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ABSTRACT 
This study considers three alternative sources of information about 
volatility potentially useful in predicting daily asset returns: daily 
returns, intraday returns, and option prices. For each source of 
information the study begins with several alternative models, and then 
works from the premise that all of these models are false to construct a 
single improved predictive distribution for daily S&P 500 index returns. 
The prediction probabilities of the optimal pool exceed those of the 
conventional models by as much as 5.29%. The optimal pools place 
substantial weight on models using each of the three sources of 
information about volatility. ( 

Prediction of financial asset prices is important in a variety of private and public 
sector policy contexts. Examples include the pricing of options by private traders; 
the measurement of risk in mortgage pools by banks and Federal agencies; and 
assessment of systemic risk by regulatory agencies and macroeconomic policy 
makers. In all of these decision-making activities formal prediction models for 
asset prices are essential tools, and the academic literature has responded with 
a wide variety of candidates. Yet, those with responsibilities for such decisions 
recognize that all of these models are incomplete descriptions of reality. How should 
a decision-maker proceed, knowing that all the models at her disposal are false? 

The academic literature provides little practical guidance on this point. The 
orthodox rational expectations framework is not designed for this purpose. It avoids 
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the issue by assuming that reality is fully described by a parametric model that is 
known to economic agents and policy makers. When this approach is extended 
to the situation where economic agents and policy makers must learn about 
reality, it is typically in the context of a correctly specified parametric model with 
unknown parameters. The mainstream econometric literature is also unhelpful for 
the decision-maker confronted with an array of alternative model-based predictive 
distributions for asset prices. Non-Bayesian econometrics emphasizes specification 
testing. But when all the available models are false, passing a battery of tests is 
an indicator of insufficient sample size and test power rather than evidence that a 
particular model is true and others are false. With sample sizes sufficiently large 
and tests sufficiently powerful, all models will be rejected, leaving the prediction 
question unresolved. Bayesian econometrics provides an elegant operational theory 
of model combination, but because it is founded on the explicit condition that one 
of the models under consideration is a literal description of reality it shares the 
limitations of the rational expectations literature. 

This article looks at several different classes of models that generate 
predictive distributions for asset prices by making use of alternative sources 
of information (daily returns only, high-frequency intraday returns, and option-
implied volatility), and uses the method of optimal prediction pooling developed 
in Geweke and Amisano (2011) to construct predictive densities that outperform 
any of the individual models. The situation is typical in that each class of models 
provides a distinct window into the underlying reality, but we do not believe any 
of them to be literally true. The optimal pooling idea makes explicit allowance for 
the possibility that all of the models under consideration are false and reflects the 
observed behavior of decision-makers, who are likely to consult several different 
models when making policy, even models that have been rejected by formal 
statistical tests. While such behavior seems paradoxical, it is supported by the 
finding that pools are typically able to outperform even the best of the individual 
models they encompass, sometimes by a large margin, while placing significant 
weight on models that are easily rejected by conventional tests. 

The study proceeds in two steps. First, we construct the collection of individual 
models. We look at a total of 42 models categorized into three groups based on the 
source of information used to forecast volatility. The models allow for flexibility 
in the shape of the predictive distribution, the way this shape changes over time, 
and the relationship between observed and latent volatility, building on methods 
introduced in Durham (2007). The second step utilizes this extended collection of 
asset price prediction models to generate improved predictive distributions using 
the method of optimal prediction pooling. The application uses daily S&P 500 index 
returns from the first trading day of 1990 through the end of March 2010. 

The models are described in Section 1. The first group uses the history of 
daily returns only and comprises six models: two stochastic volatility (SV) models 
with leverage and four exponential generalized autoregressive heteroscedasticity 
(EGARCH) models. In the second group, consisting of 18 models, the indicator of 
daily volatility is the sum of squared five-minute S&P 500 Index futures returns 
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from previous trading days. The third group, also consisting of 18 models, uses 
the Chicago Board Options Exchange Market Volatility Index (VIX), which is a 
model-free indicator of daily volatility constructed from options prices. 

In each group of models, we begin with a simple base model and elaborate 
on it in several directions. In all groups the daily return shock is either Gaussian 
or a mixture of two normal distributions. In all models except the stochastic 
volatility models the volatility component is either a single factor (the conventional 
treatment) or the sum of two independent factors with different autocorrelation 
properties. Permitting more than one volatility factor introduces flexibility into the 
autocorrelation of the latent volatility state, allowing the models to generate, for 
example, long memory-like behavior. In the high-frequency and options groups 
there is a third dimension of flexibility related to the form of the mapping from 
the volatility state to the scaling factor that determines the conditional variance of 
daily returns. 

Turning to the second step, Section 2 briefly summarizes the essentials of 
optimal linear prediction pools introduced in Geweke and Amisano (2011). It 
introduces an intuitive foundation for prediction pools, taking as the point of 
departure optimal asset portfolios. The optimal linear prediction pool is that 
linear combination of model predictive densities that, historically, achieves the best 
outcome using a log scoring rule. Pooling does not invoke the assumption that one 
of the models under consideration corresponds to the data-generating process, but 
if that is in fact the case then in large samples the optimal linear pool is the data-
generating process. Otherwise optimal linear pools typically put positive weight 
on several of the candidate models. 

Formal Bayesian procedures, generally known as Bayesian model averaging, 
also lead to linear prediction pools. They do so under the explicit assumption that 
one of the models under consideration corresponds to the data-generating process. 
If this assumption is correct then the Bayesian model average coincides with the 
data-generating process in large samples—the same outcome as with an optimal 
linear pool. If this assumption is incorrect, Bayesian model averaging still leads to 
a pool consisting of a single model asymptotically, the one for which the directed 
Kullback–Leibler distance from the data-generating process is smallest. 

A finding that in large samples the optimal linear pool includes several models 
with positive weights is evidence against the specification that one of the models is 
the data-generating process. In these circumstances the optimal linear pool provides 
predictions superior to those of Bayesian model averaging, as assessed by a log 
scoring rule. Optimal model pooling does not explicitly specify a set of models that 
must include the data-generating process and is fundamentally a non-Bayesian 
procedure. As pointed out in Geweke and Amisano (2011, Theorem 6) there are 
Bayesian mixture models that by construction perform at least as well as optimal 
linear pools in large samples. But the comparison is asymptotic, and the analytical 
and computational demands of these models are high. In contrast optimal linear 
pooling is a simple procedure that often improves substantially on the predictive 
performance of both individual models and Bayesian model averaging. 
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Empirical results are reported in Section 3. For the simplest models in each 
group there are very substantial differences in log scores across the three classes 
(Section 3.2), with the basic daily model outperforming the basic options model that 
in turn outperforms the basic high-frequency model. The various model extensions 
described in Section 1 eliminate the bulk of the differences in log scores among the 
best models in each group, with the best high-frequency model followed by the 
best daily model followed by the best options model. 

