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Abstract 

While a great deal of attention has been focused on stochastic volatility in stock returns, 
there is strong evidence suggesting that return distributions have time-varying skewness and 
kurtosis as well. Under the risk-neutral measure, for example, this can be seen from variation 
across time in the shape of Black-Scholes implied volatility smiles. This paper investigates 
model characteristics that are consistent with variation in the shape of return distributions 
using a stochastic volatility model with a regime-switching feature to allow for random changes 
in the parameters governing volatility of volatility, leverage effect and jump intensity. The 
analysis consists of two steps. First, the models are estimated using only information from 
observed returns and option-implied volatility. Standard model assessment tools indicate a 
strong preference in favor of the proposed models. Since the information from option-implied 
skewness and kurtosis is not used in fitting the models, it is available for diagnostic purposes. 
In the second step of the analysis, regressions of option-implied skewness and kurtosis on the 
filtered state variables (and some controls) suggest that the models have strong explanatory 
power for these characteristics. 
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1 INTRODUCTION 

Understanding volatility dynamics and improving option pricing have long been of interest to prac

titioners and academics. It is well-known that the volatility of many financial assets is time-varying, 

and an enormous amount of research has been devoted to studying this feature of financial data. 

But, there is strong empirical evidence suggesting that return distributions have time-varying skew

ness and kurtosis as well. For example, stochastic skewness in risk-neutral return distributions is 

implied by variation across time in the slope of the Black-Scholes implied volatility smile. Stochastic 

kurtosis is related to variation across time in the curvature of the Black-Scholes implied volatility 

smile. These are important features of observed option prices and are only weakly correlated with 

variation in option-implied volatility. Understanding variation in the shape of return distributions 

(and the shape of the implied volatility smile) is important in many applications, such as hedging 

and risk management. 

The ob jective of this paper is to investigate model characteristics that are consistent with 

time-varying skewness and kurtosis in return distributions as is observed empirically in the options 

market. In particular, we look at models with additional state variables that allow for time-variation 

in volatility of volatility, correlation between innovations in prices and volatility (leverage effect), 

and jump intensity, all of which are able to generate variation in the shape of return distributions 

that is independent of the level of volatility. We find strong evidence in favor of these features. 

An important aspect of our analysis is that the models are estimated using returns and implied 

volatility, but additional information about the shape of the return distribution embedded in option 

prices (e.g., higher order moments of the risk-neutral measure) is not used in fitting them. By with

holding this information from the model estimation, we are able to use it for diagnostic purposes. 

Toward this end, we look at some regressions to examine whether the implied state variables have 

explanatory power for option-implied skewness and kurtosis and find strong evidence that they do. 

This is important because it suggests that variation in the shape of risk-neutral return distributions 

(and of the Black-Scholes implied volatility smile) is not just due, for example, to changes in risk 

premia, but is associated with changes in related characteristics of the physical dynamics. 
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This paper builds on a substantial body of previous work. Das and Sundaram (1999) show
 

that both volatility of volatility and correlation between the innovations in an asset’s price and 

its volatility (leverage effect) affect the shape of the volatility smirk. They show that the size and 

intensity of jumps in returns do so as well, though the effect is primarily at short terms to maturities 

(alternative specifications for the jump dynamics may be able to generate similar effects at longer 

horizons). There has been some work toward implementing these ideas in empirical work. For 

example, the two-factor stochastic volatility model of Christoffersen, Heston, and Jacobs (2009) 

is able to generate time-varying correlation, while Santa-Clara and Yan (2010) allow the jump 

intensity to be stochastic. Carr and Wu (2007) propose a stochastic skew model for foreign exchange 

rates with positive and negative jumps driven by independent Levy processes. Johnson (2002) 

looks at a stochastic volatility model with time-varying correlation between return and volatility 

innovations. Jones (2003) proposes a constant elasticity of variance model that incorporates a 

time-varying leverage effect. Harvey and Siddique (1999) look at GARCH models that incorporate 

time-varying skewness. 

The underlying modelling framework is based on a standard single-factor stochastic volatility 

model. Although models of the affine (or affine-jump) class are often used in work of this kind due 

to their analytical tractability, these models have trouble fitting the data (e.g., Jones 2003; Ait-

Sahalia and Kimmel 2007; Christoffersen, Jacobs, and Mimouni 2010). But since the techniques 

applied in this paper do not rely upon the analytical tractability of the affine models, we are able 

to choose among classes of models based on performance instead. We have found that log volatility 

models provide a useful starting point. We allow for contemporaneous jumps in both returns and 

volatility. We build on this framework by adding a regime-switching feature for the parameters 

corresponding to volatility of volatility, leverage effect and jump intensity. This idea is motivated 

by the fact that changes in any of these three variables, at least under the risk-neutral measure, 

are capable of generating variation in the shape of the Black-Scholes implied volatility smirk. 

Our empirical work uses S&P 500 index (SPX) option data. Figure 1 shows time-series plots of 

option-implied volatility, skewness, and kurtosis estimated using the model-free approach of Bakshi, 

Kapadia, and Madan (2003). Figure 2 shows scatter plots of option-implied skewness and kurtosis 
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versus volatility. It is evident from these plots that there is substantial and persistent variation in
 

skewness and kurtosis, and that this variation is only weakly correlated with the level of volatility. 

Models with only a single state variable are hard to reconcile with the empirical features of these 

data. The inclusion of additional state variables in the model (such as the regime states used in 

this paper) is needed to break this lock-step relationship between volatility, skewness and kurtosis. 

The analysis is comprised of two main parts. First, we fit the models using SPX prices and 

option-implied volatility. We compare models based on log likelihoods, information criteria, and 

other diagnostics. The second step involves testing the explanatory power of the implied regime 

states for option-implied skewness and kurtosis. 

Regarding the first step of the analysis, including jumps in the model provides a huge im

provement relative to the base model with no jumps. The log likelihood increases by over 300 

points. Other diagnostics of model fit are also greatly improved. Including the regime-switching 

feature provides additional large improvements. The best of these models uses regime switching in 

volatility of volatility. This model provides an increase of 110 points in log likelihood relative to 

the model without regime switching, with improvements in other diagnostics of model fit as well. 

In the second step of the analysis, regressions testing whether the implied states have ex

planatory power for option-implied skewness and kurtosis are also decisive. The slope coefficients 

are strongly significant and in the expected directions. Option-implied skewness tends to be more 

negative and option-implied kurtosis tends to be more positive when volatility of volatility is high 

or the leverage effect is more pronounced (more negative correlation between price and volatility 

innovations). Our regression results are robust to inclusion of control variables such as VIX index, 

variance risk premium, and jump variation. While regression of option-implied skewness on the 

control variables alone has an adjusted R2 of only 9.2%, adding the implied regime states to the 

regression gives an adjusted R2 of over 32%. Slope coefficients for the regime state variables have 

t-statistics with absolute value greater than 10. 

The remainder of the paper is organized as follows: Section 2 describes the models under 

consideration; Section 3 describes the methodology; Section 4 reports parameter estimates and 
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Figure 1: Time series of S&P 500 returns, option-implied volatility, option-implied skewness, and 
option-implied kurtosis. 
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Figure 2: Scatter plots of option-implied skewness and kurtosis against option-implied volatility. 

diagnostics for the various models; Section 5 investigates the explanatory power of implied regime 

states for option-implied skewness and kurtosis; and Section 6 concludes. 

