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Abstract Within the framework of the canonical
Hamilton system the behavior of active nanoparticles
was investigated. On the basis of the phase portraits the
kinetics of the system was studied. The transformations
of the nanoparticle’s internal energy into the kinetic
energy of the motion and into the total mechanic energy
were considered.
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1 Introduction

Starting with the famous lecture ”There’s Plenty of
Room at the Bottom” by Richard Feynman the inter-
est in nanoscale systems and their applications is still
increasing. Besides the development of new materials
is closely linked with the progress in nanoscience. In
this case there are two basic technologies: top-down and
bottom-up [1]. The latter is a more complicated tech-
nique, because it involves the process of self-organization
(or self-assembly) of individual nanoparticles. Thus the
control of the nanoparticles’ motion is on the top of in-
terest today.
In recent years, a lot of experiments are conducted

with so-called Janus nanoparticles — the gold-capped
colloidal spheres, which are heated by laser light and as
a result can perform various types of the motion [2, 3, 4,
5, 6]. This happens because the particles transform their
internal energy into the energy of motion [4, 7, 8, 9, 10].
Such behavior of gold nanoparticles is very similar to
the motion of biological objects (bacteria, cells, macro-
molecules, plankton, etc.), which also have a store of

the internal energy [11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
Therefore the motion of active nanoparticles 1 are some-
times identified with self-proppelled motion in biology
[4, 10, 18, 22, 23]. Although it is worth noting that the
active particles (or self-phoretic colloids) and so-called
run-and-tumble particles (motile bacteria) are not al-
ways equivalent: the paper [24] (where the criterion of
equivalence are obtained) discusses the relationship of
these two concepts.
In many studies [5, 6, 7, 9, 16, 17, 18, 19, 25] the

motion of biological objects and nanoparticles reduced
to three main types (see Fig.1): translational, rotational
and run-and-tumble motion.
In our consideration we propose an analytical model,

which allows to describe the motion of nanoparticles
in a self-consistent way. Despite the many different
analytical and numerical methods [3, 10, 26, 27, 28,
29, 30, 31, 32, 33] for describing such behavior a con-
sistent analytical scheme based on the canonical rep-
resentation does not exist yet. Besides canonical ap-
proach we take into account the similarity with the mo-
tions of biological objects and develop previous work
[5, 6, 7, 10, 27, 30, 31, 32] in this direction.

2 Basic equations

We can describe the kinetics of the dynamical system
using the phase space (q,p), where q = q1, q2, ..., qn is
the n-dimensional coordinate of the particle and p =
p1, p2, ..., pn is its n-dimensional momentum [34, 35].
The point on the phase space represents a state of the
system. Changes in the state of the system lead to a

1The term ”active Brownian particle” was first proposed in
1995 in Ref.[21] for the particles, which can generate the field that
defines the particles’ motion.
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Figure 1. Schematic representation of the types of nanoparticles
motion a) translational motion, b) rotational motion, c) run-and-
tumble motion

displacement of the point in the phase space — as a re-
sult we obtain the phase trajectory. So, having a phase
portrait (a set of phase trajectories) of the system we
can describe the behavior of nanoparticle ensemble.

The phase flow F̂ describing the changes in the system
state

(q(t),p(t)) = F̂ (q(0),p(0)) (1)

is defined by the differential equations of the motion
[34, 35]

q̇ = Q(q,p, t),

ṗ = P (q,p, t)

(where dot denotes differentiation with respect to time
t).

For determining the specific form of these equations
we must apply the corresponding conservation law —
the conservation of the phase volume — which defines a

class of Hamilton systems with motion equations

q̇ =
∂H
∂p

, (2)

ṗ = −∂H
∂q

. (3)

Here the Hamilton function

H(q,p, t) = K(p, t) + P(q, t). (4)

represents the total mechanical energy of the system, i.e.
the sum of kinetic K and potential P energy.
In [30, 31] the authors proposed a general theory of

canonical dissipative systems with couplings of the inter-
nal energy. Following this idea we consider the nanopar-
ticles motion in a medium with liquid friction. For this
purpose in the equation (3) we add the term ṗ ∝ −γp,
which represents the friction force of a solid sphere in
the liquid/gas medium at low Reynolds numbers (γ is a
liquid friction coefficient) [10, 23].
Describing the active motion we must also include in

our analysis the internal energy E of the particle and
its possible transformations. As a result on the basis of
the canonical system (2)-(3) we get three self-consistent
differential equations

q̇ =
∂H
∂p

, (5)

ṗ = −∂H
∂q

− γ
∂H
∂p

+ βE · f1(H), (6)

Ė =
Ee − E
τ

− 2µE · f2(H). (7)

Equation (7) for the internal energy contains relaxation
and dissipation terms: the first term takes into account
the decrease in the internal energy in stand-alone mode
to the value Ee defined by external conditions (τ is the
corresponding relaxation time); the second (dissipation)
term describes the decrease in the internal energy after
its transformation into kinetic or total mechanical en-
ergy. At the same time this transformation introduces
an additional positive term in the equation (6). The
form of the functions f1 and f2 depends on the type of
energy transformation (β and 2µ are the positive cou-
pling constants).
A description of the collective motion of active parti-

cles is often reduced to the one-body problem [10, 27].
So we simplify our system to the one-dimensional case
using the notations q → q, p → p, H → H, K → K,
P → P , E → ε. Then, instead of rotational motion,
we can consider the oscillations along a single axis. The
one-dimensional case is the most simple, but on its ex-
ample the important concepts of the general theory can
be studied. Furthermore for an ensemble of identical



44 Canonical Representation of the Active Nanoparticles Kinetics

particles we can use a set of different initial conditions
(coordinates and momenta) for single nanoparticle when
solving the system (5)-(7).

