УДК 621. 887

НОВЫЕ МАТЕРИАЛЫ

Влияние содержания Ni на износостойкость литого высокоэнтропийного сплава VCrMnFeCoNi_x

The influence of Ni content on the wear resistance of cast high-entropy alloy VCrMnFeCoNi_x

M.B. Карпец¹, В.Ф. Горбань¹, А.Н. Мысливченко¹, С.В. Марченко², Н.А. Крапивка¹ M.V. Karpets¹, V.F. Horban¹, O.M. Myslyvchenko¹, S.V. Marchenko², M.O. Krapivka¹

¹Институт проблем материаловедения, НАН Украины, ул. Кржижановского 3, Киев, 03680, Украина, E-mail: <u>karp@ipms.kiev.ua</u>.

²Сумский государственный университет (СумГУ), ул. Римского-Корсакова, 2, г. Сумы, 40007, Украина, E-mail: info@pmtkm.sumdu.edu.ua

¹Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, Krzhyzhanovs'ky str.,3, Kyiv, 03680, Ukraine, E-mail: <u>karp@ipms.kiev.ua</u>.

²Sumy State University (SumSU), Rimskoho-Korsakova str., 2, Sumy, 40007, Ukraine, E-mail: <u>info@pmtkm.sumdu.edu.ua</u>

Целью данной работы является исследование характеристик износостойкости системы высокоэнтропийных сплавов VCrMnFeCoNi_x, при трении о не жестко закрепленные абразивные частицы. В эксперименте использовались литые сплавы системы VCrMnFeCoNi_x (где x = 1,0; 1,5; 2,0 в молярном соотношении), полученные методом аргонно-дуговой плавки. Исследованы фазовый состав, микроструктура, микротвердость и износостойкость данной системы сплавов. В сплавах образуется твердый раствор с структурой ГЦК и σ-фаза, кристаллическая структура которой аналогична тетрагональной σ-фазе бинарной системы Fe-Cr. По мере увеличения в системе количества Ni, количество о-фазы уменьшается. При рентгеноструктурном анализе сплавов системы VCrMnFeCoNi_x наблюдается аномально низкая интенсивность дифракционных спектров относительно фона, линии сильно уширены и ассиметричны, что свидетельствует об искажении кристаллической решетки за счёт наличия в ней атомов с различными атомными радиусами. Сплав VCrMnFeCoNi₁, который содержит наибольшее количество σ-фазы, имеет близкий коэффициент износостойкости при трении с наплавочным покрытием Т-590. С помощью оптической и растровой электронной микроскопии исследованы микроструктуры сплавов данной системы. Распределение элементов между фазами изучалось с помощью энергодисперсионного анализа и характеристического излучения. По данным энергодисперсионного анализа, в сплаве VCrMnFeCoNi_{1.5}, σ -фаза обогащена Cr, в то время как твердый раствор – Ni. В сплаве VCrMnFeCoNi₁ σ -фаза и твердый раствор близки по химическому составу. Микротвердость испытанных материалов в зоне трения на 30-65% выше, чем вне зоны трения.

Ключевые слова: высокоэнтропийный сплав, зона трения, абразив, σ-фаза, микротвердость.

Развитие различных областей современной техники требует новых антифрикционных материалов, способных работать при больших значениях нагрузки и при этом обладать заданным значением упругих свойств. Для достижения этих целей в 2004 г была предложена концепция многокомпонентных высокоэнтропийных сплавов (BOC). Идея получения высокопрочного И термодинамически устойчивого многокомпонентного литого сплава за счет снижения его свободной энергии не только в расплавленном состоянии, но и после затвердевания, достаточно перспективна [1-2]. Для достижения столь высокой энтропии смешения сплав, как правило, должен состоять из пяти и более основных элементов с концентрацией от 5 до 35 ат.%. Полученные таким образом высокоэнтропийные сплавы обладают повышенной твердостью, прочностью и термостабильностью [3-5]. Особенно важны эти характеристики для материалов подверженных трению, что и определяет актуальность данной роботы.

Высокоэнтропийный сплав (ВЭС) VCrMnFeCoNi_x с разным содержанием никеля (x=1,0; 1,5; 2,0 в молярном соотношении, далее по тексту будем называть их Ni₁, Ni_{1,5}, Ni₂), получен путем аргонно-дуговой плавки в печи МИФИ-9. Исходным материалом были гранулы металлов с чистотой 99,9 %. Плавка рассчитанных навесок массой 100 г проводилась нерасходуемым вольфрамовым электродом на медной водоохлаждаемой подине. Полученные слитки переплавлялись 6-7 раз для гомогенизации состава. Охлаждение слитков проводили со скоростью порядка 80 К/с.