MODELS 

The modeling framework used in this paper is based on a standard stochastic volatility model. In 

light of findings by e.g. Eraker, Johannes, and Polson (2003), we allow for jumps in both returns 

and volatility. Given a probability space (Ω, F , P) and information filtration {Ft}, the ex-dividend 

log stock price, yt, is assumed to evolve as 

  1 
dyt = exp(vt) dt + exp(vt/2)dW1t + J1tdN1tµ − µ1J t λ1(st) − 

2   
dvt = dt + σ(st)dW2t + J2tdN1t (1)κ(v − vt) − µ2J t λ1(st)

dst = (1 − 2st)dN2t 

where vt and st are the volatility state and the regime state, respectively. The regime state is either 

0 or 1. W1t and W2t are standard Brownian motions with regime-dependent correlation ρ(st). N1t 

and N2t are Poisson processes with intensity λ1(st) and λ2(st), respectively. 
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We consider two different forms for the jump structure, depending upon whether jumps are
 

scaled by the volatility state or not. The unscaled models (UJ) assume that jump innovations     
are i.i.d. bivariate normal with J1t ∼ N µ1J , σ1

2 
J , J2t ∼ N µ2J , σ2

2 
J , and corr(J1t, J2t) = ρJ . 

Similar jump specifications have been used in the existing literature (e.g., Eraker, Johannes, and 

Polson 2003; Eraker 2004; Broadie, Chernov, and Johannes 2007). In contrast, the scaled models 

(SJ) assume that jumps scale in proportion to the volatility of the diffusive component of the   
process. That is, J1t and J2t are bivariate normal with J1t/ exp(vt/2) ∼ N µ1J , σ2 , J2t/σ(st) ∼1J  
N µ2J , σ2 , and corr(J1t, J2t) = ρJ . By generating larger jumps when volatility is higher, the 2J

SJ model is potentially capable of providing more realistic dynamics (this hypothesis is indeed 

confirmed in the empirical section). In either case, we denote expected jump size (conditional on 

the volatility state for the SJ models) by µ1J t = E(eJ1t − 1) and µ2J t = E(J2t). 

The regime-dependent parameters, σ, ρ and λ1, allow for variation across time in the volatility 

of volatility, leverage effect and jump intensity, respectively. These are the mechanisms by which it 

is possible to generate time-varying skewness and kurtosis. The regime-dependence of λ2 lets the 

regimes differ in persistence. 

For simplicity, we only look at models with two possible regimes, although extending our 

techniques to more regimes is straightforward (at the cost of more free parameters to estimate). 

The regime state process is the continuous-time analog of a discrete-time Markov switching model 

in which the probability of switching from state s to state 1 − s is λ2(s)Δt (s = 0, 1). 

While the dynamics of the underlying asset are described by the above model, options are 

priced according to a risk-neutral measure, Q. We assume that under this measure the model takes 

the form 
1 

dyt = exp(vt) dt + exp(vt/2)dWrt − qt − µ1J t λ1(st) − 
2 

Q 
1t + JQ 

1tdN
Q 
1t 

Q 
2t + JQ 

2tdN
Q 
1tdvt = κ(v − vt) − η(st)vt − µ2J t λ1(st) dt + σ(st)dW (2) 

Qdst = (1 − 2st)dN2t 

Q Qand Wwhere rt and qt denote the risk-free rate and the dividend rate, respectively. W are stan1t 2t 

dard Brownian motions with regime-dependent correlation ρ(st) under the risk-neutral measure. 
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Table 1: Summary of models 

SV No jumps, no regime switching 
SJ Volatility-scaled jumps, no regime switching 
UJ Volatility-unscaled jumps, no regime switching 
SJ-RS-Vol Volatility-scaled jumps, regime switching for σ 
UJ-RS-Vol Volatility-unscaled jumps, regime switching for σ 
SJ-RS-Lev Volatility-scaled jumps, regime switching for ρ 
UJ-RS-Lev Volatility-unscaled jumps, regime switching for ρ 
SJ-RS-Jmp Volatility-scaled jumps, regime switching for λ1 

UJ-RS-Jmp Volatility-unscaled jumps, regime switching for λ1 

Jump parameters are the same under physical and risk-neutral measures. In other words, we 

do not attempt to identify any jump risk premia. The models and data used in this paper have 

limited power to separately identify jump risk and diffusive volatility premia, and our results do 

not depend on being able to do so. 

In empirical work, the variance risk premium is generally found to be negative (e.g., Coval and 

Shumway 2001; Bakshi and Kapadia 2003; Carr and Wu 2009). This finding can be understood 

in the framework of classic capital asset pricing theory (e.g., Heston 1993; Bakshi and Kapadia 

2003; Bollerslev, Gibson, and Zhou 2011). But theory also suggests that the variance risk premium 

should be dependent on both the volatility of volatility and the leverage effect (correlation between 

returns and changes in volatility state). We allow for this possibility by letting the volatility risk 

premium parameter η(st) be regime-dependent. 

The application looks at several variants of this model, summarized in Table 1. We also looked 

at a number of alternative specifications with different regime states, jump dynamics, and risk 

premia, but do not report results for such experiments to keep the presentation manageable. 

In the empirical work, we use an Euler scheme approximation to the model. For the physical 
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3 

model (and analogously for the risk-neutral model), the approximation is given by
 

N1,t+1

j >N1,t 
(3) 

'1 
exp(vt) + exp(vt/2)ε1,t+1 += yt + µ − µ1J t λ1(st) − ξ1jyt+1 

2 

N1,t+1

vt+1 = vt + κ(v − vt) − µ2J t λ1(st) + σ(st)ε2,t+1 + ξ2j 

j>N1,t 

where ε1,t+1 and ε2,t+1 are standard normal with correlation ρ(st), and ξ1j and ξ2j have the same 

' 

distribution as the jumps in the continuous-time model. The regime state, st, follows the discrete-

time Markov process with p(st+1 = i|st = j) = Pij , corresponding to the transition matrix 

⎞⎛ ⎜⎝
 
π0 1 − π1⎟⎠
P =
 .
 

1 − π0 π1 

For computational purposes, we impose an upper bound constraint of five jumps in a single day. 

METHODOLOGY 

The introduction of the regime-switching feature means that the models used in this paper require 

the development of new estimation techniques. While the estimation strategies used in similar 

work often rely heavily on computationally costly simulation methods, the approach we propose in 

this paper runs in several minutes on a typical desktop PC. Our approach consists of three steps: 

(1) back out volatility states from observed option prices; (2) filter regime states using a Bayesian 

recursive filter; and (3) optimize the likelihood function using the volatility and regime states 

obtained in the previous two steps. As by-products, the algorithm provides a series of generalized 

residuals, which we make use of for model diagnostics, and estimates of the volatility and regime 

states, which are used for the regressions in Section 5. A detailed description of each step of the 

procedure is provided below. 
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3.1 Extracting the volatility states
 

Building on the work of Chernov and Ghysels (2000), Pan (2002), Ait-Sahalia and Kimmel (2007), 

and others, we make use of observed option prices in addition to the price of the underlying asset 

to estimate the models. Estimates of option-implied volatility are obtained using the model-free 

approach of Bakshi, Kapadia, and Madan (2003). 

We now describe the mechanics of how volatility and regime states are backed out conditional 

on an observed value of option-implied volatility (together with a candidate model and parameter 

vector). Following Bakshi, Kapadia, and Madan (2003), let IVT denote the square root of the t 

expected integrated variance of log returns on the interval (t, T ] under the risk-neutral measure. 

Given a risk-neutral model for stock price dynamics and initial values for the volatility and regime 

states, the corresponding value for IVT can be obtained by integrating the quadratic variation of t 

the log stock price. For the SJ models (including any of the regime-switching variants), for example, 

we get
  


IVT 
t =


  T1 QE 

 

2 + σ2 

1Jevτ 1 + λ1τ (µ ) dτ
 .
1JtT − t
 t 

The integrand is equal to the instantaneous variance, which is comprised of terms reflecting the dif

fusion and jump components of returns. The expectation in the above expression can be computed 

by means of Monte Carlo simulations, 

    

  T  
'S

t (T − t)S ti=1

(i) (i)
where vτ and λ

1
 (i) (i)
IVT 2 + σ2 

1J≈
 ev 1 + λ
 (µ
 ) dτ , (4)
τ 
1τ 1J 

(i = 1, . . . , S ) are obtained by simulating paths from the risk-neutral analog of
 1τ 

Equation (3) for t < τ ≤ T , and S denotes the number of simulation paths. The calculations for 

vτ 2the UJ models are similar, except the integrand is e + λ1τ (µ1J + σ2 ), reflecting the fact that the 1J 

diffusive component of returns is scaled by volatility, but not the jumps. 