Conventional model combination procedures, motivated by Bayesian model 
averaging and described in Section 3.3, amount to “winner takes all”: on most trad
ing days predictions are based almost entirely on one group of models, but there are 
sharp fluctuations between groups. In the early part of the sample, options models 
dominate with occasional reversals in favor of daily models. In the latter part of the 
sample, high-frequency models mostly dominate. The performance of this model 
averaging procedure is poor, both in comparison with the best of our extended 
models and with some simple benchmark predictive density combinations. 

Optimal prediction pools, constructed in Section 3.4, behave very differently. 
Following initial fluctuations, weights in the optimal pools stabilize several years 
into the sample. By the end of the sample, the high-frequency and daily model 
groups take on weights of about 0.40 each, with the remainder falling on options 
models. A related measure of model value indicates that in the latter years of the 
sample high-frequency models have the most value followed closely by the daily 
models. The value of the options models is small but positive. The optimal pools 
substantially outperform all of the individual models in log score, and they also 
outperform the simple benchmark predictive density combinations. 

This study concentrates on the specific problem of extending and combining 
models that use alternative sources of information about volatility for the purpose 
of improving the one-step-ahead prediction of an index of asset prices. For sake 
of transparency we do not introduce notation or techniques more general than 
required to address this particular task. Yet the methodology in the study can be 
extended to a much wider set of similar problems. Some of these extensions are 
quite modest while others require addressing additional technical issues. Section 4 
summarizes the findings of this study and then briefly discusses a much larger set 
of prediction problems amenable to similar treatment and the work involved. 

1 MODELS AND ESTIMATION TECHNIQUES 

We look at several classes of models, corresponding to different sources of 
information about volatility: daily returns, high-frequency, and options. For all 
of the models, returns are of the form 

yt =μY +σtεt, (1) 

where yt is the daily log return, σt is the volatility scaling factor, and εt is a mixture 
of normals standardized to have mean zero and variance 1. The model classes 
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differ in the information used to estimate σt. In each class, we examine a hierarchy 
of models with varying amounts of flexibility in several relevant dimensions. All 
models are estimated by maximum likelihood. Predictive densities are then formed 
by replacing unknown parameters with their point estimates. In all cases, predictive 
densities for the time t return are constructed using only information available at 
time t−1. 

Our objective is not just to obtain forecasts that match the observed data in, say, 
first or second moments. Rather, the object of interest is the full predictive density, 
with assessment using a likelihood-based metric closely related to Kullback– 
Leibler distance. Thus it is important for the models to have sufficient flexibility 
to generate realistic distributions, motivating the use of the mixture models. Given 
enough components these models are able to fit any distribution arbitrarily closely 
(McLachlan and Peel, 2000). For distributions encountered in applications similar 
to the one in this article, good fits are typically obtained with a small number of 
components. 

These mixture models are closely related to the jump models commonly used 
in this literature. But, we do not take a stand on the nature of the intradaily 
price movements: what part is diffusive, what part is due to jumps, and what 
the characteristics of those jumps are. We are only interested in the shape of the 
daily return distributions. The mixture distributions are useful for this purpose. 
See Durham (2007) for additional detail. 

We examined mixtures of up to three components. The three-component 
models perform well in the later part of the sample but have difficulty in the 
early part, where the quantity of available data is more limited. In full Bayesian 
estimation, the problems in the early part of the sample could be alleviated by 
using an appropriate prior. With the maximum likelihood approach used in this 
article, an analogous effect could be achieved by adding curvature to the likelihood 
surface in an ad hoc manner. However, for the application in this article we restrict 
attention to models with a maximum of two mixture components. 

Some of the models include multiple volatility factors, providing flexibility 
in the autocorrelation characteristics of the latent volatility state. In models with 
two factors, for example, one captures a persistent long-term trend in the level of 
volatility, while the other captures short-term fluctuations around it. Such models 
are capable of generating long memory-like behavior (Bollerslev and Mikkelsen, 
1996). 

The class of daily models consists of two SV and four EGARCH models. The 
SV models are of the form 

yt = μY +σY exp (vt−1/2)εt (2) 

vt = φvt−1 +σV ηt, 

where yt is the log return and vt is the unobserved volatility state. The volatility   1/2innovations are of form ηt = ρεt + 1−ρ2 ut, where ut ∼ N (0,1) is uncorrelated 
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with εt. Thus E (ηt)= 0, var (ηt)= 1 and corr (ηt,εt)= ρ, but because εt is non-
Gaussian so is ηt. Negative values for ρ capture a leverage effect, whereby negative 
returns are associated with increased volatility on subsequent days. The nature of 
the relationship between εt and ηt implies that extreme price changes will tend to 
generate large changes in volatility as well. Estimation is done using the simulated 
maximum likelihood algorithm and EIS sampler of Richard and Liesenfeld (2006). 
Predictive densities are formed by integrating across uncertainty in the volatility 
state. We look at two partcular cases of the SV model: sv_1 uses a Gaussian 
distribution for εt and sv_2 uses a mixture of two normal distributions. 

The EGARCH models are of form ⎛ ⎞ 
k1

yt = μY +σY exp ⎝ vit/2⎠εt (3) 
i=1   

1/2vi,t+1 = αivit +βi |εt|−(2/π) +γiεt i =1,...,k . 

The model egarch_kj includes k volatility factors vit and the normal mixture has 
j components k = 1,2; j = 1,2 . 

The high-frequency models use a volatility signal extracted from five-minute 
intraday S&P 500 Index futures returns. Following Andersen et al. (2001, 2003), and 
Barndorff-Nielsen and Shephard (2002), daily realized volatility was calculated by 
summing over squared intraday returns for each day t, 

1/L1  2 
RV(L) = ft−1+jL −ft−1+(j−1)L , (4)t 

j=1

where ft is the log futures price and L is the sampling interval for the intraday 
data. In the application L corresponds to five-minute intervals. In (4) t−1 denotes 
the opening of the market on day t and t denotes the close (so intraday volatility 
does not include the return from market close on one day to market open on the 
following day). 

In principle, high-frequency returns are capable of providing very precise 
information about the latent volatility state. In practice, there is measurement 
error related to, for example, market microstructure effects and nonsynchronous 
trading, which the use of five-minute futures returns is intended to help alleviate 
(longer sampling intervals decrease the measurement error but at the cost of greater 
discretization error). Perhaps more critically, we are using the realized volatility 
observed on day t as a basis for forecasting day t+1 returns. Consistent with 
the literature, we also ignore the overnight return. So there is little reason to 
expect the realized volatility to be either an efficient or unbiased estimator for 
the variance of the next day’s return. We address these issues in two steps. First, 
we apply a filter to extract estimates of the latent volatility state from the realized 
volatility observations. We then apply a mapping of flexible functional form from 
the volatility state to σt to compensate for any bias. 
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To implement the first step (filtering), we use a standard linear Gaussian state 
space representation for the dynamics of RVt. Let  vt denote a latent volatility state 
with dynamics 

k1 
vt = μV + αit 

i= 1 

αit = φitαi,t− 1 + σαiηit, (i = 1,...,k) 

where αit (i = 1,...,k) are the unobserved factors and ηit (i = 1,...,k) are independent 
standard normals. We observe a noisy signal, 

logRVt = vt + σvωt, 

where the ωt are iid standard normal and independent from ηit (i = 1,...,k). From 
this, an estimate of the volatility state 

v̂t = E[ vt| RV1,...,RVt− 1] 

is easily obtained using the Kalman filter. See e.g., Hamilton (1994) for details. 
We also tried two alternative approaches to extracting a volatility signal from 

the observed RV data: an exponential weighting filter (e.g., Maheu and McCurdy, 
2007) and the heterogeneous autoregressive model of Corsi (2009). The Kalman 
filter performed slightly better than these with respect to predictive performance, 
but the differences among these alternatives were small. All improved predictions 
substantially relative to using the unfiltered RV data directly as a proxy for the 
volatility state. 

