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A B S T R A C T

We focus on an in-depth study of the forced dynamics of a ferromagnetic single-domain uniaxial nanoparticle
placed in a viscous fluid and driven by an external rotating magnetic field. The process of conversion of magnetic
and mechanical energies into heat is a physical basis for magnetic fluid hyperthermia that is very promising for
cancer treatment. The dynamical approximation allows us to establish the limits of the heating rate and un-
derstand the logic of selection of the system parameters to optimize the therapy. Based on the developed ana-
lytical and numerical tools, we analyze from a single viewpoint the synchronous and asynchronous rotation of
the nanoparticle or/and its magnetization in the following three cases. For the beginning, we actualize the
features of the internal magnetic dynamics, when the nanoparticle body is supposed to be fixed. Then, we study
the rotation of the whole nanoparticle, when its magnetization is supposed to be locked to the crystal lattice.
And, finally, we realize the analysis of the coupled motion, when the internal magnetic dynamics is performed in
the rotated nanoparticle body. In all these cases, we describe analytically the uniform mode, or synchronous
rotation along with an external field, while the nonuniform mode, or asynchronous rotation, is investigated
numerically.

1. Introduction

Ferrofluid [1,2] applications in biotechnologies and medicine are
the key of stable interest to these media in recent years. Here, one
should note targeted drug delivery [3,4], biosensors, macro-molecule
and virus separation [3,5,6], magnetic fluid hyperthermia [3,7–15].
The latter is a promising method with principal advantages over con-
ventional chemotherapy. First, hyperthermia is a local method and
concentrates its action on the injured tissue. Second, hyperthermia
operates with nontoxic matters and has comparatively lower side ef-
fects. Here, treatment is realized through the local heating provided due
to the absorption of an external alternating field by ferromagnetic na-
noparticles, which were injected and concentrated around the injured
tissue. There are three mechanisms of conversion of the field energy
into heat: 1) the rotation of the nanoparticle body in a viscous carrier,
2) the damped precession of the particle magnetization inside the na-
noparticle, 3) the Eddy currents inside the particle, which are induced
by an external field. The latter is negligibly small, and further we
consider the first two cases.

Strictly speaking, magnetic dynamics and mechanical motion in-
terfere with each other. However, in literature the simplified models are
often used to describe the interaction of the nanoparticle with an

alternating field. Supposing that the nanoparticle is immobilized, the
problem of energy dissipation for the nanoparticle driven by a circu-
larly polarized field is considered both analytically and numerically in
[16,17]. In the mentioned investigations, based on the noise-free single-
particle model, the exact expressions for the power loss were obtained
in some specific cases, and the numerical simulation has been per-
formed for the general case. The simulations of the nanoparticle en-
semble, where only the magnetic damped precession produces the
losses, are reported in [18,19]. Despite the results obtained in the cited
works have sufficient scientific relevance, they do not exhaust the hy-
perthermia problem, because the motion of the nanoparticle bodies in
most cases has considerable influence on losses.

In this regard, another approximation, which should be considered,
is the so-called the rigid dipole (or frozen magnetic moment) model.
Within this, the nanoparticle magnetization is assumed to be fixed to its
anisotropy axis, and the nanoparticle performs the mechanical motion
only. Using the rigid dipole model, the response to an external alter-
nating field and the power losses were treated in terms of the complex
magnetic susceptibility [20–23]. The detailed microscopic considera-
tion of the stochastic dynamics of such nanoparticles was given in
[22,24], the influence of the dipole interaction on the pattern formation
was considered in [25], and its role in the power loss was studied in
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detail in [26]. Despite the rigid dipole model is partially valid for the
system parameters, which are suitable for hyperthermia, even small
deviations of the magnetization from the easy axis can lead to the
significant changes in the dissipation process.