Микроструктуру и химический состав сплавов исследовали с помощью растровых электронных микроскопов Superprobe-733 (JEOL) и РЭМ-106И "Selmi", последний оснащен системой энергодисперсионного анализа (EDS), дополнительно использовался 21. Фазовый оптический микроскоп Neophot состав исследовали с помощью рентгеновского дифрактометра Ultima IV (Rigaku) монохроматическом В СиКа излучении. Монохроматизация излучения обеспечивалась монокристаллом графита результатов дифрагированном Обработка на пучке. осуществлялась методом полнопрофильного анализа с помощью программы *PowderCell* 2.4.

Измерение микротвердости проводили на установке "Микрон-гамма" при нагрузке F-0,3 H алмазной пирамидкой Берковича с углом заточки 65°, нагружение и разгружение осуществлялась автоматически на протяжении 30с. Диагональ отпечатка имела размер около 30 мкм. Данный прибор автоматически вычисляет такие характеристики материала как микротвердость (H) и приведенный модуль упругости (модуль Юнга) (E_r) в соответствии с международным стандартом *ISO* 14577-1:2002(*E*).

Измерение износостойкости проводилось согласно ГОСТ 23.208-79; схема установки приведена на рис. 1. Образцы для определения износостойкости имели вид пластин 30х40х4 мм. Эталонные образцы были изготовлены из стали 45 в отожженном состоянии. При определении износостойкости использовался резиновый ролик диаметром 50, шириной 15 мм. В качестве абразивного материала – электрокорунд зернистостью 16-П по ГОСТ 3647-80. Для всех экспериментов количество оборотов ролика составляло 600, при скорости 60 об/мин., расход электрокорунда 650 г на образец при нагрузке 44 H.

Проведенными исследованиями установлено, что сплав VCrMnFeCo однофазный со структурой σ -фазы типа *FeCr*. Из литературы известно, что σ -фаза в бинарных системах на основе металлов (соединения $AlTa_2$ и Co_2W_3) образуется при средней электронной концентрации в пределах 4,33-7,2 эл/ат ($VEC = \sum_{i=1}^{n} c_i \cdot N_i$, где n – число

Рис. 1 Схема установки для испытания на износостойкость: 1 – образец; 2 – резиновый ролик; 3 – электрокорунд, 4 – нагрузка.

компонентов сплава, c_i – концентрация *i*-того элемента в ат. %, N_i – количество валентных электронов *i*-того элемента), а твердый раствор с структурой ГЦК начинает образовываться в ВЭСах, которые имеют VEC \geq 7,2 эл/ат. [6-7] Средняя электронная концентрация сплава VCrMnFeCo равна 7,0 эл/ат. Следовательно, для повышения средней электронной концентрации (и, соответственно, получения совместного образования σ и ГЦК фаз) было решено вводить элемент, который содержит большее количество

валентных электронов на внешней оболочке. Таким элементом является Ni, у которого N=10 эл/ат. на внешнем уровне. Это позволило нам получить естественный композиционный материал с пластической матрицей в виде твердого раствора с ГЦК структурой, упрочненной частицами твердой σ-фазы.

На рис. 2 представлены рентгенограммы литых сплавов VCrMnFeCoNi_x. Во всем исследованном концентрационном интервале содержания Ni количество фаз изменяется от двух (твердый раствор с ГЦК структурой + σ-фаза) до одной (твердый раствор с ГЦК структурой). Те есть по мере увеличения количества Ni в сплаве увеличивается количество твердого раствора с ГЦК структурой. σ-фаза сплавов VCrMnFeCoNi_x изоструктурная тетрагональной σ-фазе бинарной системы Cr-Fe.

Рассматривая особенности ВЭСов, необходимо отметить, что на дифрактограммах, приведенных на рис.2, дифракционные максимумы имеют низкую интенсивность относительно фона, также они сильно уширены и ассиметричны (по сравнению с бинарными σ -фазами и твердыми растворами), а на больших углах дифракции ($2\theta > 70^{\circ}$) не фиксируется разделение K_{α} – дублета. В совокупности это свидетельствует о сильном искажении кристаллической решетки за счёт наличия в ней атомов с различными атомными радиусами [8].

Рис. 2 Дифрактограммы системы VCrMnFeCoNi_x с разным содержением Ni.