The model is completed by a mapping ψ : v̂t −→ logσt, which we construct 
using flexible parametric methods. Polynomial expansions of sufficiently high 
degree are capable of approximating any smooth function to arbitrary accuracy 
on compact sets, and so are useful for this purpose. We looked at Legendre 
polynomials up to order three (the volatility states were first scaled and translated 
to mean zero and unit variance), but found no improvements beyond order 
two. 

As in related work by Koopman and Scharth (2011), estimation takes place in 
two steps: first, the volatility states are extracted using the Kalman filter; then the 
parameters of the mapping are estimated simultaneously with the parameters of 
(1) conditional on the point estimates for the volatility state. In particular, note that 
the volatility filters do not depend upon either the mapping or (1). 

We note that some efficiency is lost by using this two-step estimation procedure. 
But the approach is consistent with the objective of this study, which is to 
demonstrate the utility of model pooling using volatility forecasts σt based on 
alternative information sets (realized volatility in this case). To the extent that the 
high-frequency data are much more informative about volatility than are the daily 
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returns, the efficiency loss should be small. Additional detail illustrating the per
formance of the filters in practice is provided in Section 3. See Dobrev and Szerszen 
(2010) and Koopman and Scharth (2011) for related work. Also, there are a number 
of alternatives to (4) for estimating realized volatility in the literature, some of which 
may be more efficient than (4). See for example, Zhang, Mykland, and Aït-Sahalia 
(2005), Andersen, Bollerslev, and Diebold (2007), Barndorff-Nielsen et al. (2008) 
and Jacod et al. (2009). We do not undertake a comprehensive study of these here. 

The model hifreq_kjp uses a state space representation with k independent 
latent volatility factors, j normal components in the mixture for εt, and a polynomial 
of order p in the mapping. We consider the cases k =0,1,2; j =1,2;p =0,1,2 for a 
total of 18 high-frequency models. The case k =0 indicates that no filtering is done 
(i.e., v̂t =E[vt|RV1,...,RVt−1]=RVt−1). The case p =0 refers to a linear polynomial 
where the constant is estimated and the slope coefficient is one. 

The options models have the same structure as the high-frequency models 
except that they substitute a measure of option-implied volatility IVt in place of 
the high-frequency measure RVt. We use the VIX index, a model-free measure 
of volatility implied by options prices (Britten-Jones and Neuberger, 2000). There 
is some measurement error involved when using the VIX index as a signal 
about the volatility state due to, for example, truncation and discreteness effects 
(Jiang and Tian, 2005). The measure is also biased due to the existence of risk
premia. Thus, similar considerations to those discussed in the context of the 
high-frequency models apply here as well. 

The model vix_kjp uses k independent latent volatility factors, j normal 
components in the mixture for εt, and a polynomial of order p in the mapping. 
We consider the cases k =0,1,2; j =1,2;p=0,1,2 for a total of 18 options models. 

Complementary to the pooling approach used in this article, there has also been 
some work toward constructing unified models that combine the information from 
various sources (e.g., Engle and Gallo 2006; Shephard and Sheppard 2010). While 
we do not include such models in the analysis here, it would be straightforward to 
expand the pool in such directions, possibly yielding even better performance. 

2 POOLING 

Each model just described provides a sequence of conditional probability densities 

pt yt |Yt
o 
−1,Xt

o 
−1,θi,Ai (i =1,...,n =42) 

for the asset return yt on day t conditional on information available at the close 
of trading on day t−1 and a parameter vector θi. The superscript “o” denotes 
the observed value (data) as distinguished from the ex ante random variable or 
argument of the density function and Ai indicates a particular model. The symbols 
Yt−1 and Xt−1 indicate the set of asset returns and a set of covariates, respectively, 
on trading days t−1,t−2,.... In the high-frequency models Xt−1 consists of the 
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five-minute intraday returns on days s < t; for the options models it consists of the 
VIX index on days s < t; and for the daily models Xt−1 =∅. This section uses this 
generic notation throughout. 

Predictive densities pt yt;Yt
o 
−1,Xt

o 
−1,Ai are constructed for each model Ai and 

observation date t by eliminating the unknown parameter vector θi. This can be 
done in a variety of ways. One is to substitute the maximum likelihood estimate 

t−11    oeθi (t)=arg max log ps y |Ys
o 
−1,Xs

o 
−1,θi,Ai (5)s 

θi s=1 

for θi, and that is the procedure used in this article. An alternative would be 
to specify prior distributions p(θi |Ai) and then replace the conditional densities 
pt yt |Yt

o 
−1,Xt

o 
−1,θi,Ai by the full Bayesian predictive densities. 

Formal decision-making, however, requires a single predictive density 
pt yt;Yt

o 
−1,X

o at the end of each trading day t−1. Broadly speaking these t−1 
contexts include any situation in which normative behavior presumes a subjective 
distribution for relevant unknown magnitudes, including conventional expected 
utility maximization. Special cases are conventional approaches to asset derivative 
pricing and prediction. A decision-maker could choose among the alternative 
predictive densities pt yt;Yt

o 
−1,Xt

o 
−1,Ai or combine them in some fashion. 

2.1 Assessing the Performance of Predictive Densities 

Model choice or combination is itself a decision problem that requires a criterion. 
The decision-maker can use the observed values of past returns and covariates 
Yt

o 
−1 and Xt

o 
−1 to assess the performance of any stipulated predictive density, just 

as an investor can use the history of returns to assess portfolio performance. This 
set of primitives—the history Yt

o 
−1,X

o and the predictive density function pt — t−1 
is the one typically used in the few studies that have addressed these questions 
(e.g., Diebold, Gunter, and Tay 1998, p. 879). As Gneiting, Balabdaoui, and Raftery 
(2007, p. 244) notes, the assessment of a predictive distribution on the basis of 

yo;Yo only is consistent with the prequential principle of Dawid (1984). pt t t−1,Xt
o 
−1
 

These assessment procedures are widely known as scoring rules.
 