However, we actually want to go in the reverse direction. That is, observed values for IVT 
t 

are available and we need to obtain the corresponding volatility and regime states, vt and st, by 
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inverting Equation (4). We begin by showing how to do this conditional on the regime state (the
 

issue of backing out the regime state is addressed in the next subsection). 

Given an initial value for the regime state, st = i, the first step is to obtain an approximation 

to the mapping from spot to integrated volatility, 

Γi : SV −→ IV, 

where SV denotes the spot volatility, i.e., SVt = exp(vt/2), and the subscript i denotes the con

ditioning on initial regime state. The simplest way to do this is to evaluate (4) on some grid 

of initial values for SV and then use some curve fitting technique to approximate Γi. That is, S Slet S < SV2 < · · · < SVG be the grid, where G is the number of grid points and we useSV1 

hats to indicate that these are grid points rather than data. For each g = 1, . . . , G, evaluate SIVg = Γi(S ) using Monte Carlo methods as described above (note that while the initial regime SVg 

state is given, it evolves randomly thereafter). Then approximate Γi based on the collection of 

pairs {(S IVg As long as this mapping is monotonic, it is equally straightforward to ap-SVg, S )}G 
g=1. 

proximate the inverse, Γ−1 : IV −→ S V , which is what we are really interested in. Let Γf−1 denotei i 

the approximation. While there are many curve fitting schemes one could use, we have found that S )}Gsimply fitting a cubic polynomial to the collection {(IVSg, SVg using nonlinear least squares g=1 

works well. We use G = 15 for the empirical work reported in Sections 4 and 5. We also tried more 

grid points, higher order polynomials, splines, and various other interpolation schemes, but none 

provided noticeable improvements. Approximation errors are negligible for any reasonable scheme. 

Given an observed value for option-implied integrated volatility, IVt and assuming st = i, one 

evaluates Γf−1 to obtain SVt. Then, the volatility state itself is given by vt = 2 log(SVt). Thei 

important thing to notice here is that computing Γf−1, which is the costly step, need only be done i 

once (for each candidate parameter vector). Once this is accomplished, the evaluation step is fast. 
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3.2 Filtering the regime states
 

Given an observed value of IVt, we now have two possible values for SVt (and vt), one for each 

jregime state. Let v denote the volatility state corresponding to regime j. The second step of the t 

j jestimation involves applying a filter to compute p = p(st = j|Ft) = p(vt = v |Ft).t t 

0 1The filter is constructed recursively using standard techniques. Let pt = (pt , p )' for each t 

jt = 0, . . . , n, and initialize the filter by setting p0 equal to the marginal probability of state j 

(j = 0, 1). Now, suppose that pt is known. The problem is to compute pt+1. This is given by 

i 
j 

 1 
i=0 p(yt+1, vt

j 
+1|yt, vt i, st = i) · p(st+1 = j|st = i) · pt

p = , j = 0, 1.t+1  1  1 k i i 
k=0 i=0 p(yt+1, vt+1|yt, v , st = i) · p(st+1 = k|st = i) · ptt 

The third factor in the summand is known from the previous step of the recursion. The second 

factor is determined by the Markov transition matrix of the regime state process. For the first 

factor, since we allow for the possibility of more than a single jump per day, it is necessary to sum 

over the potential number of jumps, 

NJmax' 
j i j i p(yt+1, v |yt, v t, st = i) = p(yt+1, v |yt, v t, st = i, NJt = k)p(NJt = k)t+1 t+1
 

k=0
 

where NJt is the number of potential jumps on day t, NJmax is the maximum number of allowable 

jumps in a single day, and p(NJt = k) = λk 
1 e

−λ1 /k! is given by the Poisson distribution with 

j iintensity λ1. The distribution of yt+1, v |yt, vt, st = i, NJt = k is bivariate normal with mean t+1 

and variance given by summing the means and variances of the diffusive part of the process and k 

jumps in (3). 

It is sometimes useful to speak of the filtered regime state. By this we mean the expected 

value of st conditional on information available at time t, 

0 1 1 = Et(st) = p · 0 + p · 1 = p (5)ŝt t t t . 
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3.3 Maximum likelihood estimation
 

Having backed out volatility states and computed filtered regime state probabilities, computing the 

log likelihood is straightforward. Given a candidate parameter vector, θ, 

 n−1 1 1' ' ' 
j ilog L({yt}n 

t=1, {IVt}n 
t=1; θ) ≈ log p(yt+1, v |yt, v t, st = i) + log p(st+1 = j|st = i)t+1 

t=1 i=0 j=0 (6) 
j+ log p(st = i) + log Λ ,t+1

  
j  j  

where Λ =  dv /dI Vt+1 is the Jacobian corresponding to regime state j. Recall that the t+1 t+1
 

j j
mapping from volatility state, v , to IVt is given by IVt = Γj [exp(v /2)]. The Jacobian is obtained t t 

j ifrom the derivative of the inverse of this. As in the preceding subsection, p(yt+1, v |yt, v , st = i)t+1 t 

must be computed by summing across the number of potential jumps. The maximum likelihood 

estimator is obtained by optimizing (6) across candidate parameter vectors. Note that the inversion 

from option-implied volatility to volatility states must be computed at each evaluation of the 

likelihood function. 

3.4 Diagnostics for assessing model fit 

We examine diagnostics based on generalized residuals constructed using the probability integral 

transform, as proposed by Diebold, Gunther, and Tay (1998) and Diebold, Hahn, and Tay (1999). 

Let {zt}n be a sequence of random vectors generated from some model with cumulative distrit=1 

bution functions Gt(z|Ft−1) (t = 1, . . . , n). Let ut = Gt(zt|Ft−1) denote the probability integral 

transform of zt. Then, {ut} must be i.i.d. uniform(0, 1). 

Given data and a candidate model, it is typically straightforward to compute the corresponding 

sequence of probability integral transforms, {ut}. Shortcomings in the model’s ability to generate 

predictive distributions that reflect the observed data can be detected by looking at diagnostics 

based on this sequence. 
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It is often more useful to look at diagnostics based on
 

uut = Φ−1(ut), t = 1, . . . , n (7) 

where Φ is the standard normal distribution function. In this case, the transformed residuals {uut} 

should be i.i.d. standard normal under the hypothesis of correct model specification. It is these 

that we shall refer to as generalized residuals. 

For the models in this paper, the generalized residuals are computed in a manner similar to 

equation (6), using 

1 1' ' 
j i i ut+1 = P (yt+1, v |yt, vt, st = i) · p(st+1 = j|st = i) · pt,t+1
 

i=0 j=0
 

where P (·) denotes a cdf. These residuals correspond to the joint distribution of price and volatility 

innovations. Following Diebold, Hahn, and Tay (1999), we have found it more useful to study 

marginal residuals corresponding to price and volatility innovations separately, 

1' 
i uy,t+1 = P (yt+1|yt, vt, st = i) · p(st = i)
 

i=0
 

1 1
' ' 
j i uv,t+1 = P (vt+1|yt, vt, st = i) · p(st+1 = j|st = i) · p(st = i). 

i=0 j=0 

In the diagnostics reported in our application, we always use the generalized residuals obtained by 

applying the inverse normal cdf to these, ũy,t = Φ−1(uy,t) and ũv,t = Φ−1(uv,t). 