The coupled dynamics of the nanoparticle body and its magnetiza-
tion are complex and cannot be described by a simple superposition of
the above mentioned types of motion. The model equations were firstly
written in [27], but the discussion of their explicit form has been
continued until now [28–31]. Special attention deserves also the at-
tempt to describe the energy absorption during the forced coupled
motion presented in [32]. There, the power loss was obtained on the
basis of the Lagrangian equation in the noise-free and single-particle
approximation. After this, the progress in the description of the energy
dissipation of a viscously coupled nanoparticle with finite anisotropy
driven by an alternating field was achieved in [33–35]. The further
development of this model assumes the accounting of thermal noise
firstly. In this regard, several important results were obtained in
[36,37], but the role of thermal fluctuations in the energy absorbtion
has not yet found.

To provide the consistent further progress and consider most rea-
listic and complex cases of the interaction of the nanoparticles with the
each other and with thermal bath, one need to complete the in-
vestigation of deterministic case first. In particular, problem of the
energy dissipation in coupled processional modes generated by a ro-
tating field is unsolved up to now. The latter is the main objection of the
presence study. To this end we continue to develop the methodological
scheme, which is realized in [35]. To understand better the role of both
energy dissipation channels, we consider consequently and on common
footing the driven magnetic dynamics in the fixed nanoparticle, the
mechanical rotation of the nanoparticle with the fixed magnetization,
and, finally, the coupled motion of the nanoparticle with finite aniso-
tropy. We assume that the rotating field acts, and there are two types of
motion, i.e. the uniform and nonuniform precession. The first type is
treated analytically, while for the latter the numerical description is
demanded.

2. Model and basic equations

We consider a uniform spherical single-domain ferromagnetic na-
noparticle of radius R, magnetizationM ( MM const= = ), and density
. This particle performs the spherical motion (or motion with the fixed
center of mass) with respect to a fluid of viscosity . Then, we assume
that the nanoparticle is driven by the external circularly polarized field

t H t H tH e e( ) cos( ) sin( ),x y= + (1)

where e e e, ,x y z are the unit vectors of the Cartesian framework, H is the
field amplitude, is the field frequency, t is the time, and is the factor,
which determines the polarization type ( 1= ± ).

The magnetic energy of the nanoparticle is given by

W H V
M

V t VHM n M H M e
2

( · ) · ( ) · ,a
z z

2= (2)

where Ha is the magnitude of the uniaxial anisotropy, n is the unit
vector defining the anisotropy axis direction, Hz is the magnitude of the
constant field. Taking into account the action on the nanoparticle
magnetization of its crystal lattice, the effective magnetic field acting
on the nanoparticle can be written as

V W H M t HH
M

M n n H e· ( ) .a z zeff
1 1= = + +

(3)

The dynamics of the nanoparticle leads to the dissipation of its energy

W. In accordance with [17], the power loss is determined as
Q dtqlim (1/ ) 0= , where q W= is the instantaneous power
loss, is an observation time, and the dot over denotes the derivative
with respect to time. As follows from Eq. (2), q V H M·eff= , and the
reduced power loss Q Q H VM/( )a 0= ( 0 is some characteristic fre-
quency, which is determined on the model approach) is written in the
form

Q dt h mlim 1 · .
0 eff= (4)

Here, Hh H / aeff eff= is the reduced effective field, Mm M/= is the unit
vector, which represents the direction of the nanoparticle magnetiza-
tion, t t0= is the reduced time, 0= is the dimensionless ob-
servation time. It is important to highlight that Eq. (4) is suitable for
both the analytical and numerical further treatment of the energy dis-
sipation problem.

As stated above, for the analytical description there are three ap-
proaches to the nanoparticle dynamics: 1) the nanoparticle body is
fixed, and the magnetic moment can rotate about the anisotropy axis; 2)
the magnetic moment is fixed within the viscously rotated nanoparticle;
3) both the nanoparticle body and its magnetic moment perform the
rotation. All these approaches will be investigated in detail.

But first we recall briefly the justification of the deterministic ap-
proximation, given in [35], when thermal bath does not take into ac-
count. There are two parameters can be used in the estimation: re-
lationship between the magnetic energy and thermal one and
relationship between the field period and characteristic times of both
Brown and Neel relaxation. If the magnetic energy essentially exceeds
the thermal one, then the fluctuations can only blur slightly the de-
terministic trajectories. Therefore, the impact of thermal fluctuations is
supposed to be negligible. If the field period is much larger than the
relaxation time, then the large deviations can only occur one time in
thousands of field periods. Therefore, the probability of essential fluc-
tuation is supposed to be vanishingly small. All these two conditions
can be valid for real maghemite nanoparticles of radius 20nm.