3 Transformation of the internal
energy into kinetic energy

The most common form of the Hamilton function

H = K(p) + P (q) =
p2

2m
+
mω2q2

2
, (8)

is determined by a particle mass m and natural fre-
quency ω [36].
First, we consider the transformation of the internal

energy only into the kinetic energy. In this instance the
system (5)-(7) becomes

q̇ =
∂H

∂p
, (9)

ṗ = −∂H
∂q

− γ
∂H

∂p
+ βε

∂H

∂p
, (10)

ε̇ =
εe − ε

τ
− 2µεK(p). (11)

Substituting the Hamilton function (8) into Eqs.(9)-
(11), we obtain

q̇ =
p

m
, (12)

ṗ = −mω2q − γ
p

m
+ βε

p

m
, (13)

ε̇ =
εe − ε

τ
− µε

p2

m
. (14)

This system of equations has a lot of constants, mak-
ing it difficult to study. Therefore, we introduce the di-
mensionless variables (time, coordinate, momentum and
internal energy) using the following scales in terms of di-
mension

ts ≡
m

γ
, qs ≡

(
m

µτγ2

) 1
2

, ps ≡
(
m

µτ

) 1
2

, εs ≡
γ

β
.

(15)
Then in dimensionless form the system (12)-(14) reduces
to

q̇ = p, (16)

ṗ = −χq − p+ εp, (17)

δε̇ = εe − ε− εp2, (18)

where we also introduce the dimensionless constants

χ ≡ t2sω
2, δ ≡ τ/ts. (19)

Since we assume that the internal energy of the system
changes quickly, we can apply the approximation

τ ≪ ts, (20)

which means that the relaxation time of the internal
energy is much less than the time scale. Then δ ≪ 1
and the left-hand side of the Eq.(18) can be neglected.
As a result we obtain the following dependence of the
internal energy on the momentum

ε =
εe

1 + p2
. (21)

The Fig.2 shows that in the stationary mode the in-
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Figure 2. The dependence (21) of the internal energy on the
momentum for 1 – εe = 1; 2 – εe = 2

ternal energy decreases from the value εe, given by the
external conditions, to a value εe/2 at the maximum
momentum pm =

√
m/(µτ).

Substituting the expression (21) into the Eq.(17) we
obtain the system of two differential equations

q̇ = p,

ṗ = −χq − p+
εep

1 + p2
, (22)

instead of (16)-(18). Now we can build the phase por-
trait and analyze the kinetics of the system in the phase
space (q, p).

First we define the singular points corresponding to
the equilibrium states of the system. For Eqs.(22) there
is only one singular point O with the coordinates q0 = 0,
p0 = 0.

The behavior of the phase trajectories near the singu-
lar point O can be analyzed by Lyapunov exponents λ
(for regular mode λ ≤ 0 while in chaotic regime λ > 0)
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[34]. When searching the Lyapunov exponents, we apply
the substitution

q = q0 + aeλt,

p = p0 + beλt, (23)

where a, b≪ 1 are the amplitudes of the deviation from
the singular point. As a result from Eqs.(22) we get

λ1,2 =
εe − 1

2
±

√(
εe − 1

2

)2

− χ. (24)

For demonstrating the corresponding variants of phase
portraits we combined them with the phase diagram (see
Fig.3).
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Figure 3. Phase diagram of the system: USN – region of the
unstable node realization, the corresponding phase portrait is built
for χ = 1, εe = 4; USF – the unstable focus region, phase portrait
for χ = 1, εe = 2; SN – the stable node region, χ = 0.1, εe = 0.1;
SF – the stable focus region, χ = 1, εe = 0.5. Center (C) is
realized on the line εe = 1, portrait corresponds to χ = 1

Analyzing the Lyapunov exponents (24) we can say
that singular point O is stable for εe < 1, and unstable
in the opposite case εe > 1. For critical case εe = 1
the point O becomes an elliptical one (C in Fig.3, point
O represent a center2). The damped oscillatory regime,
under which point O corresponds to a focus, is realized
for εe ∈

(
1− 2

√
χ; 1 + 2

√
χ
)
.

According to the phase portraits we can study the ki-
netics of active nanoparticles. For example, in stable
node region (SN in Fig.3, point O represents a stable
node) we get a uniform change of the coordinate and
momentum that corresponds to the translational type
of nanoparticles’ motion. For the stable focus region

2The motion near the center will be stable: the trajectories
passing in a small neighborhood of this point will always perform
a finite motion.