This study uses the log scoring rule 

t−11 
oLS Yt

o 
−1;Xt

o 
−1,R = logps ys ;Ys

o 
−1,Xs

o 
−1,R , (6) 

s=1 

to assess the prediction performance of any rule R for selection or combination 
of predictive densities. This rule is easy to interpret, grounded in the literature, 
and has a significant axiomatic justification. With regard to interpretation, there 
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is a simple relationship between (6) and the performance of alternative rules in 
prediction. For alternative rules R1 and R2, 

L(R1,R2)= exp LS Yt
o 
−1;Xt

o 
−1,R1 −LS Yt

o 
−1;Xt

o 
−1,R2 /(t−1) (7) 

is the geometric average of the ratio of probability densities assigned to the observed 
returns y1 

o ,...,yt
o 
−1. This justifies the colloquial interpretation, “observed returns 

were 100 ·[L(R1,R2)−1] percent more probable under predictive density R1 than 
they were under R2.” 

With reference to the econometrics literature, for the specific case of Bayesian 
predictive densities LS Yt

o 
−1;Xt

o 
−1,Ai is the log predictive likelihood. In the even 

more specific case in which the sample begins at time t =1 and sample size is T, 
LS YT 

o ;XT 
o ,Ai is the log marginal likelihood, which in turn is the foundation of the 

Bayesian approach to the model combination issue addressed in this study. (On 
predictive and marginal likelihoods see Geweke, 2005, Section 2.6.) Evaluation of 
log scores using models with maximum likelihood estimates (5), employed in this 
article, is an out-of-sample criterion, and as such does not lead to complications of 
over-fitting. 

With reference to the finance literature, the rule (6) is formally similar to a 
separable utility function in which the quantity of the single good consumed 
in period s is ps yo;Yo and instantaneous utility is logarithmic. In the s s−1,Xs

o 
−1 

prototypical situation consumption is return on wealth and the motivating problem 
is optimal portfolio allocation. Higher ps yo;Ys

o 
−1,X

o is better than lower just as s s−1 
more consumption is preferred to less. 

With reference to the statistics literature, (6) is the unique proper local scoring 
rule, as discussed in Geweke and Amisano (2011, p. 131). 

2.2 Combining Predictive Densities 

From ps ys;Ys−1,Xs−1,Ai (s < t;i = 1,...,n) and Yt
o 
−1,X

o the decision-maker t−1 
creates pt yt;Yt

o 
−1,Xt

o 
−1 . We refer to this mapping as a prediction pool, motivated by 

the more general descriptor opinion pool for a combination of subjective probability 
distributions originating with Stone (1961). There are endless ways in which 
the n predictive densities could be combined; see Genest, Weerahandi, and Zidek 
(1984) for a review and axiomatic approach. Restricting consideration to linear 
combinations leads to computations that are simple, both absolutely and in 
comparison with alternatives.1 At the close of trading day t−1 the predictive 

1When prediction addresses vector yt rather than scalar as is the case here, only linear combinations of 
predictive densities satisfy some basic conditions of internal consistency, as first shown by McConway 
(1981). 
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density for the next trading day’s return using a linear prediction pool is 

n1 
o o o op yt;Xt−1,Yt−1,wt−1 = wt−1,ipt yt;Yt−1,Xt−1,Ai , (8) 

i=1 

rwhere wt−1 = wt−1,1,...,wt−1,n is a weight vector satisfying 

n1 
wt−1,i =1; wt−1,i ≥ 0 (i=1,...,n). (9) 

i=1 

These restrictions are sufficient to assure that (8) is a density function. Applying 
the log scoring rule, this linear prediction pool is scored using 

t−1 n1 1 
o o oft−1 (wt−1)= log wt−1,ips ys ;Ys−1,Xs−1,Ai (10) 

s=1 i=1 

∗and therefore the optimal weight vector wt−1 is chosen to maximize (10). The 
optimal weight vector is updated at the close of trading each day, reflecting the 
performance of the models in predicting that day’s return. Geweke and Amisano 
(2011) shows that ft (wt) is at least weakly concave, and for t≥ n ft (wt) is in 
general strictly concave. Maximization of ft is therefore a regular convex pro
gramming problem and the optimal weights can be computed using conventional 
software.2 

The intuition behind optimal pooling under a log scoring rule is similar to 
that of portfolio optimization under the constraint of no short positions. Model 
A1 may have a log score that substantially exceeds that of model A2, just as one 
asset may have an average return substantially higher than another. But it may 

o o o o o oalso be the case that from time to time pt y ;Y −1,X −1,A1 pt y ;Y −1,X −1,A2 ist t t t t t
small, much closer to zero than one, just as the asset with lower average return may 
from time to time substantially outperform the other. Given the concavity of the 
log score function, the optimal pool can (and often does) assign positive weight to 
both models, just as given risk aversion both assets may have positive weights in 
an optimal portfolio. 

To illustrate this intuition, suppose that there exists a data-generating process 
D—an assumption not made to this point. Figure 1 pertains to a case in which yt 
is independent and identically distributed, with the probability density function 
under D indicated by the solid line. Model 1 closely tracks the data-generating 
process, except for the left lobe that is reflected in realizations about one observation 
in twenty. The log score of Model 2 is much lower than that of Model 1, 
which will be assigned negligible posterior probability in a formal Bayesian 

2All results reported in Section 3 use the Matlab function fmincon. 
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Figure 1 Constructed example illustrating optimal pooling. 

approach and be rejected in favor of Model 1 in a formal sampling-theoretic 
test. Yet it receives positive weight in the pool, which has a substantially higher 
log score than Model 1, because relative to Model 1 the pool provides a very 
large increase in the log predictive density when realizations from the left lobe 
occur. 

t−1 tGiven further weak regularity conditions s=1 logp yo;Ys
o 
−1,Xs

o 
−1,Ais 

tends to an almost sure limit L(Ai,D). Geweke and Amisano (2011) shows 
that under these conditions both the function t−1ft (wt) and the sequence of 

∗optimal weight vectors w have well-defined almost sure pointwise limits. t 
In general several components of the limiting weight vector are positive. An 

∗exception is the hypothetical case D = Ai, for which wti has limiting value one 
(Geweke and Amisano, 2011, Theorems 1 and 2). Thus in large samples several 
of the competing models may enter the optimal pool. This occurs because all of the 
models under consideration are false. 

2.3 Alternatives to Optimal Pooling 

These conditions are most explicit in Bayesian econometrics, which provides 
a logically complete theory of model combination. That approach explicitly 
conditions on one of the models being true, i.e., D= Ai for some (unknown) 
i = 1,...,n; Bernardo and Smith (1994, Section 6.1.2) provides an illuminating 
discussion of this point. Let ρi and πti denote the prior probability and the posterior 
probability of model Ai conditional on the first t observations, respectively. For any 
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pair of models Ai and Aj, 

t t1 1 
log 

πti = log + logp yo;Ys
o 
−1,X

o − logp yo;Ys
o 
−1,X

o . 
ρi 

s s−1,Ai s s−1,Aj
πtj ρj s=1 s=1 

a.s.
Granted the existence of a data-generating process D, t−1 log πti/πtj −→ L(Ai,D)− 
L Aj,D . Since this limit is generally positive or negative, log πti/πtj tends either to 
+∞ or −∞ as t →∞. In general there is one model Ai for which log πti/πtj →+∞  
j  = i . In the Bayesian model averaging pool the weight on the predictive densities 

of model Ai tends to 1 and the weights on the predictive densities of all other models 
tend to 0 as t →∞. This phenomonen was noted by Diebold (1991). 