Having constructed these generalized residuals, models can be assessed using standard time 

series techniques. In this paper, we look at normal-quantile plots and Jarque-Bera test statistics 

to assess normality, and correlograms and Ljung-Box test statistics to detect the presence of auto-

correlation. We look at correlograms and Ljung-Box statistics for both the residuals and squared 

residuals (diagnostics based on the squared residuals allow us to detect unexplained stochastic 

volatility in returns and stochastic volatility of volatility). 
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4 EMPIRICAL RESULTS 

4.1 Data 

The application uses daily S&P 500 index (SPX) option data from Jan 1, 1993 through Dec 31, 

2008 (N = 4025). These data were obtained directly from the CBOE. To address the issue of 

nonsynchronous closing times for the SPX index and option markets, SPX close prices are com

puted using put-call parity based on closing prices for at-the-money options (see, e.g., Ait-Sahalia 

and Lo 1998). Option prices are taken from the bid-ask midpoint at each day’s close. Options 

with zero bid/ask prices or where the bid-ask midpoint is less than 0.125 are discarded. We also 

eliminate options violating the usual lower bound constraints. That is, we require C(t, τ , K ) ≥ 

max(0, xt exp(−qtτ) − K exp(−rtτ )) and P (t, τ , K ) ≥ max(0, K exp(−rtτ) − xt exp(−qtτ)) where 

C(t, τ , K ) and P (t, τ , K ) are the time t prices of call and put options with time-to-maturity τ and 

strike price K, x is the index price, q is the dividend payout rate, and r is the risk-free rate. Finally, 

we require that valid prices exist for at least two out-of-the-money call and put options for each 

day. Options are European, so there is no issue regarding early exercise premium. 

Time-series of one-month risk-neutral volatility, skewness, and kurtosis are computed using 

SPX option prices following the model-free approach of Bakshi, Kapadia, and Madan (2003). Fol

lowing Carr and Wu (2009), we use the two closest times to maturity greater than eight days and 

linearly interpolate to construct 30-day constant maturity series. Jiang and Tian (2007) report the 

possibility of large truncation and discretization errors in the VIX index. To reduce such errors, we 

follow the approach of Carr and Wu (2009) in interpolating/extrapolating option prices on a fine 

grid across moneyness. We use a grid with $5 increments in strike prices, interpolating between 

observed prices based on Black-Scholes implied volatilities and extrapolating beyond the last ob

served strike price using that option’s Black-Scholes implied volatility out to the last strike price 

at which the corresponding option price is 0.125 or greater (see Carr and Wu 2009 for additional 

detail). 

Five-minute intraday S&P 500 index returns are used to compute measures of the variance 
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risk premium and jump risk. Since these variables are possibly related to option-implied skewness
 

and kurtosis, we include them as control variables in the regressions of option-implied skewness 

and kurtosis on the regime state (Section 5). The high-frequency data were obtained from Tick

Data.com. 

Following Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and 

Labys (2003), and Barndorff-Nielsen and Shephard (2002), daily realized volatility is obtained by 

summing the squared intraday returns over each day, 

1/Δ'  2 
RV

(
t 
d) ≡ yt−1+jΔ − yt−1+(j−1)Δ

j=1

where Δ is the sampling interval for the intraday data (we use five minute intervals). For each 

date t, we then sum the daily realized volatilities over the previous month (rolling samples), RVt ≡ 

21 (d)
RV to get a monthly measure. i=0 t−i 

Following Carr and Wu (2009), we define the variance risk premium as the log difference 

between monthly realized variance and option-implied variance, VRPt ≡ log RVt/VIX
2 , wheret 

√ 
VIXt is the VIX index, divided by 12 to get a monthly volatility measure comparable to RVt. 

We use the log difference because we find that it provides a better measure than the difference in 

levels. 

A measure of jump risk is obtained using the approach of Barndorff-Nielsen and Shephard 

(2004). The bipower variation is given by 

1/Δ' 
BV

(d) 
t ≡ 

π 
2 

yt−1+jΔ − yt−1+(j−1)Δ yt−1+(j−1)Δ − yt−1+(j−2)Δ . 
j=2 

The daily jump variation is defined by subtracting the daily bipower variation from the daily 

(d) (d) (d)
realized volatility, JV ≡ max(RV − BV , 0). And, finally, for each date t we sum the daily t t t 

21 (d)
jump variations over the previous month, JVt ≡ JV to get a monthly measure. i=0 t−i 

One- and three-month Treasury bill rates (obtained from the Federal Reserve website), inter
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Table 2: Summary statistics. 
The sample period covers January 1993 to December 2008. Δ log(SPXt) refers to S&P 500 index log returns. √ 
VIXt is the VIX index, divided by 12 to get a monthly volatility measure for comparison. IVt, SKEWt, 
and KURTt denote the one-month option-implied volatility, skewness, and kurtosis, computed using the 
model-free approach of Bakshi, Kapadia, and Madan (2003). RVt and JVt are the realized volatility and 
the jump variation, calculated using five-minute high-frequency data over the past 22 trading days. VRPt ≡ 
log(RVt/VIX

2) denotes the variance risk premium. AR(i) means the i -lagged autocorrelation. t 

Mean Min Max STD Skewness Kurtosis AR(1) AR(5) AR(22) 
Δ log(SPXt) 0.00 -0.09 0.11 0.01 -0.24 13.11 -0.06 -0.04 0.05 
VIXt (%) 5.73 2.69 23.34 2.40 2.23 11.91 0.98 0.94 0.78 
IVt (%) 5.62 2.22 24.46 2.55 2.26 12.31 0.98 0.94 0.79 
SKEWt -1.69 -3.75 -0.41 0.49 -0.54 3.25 0.90 0.80 0.63 
KURTt 9.55 3.34 34.94 4.56 1.62 6.22 0.83 0.73 0.57 
RVt (%

2) 21.79 1.58 457.27 40.45 6.72 57.28 1.00 0.97 0.68 
JVt (%

2) 3.33 0.12 83.09 6.89 7.19 67.06 0.99 0.95 0.65 
VRPt -0.88 -2.16 0.82 0.42 0.16 3.07 0.96 0.83 0.50 

polated to match option maturity, are used as a proxy for the risk-free rate. Dividend rates are 

obtained from the Standard and Poor’s information bulletin. Actual dividend payouts are used as 

a proxy for expected payouts. 

Throughout, time is measured in trading days. SPX returns and option-implied moments are 

plotted in Figure 1. Summary statistics are reported in Table 2. 

4.2 Parameter estimates and model comparisons 

Parameter estimates and log likelihoods for all of the models under consideration are shown in Table 

3. As found in previous work, including jumps in returns and volatility gives a large improvement 

in log likelihood relative to a model with no jumps (over 300 points in log likelihood). We also 

looked at models with jumps in returns only, but these models work less well (including jumps in 

volatility is critical). The SJ model (jumps scaled by volatility state) is strongly preferred over the 

UJ model (unscaled jumps). The improvement is over 40 points in log likelihood with the same 

number of parameters. In the scaled jump model jumps are larger on average when volatility is 

high than when it is low, whereas in the unscaled jump model jump sizes are identically distributed 

across time and unaffected by the volatility state. Although models with unscaled jumps have been 
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commonly used in previous work, (e.g., Pan 2002; Eraker, Johannes, and Polson 2003; Broadie,
 

Chernov, and Johannes 2007), this specification is not consistent with the data. 

Including the regime switching feature in the model provides additional large improvements. 

The SJ model with regime switching in volatility of volatility (SJ-RS-Vol) offers an improvement of 

110 points in log likelihood relative to the corresponding model without regime switching (SJ) at 

the cost of four additional parameters. Including regime switching in jump intensity (SJ-RS-Jmp) 

provides an improvement of 67 points in log likelihood (relative to SJ), while including regime 

switching in leverage effect (SJ-RS-Lev) provides a smaller but still important gain of 32 points in 

log likelihood (relative to SJ). 

