are 
priced. But a crucial step in such explorations must be an adequate description of the 
physical measure, because errors here lead to faulty inference regarding risk premia. The 
modeling framework proposed by this paper looks to be useful in this direction. 

Appendix A. Supplementary material 

Supplementary material associated with this article can be found in the online version at 
doi:10.1016/j.jfineco.2006.06.005. 
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