Bayesian model averaging and optimal model pooling lead to very different 
choices of a single predictive density p yt;Yt

o 
−1,Xt

o 
−1 . The conclusions are different 

because the assumptions are different. Bayesian model averaging conditions on 
the data-generating process being one of the models under consideration. Granted 
this condition, as evidence accumulates that a particular model Ai is superior to 
all the others, one is driven to the conclusion that Ai = D and predictions should 
be based on that model alone. Model pooling does not assume the existence of a 
data-generating process of any kind, although this assumption is convenient for 
establishing asymptotic properties of prediction pools. If the stronger conditions of 
Bayesian model averaging are in fact correct then model pooling leads to the same 
result asymptotically. 

Bayesian model averaging is preferable for prediction given a strong prior 
belief that one of the models under consideration is the process responsible 
for the data. Model pooling is preferable in the absence of this belief and the 
appropriateness of the log scoring rule for the prediction problem at hand. 
We find the conditions for Bayesian model averaging excessively strong for 
predicting daily financial returns, but others may not. Regardless, a finding that 
model pooling systematically produces higher log predictive scores than does 
Bayesian model averaging is evidence against the proposition that one of the 
models corresponds to the data-generating process. That turns out to be the case 
here. 

3 RESULTS 

The application uses S&P 500 Index (SPX) log returns from January 2, 1990 
through March 31, 2010. Models based on option-implied volatility use the VIX 
index. SPX and VIX data were obtained directly from the Chicago Board Options 
Exchange (CBOE). Following Andersen et al. (2007), the high-frequency models 
use a volatility signal extracted from five-minute intraday S&P 500 Index futures 
returns (obtained from TickData.com). We also experimented with estimating the 
high-frequency models using a volatility signal extracted from five-minute intraday 

http:TickData.com
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returns for the S&P 500 cash index itself (rather than index futures). But the five-
minute returns for the cash index exhibit strong positive serial correlation due to the 
fact that there may be few or no trades reported in some of the stocks in the index 
in a given five-minute interval. This nonsynchronous trading issue is mitigated by 
using futures prices instead, resulting in better volatility estimates and improved 
predictive performance. 

Since the VIX begins with the first trading day of 1990, estimation samples for 
all of our models begin with t corresponding to the second trading day of 1990. 
For each model Ai we evaluate predictive densities p yo;Yt

o 
−1,Xt

o 
−1,Ai recursively, t 

beginning with t =1 corresponding to the first trading day of 1992 and ending with 
t = T = 4596 corresponding to March 31, 2010. This requires re-estimation of each 
model for each t as Yt

o 
−1 expands. Since there are 4596 days in the recursion and 42 

models, the result is a 4596 ×42 matrix P of predictive densities. These computations 
are relatively time consuming.3 All of our findings derive from P. 

3.1 Discussion of Volatility Filters 

We begin by examining the performance of several of the volatility filters described 
in Section 1. Figure 2 shows estimated volatility states, v̂t = E[vt |RV1,...,RVt−1], for  
the high-frequency models with one- and two-factor Kalman filters. Figure 3 is 
analogous for the options models. Recall that these filters do not depend on the 
other model features, either the mapping ψ from states to σt or (1). For reference, 
we also show the volatility states corresponding to unfiltered data ( v̂t = logRVt−1 

for the high-frequency models or v̂t = logIVt−1 for the options models). For clarity, 
we show only the last six months of the sample. 

Examination of Figure 2 suggests that the Kalman filter is effective in removing 
noise from the observed values of RV. Most of the work is done by the first factor. 
Including the second factor has only a small effect at the one-day horizon considered 
here (the impact may be greater on forecasts at longer horizons since the two-
factor models generate much more persistence in volatility than do the single-factor 
models). Supporting evidence is provided by the large improvements in log score 
reported in Section 3.2 for models using the single-factor Kalman filter and smaller 
additional improvements for models that use the two-factor filter. 

For the options models, on the other hand, the Kalman filter does little 
(Figure 3). This is also supported by the results for log score reported in Section 3.2 
(log scores for models using the single-factor Kalman filters are in most cases 
essentially identical to those using unfiltered IV; including a second volatility factor 
reduces log score slightly, typical of over-fitting in a predictive setting). 

3The stochastic volatility models required the most time, about 12 CPU days for the one-factor model and 
4 CPU weeks for the 2-factor model. Models with two-factor Kalman filters took about 5 CPU hours. The 
other models required about 15 minutes on average. In each case the time stated is the total over all 4596 
samples. 
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Figure 2 Filtered volatility states, high-frequency models. 
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Figure 3 Filtered volatility states, options models. 

Figure 4 shows the mappings ψ : v̂t −→ logσt corresponding to several high-
frequency and options models. Mappings corresponding to p ∈{  0,1,2} conditional 
on the full sample are shown. Recall that p = 0 corresponds to a linear mapping 
with the linear coefficicent fixed at one, p = 1 to an unconstrained linear mapping, 
and p = 2 to a quadratic mapping. The 45 degree line (corresponding to log σt = v̂t) 
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Figure 4 Mappings from volatility states to σ . All mappings are conditional on the full sample. 
The left panel shows mappings for hifreq_220, hifreq_221, and hifreq_222. The right panel 
shows mappings for vix_120, vix_121, and vix_122. Dotted lines indicate the 45 degree line 
(logσ = v̂), and the 0.01, 0.10, 0.90, and 0.99 quantiles of the data. 

is shown for reference. For the high-frequency models, there is little difference 
among these except at the extremes of the range of observed data, suggesting that 
the simplest formulation is largely sufficient. This conclusion is supported by the 
log scores reported in Section 3.2, which show only small differences corresponding 
to alternative formulations. For the options models, the differences are larger. The 
figure suggests that the constraint on the linear coefficient implied by p = 0 is not  
supported by the data. The quadratic mapping is close to the (unconstrained) linear 
mapping through the region where most of the data occurs, but diverges from it 
at very high values of IV. The log scores reported in Section 3.2 show substantial 
improvement when going from p = 0 to  p = 1, but log scores are worse for p = 2, 
indicative of over-fitting. We also tested cubic mappings for both high-frequency 
and options models but there was never any benefit to these and we do not report 
these results. 