Согласно данным рентгеноструктурного анализа сплав Ni₁ содержит две фазовые составляющие. Для определения характера распределения элементов между фазами была исследована его микроструктура в отраженных электронах и характеристическом рентгеновском излучении (рис. 3). Однако ни на одной из микроструктур эти фазы не

Рис. З Структура литого сплава VCrMnFeCoNi₁: в отраженных электронах (а), в характеристическом излучении Со (б); Сг (в); Ni (г); Mn (д), и с помощью оптического микроскопа (ж)

различаются. И только комплексное исследование с применением метода оптической микроскопии позволило четко определить морфологию зарегистрированных фаз (рис. 3ж). Микроструктура сплава в рентгеновском излучении показала, что все элементы входящие сплав. распределены плоскости шлифа. Дополнительный в равномерно В энергодисперсионный анализ (EDS), который осуществлялся в разных местах наблюдаемой области микроструктуры с помощью энергоанализатора микроскопа РЭМ-106И, подтвердил вышеизложенное – образец однороден по всей плоскости шлифа и его химический состав отвечает шихтовому. Твердый раствор с ГЦК структурой и σ-фаза имеют различное кристаллическое строение, при этом, все элементы в литом состоянии равномерно распределились между объёмами этих структур.

Исследование микроструктуры сплава $Ni_{1,5}$ выявило слабый контраст между σ фазой и матрицей, которая ассоциируется с твердым раствором (рис. 4а-б). Выделения σ фазы равномерно распределены в матрице сплава и имеют средний диаметр около 5 мкм. EDS анализ показал, что σ -фаза слегка обогащена Cr, а твердый раствор – Ni (табл. 1). Это подтверждает наши предположения о том, что именно Ni, вследствие повышения электронной концентрации, способствует образованию в данной системе твердого раствора с ГЦК структурой. В данном сплаве по границам зерен наблюдаются включения в виде черных точек. Поскольку EDS анализ не обнаружил разницу в химическом составе между этими включениями и матрицей, то, вероятно, это поры. Сплав Ni₂ имеет нормальный характер кристаллизации без следов вторичных фаз (рис 4в).

Рис. 4. Микроструктура (*BEI*) сплавов $Ni_{1,5}$ (а-б), и Ni_2 (в) в литом состоянии.

Таблица 1. Шихтовый состав VCrMnFeCoNi_{1,5} и EDS анализ его фаз.

Эломонт	Содержание элемента, % ат.					
JICMCHI	Состав шихты	ГЦК фаза	σ фаза			
V	15,4	14,1	14,0			
Cr	15,4	15,0	21,0			
Mn	15,4	15,0	15,8			
Fe	15,4	15,0	15,0			
Со	15,4	15,9	15,2			
Ni	23,0	25,0	19,0			

Из литых сплавов были вырезаны образцы для исследования износостойкости при трении о не жестко закрепленные абразивные частицы. Результаты по износостойкости ВЭС VCrMnFeCoNi_x были сравнены с данными по износостойкости металла, наплавленного штучными электродами Т-590 (состав: С–3,2%; Сг–25%; В–1%; Si–2,3%; Мп–1.25% мас., остальное Fe). Данная марка электродов предназначена для наплавки металла, стойкого в условиях абразивного изнашивания и широко применяется на практике. Толщина наплавленного слоя из Т-590 составила 10 мм (3 слоя), для исключения перемешивания наплавленного металла и металла основы (сталь 20). Относительная износостойкость сплавов вычислялась по формуле:

$$K = \frac{g_{\mathcal{Y}} \times \rho_{\mathcal{U}}}{g_{\mathcal{U}} \times \rho_{\mathcal{Y}}}$$

где g₃, g_и – значение потерь массы при испытаниях эталонных образцов и образцов исследуемых материалов, г;

 ρ_{9}, ρ_{u} – плотность эталонного и исследуемого материалов, г/см³.

Среднеарифметическая потеря массы образцов составляет: g₃=0,063 г; g_{Ni1}=0,0204 г; g_{Ni1,5}=0,037 г; g_{Ni2}=0,0412 г, относительная износостойкость составляет:

К_{Ni1}= 3,03; К_{Ni1,5}= 1,69; К_{Ni2}= 1,54 соответственно. Данный эксперимент показал, что сплав Ni₁ обладает самой лучшей абразивной износостойкостью. Относительная износостойкость T-590 составила К_{T-590}= 3,09.

По мере уменьшения количества σ-фазы в системе VCrMnFeCoNi_x, уменьшается микротвердость и приведенный модуль Юнга (табл. 2). Механические характеристики материала в зоне и вне зоны трения также различны (табл. 2). Как показал рентгенофазовый анализ, изменений фазового состава в зоне трения не произошло. Рост микротвердости в процессе трения на поверхности материала можно объяснить образованием вторичной мелкозернистой структуры за счет деформации сдвига. Причем прирост микротвердости в ВЭСах в зоне трения довольно большой (30-65%), по сравнению с Т-590 (23%). Объяснить причину столь интенсивного образования вторичных структур в ВЭСах затруднительно, так как эти сплавы являются новыми материалами и процессы структуро- и фазообразования в них на данный момент до конца не изучены. Однако образование вторичных наноструктур в ВЭСах при трении было также зафиксировано в работе [9]. При измерении твердости методом Роквела (HRC) разницы в зоне и вне зоны трения не наблюдалось, что свидетельствует о малой толщине слоя вторичных наноструктур. Также стоит отметить, что относительная износостойкость сплава Ni₁ немного ниже наплавочного материала T-590 (K_{Ni1} = 3,03 и K_{T-590} = 3,09) при том, что его микротвердость выше на 1 ГПа. Отсюда следует что основным показателем сопротивления материала абразивному изнашиванию есть отношение микротвердости к приведенному модулю упругости (H/E_r) [10]. Из имеющихся материалов обладать большей абразивной износостойкостью будет тот, данный показатель которого выше (рис 5).