(SF in Fig.3, O is a stable focus) we have damped oscil-
latory regime when the particle periodically changes its
coordinate and momentum with decreasing amplitude.
In both these cases, the particles with different initial co-
ordinates and momenta will be assembled at the point
O (but in the second case, self-assembly process will be
slower).
For unstable regions (USN and USF in Fig.3) the pro-

cess will be the opposite: for any initial values of the
coordinate and momentum the particle will leave the
neighborhood of the singular point O. And the self-
assembly of nanoparticles does not occur.
Thus changing the parameters of the environment (or

changing the value of the internal energy εe), we can
control not only the type of the nanoparticles’ motion
but also the assembly process.

4 Transformation of the internal
energy into the total mechanic
energy

If the internal energy is transformed into the total
mechanical energy, instead of (9)-(11), we should write

q̇ =
∂H

∂p
, (25)

ṗ = −∂H
∂q

− γ
∂H

∂p
+ βε

∂H

∂p
+ αε

∂H

∂q
, (26)

ε̇ =
εe − ε

τ
− 2µεK(p)− 2σεP (q). (27)

Here α and σ are the corresponding positive constants
of the couplings to the potential energy. Substituting in
the system (25)-(27) the Hamilton function (8) we arrive
at

q̇ =
p

m
, (28)

ṗ = −mω2q − γ
p

m
+ βε

p

m
+ αεmω2q, (29)

ε̇ =
εe − ε

τ
− µε

p2

m
− σεmω2q2. (30)

As in the previous case, we use the dimensionless vari-
ables with scales (15) and dimensionless constants (19).
In addition, we introduce the notations

φ ≡ αγ

β
, ψ ≡ σ

µ
. (31)

Then the system (28)-(30) takes the final form

q̇ = p, (32)

ṗ = −χq − p+ εp+ φχεq, (33)

δε̇ = εe − ε− εp2 − ψχεq2. (34)
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The approximation (20) leads to the dependence of the
internal energy (see Fig.4)

ε =
εe

1 + p2 + ψχq2
(35)

different from the (21).
As a result the behavior of the system is described by

two differential equations

q̇ = p, (36)

ṗ = −χq − p+ εe
p+ φχq

1 + p2 + ψχq2
, (37)

which are characterized by three singular points

O(0; 0), C

(
−
√
εeφ− 1

ψχ
; 0

)
, D

(√
εeφ− 1

ψχ
; 0

)
.

The last two points are realized under the condition
εe > φ−1.
Analyzing the stability type of the point O, we obtain

the following Lyapunov exponents

λ1,2 =
εe − 1

2
±

√(
εe − 1

2

)2

− χ(1− εeφ). (38)

If the parameter εe ∈ (ζ1, ζ2) where ζ1,2 =(
1− 2χφ∓ 2

√
χ(1− φ) + χ2φ2

)
, the damped oscilla-

tory regime is realized (the singular point O is a focus).
At the same time this point will be stable if εe < 1.
Lyapunov exponents for the singular points C and D

are given by the equation

λ1,2 =
1− φ

2φ
±

√(
1− φ

2φ

)2

− 2χ
εeφ− 1

εeφ
. (39)

For these points the damped oscillatory regime is real-
ized if

εe <
8φχ

8φ2χ− (1− φ)2
.

Besides points C and D become stable for φ > 1.
We present in Fig.5 some examples of phase portraits

of the system (36)-(37). For simplicity, we choose ψ = 1,
since Lyapunov exponents (38),(39) do not depend on
this parameter.
In this case, the number of the stable states of the

system increases. For example, phase portrait in Fig.5c
represents two stable focuses C and D that may indi-
cate a parallel process of self-assembly. Besides now we
can control the coordinate of the self-assembly process:
point O for the case shown in Fig.5a or points C and D
in Fig.5c).
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Figure 4. Dependence of the internal energy for χ = 1 at a)
ψ = 10, b) ψ = 0.1. Surface 1 corresponds to the εe = 0.5, surface
2 to the εe = 1.5.
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Figure 5. Phase portraits of the system (36)-(37) at χ = 1,
ψ = 1, a) εe = 0.5, φ = 0.5; b) εe = 3, φ = 0.5; c) εe = 0.5,
φ = 3.

5 Conclusion

The control of the nanoparticles’ motion are quite ac-
tual problem at the moment for many studies.
In our work, we suggested a self-consistent model that

allowed to describe the motion of active nanoparticles in
the canonical representation. We postulated the equa-
tion for the internal energy and introduced the corre-
sponding terms in the Hamilton canonical system of
equations. As a result, we investigated the singular
points, which corresponded to equilibrium states of the
system, and analyzed the kinetics of the system on the
example of the phase portraits.
Our findings may help in modeling the processes oc-

curring in an ensemble of identical nanoparticles. Espe-
cially it is actual in terms of developing and producing
new nanomaterials by bottom-up technique, when you
can control the coordinate and the velocity of the pro-
cess of self-assembly of nanoparticles.
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ics of a self-propelled particle in shear flow, Phys.Rev.
E 84, 031105 (2011).
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