A useful way to compare models is by using some form of information criterion. Akaike and 

Schwarz information criteria are common choices. These are based on comparison of log likelihood 

minus some penalty based on the number of free parameters in the model. The Akaike information 

criterion uses a penalty equal to the number of free parameters, while the Schwarz criterion (also 

known as the Bayesian information criterion) uses a penalty equal to the number of free parameters 

times ln(n)/2, where n is the number of observations. For either of these, the results are the same: 

SJ models are always preferred over their UJ counterparts. For both SJ and UJ models, the 

regime-switching variants are all preferred over their non-regime-switching counterparts. Among 

SJ models, the ranking is SJ-RS-Vol > SJ-RS-Jmp > SJ-RS-Lev > SJ. The rankings are all decisive 

and provide strong evidence in favor of the regime-switching models. We note also that while the 

basic SJ model does not include regime switching, it does include jumps and is itself vastly better 

than the models with unscaled jumps (or no jumps at all) commonly used in the existing literature. 

Time series plots of filtered values for the regime-dependent parameters in several models are 

shown in Figure 3. For the models with regime switching in volatility of volatility, for example, σt 

takes on two possible values (σ0 or σ1). The filter described in Section 3.2 provides probabilities for 

jeach state conditional on available information, p = p(st = j|Ft). Filtered estimates of σt are thus t 

0 1given by σ̂t = Et[σ(st)] = p σ0 + p σ1 (t = 1, . . . , n), with filtered estimates ρ̂t and λ̂1t computedt t 

analogously. 
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Table 3: Parameter Estimates.
 
The sample period covers January 1993 through December 2008 (N = 4025). Standard errors are in paren
theses. Time is measured in trading days.
 

No regime switching RS-Jmp RS-Vol RS-Lev 
SV SJ UJ SJ UJ SJ UJ SJ UJ 

µ × 104 4.69 3.70 3.08 3.74 3.41 3.03 2.07 3.42 3.08 
(1.27) (1.28) (1.25) (1.24) (1.20) (1.25) (1.25) (1.26) (1.23) 

κ × 103 4.29 6.00 6.69 7.65 6.09 6.34 11.07 7.48 7.36 
(1.29) (1.35) (1.33) (1.37) (1.39) (1.32) (1.28) (1.35) (1.34) 

v -9.71 -10.03 -9.70 -10.05 -10.04 -10.06 -9.63 -10.00 -9.80 
(0.55) (0.38) (0.36) (0.29) (0.41) (0.32) (0.20) (0.32) (0.33) 

η0 × 103 3.01 2.84 3.84 4.22 4.56 2.86 4.18 2.49 2.72 
(0.25) (0.36) (0.35) (0.40) (0.35) (0.42) (0.36) (0.47) (0.44) 

η1 × 103 -1.55 2.50 2.97 2.46 3.39 4.27 
(0.91) (0.54) (0.59) (0.41) (0.40) (0.38) 

σ0 × 101 1.32 0.91 1.23 0.94 1.19 0.84 1.18 0.99 1.25 
(0.02) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03) 

σ1 × 101 1.33 2.12 
(0.06) (0.06) 

ρ0 -0.74 -0.78 -0.82 -0.78 -0.82 -0.81 -0.91 -0.53 -0.61 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.04) (0.03) 

ρ1 -0.82 -0.85 
(0.01) (0.01) 

ρJ -0.71 -0.53 -0.72 -0.58 -0.70 -0.05 -0.77 -0.72 
(0.03) (0.04) (0.03) (0.05) (0.03) (0.10) (0.03) (0.04) 

λ0 
1 0.47 0.33 0.32 0.11 0.55 1.08 0.30 0.15 

(0.06) (0.04) (0.06) (0.03) (0.09) (0.14) (0.04) (0.02) 
λ1 
1 1.53 0.79 

(0.25) (0.12) 
µ1J × 102 -1.13 0.05 -2.19 0.05 -4.52 0.08 -11.90 -0.05 

(6.59) (0.04) (7.25) (0.04) (6.38) (0.02) (8.78) (0.07) 
σ1J × 101 12.94 0.06 11.51 0.05 12.44 0.03 13.42 0.08 

(0.75) (0.00) (0.75) (0.00) (0.77) (0.00) (0.85) (0.01) 
µ2J × 101 2.79 0.24 3.18 0.29 3.39 0.09 3.59 0.44 

(0.69) (0.07) (0.79) (0.08) (0.66) (0.04) (0.95) (0.13) 
σ2J 1.54 0.15 1.37 0.15 1.15 0.05 1.72 0.21 

(0.07) (0.01) (0.08) (0.01) (0.07) (0.01) (0.09) (0.01) 
π0 0.98 0.96 0.98 0.98 0.97 0.96 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
π1 0.89 0.96 0.94 0.94 0.99 0.98 

(0.02) (0.02) (0.01) (0.01) (0.00) (0.01) 
log(L) 38,491 38,851 38,810 38,918 38,861 38,961 38,960 38,883 38,858 
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−0.65
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−0.55

ρ̂

SJ−RS−Lev

Figure 3: Time series of filtered values of state-dependent parameters. The dashed horizontal lines 
indicate the parameter estimates corresponding to the SJ model (which does not include regime 
switching in these parameters). 
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In the regime-switching models, the states are quite persistent. With SJ-RS-Vol, for example, 

the estimated persistence parameters are π0 = .98 and π1 = .94 (the probability of staying in 

regime 0 or regime 1, respectively, from one day to the next). The expected duration of stays is 50 

days for regime 0 and 17 days for regime 1. 

Expectations of future volatility of volatility and leverage effect are dramatically different 

depending on the current regime. The estimated volatility of volatility parameters are 0.084 for 

state 0 versus 0.133 for state 1 in the SJ-RS-Vol model. The estimated leverage parameters are 

-0.53 for state 0 versus -0.82 for state 1 in the SJ-RS-Lev model. Because of the high degree of 

persistence in regime states, these differences remain even over relatively long time horizons. This 

is not of purely theoretical interest. Any investors interested in the dynamics of volatility will find 

this information useful. For example, volatility options and swaps are highly dependent on the 

volatility of volatility. As discussed below, these persistent differences also affect the shape of the 

volatility smirk. 

4.3 Diagnostics 

QQ-plots and correlograms for return and volatility residuals are shown for several models in Figures 

4 through 6. Jarque-Bera and Ljung-Box statistics are shown in Table 4. 

The qq-plots and Jarque-Bera statistics provide information regarding the extent to which the 

models are able to capture distributional characteristics of the data. Including jumps in the model 

provides an enormous improvement over the model with no jumps, consistent with the previous 

literature. This is true regardless of the form of the jumps (SJ or UJ). However, the scaled jump 

models (SJ) do better than those with unscaled jumps (UJ), suggesting that they are better able 

to capture the non-normality in return and volatility innovations observed in the data. For the 

SJ models, including regime switching provides additional small improvements (for the UJ models, 

only regime switching in leverage effect helps much). 

Turning now to the correlograms, all of the models do relatively well at eliminating autocor

relation in return residuals. On the other hand, all of the models fail with respect to the volatility 

21
 



−4 −2 0 2 4

−6

−4

−2

0

2

4

Standard Normal Quantiles

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

Return residuals (SV)

−4 −2 0 2 4

−4

−2

0

2

Standard Normal Quantiles

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

Return residuals (SJ)

−4 −2 0 2 4

−4

−2

0

2

4

6

8

Standard Normal Quantiles

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

Volatility residuals (SV)

−4 −2 0 2 4

−4

−2

0

2

4

Standard Normal Quantiles

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

Volatility residuals (SJ)

Figure 4: QQ-plots for generalized residuals, SV and SJ models.
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Figure 5: QQ-plots for generalized residuals, SJ-RS-Vol and SJ-RS-Lev models.
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Figure 6: Correlograms for SJ and SJ-RS-Vol models. Dotted lines show the 95% confidence band.
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Table 4: Diagnostic tests for generalized residuals.
 
Test statistics are shown with p-values in parentheses. The Jarque-Bera statistic is asymptotically χ2(2),
 
implying a 5% critical value of 5.99. The Ljung-Box statistic is asymptotically χ2(20), implying a 5% critical
 
value of 31.41.
 