Сплав	Н, ГПа		E _r , ГПа		H/E _r		D	Количество	
	В зоне Вне зоны	Вне	Вне зоны В зоне	Вне зоны	В зоне	Вне зоны	Вне зоны, Н _{НRC}	фазы, % мас	
		зоны						σ	ГЦК
Ni ₁	15,0±0,7	9,1±0,5	175±9	147±7	0,086	0,062	53±1	68	32
Ni _{1,5}	6,5±0,3	5,0±0,3	160±8	140±7	0,041	0,035	23±1	16	84
Ni ₂	5,4±0,3	3,6±0,2	148±7	131±6	0,036	0,028	14±2	0	100
T-590	14.0 ± 0.7	11.4 ± 2.2	175±9	165 ± 33	0.08	0.069	64±1	-	-

Таблица 2. Фазовый состав и механические свойства исследованных материалов в зоне и вне зоны трения.

Рис. 5 Зависимость относительной износостойкости от отношения H/E_r в зоне трения.

Выводы

На основе сплава VCrMnFeCo разработана новая система ВЭСов VCrMnFeCoNi_x, стойких к абразивному износу. Строение этих сплавов подобно естественному композиционному материалу с пластичной металлической матрицей (твердый раствор с ГЦК структурой), которая армирована твердой σ -фазой. Изменяя, довольно в узком диапазоне, содержание Ni, можно достичь любого соотношения между матрицей и армирующей фазой, что позволит подобрать для конкретно заданных видов нагрузок оптимальное сочетание пластических свойств и износостойкости полученного материала. При этом в системе VCrMnFeCoNi_x не наблюдается существенной ликвации между фазовыми составляющими, каждый элемент входит в состав матрицы и армирующей фазы. Установлен уровень микротвердости, приведенного модуля упругости в зоне трения и показано, что износостойкость исследованных материалов пропорциональна соотношению H/E_r.

Литература

- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering A. – 2004. – 375-377. – P. 213–218.
- Фирстов С.А., Горбань В.Ф., Крапивка Н.А., Печковский Э.П. Новый класс материалов-высокоэнтропийные сплавы и покрытия // Вестник ТГУ. – 2013. – Т.18, № 4. – С.1938-1940.

- Карпець М.В., Мисливченко О.М., Макаренко О.С., Крапівка М.О., Горбань В.Ф., Самелюк А.В. Властивості багатокомпонентного високоентропійного сплаву AlCrFeCoNi легованного міддю // Проблеми тертя та зношування. – 2014. №2. – С. 103–111.
- Senkov O.N., Senkova S.V., Woodward C., Miracle D.B. Low-density, refractory multiprincipal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis // Acta Materialia. – 2013. V. 61, № 5. – P. 1545-1557.
- Zhou Y.J., Zhang Y., Wang F.J., Wang Y.L., Chen G.L. Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTi_{0.5} solid-solution alloy // Journal of Alloys and Compounds. – 2008. V. 466. – P. 201–204.
- Guo Sheng, Chun Ng, Jian Lu, Liu C. T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys // Journal of Applied Physics. – 2011.
 V. 109, №10 – P. 103505.
- Guo Sheng, Liu C. T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase // Progress in Science: Materials International. – 2011. V. 21. – P. 433–446.
- Yeh Jien-Wei, Chang Shou-Yi, Hong Yu-Der, Chen Swe-Kai, Lin Su-Jien. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements // Materials Chemistry and Physics. – 2007. V. 103. – P. 41–46.
- Фирстов С. А., Горбань В. Ф., Даниленко Н.И., Карпец М.В., Костенко А.Д. Триботехнические характеристики высокоэнтропийных сплавов // Нанострутурное материаловедение. – 2010. – №2. – С. 63-70.
- Фирстов С.А., Горбань В.Ф., Печковский Э.П. Роль упругой деформации в определении механических свойств материалов методом автоматического индентирования // Металлофизика, новейшие технологи. – 2010. –Т.32, №5. – С. 673-684.

Влияние содержания никеля на износостойкость литого высокоэнтропийного сплава VCrMnFeCoNix / М. В.Карпець, В. Ф. Горбань, О. М. Мисливченко, С. В. Марченко. // Современная электрометаллургия. – 2015. – №1. – С. 56–60.