2.1. Internal magnetic dynamics

In the case of high frequencies, large enough particles and/or carrier
viscosities, and not so large anisotropy, the nanoparticle body motion is
negligible. Here, only the magnetic moment dynamics should be con-
sidered. To these purposes, the well-known Landau-Lifshitz-Gilbert
equation can be utilized

MM M H M M.eff
1= × + × (5)

Here, ( 0)> is the gyromagnetic ratio, ( 0)> is the dimensionless
damping parameter.

In the dimensionless form, Eq. (5) can be rewritten as

m m h m m.r eff= × + × (6)

Using recursive substitution and taking into account the properties of
the vector product, it is easy to show that Eq. (6) corresponds to

m m h m m h(1 ) ,r r
2

eff eff+ = × × × (7)

which is more convenient for the numerical treatment. After standard
transformations and accounting Eq. (1), one can write the set of scalar
equations with respect to the polar and azimuthal angles of the
vector m

h f hf h

h f h f h

(1 ) cos sin (cos ),

(1 ) csc cot cos ,
r z

r z

2 1

2 1

+ = + +

+ = + + (8)
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where h H H h H H/ , /a z z a= = ,

f t tcos cos( ) sin sin( ),= + (9)

and f f /= .

2.2. Motion of the nanoparticle body

In the case of strong anisotropy or weak coupling with the en-
vironment, the internal magnetic dynamics can be negligible. And here,
the nanoparticle dynamics is described by the rigid dipole model, when
the magnetization is supposed to be fixed to the anisotropy axis. This
model is introduced in [38] and has been successfully used up to now.
The main peculiarity of the analytical description is the presence of two
vector equations. The first equation, in fact, is the condition of the rigid
body rotation, and the second one is the second Newton’s law for the
rotational motion

J VM V
n n

n H
,

6 .
= ×

= × (10)

Here, is the nanoparticle angular velocity, J R( 8 /15)5= is the na-
noparticle moment of inertia, V is the nanoparticle volume, and dots
over symbols represent derivatives with respect to time. When the in-
ertia momentum is too small and can be neglected, Eq. (10) are
transformed into a simple form

n n n h( ),cr= × × (11)

where MH /(6 )cr a= is the characteristic frequency of the uniform
mechanical rotation. After standard transformations and accounting Eq.
(1), one can write the set of scalar equations with respect to the polar
and azimuthal angles of the vector n

h t h
h t

cos cos( ) sin ,
csc sin( ).

cr z

cr

1

1
=
= (12)

2.3. The coupled dynamics of the body and magnetic moment of the
nanoparticle

As shown in detail in [30], the coupled magnetic dynamics and the
mechanical motion cannot be described by a simple superposition of
these two types of motion because of the significant changes in the basic
equations. Ultimately, it was stated that the coupled dynamics obeys
the following pair of coupled equations:

J V V V
n n

M M H
,

6 ,1
= ×

= + × (13)

MM M H M M M( ).eff
1= × + × × (14)

In the case when the inertia term in (13) is negligible, this equation can
be transformed into the more convenient form. Then, we transform the
equation for the internal magnetic dynamics (14) in order to separate
the terms containing the time derivatives. As a result, we obtain

n m n m h n
m m h m m h

/ ( ) ,
(1 ) ,

cr r

r

1

1
2

1
1

eff
1

1 eff
1

= × + × ×
+ = × × × (15)

where M/6 , /(1 ), /(1 )r r1 1= = + = + ,

h t h th e e mn n( cos sin )(1 ) ( ) .x yeff
1 = + + + (16)