No regime switching 
SV SJ UJ 

RS-Jmp 
SJ UJ 

RS-Vol 
SJ UJ 

RS-Lev 
SJ UJ 

Jarque-Bera statistics 

Return 445 20 113 19 117 17 245 10 50 

Volatility 
(0.00) 
2,367 
(0.00) 

(0.00) 
22 

(0.00) 

(0.00) 
121 

(0.00) 

(0.00) 
7 

(0.03) 

(0.00) 
71 

(0.00) 

(0.00) 
20 

(0.00) 

(0.00) 
318 

(0.00) 

(0.01) 
8 

(0.02) 

(0.00) 
30 

(0.00) 

Ljung-Box statistics (20 lags) 

Return 43 41 41 40 40 41 40 41 40 

Volatility 

Squared Vol. 

(0.00) 
116 

(0.00) 
419 

(0.00) 

(0.00) 
118 

(0.00) 
552 

(0.00) 

(0.00) 
116 

(0.00) 
424 

(0.00) 

(0.00) 
113 

(0.00) 
145 

(0.00) 

(0.00) 
111 

(0.00) 
220 

(0.00) 

(0.00) 
115 

(0.00) 
128 

(0.00) 

(0.00) 
100 

(0.00) 
74 

(0.00) 

(0.00) 
115 

(0.00) 
559 

(0.00) 

(0.00) 
114 

(0.00) 
446 

(0.00) 

residuals, which show significant negative autocorrelation for the first several lags. This is sugges

tive of the existence of a second volatility factor omitted by the model (e.g., Gallant, Hsu, and 

Tauchen 1999; Chacko and Viceira 2003; Christoffersen, Heston, and Jacobs 2009). All of the mod

els also show a large amount of unexplained autocorrelation in squared volatility residuals. This 

is suggestive of stochastic volatility of volatility. Although the regime-switching model implements 

a very simple form of stochastic volatility of volatility, it is a substantial improvement over the 

other models (though still defective). Regime-switching in jump intensity also helps some in this 

direction. 

Note that since the generalized residuals are constructed using estimated model parameters, 

the standard asymptotics for the test statistics reported in Table 4 are not exact (see e.g., Bai 

2003 for a discussion of this issue). However, the sample size available to us is large, so parameter 

uncertainty would not be expected to have much impact. Monte Carlo studies that we have 

performed confirm that this is indeed the case. As discussed in Section 3.4, our primary interest 

here is using these diagnostics as an aid in the process of model exploration. If one were more 

interested in formal specification testing, one might alternatively try applying tests such as those 

25
 



5 

proposed by Bai (2003), Duan (2003), or Hong and Li (2005).
 

And finally, we note that while these diagnostics are useful in understanding directions in which 

the models are more or less successful in capturing various features of the data, and are informative 

in the process of model exploration, they do not provide a generically reliable basis for preferential 

ranking of the models. For this, a formal loss function is required (see, e.g., Diebold, Gunther, and 

Tay 1998). 

EXPLANATORY POWER FOR OPTION-IMPLIED SKEW

NESS AND KURTOSIS 

In this section, we examine whether the regime states implied by our regime-switching models 

have any explanatory power for the shape (e.g., third and fourth moments) of the risk-neutral 

distribution. Recall that option-implied skewness and kurtosis are not used in the estimation, 

which makes this diagnostic meaningful. 

Given a model for the price of an asset and values for any relevant state variables, one can 

easily obtain the model-implied distribution of returns at any horizon using Monte Carlo methods. 

We will refer to the third and fourth moments of these distributions as model-implied skewness and 

kurtosis. Given time series for option-implied volatility and skewness (or kurtosis) and a model 

with two state variables (such as our regime-switching models), it is not difficult to find model 

parameters and values for the state variables such that model-implied and option-implied char

acteristics match exactly. To the extent that implied physical and risk-neutral model parameters 

differ, these differences would typically be attributed to risk premia. However, since this approach 

confounds the information from physical dynamics and option prices, it is difficult to tell if the 

implied variation in states (e.g., leverage effect or volatility of volatility) is truly evident in the 

physical model or just an artifact of trying to match the shape of the volatility smile. The problem 

here is a pervasive one in the option-pricing literature. It is possible to fit even a badly misspecified 

model to the data. The fitted model is likely to generate spurious risk premia, but the exact source 
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and extent of the misspecification are difficult to diagnose.
 

The approach that we take in this paper is different. While we match option-implied volatility 

exactly, we do not use the information on option-implied skewness and kurtosis in the estimation. 

In particular, we make no effort to use the information in option prices to come up with model 

parameters and regime states such that option-implied and model-implied skewness or kurtosis 

match exactly. We also do not look for risk premia which cause the models to fit the shape of 

the implied volatility smirk on average. Rather, we fit the models using only information from 

returns and implied volatility. We are then able to make a clear and unambiguous examination 

of the extent to which the implied states are informative about variation across time in observed 

option-implied skewness and kurtosis. 

The idea is to regress option-implied skewness and kurtosis on the regime state, controlling for 

other possible determinants. As described in Section 3, it is not possible based on observed data to 

determine the regime state conclusively. The available information consists of filtered probabilities, 
jp = p(st = j|Ft) (j = 0, 1). The operational regression equations are thus t 

RS-Vol RS-Lev RS-JmpSKEWt = β0 + β1ŝ + β2ŝ + β3ŝ + β4 log VIXt + β5 log JVt + β6VRPt + εtt t t 
(8) 

RS-Vol RS-Lev RS-JmpKURTt = β0 + β1ŝ + β2ŝ + β3ŝ + β4 log VIXt + β5 log JVt + β6VRPt + εtt t t 

RS-Vol RS-Lev RS-Jmpwhere ŝ , ŝ and ŝ denote the filtered states under the models with regime switching t t t 

in volatility of volatility, leverage effect and jump intensity, respectively (as defined in Equation 

(5)). In interpreting the regression coefficients note that, for example, ŝt = 0.30 implies that the 

probability that st = 1 conditional on data through time t is 30%. We also include several control 

variables. VIXt is the VIX index, which serves as a proxy for the volatility state. VRPt is the 

variance risk premium, which Bollerslev, Gibson, and Zhou (2011) argue reflects information on 

variation across time in investors’ risk aversion. Option-implied skewness and kurtosis may also be 

affected by the market expectation of jump risk. We proxy for this by using a measure of realized 

jump variation, JVt. A more detailed description of these variables may be found in Section 4.1. 

We first run the regressions on the control variables alone, and then add the regime states to the 

regressions to see if there is a significant increase in explanatory power. We report Newey-West 
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robust t-statistics over eight lags (Newey and West 1987) and adjusted R2 . For completeness, 

results are reported for the regressions based on filtered regime states from both SJ and UJ models. 

Table 5 shows the regressions for option-implied skewness. We first discuss the contributions of 

the control variables toward explaining option-implied skewness. The volatility state (VIX) is highly 

significant for all models and regardless of whether the regime state is included in the regression. 

The coefficient is always positive, meaning that low volatility states are associated with more left-

skewed return distributions. This is consistent with Dennis and Mayhew (2002), who report a 

similar finding for individual stocks. Jump risk (JV) is also highly significant for all models. The 

coefficient is always negative, suggesting that greater jump risk is associated with more left-skewed 

return distributions under the risk-neutral measure. This is consistent with intuition. In contrast, 

we do not find the variance risk premium (VRP) to be significant when the other control variables 

are included. 

Although the volatility state is highly significant, it has relatively low explanatory power for 

option-implied skewness, with an adjusted R2 of 7.6%. All of the control variables together are 

able to explain only 9.2% of the time-variation in option-implied skewness. This low explanatory 

power suggests that models with only a single state variable (volatility) will not be able to match 

time-varying patterns in the Black-Scholes volatility smirk realistically. 