Note that the mappings for the high-frequency models are all above the 45 
degree line, implying that RV is a downward biased estimate of log σt. As discussed 
in Section 1, possible causes for this bias include market micro-structure effects, 
nonsynchronous trading issues, and the fact that RV does not incorporate overnight 
returns. For the options models the mappings are predominately below the 45 
degree line, indicating that IV is on average an upward biased estimate of log σt 
(reflecting the existence of a volatility risk premium). The differing biases associated 
with the IV and RV measures of volatility are also evident in Figures 2 and 3 (IV 
tends to be higher than RV). The different mappings from implied volatility state 
to σt attempt to correct for this discrepancy. 



[17:37 18/2/2014 nbt001.tex] JFINEC: Journal of Financial Econometrics Page: 294 278–306

t 
−3.5 

−4 

σ

−4.5 

−5 

−5.5 

lo
g 

2007.25 2007.5 2007.75 2008 2008.25 
Date 

t 

−2 

−2.5 

−3 

σ

−3.5 

−4 

−4.5 

−5 

lo
g 

2008.25 2008.5 2008.75 2009 2009.25 
Date 

−3.5 
egarch_22 
hifreq_222 
vix_121 

2009.25 2009.5 2009.75 2010 2010.25 
Date 

lo
g 

t 

−4 

σ

−4.5 

−5 

−5.5 

Figure 5 Implied values of σt corresponding to egarch_22, hifreq_222, and vix_121 models. 

Figure 5 shows values of σt implied by several models. The various volatility 
measures track generally close to each other, but there are occasional persistent 
divergences. It is largely these differences in implied values of σt that underlie the 
variation in performance for predicting returns among the models. 
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Table 1 Log scores of models relative to hifreq_010 

sv_1 sv_2 
Daily models 

egarch_11 egarch_12 egarch_21 egarch_22 

159.40 180.77 98.93 169.66 139.26 206.54 

High-frequency models (hifreq_kjp) 
j =1 j =2 

p=0 p=1 p=2 p=0 p=1 p=2 

k =0 
k =1 
k =2 

0.00 
145.13 
155.21 

21.57 
137.47 
148.33 

35.07 
142.26 
154.21 

100.00 
194.36 
204.15 

102.52 
192.31 
203.01 

108.65 
196.53 
206.89 

j =1 
Options models (vix_kjp) 

j =2 

p=0 p=1 p=2 p=0 p=1 p=2 

k =0 
k =1 
k =2  

99.36 
92.91 
89.11 

122.69 
122.33 
117.43 

118.34 
118.06 
112.91 

154.37 
149.47 
146.93 

181.16 
181.24 
177.72 

180.57 
180.73 
176.94 

Boldface indicates the highest log score in each of the three groups of model. See Section 1 for complete 
model definitions. 

3.2 Model Performance and Comparison 

Table 1 provides the (full sample) log predictive score (6) of each model, 
LS YT 

o ;XT 
o ,Ai (i = 1,...,n). For legibility we subtract the log predictive score of 

the hifreq_010 model, which is 14,900.39, from the log scores reported here and 
throughout Section 3. Differences in log scores, not their levels, matter. From (7), 
the difference L Ai,Aj =exp LS YT 

o ;XT 
o ,Ai −LS YT 

o ;XT 
o ,Aj /T corresponds to 

a geometric average proportional difference in predictive densities. For example in 
the case of hifreq_222 and hifreq_010 this difference is exp (206.89/4596)= 
1.046. That is, the predictive densities from model hifreq_222 render observed 
events on average almost 5% more probable than do the predictive densities from 
model hifreq_010. More generally, a difference of 45.73 in log scores corresponds 
to a 1% increment in probability, a difference of 4.59 to a 0.1% increment. 

In interpreting the results, it is essential to recall that the log predictive 
score is an out-of-sample criterion. Unlike in-sample criteria, out-of-sample criteria 
inherently penalize overfitting. If model Ai is nested in model Aj, the predictive 
likelihood of model Ai can exceed that of model Aj; in contrast, the maximized 
log-likelihood (an in-sample criterion) can never be higher for the nested model. In 
Table 1 notice that the vix_121 model is nested in the vix_222 model and has 
the higher log score; similarly for hifreq_120 and hifreq_121. 

As noted in Section 2, had our method of inference been formally Bayesian, 
then the log scores would coincide with marginalized likelihoods in which the 

http:14,900.39
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prior distribution for each model includes the 1990–1991 data as a training sample. 
That is not the case here, but differences in log scores can be regarded as of the same 
order of magnitude as log ratios of posterior probabilities. For example, given equal 
prior probablilities for the models, the posterior probability odds ratio in favor of 
sv_2 over sv_1 is on the order of 109 . 

This interpretation reveals the high return to the various elaborations on 
the daily, high-frequency and options models detailed in Section 1. The roughly 
20-point improvement for the stochastic volatility model, resulting entirely from 
using a mixture of normals rather than Gaussian distribution for εt, has just been 
noted. Returns for other model classes are higher. Among the EGARCH models, 
egarch_22 improves over the conventional model, egarch_11, by over 100 points 
with the introduction of a second volatility factor and use of a mixture distribution 
for the shocks. The improvement is most dramatic for the high-frequency models, 
where the increase of over 200 points in log score relative to the simplest model is 
due primarily to the incorporation of a filtration (k >0) that allows current latent 
volatility to depend flexibly on lagged realized volatilities and secondarily to the 
use of a mixture distribution for the return shocks (j = 2). For the options models the 
elaborations described in Section 1 lead to an increase of over 80 points in log score, 
accounted for primarily by the mixture of normals distribution for conditional 
returns and secondarily by the incorporation of additional flexibility in the link 
between IVt and σt (p = 1 versus p = 0). 

3.3 Conventional Predictive Density Combination 

Arguably the simplest rule for density combinations is the equally weighted pool 
A∗, which has wi,t−1 = n−1 (t = 1,...,T;i =1,...,n)and log score LS YT 

o ;XT 
o ,A∗ . From  

Jensen’s inequality LS YT 
o ;XT 

o ,A∗ must exceed the mean log predictive score in 
Table 1. Indeed it can exceed the maximum of the log predictive scores, and that is 
what happens here: LS YT 

o ;XT 
o ,A∗ = 231.03. 

A modest elaboration on this procedure is first to distribute weight equally on 
each group of models and then equally across models within each group. Thus in 
this application each group has weight 1/3, so that each daily model has weight 
1/18 and each of the high-frequency and options models has weight 1/54. The log 
score of the resulting pool is 233.86. 

Equally weighted pools provide useful benchmarks for comparisons with 
alternative predictive density rules. The idea is similar to the use of the market 
portfolio or 1/n rules as benchmarks for portfolio performance. Many stock pickers 
believe that they can reliably beat the market. Far fewer succeed. The analogy holds 
for model selection as well. 

The best performing individual model over the full sample period is 
hifreq_222. An econometrician using a conventional approach to select a single 
“best” model would place all weight on this model to the exclusion of alternatives. 
But even the simplest equally weighted pool beats this model by over 24 points in 
log score. 
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The reality for the model picker is even worse than this. Here, we have assumed 
a prescient model picker who is able to choose the individual model that performs 
best over the entire sample. In practice, the model picker must choose the best model 
in real time using available information. The real-time model picker underperforms 
the equally weighted pool by nearly 40 points in log score. 