After standard transformations and accounting Eq. (1), we can write the
set of scalar equations with respect to the polar and azimuthal
angles of the vector n, as well as to the polar and azimuthal angles
of the vector m

f f
f f

(1 ) ,
(1 ) csc ( ),

( cos sin ),
[ cot ( sin cos )],

r

r

r y x

r z y x

1
2

1
1

1 1 2

1
2

1
1

1 1 2

1
1 1

1
1 1

+ = +
+ =

=
= + (17)

where

f h t F

f h t F

h F
F

h h t
h h t

h t

mn

[ (1 )sin( ) sin sin( )],

cos [ (1 )cos( ) sin cos( )]

sin [(1 ) cos ],
cos cos cos( )sin sin ( )

cos cos sin sin (1 )[ sin sin cos cos( )],
cos sin sin cos (1 )[ sin cos cos sin( )],

(1 ) sin( )sin sin .

z

x z

y z

z

1

2

= +

= + +

+ +
= + =
= + + +
= + + +
= +

(18)

We want to underline here that the system Eq. (17) along with desig-
nations Eq. (18) are appropriate for further numerical treatment.

Therefore, the model equations derived above allow us to perform
the investigation of the precessional motion of the nanoparticle induced
by the external circularly polarized field. The approach used neglects
thermal fluctuations. Its validity is discussed in [17,35]. The forced
stochastic motion in the simplified cases of the rigidly fixed nano-
particle and the rigid dipole are considered in [39,40] and in [24,26],
respectively. The stochastic motion in the case of the coupled magnetic
dynamics and the mechanical rotation is not completely studied yet.
Some issues are discussed in [36,37].

3. Results and discussion

3.1. Internal magnetic dynamics

If the nanoparticle is supposed to be immobilized, there are two
modes of the steady-state dynamics ofm under the action of the field of
type Eq. (1) [41–43]. The first mode is the uniform rotation, which is
performed synchronously with the external field. The second one is the
nonuniform rotation, when the period of m does not coincide with the
period of tH( ). From the analytical viewpoint, the uniform mode is
characterized by the constant precession and lag angles, 1 and 1,
where t1 = . As follows from Eq. (8), the precession angle sa-
tisfies the equation [44]

h h1 cos
cos

cos
1

cos
1

,z
2

2
1

2
1

1 2

2
1

2

2

= +
+

+
+ (19)

and the lag angle is connected to the precession one as

h
sin

(1 )
sin .1 2 1=

+ (20)

Here , /r r0 = = . After integration by parts of Eq. (4), we ob-
tain the general expression for the reduced power loss in the case of the
periodic mode

Q
(1 )

sin .
2

2 2
2

1=
+ (21)

In the nonuniform mode, the polar angle of the vector m varies
periodically in time with a period, which does not coincide with the
field one. The similar oscillations are demonstrated by the azimuthal
angle together with the linear growth in time. This dynamics is ac-
companied by the power losses, which can be investigated only in the
numerical way. The difference scheme for the numerical calculus of the
power loss here is written as
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Q
N

h h

h

1 [ (cos cos sin sin ) (cos sin

sin cos ) sin ],
i

N

xi i i i i i i yi i i i

i i i zi i i

1
= +

+
=

(22)

where N t/= ( r= and is chosen as 105 in the simulation) is the
number of time steps on the external field period, t ( 1/ ) is the
value of the time step within the numerical calculation procedure,

t t t t h

h t h h t h h

( ), ( ), , ,

cos( ), sin( ), cos

i i i i i
t

t i
t

t xi

i yi i zi z i

( ) ( )i i= = = =

= = = +

.