Including the filtered regime state in the regressions provides a dramatic improvement in 

explanatory power. SJ models always outperform the corresponding UJ models. Including the 

regime state from the models with regime-switching in volatility of volatility (RS-Vol) is slightly 

better than including the regime state from the models with regime-switching in leverage effect (RS-

Lev). But the clear winner is the model which includes regime states from both of these. The states 

corresponding to volatility of volatility and regime switching each have substantial explanatory 

power when included in the regression alone. But, these two variables serve as complementary 

sources of information. For the regressions using states generated from the SJ models (together 

with all control variables), the adjusted R2 is 18-19% when either the RS-Vol or RS-Lev states are 

included individually, but R2 jumps to over 32% when both are included. The rankings here are 

28
 



Table 5: Regressions for option-implied skewness. 
The table reports the results of the following regression, 

RS-Vol RS-LevSKEWt = β0 + β1ŝ + β2ŝ + β4 log VIXt + +β5 log JVt + β6VRPt + εt.t t 

Newey-West robust t-statistics over eight lags are shown in parentheses. The sample period covers January 
1993 to December 2008. SKEWt denotes the one-month option-implied skewness. Filtered regime states are 
RS-Vol RS-Levŝ and ŝ for volatility of volatility and leverage effect respectively. We also performed regression t t 
including the regime states from the RS-Jmp models, however these were never significant. We do not report 
these results in the table to save space, but they are available upon request. The control variables are the 
VIX index, jump variation (JV), and variance risk premium (VRP). Results are shown for filtered states 
from both SJ (scaled jumps) and UJ (unscaled jumps) models. 

Constant 
coeff t-stat 

fsRS-Vol 
t 

coeff t-stat 
fsRS-Lev 
t 

coeff t-stat 
log VIXt 

coeff t-stat 
log JVt 

coeff t-stat 
VRPt 

coeff t-stat 
Adj. R2 

Control variables only 

-2.78 
-3.38 
-2.75 
-3.39 

(-16.43) 
(-12.02) 
(-13.84) 
(-11.76) 

0.37 
0.60 
0.36 
0.60 

(6.53) 
(5.94) 
(4.97) 
(5.37) 

-0.10 

-0.10 

(-3.21) 

(-2.19) 
0.000 
0.008 

(-0.32) 
(0.11) 

7.6% 
9.2% 
7.6% 
9.2% 

Control variables plus filtered states from SJ models 

-2.82 
-3.63 
-3.17 
-3.62 

(-18.07) 
(-14.57) 
(-16.19) 
(-14.45) 

-0.56 
-0.61 
-0.59 
-0.61 

(-9.02) 
(-9.98) 
(-9.62) 
(-9.95) 

0.44 
0.74 
0.51 
0.74 

(8.48) 
(8.42) 
(8.87) 
(7.72) 

-0.13 

-0.12 

(-5.01) 

(-3.18) 
-0.167 
-0.007 

(-3.73) 
(-0.11) 

16.2% 
19.0% 
17.9% 
19.0% 

-2.82 
-3.25 
-3.01 
-3.25 

(-15.39) 
(-12.37) 
(-15.20) 
(-11.86) 

-0.62 
-0.60 
-0.61 
-0.60 

(-7.37) 
(-7.17) 
(-7.31) 
(-7.17) 

0.54 
0.69 
0.57 
0.69 

(7.15) 
(7.10) 
(7.87) 
(6.18) 

-0.07 

-0.07 

(-2.23) 

(-1.45) 
-0.092 
-0.007 

(-1.91) 
(-0.10) 

17.5% 
18.3% 
18.0% 
18.3% 

-2.87 
-3.52 
-3.17 
-3.50 

(-18.05) 
(-16.28) 
(-18.84) 
(-15.73) 

-0.71 
-0.74 
-0.73 
-0.74 

(-11.53) 
(-12.04) 
(-11.88) 
(-12.03) 

-0.76 
-0.74 
-0.75 
-0.74 

(-10.66) 
(-10.77) 
(-10.90) 
(-10.77) 

0.65 
0.89 
0.71 
0.87 

(10.36) 
(11.23) 
(12.00) 
(9.82) 

-0.10 

-0.09 

(-4.02) 

(-2.40) 
-0.143 
-0.028 

(-3.35) 
(-0.45) 

30.6% 
32.3% 
31.8% 
32.3% 

Control variables plus filtered states from UJ models 

-2.62 
-3.41 
-2.96 
-3.41 

(-16.06) 
(-13.30) 
(-14.77) 
(-13.12) 

-0.44 
-0.48 
-0.47 
-0.48 

(-7.48) 
(-8.59) 
(-8.14) 
(-8.56) 

0.36 
0.66 
0.43 
0.66 

(6.81) 
(7.33) 
(7.36) 
(6.65) 

-0.13 

-0.13 

(-4.97) 

(-3.14) 
-0.168 
-0.007 

(-3.68) 
(-0.10) 

14.2% 
17.0% 
15.9% 
17.0% 

-2.93 
-3.45 
-3.16 
-3.45 

(-15.91) 
(-12.68) 
(-15.27) 
(-12.27) 

-0.50 
-0.48 
-0.49 
-0.48 

(-6.57) 
(-6.56) 
(-6.61) 
(-6.55) 

0.53 
0.73 
0.58 
0.72 

(7.43) 
(7.19) 
(8.05) 
(6.39) 

-0.08 

-0.08 

(-2.77) 

(-1.82) 
-0.110 
-0.005 

(-2.32) 
(-0.07) 

14.0% 
15.2% 
14.8% 
15.2% 

-2.76 
-3.52 
-3.11 
-3.50 

(-16.64) 
(-15.05) 
(-17.14) 
(-14.63) 

-0.57 
-0.61 
-0.60 
-0.62 

(-10.09) 
(-11.07) 
(-10.71) 
(-11.03) 

-0.65 
-0.64 
-0.65 
-0.64 

(-9.82) 
(-10.25) 
(-10.21) 
(-10.22) 

0.56 
0.85 
0.64 
0.83 

(9.35) 
(10.04) 
(10.76) 
(8.92) 

-0.12 

-0.11 

(-4.79) 

(-2.91) 
-0.169 
-0.028 

(-3.88) 
(-0.44) 

24.7% 
27.2% 
26.4% 
27.2% 
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consistent with the findings reported in Sections 4.2 and 4.3.
 

For the SJ-RS-Vol model (regime-switching in volatility of volatility), the coefficient on the 

regime state is highly significant and in the expected direction. For the full regression (including 

regime state and all control variables), the estimated slope coefficient for the regime state is -0.61, 

indicating that a change from state 0 to state 1 is associated with a 0.61 decrease in skewness 

(i.e., the distibution is substantially more left skewed in the high volatility of volatility state). The 

t-statistic is -9.95, corresponding to a p-value of around 10−22 . This model has good explanatory 

power, with an adjusted R2 of 19.0% (versus 9.2% for the control variables alone). These results 

are both statistically and economically significant. 

Results for the SJ-RS-Lev model (regime switching in leverage effect) are similar. In particular, 

the coefficient on the regime state is highly significant and in the expected direction. The t-statistic 

associated with this parameter is -7.17, corresponding to a p-value of around 10−15 . The model has 

an adjusted R2 of 18.3%. 

Table 6 shows analagous regressions for option-implied kurtosis. The results are qualitatively 

similar to those for option-implied skewness. The volatility state (VIX) is highly significant for all 

models and regardless of whether the regime state is included in the regression. The coefficient is 

negative, implying that low volatility states are associated with fatter-tailed return distributions. 

Jump risk (JV) is positively related to kurtosis. That is, the risk-neutral distribution tends to 

be more fat-tailed when jump risk is high, consistent with intuition. Although the variance risk 

premium (VRP) is highly significant when jump risk is omitted from the regression, it has little 

explanatory power when jump risk is included. 

Including the regime state in the regression provides additional improvement in explanatory 

power. As with option-implied skewness, SJ models always outperform the corresponding UJ 

models. Slope coefficients for the regime state have the expected signs. That is, higher volatility of 

volatility and stronger leverage effect are both associated with more kurtotic return distributions. 