Bayesian model averaging (BMA) is often put forward as an appealing 
approach to model combination. It is instructive to consider the idea of constructing 
real-time pools using BMA in order to examine the implications for choices amongst 
the 42 individual models and for contrasting these implications with optimal 
pooling subsequently. 

Identifying p yo;Yt
o 
−1,Xt

o 
−1,Ai with the Bayesian predictive likelihood, the t 

analog of marginal likelihood for model Ai based on the sample from periods 1 
through t is 

tt 
oMLit = p y ;Ys

o 
−1,Xs

o 
−1,Ai = exp LS Yt 

o;Xt 
o ,Ai .s
 

s=1
 

Given equal model prior probabilities, the posterior probability of model i based on 
nthis sample is ωit = MLit/ j=1 MLjt. Under the Bayesian model averaging paradigm, 

the predictive density for yt+1 is 

n1 
p yt+1;Yt 

o ,Xt 
o ,B∗ = ωitp yt+1;Yt 

o ,Xt 
o ,Ai . (11) 

i=1 

The procedure just described constitutes a valid prediction model, which we 
denote B∗ in (11). Its log predictive score LS YT 

o ;XT 
o ,B∗ can be evaluated directly 

using the 4596 ×42 matrix P of predictive likelihoods described at the beginning of 
this section. 

Two features of this model averaging exercise are important for this study. 
First, consider the weights ωit. Rather than report weights for all of the models 
individually, at each time period t we sum the weights within each of the three 
groups of models (daily, high-frequency, and options). These are displayed in 
Figure 6. In the early part of the sample, the preponderance of the weight is on 
the options model group, with occasional reversals in favor of the daily models. 
Then beginning around 2001 the high-frequency models dominate, except for late 
2007 through late 2008 when the daily models again take most of the weight. Toward 
the very end of the sample (from late 2009) weight is about evenly split between 
the high-frequency and daily models. Almost no weight is placed on any of the 
options models after mid-2000. The tendency of BMA to concentrate weight on a 
single model was noted nearly two decades ago in Diebold (1991). The vacillation 
between near-certainties exhibited in Figure 6 implied by a procedure that starts 
with the premise that one of the models corresponds to the data-generating process 
challenges the credibility of the premise. 
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Figure 6 Bayesian model averaging weights, updated each trading day: sum of weights for daily 
models (black), high-frequency models (dark gray), and options models (light gray). 

Second, consider the log scores. The log score of the Bayesian model averaging 
prediction rule is LS YT 

o ;XT 
o ,B∗ =203.73. Though this is slightly better than the 

modeler who places all weight on a single model in real time, it still falls well short 
of the benchmark equally weighted pool (by over 25 points in log score). Thus the 
performance of this procedure motivated by Bayesian model averaging is poor just 
as its premise is not credible. 

1992 1993 1994 1995 1996 1997 1998 

1999 2000 2001 2002 2003 2004 

2005 2006 2007 2008 2009 2010 

3.4 Optimal Pooling 

The optimal pooling procedure implemented here reconstructs what an econo
metrician could have accomplished in real time. For each date t beginning with 
t = 1, which indicates the first trading day of 1992, and ending with t =4596 (March 
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Figure 7 Optimal prediction pool weights, updated each trading day: sum of weights for daily 
models (black), high-frequency models (dark gray), and options models (light gray). 

31, 2010) suppose that the econometrician has at her disposal predictive densities 
ps(ys;Ys

o 
−1,Xs

0 
−1,Ai) (s = 1,...,t;i =1,...,n) and has evaluated these densities using 

realized returns, ps(yo;Ys
o 
−1,Xs

0 
−1,Ai). Thus, on day t, the optimizer is using the s 

first t rows of the 4596 ×42 matrix P. Using this information, she finds the optimal 
∗pooling weights w = arg maxwt ft (wt) where ft (wt) is defined in (10). t ∗Figure 7 displays the optimal pool weights wit in the same way that Figure 6 did 

for the BMA weights. Initially the optimal pool consists entirely of daily models. 
High-frequency models enter the optimal pool midway through the first year and 
options models enter shortly thereafter. The gradual entry of models at the start of 
the exercise is characteristic of optimal prediction pools: notice from the calculus 
of optimization of a concave function on the unit simplex in (8) and (9) that at 
most t models will have positive weight in an optimal pool when t < n. As the  

1992 1993 1994 1995 1996 1997 

1999 2000 2001 2002 2003 2004 

2005 2006 2007 2008 2009 2010 
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number of predictions over which the optimal pool weights are evaluated continues 
to increase, optimal weights stabilize. From midway through the exercise (2001) 
forward the distribution of weights across the groups of models does not change 
substantially. 

At the end of the exercise, which is the close of trading on March 31, 2010, the 
total weight on the group of daily models is 0.426, all arising from the egarch_22 
model. The total weight on the high-frequency models is 0.406, comprised of the 
sum of the weights on hifreq_010 (0.088), hifreq_020 (0.057), hifreq_110 
(0.035), hifreq_112 (0.080), and hifreq_122 (0.145). The options models garner 
the remaining weight of 0.168, all allocated to vix_111. Weights for the other 35 
models are all exactly zero. 

Consulting Table 1, note that among the daily and options models, the variants 
with the highest log score get all the weight. Among the high-frequency models, in 
contrast, weight is distributed across five different models. The optimal pool puts 
no weight on hifreq_222, although it is the best-performing individual model. 
The worst performing individual model, hifreq_010, has positive weight. 

Whether or not a model enters the pool with positive weight depends on its 
record in providing a higher density to observed returns when other models with 
positive weights provide lower densities. These conditions are analogous to those 
that prevail when an asset enters a portfolio under a constraint of no short positions, 
and arise for essentially the same reason. The optimal pool places a premium on 
diversity of models, even if some of those included have relatively low scores. For 
example, the total weight on models that include only a single mixture component 
is 0.371, although adding an additional mixture component substantially improves 
the individual models in every case. 

∗Having computed the optimal weight vector w at the end of trading day t 
t, based on rows 1 through t of P = pti , our hypothetical econometrician uses 
the optimal pool as the predictive density for yt+1. Evaluating this density at the 
realized return yt

o 
+1 provides the log score 

T−1 n T n1 1 1 1 ∗ o ∗log witp yt+1;Yt 
o ,Xt 

o = log wi,t−1pti , (12) 
t=0 i=1 t=1 i=1 

which may be compared directly with the entries in Table 1. The log score of the 
optimal pool is 238.38, about 31 points higher than the best of the constituent 
models, hifreq_222. The improvement is even greater relative to either the BMA 
pooling rule or the econometrician forced to place all weight on a single model 
using real-time information. It also exceeds the two equally weighted benchmarks 
described in Section 3.3. 