The results of the series of simulations are illustrated in Fig. 1. For
the uniform mode, these results are in excellent agreement with those
obtained from Eq. (21). The sharp changes of Q are associated with the
changes in the precession modes that is discussed in detail in
[17,42,43]. When the field amplitude is considered to be constant, the
most complicated case, which corresponds to the frequencies near the
resonant one, is realized in the following way (see the curves for
h 0.21= and h 0.35= ). For beginning, the power loss increases with the
field frequency within the uniform mode, see the curves fractures with
the triangle markers. Then, an abrupt increase in Q is caused by the
reorientation or switching to the “down state”, see the curves fractures
with the circle markers. After that, the nonuniform mode starts to be
generated that is testified by a sharp increase in theQ ( ) curve, see star
markers. It is important, the condition /2< holds predominantly.
From the view point of energy minimizing, this mode is generated in
order to reduce the losses that is clear from the figure. Finally, a further
sharp increase in Q is the consequence of switching to the uniform
mode again, see curves fractures with the squares. Here we want to
draw your attention to the following points. First, the mentioned
switching is occurs when the stationary solution of Eq. (8) become
unstable. This purely dynamical phenomenon is widely investigated
and described earlier, see, for example, [41,45,42,43]. Also, this phe-
nomenon has been confirmed in real experiments, see for example,
[46]. In the other model cases, especially in the case of coupled motion
of the nanoparticle with finite anisotropy, such effect should also take
place. Second, the thermal fluctuations can modify the magnetic mo-
ment behavior. But, as it was shown in the mean-first passage study
[40], the qualitative difference, which is caused by different precession
regimes, can remain in stochastic dynamics of vector m.

3.2. Motion of the nanoparticle body

If the nanoparticle magnetic moment is fixed inside, the uniform
and nonuniform precession modes can be also realized. The first of
them is the natural solution of Eq. (12). This mode is characterized by
the constant lag angle t1 = and the constant angle of the pre-
cession cone 1. Substituting these solutions into Eq. (12), we derive the
system of algebraic equations for the calculation of 1 and 1

h h
h

cos cos sin ,
sin sin .

z1 1 1

1 1

=
= (23)

Here, cr0 = and / cr= . The average value of the power loss can
be found easily in this case. The straightforward calculations using Eq.
(23) and Eq. (4) yield

Q sin .2 2
1= (24)

Two remarks are relevant here. First, Eq. (24) for a small angle of the
precession cone coincides with the results obtained by Xi [32] in the
linear approximation. And, second, when the static field is absent
(h 0z = ), the relationships h/2, sin /1 1= = , andQ 2= are valid.

To describe the power loss behavior in the whole range of para-
meters and visualize the data, the numerical simulation is also de-
manded here. The difference scheme for the numerical calculus of the
power loss is written as

Q
N

h h

h

1 [ (cos cos sin sin ) (cos sin

sin cos ) sin ],
i

N

xi i i i i i i yi i i i

i i i z i i

1
= +

+
=

(25)

where N t/= ( cr= and is chosen as 105 in the simulation) is the
number of time steps on the external field period, t ( 1/ ) is the
value of the time step within the numerical calculation procedure,

t t t t h

h t h h t

( ), ( ), , ,

cos( ), sin( )

i i i i i
t
t i

t
t xi

i yi i

( ) ( )i i= = = =

= =

.

As follows from the analytical results discussed above, when h > ,
the nanoparticle is rotated uniformly, and all contributions into the
power loss are due to this rotation. This is confirmed by the series of
simulations, the results of which are shown in Fig. 2, see the triangle
markers. At the same time, when h < and h , the dynamics be-
comes nonuniform, see the star markers. Similar to the previous case,
here n performs the rotation simultaneously with the oscillations of a

Fig. 1. (Color online) Model of the fixed nanoparticle: the most typical de-
pendencies of the power loss on the field frequencies for different field ampli-
tudes. The values of the system parameters are the following:

h0.1, 1, 0z= = + = . Triangle markers designate the uniform precession in
the “up state”; circle markers designate the uniform precession after the mag-
netization switching to the “down state”; stars markers designate the nonuni-
form precession; square markers designate the uniform precession in the “up
state” again.

Fig. 2. (Color online) Model of the fixed magnetization: the most typical de-
pendencies of the power loss on the field frequencies for different field ampli-
tudes. The values of the system parameters are the following:

h0.05P, 1, 0z= = + = , and the initial condition 0.010 = . Triangle markers
designate the uniform precession; star markers designate the nonuniform pre-
cession.