Including the regime state corresponding to regime switching in leverage effect does better 

here than including the regime state corresponding to regime switching in volatility of volatility 
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Table 6: Regressions for option-implied kurtosis. 
The table reports the results of the following regression, 

RS-Vol RS-LevKURTt = β0 + β1ŝ + β2ŝ + β4 log VIXt + β5 log JVt + β6VRPt + εt.t t 

Newey-West robust t-statistics over eight lags are shown in parentheses. The sample period covers January 
1993 to December 2008. KURTt denotes the one-month option-implied kurtosis. Filtered regime states are 
RS-Vol RS-Levŝ and ŝ for volatility of volatility and leverage effect respectively. We also performed regression t t 
including the regime states from the RS-Jmp models, however these were never significant. We do not report 
these results in the table to save space, but they are available upon request. The control variables are the 
VIX index, jump variation (JV), and variance risk premium (VRP). Results are shown for filtered states 
from both SJ (scaled jumps) and UJ (unscaled jumps) models. 

Constant 
coeff t-stat 

fsRS-Vol 
t 

coeff t-stat 
fsRS-Lev 
t 

coeff t-stat 
log VIXt 

coeff t-stat 
log JVt 

coeff t-stat 
VRPt 

coeff t-stat 
Adj. R2 

Control variables only 

20.22 
32.99 
19.23 
32.49 

(12.46) 
(13.34) 
(11.34) 
(13.23) 

-3.66 
-8.40 
-3.21 
-7.98 

(-6.96) 
(-9.68) 
(-5.64) 
(-8.74) 

2.02 

1.72 

(8.02) 

(4.94) 
0.02 
0.65 

(2.22) 
(1.08) 

8.4% 
16.6% 
8.7% 
16.7% 

Control variables plus filtered states from SJ models 

20.31 
33.86 
26.82 
33.33 

(12.67) 
(14.27) 
(14.40) 
(14.19) 

1.44 
2.18 
1.99 
2.19 

(2.44) 
(3.90) 
(3.49) 
(3.93) 

-3.81 
-8.91 
-5.18 
-8.46 

(-7.45) 
(-10.83) 
(-9.70) 
(-9.80) 

2.14 

1.82 

(8.93) 

(5.38) 
3.03 
0.70 

(7.22) 
(1.18) 

9.0% 
18.0% 
15.5% 
18.1% 

20.51 
31.98 
26.15 
31.39 

(12.11) 
(13.75) 
(14.73) 
(13.39) 

5.14 
4.60 
4.84 
4.62 

(7.03) 
(7.13) 
(7.30) 
(7.16) 

-5.00 
-9.14 
-6.06 
-8.65 

(-7.57) 
(-10.79) 
(-10.03) 
(-9.55) 

1.82 

1.47 

(7.12) 

(4.20) 
2.65 
0.76 

(6.33) 
(1.33) 

16.2% 
22.8% 
21.2% 
22.9% 

20.69 
33.09 
26.81 
32.44 

(12.63) 
(15.13) 
(15.80) 
(14.75) 

2.50 
3.09 
2.97 
3.11 

(4.31) 
(5.47) 
(5.22) 
(5.52) 

5.63 
5.17 
5.40 
5.19 

(8.11) 
(8.60) 
(8.74) 
(8.66) 

-5.40 
-9.95 
-6.62 
-9.41 

(-8.68) 
(-12.69) 
(-11.87) 
(-11.24) 

1.96 

1.57 

(8.16) 

(4.71) 
2.86 
0.85 

(7.03) 
(1.51) 

18.0% 
25.6% 
23.8% 
25.8% 

Control variables plus filtered states from UJ models 

20.00 
33.07 
26.18 
32.55 

(12.07) 
(13.62) 
(13.80) 
(13.52) 

0.59 
1.34 
1.14 
1.36 

(1.07) 
(2.64) 
(2.19) 
(2.68) 

-3.64 
-8.58 
-4.91 
-8.13 

(-6.94) 
(-10.20) 
(-9.05) 
(-9.20) 

2.12 

1.80 

(8.74) 

(5.28) 
2.99 
0.69 

(7.06) 
(1.15) 

8.5% 
17.3% 
14.8% 
17.4% 

21.47 
33.56 
27.40 
32.99 

(12.52) 
(13.99) 
(14.89) 
(13.74) 

4.21 
3.91 
4.08 
3.93 

(6.24) 
(6.57) 
(6.64) 
(6.59) 

-5.00 
-9.43 
-6.16 
-8.95 

(-7.85) 
(-10.79) 
(-10.24) 
(-9.73) 

1.93 

1.58 

(7.63) 

(4.56) 
2.80 
0.75 

(6.73) 
(1.32) 

13.7% 
21.1% 
19.3% 
21.3% 

21.01 
33.79 
27.21 
33.16 

(12.26) 
(14.66) 
(15.19) 
(14.40) 

1.54 
2.25 
2.10 
2.27 

(2.88) 
(4.48) 
(4.10) 
(4.54) 

4.63 
4.49 
4.64 
4.52 

(7.10) 
(7.87) 
(7.87) 
(7.90) 

-5.09 
-9.89 
-6.36 
-9.35 

(-8.34) 
(-12.00) 
(-11.31) 
(-10.81) 

2.07 

1.69 

(8.58) 

(5.06) 
3.00 
0.84 

(7.33) 
(1.48) 

14.6% 
23.0% 
20.9% 
23.2% 
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(adjusted R2 of 22.9% for SJ-RS-Lev versus 18.1% for SJ-RS-Vol). As is the case with implied 

skewness, including both regime states in the regression is better yet, with an R2 of 25.8%. In the 

full model, slope coefficients are 3.11 and 5.19 (with t-statistics of 5.52 and 8.66) for the SJ-RS-Vol 

and SJ-RS-Lev states respectively. These are both economically and statistically significant. 

CONCLUSION 

This paper proposes a new class of models that layer regime switching on top of a standard stochastic 

volatility model with jumps in both returns and volatility. Motivated by the time-varying nature 

of option-implied skewness and kurtosis that is a prominent feature of observed data, we allow for 

regime switching in three parameters of the basic model: volatility of volatility, leverage effect, and 

jump intensity. All three parameters play important roles in determining the skewness and kurtosis 

of returns. 

The application looks at SPX index and option data. In the first step of the analysis, we 

estimate the models relying only upon observations of the index price and option-implied volatility. 

This allows us to use observations on option-implied skewness and kurtosis for diagnostic purposes. 

The models with regime switching fit the data dramatically better than those without regime 

switching. Accounting for time-variation in the volatility of volatility, leverage effect or jump 

intensity not only increases log likelihood significantly, but also provides improvements in other 

diagnostics of model fit. 

While this first step of the analysis provides strong evidence of time-variation in model charac

teristics that are related to the shape of return distributions under the physical measure, the second 

step investigates the relationship between these characteristics and the skewness and kurtosis of 

returns under the risk-neutral measure (i.e, implied by observed option prices). This part of the 

study is carried out by running regressions of option-implied skewness and kurtosis on the regime 

states extracted in the estimation step (and several control variables). 

We find that there is a strong relationship between model characteristics related to the shape 
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of return distributions under the physical measure and the skewness and kurtosis of return distribu

tions implied by option prices. Although commonly-used models in the existing literature include 

volatility as the only state variable, this variable has an adjusted R2 of only 7.6% for option-implied 

skewness. In contrast, regressions that include either the regime state corresponding to volatility 

of volatility or leverage effect (together with the control variables) have an adjusted R2 of 18-19%. 

When both states are included in the regression, the adjusted R2 is over 32%. Slope coefficients on 

the regime states are highly significant and in the expected direction. Option-implied return distri

butions tend to be more left-skewed and leptokurtic when volatility of volatility is high or leverage 

effect is strong. Results for option-implied kurtosis are qualitatively similar though weaker. 

We also find that the specification of jump distributions is important both in fitting the time-

series data of returns and volatility as well as in explaining variation in option-implied skewness 

and kurtosis. Volatility-scaled jumps (SJ) outperform unscaled jumps (UJ) in both respects. 
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