Figure 8 shows log scores relative to the equally weighted pool at each date t 
in the sample period for the optimal pool, BMA pool using real-time weights, and 
the pool comprised of the single model chosen in real-time by the model picker. 
Whereas the conventional model averager and model picker both substantially 
underperform the equally weighted benchmark, the optimal pool outperforms it. 
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Figure 8 Log scores, differences relative to equally weighted pool. 

The sums of model weights across groups exhibited in Figure 7 provide one 
indication of the contribution of each group to the optimal pool. An indication 
more directly related to performance can be constructed as follows. First evaluate 
the real-time log score (12) at the end of each period t, yielding the sequence of 
real-time log scores 

t−1 n t n1 1 1 1 ∗ o ∗ λt = log wisp ys+1;Xs 
o ,Ys 

o = log wi,s−1psi (t = 1,...,T). 
s=0 i=1 s=1 i=1 

Now repeat the optimization exercise, but omitting all of the daily models, and t  
(1)denote the resulting sequence of log scores λ . Because of the real-time nature of t
(1)the exercise it is not necessarily the case that λ ≤ λt, and both prior considerations t 

and the weights displayed in Figure 7 suggest that this condition is more likely to 
(1)be violated for smaller than for larger t. We refer to λt −λ as the value of the daily t t  

(2)model group at time t. Similarly form the sequence of values for the t  λt −λt
(3)group of high-frequency models and λt −λ for the group of options models. t

Unlike sums of weights within groups, group values will tend to drift with time. 
For any group with a limiting positive sum of weights, the drift will be upward. 

Figure 9 shows the group values constructed in this way. The value of the 
options models is always small and toward the middle part of the sample is even 
negative. The high-frequency models also have low and sometimes negative value 
through the early part of the sample, but their value increases dramatically from 
2000 through 2004. The value of the daily models increases gradually from about 
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Figure 9 Values of the group of daily models (black), high-frequency models (dark gray), and 
options models (light gray). 

2000 through the end of the sample period, with a big jump in early 2007. At the 
end of the sample period (March 31, 2010) the value of the daily model group is 
13.47, the high-frequency model group 18.47, and the options group 0.53. 

4 CONCLUSION 

This study took up the practical problem of constructing predictive densities for 
S&P 500 returns from a collection of models, all of which are false. The constituents 
of the collection were chosen with respect to alternative information sets for 
predictions of future volatility: daily returns, observed intraday volatility, and the 
VIX index obtained from options prices. The metric of evaluation was the log 
scoring rule, equivalent to the geometric average probability assigned to observed 
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Table 2 Improvements in the geometric mean average probability assigned to 
observed returns 

Model group Improved model Equal weight pool Optimal pool Total 

Daily (SV) 
Daily (EGARCH) 
High frequency 
Options prices 

0.466 
2.369 
4.604 
1.798 

1.100 
0.534 
0.527 
1.089 

0.160 
0.160 
0.160 
0.160 

1.726 
3.063 
5.291 
3.047 

Incremental percentage changes in prediction probability moving from left to right in each row are 
reported. 

returns. This and all comparisons made in the study are strictly out of sample, 
arising from real-time procedures that could have been employed in prediction at 
the start of each trading day from January 2, 1992, through March 31, 2010. 

Beginning with conventional base models within each of the three groups, 
we took several steps to improve predictions: replacing conditional Gaussian 
distributions with normal mixture distributions provided predictive distributions 
with more credible shapes; including multiple volatility factors provided increased 
flexibility in how the history of realized returns impacted estimates of the latent 
volatility state; and in the case of the high-frequency and options models we used 
a flexible mapping from the extracted volatility state to the scaling factor that 
determines the variance of daily returns. This led to two SV models, four EGARCH 
models, 18 high-frequency models, and 18 options prices, for a total of 42 models. 

Quantitatively this was the most important step in improving predictive 
densities for the S&P 500 return series from 1992 through the first quarter of 2010, as 
indicated in Table 2. The Improved model column compares the base model in each 
group (e.g., hifreq_010) with the best model in each group (e.g., hifreq_222) 
using the entries from Table 1 and the metric shown in (7). As discussed in 
Section 3.2 differences across model groups arise more from disparity among base 
models than among the best models in each group. 

Next we considered pools of all 42 models. The simple step of forming an 
equally weighted pool of models led to the improvements in the Equal weight pool 
column of Table 2. Since the pool is the same for all model groups, differences 
across model groups in this column are due entirely to differences in the log 
predictive scores of the best model in each group. If it were not the case that all 
models are false—that is, one of the 42 models in our collection corresponded to the 
data-generating process for returns—then the expected incremental change in this 
column would be negative for the group containing the true model. That is far from 
the case. The optimal pool provides further increases in prediction probability. 

Conventional econometric model combination procedures, most highly devel
oped in the Bayesian literature, work from the condition that one of the models 
is true. As an alternative to optimal pooling we examined BMA. Whereas optimal 
pools lead to stable positive weights on all three groups of models, BMA weights 
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tend to eliminate all models but one. Furthermore, the model so identified as being 
almost certainly true changes from time to time over the sample period. The log 
score of the BMA pool was lower even than that of the simple equally weighted 
pool. Prediction probabilities were on average 0.76% lower for the BMA pool than 
for the optimal pool. The poor performance of BMA complements the incredibility 
of the assumption that truth resides somewhere in the collection of models. 

All dimensions of the study bear out the importance of the fact that no matter 
what the collection of models, they are all false. Therefore improved models 
exist, and in this study improvement of individual models yielded the greatest 
returns. But even with a set of improved models, the fact that all still remain 
false indicates a further improvement from model pooling (Geweke and Amisano, 
2011, Theorems 1 and 2). That potential was borne out in this study. This latter 
improvement significantly recasts model comparison from a horse race in which 
there is typically little role for any but the winning model to a more cooperative 
situation in which many models have relative strengths and weaknesses leading 
to important roles for several models in improving predictive performance. In this 
setting an optimal pool bears strong resemblance to optimal portfolio allocation 
with a restriction of no short positions and the familiar gains from diversification 
in that setting. 

Our study addressed one-step-ahead predictions of a single return, the S&P 
500 index return, which in turn is the most thoroughly addressed prediction 
problem in financial econometrics. In contrast the most important prediction 
problems involve multiple returns and prediction horizons of several steps. The 
fundamental principles in this work, log scoring and optimal pooling, apply 
directly to these extensions. The case of multiple returns is straightforward, e.g., 
O’Doherty, Savin, and Tiwari (2010). Moreover for multivariate prediction there are 
compelling axiomatic arguments requiring pools to be linear (McConway, 1981) as 
they were in this study. Predicting several steps into the future is more demanding to 
the extent that covariates (in thus study, Xt−1, the indicators of volatility in the high 
frequency and options models) must also be predicted. In econometric terms these 
covariates are then no longer exogenous but instead must themselves be modeled. 
There are no fundamental difficulties, here, just the significant work of creating and 
improving credible models. We plan to address these issues in future research. 

Received April 22, 2011; revised January 7, 2013; accepted January 13, 2013. 
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