T.V. Lyutyy et al. Journal of Magnetism and Magnetic Materials 473 (2019) 198–204

201



larger period. Since the nonuniform precession is characterized by
smaller instantaneous angular velocity of the nanoparticle, a decrease
in the power loss is observed. It is expressed in a pronounced drop of
Q ( ) for the fixed amplitude h (see Fig. 2). There are two features,
which should be underlined in this regard. First, while the field fre-
quency grows, the average angular velocity tends to zero, the oscilla-
tion frequency tends to , and the oscillation amplitude tends to the
saturated values predicted by Eq. (34) in [35]. Second, the resulting
power loss in the nonuniform mode depends on the initial position of
the nanoparticle.

3.3. The coupled dynamics of the body and magnetic moment of the
nanoparticle

In the case of synchronous precession of the vectors m and n with
the external circularly polarized field (see Fig. 3), the stationary solu-
tion of the set of Eqs. (13), (14) can be obtained in the form

t t, , ,1 1 1 1= = = = . To find the unknown con-
stants ,1 1 and ,1 1, we used the condition of absence of the mag-
netic moment motion with respect to the nanoparticle crystal lattice

m m 0.× = (26)

After substitution of Eq. (26) into the second equation of Eq. (13) and
neglecting the inertia term, we derive

m n mn0 ( )( ) .cr= × + (27)

Then, let us introduce the double-primed coordinate system x y z ,
which is rotated along with the external field as follows from Fig. 3. In
this new framework, the angular velocity has a very simple form

( sin , 0, 0).1= (28)

Since Eq. (14) cannot be easily represented in the double-primed
system, we need to write the explicit form of all the vectors in the la-
boratory coordinate system. To perform the necessary transformations,
we should use the rotation matrix

C
cos cos sin sin cos
cos sin cos sin sin

sin 0 cos
,1

1 1 1 1 1

1 1 1 1 1

1 1

=
(29)

where t1 1= . Let us introduce the designation

F sin sin cos( ) cos cos1 1 1 1 1 1 1= + (30)

and represent the vectors m, , and n in the laboratory system using
the rotation matrix Eq. (29). This allows us to straightforwardly obtain
the set of algebraical equations

( )

( )

h

h

F h

F h

sin sin sin cos cos ,

sin sin sin ,

sin( )sin sin ,

sin sin( ) sin .

z

z

1 1 1 1 1

1 1
2

1

1 1 1 1 1

1 1 1 1 1

r cr

cr

r

=

=

=

= (31)

Performing the direct integration of Eq. (4) and accounting the re-
presentation of the vectors m and n in the spherical coordinates

m ( sin sin , sin cos , 0),1 1 1 1= (32)

n (sin cos , sin sin , cos ),1 1 1 1 1= (33)

where t1 1= , we obtain

Q 2 sin sin .1 1= (34)

Here, / r1= . It is important to note that Eq. (34) is similar to the
Eq. (21) bearing in mind Eq. (20).

Using Eq. (4) and the representation of the vectors m and n in the
spherical coordinates, one can derive the expression for the numerical
calculation of the power loss. It corresponds to the expression (25) with
the following differences: r1= (is chosen as 105 in the simulations),

h h t F
h h t F
h h F

cos( ) sin cos ,
sin( ) sin sin ,

cos ,

xi i i i i

yi i i i i

zi z i i

= +
= +
= + (35)

F F t t t( ), ( ), ( )i i i i i i= = = .
An additional degree of freedom inspires more interesting and

complicated behaviour of the nanoparticle dynamics. First, like in the
previous cases, a conventional nonuniform mode, which is char-
acterised by oscillations of the precession angles, is generated. We recall
that the period of these oscillations does not coincide with the field one.
Second, like in the case of the fixed nanoparticle, the switching between
two uniform modes, which is characterised by different nanoparticle
orientations, can occur. Moreover, another one interesting mode takes
place. It is characterised by the immobilized magnetic moment, while
the nanoparticle body performs oscillations: the angles and of the
vector n vary synchronously along with the external field without a
recognizable drift, while the angles and of the vector m remain
practically constant. Such a type of motion is spread enough. It occurs
in the “up state”, “down state” and around the external field polariza-
tion plane. The transitions between the discussed types of motion are
exhibited in the jumps in the dependence Q ( )). Ultimately, we con-
clude that the switching between the uniform and nonuniform modes is
accompanied by an abrupt increase in the power loss. The switching
between two uniform modes with the nanoparticle reorientation leads,
at least, to one-order reduction of the power loss. The most typical
dependencies Q ( ) are depicted in Fig. 4).

4. Conclusions

The forced coupled dynamics of the nanoparticle body and its mag-
netization has been considered in the deterministic approximation. The
approach is based on the torque equation and equation of damped pre-
cession of the magnetization, which are derived from the total momentum
conservation law. Within this framework, two modes of motion under the
action of the circularly polarized field are described. While both the na-
noparticle easy axis and its magnetic moment perform precession within
the cones with constant angles, we call this the uniform mode. While the
precession becomes unstable and the polar angle, at least, for the easy axis
undergoes the periodical changes, we call this the nonuniform mode. To
understand well the mechanisms of energy dissipation, we present the
results for the coupled motion together with the results for the cases of the
rigidly fixed nanoparticle inside the solid matrix and the rigidly fixed
magnetization inside the mobile nanoparticle.

Fig. 3. Schematic representation of the behaviour of the vectors n m, and the
coordinate systems used for the precession mode description.
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Since the external field is supposed to be rotating, it is natural that
the simplest mode of the forced motion is the uniform precession. It is
characterised by the constant precession angles and lag angles, the
values of which depend on the system parameters. The algebraical
equations for these dependencies have been obtained for all the cases
considered. The main properties of the solution of the derived algeb-
raical equations for the coupled dynamics case are the following. First,
the nanoparticle magnetic moment always constitutes a smaller angle
with the external field than with the anisotropy axis. Second, the pre-
cessional dynamics suggests the presence of some effective field, which
is perpendicular to the field polarization plane, depends on the filed
frequency and the polarization direction. For high frequencies, this
effective field is large enough and can hold the magnetic moment al-
most along the direction, which is perpendicular to the polarization
plane of the external field. The last fact was confirmed numerically.
Finally, the expressions for the power loss have been obtained for the
case of viscous rotation of the nanoparticle with finite anisotropy and
for the simplified cases of the fixed nanoparticle and the fixed magne-
tization.

The nonuniform mode is a key issue of our investigations and has
been described numerically. This mode consists in the periodical
changes of the polar angles with a period, which does not coincide with
the field one. The activation of the nonuniform precession mode is
accompanied by the changes of the power loss. However, in the case of
the motion of the nanoparticle with the magnetization fixed inside, the
nonuniform precession leads to the power loss decrease. At the same
time, in the case of the magnetic dynamics inside the fixed nanoparticle
and in the case of the coupled motion of the nanoparticle with finite
anisotropy in a viscous carrier, the nonuniform precession is connected
with a considerable increase in the power loss. The coupled motion
exhibits another type of the nonuniform precession. It is characterised
by the nanoparticle magnetization, which is stable in the laboratory
coordinates, and the nanoparticle body, which oscillates synchronously
with the external field. This motion is realized for a wide enough range
of parameters and can include several modes distinguished by discrete
positions of the magnetization. The switching between them and the

modes of other types is also connected with abrupt modifications of the
power loss.

Despite the nonlinear effects in the coupled dynamics still need to
be investigated thoroughly, the reported results allow us to state the
following. The sharp transitions between the different precession modes
is an important phenomenon to control the heating process within
hyperthermia. On the one hand, it can be used to select the optimal
parameters for therapy. On the other hand, we need to bear in mind it
to prevent dangerous overheating. Although our approach does not take
into account the thermal agitation and the dipole interaction between
the nanoparticles, its relevance is obvious. First, as it follows from the
approximation of the fixed magnetization, the interaction and thermal
noise decrease these values. Therefore, the deterministic approach es-
tablishes the limit values of the power loss. Second, for the large enough
nanoparticles ( 20 nm) and comparatively intense external fields, the
regular component in the nanoparticle dynamics is dominant.
Consequently, the deterministic approach gives the results close to the
correct ones.
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