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Abstract – The statistical technique for detecting 

outliers in bivariate non-Gaussian data on the basis of 

normalizing transformations, prediction ellipse and a 

test statistic (TS) for the Mahalanobis squared 

distance (MSD), which has an approximate F 

distribution, is proposed. Application of the technique 

is considered for detecting outliers in two bivariate 

non-Gaussian data sets: the first, actual effort (hours) 

and size (adjusted function points) from 145 

maintenance and development projects, the second, 

effort (hours) and mass (tonnes) of designed the 

section of the ship from 188 designs of sections. 

Keywords – outlier; normalizing transformation; 

bivariate non-Gaussian data; Mahalanobis squared 

distance; F distribution; prediction ellipse. 

I. INTRODUCTION 

An important step in data processing is the outlier 

detection. Today the problem of outlier detection in a 

bivariate data set is solved with different methods 

including statistical [1, 2]. However, well-known 

statistical methods (for example, bivariate outlier 

detection based on a prediction ellipse or a test statistic 

(TS) for the Mahalanobis squared distance (MSD), which 

has an approximate the F distribution) are used to detect 

outliers in a data set under the assumption that the data is 

generated by a bivariate Gaussian distribution. And this 

assumption is valid only in particular cases. In [3] and [4] 

statistical outlier detection techniques for multivariate 

non-Gaussian data on the basis of normalizing 

transformations and MSD, which has an approximate the 

Chi-Square distribution and the F distribution 

respectively, were proposed. We propose a statistical 

outlier detection technique for bivariate non-Gaussian 

data on the basis of normalizing transformations, 

prediction ellipse and TS for MSD, which has an 

approximate F distribution. The technique consists of two 

steps. In the first step, bivariate non-Gaussian data is 

normalized using a bivariate normalizing transformation. 

In the second step, MSD, prediction ellipse and TS for 

MSD are calculated and compared with a quantile of the 

F distribution. The data values for which a value of TS 

for MSD is greater than the quantile of the F distribution 

are considered as outliers and these values are cut off. 

Two steps should be repeated for the data after outlier 

cutoff until all values of TS for MSD will be less than or 

equal to the quantile of the F distribution. 

II. THE STATISTICAL TECHNIQUE 

The outlier detection technique for bivariate non-

Gaussian data is based on normalizing transformations, a 

prediction ellipse and a test statistic for MSD, which has 

an approximate F distribution. Consider bijective 

bivariate normalizing transformation of non-Gaussian 

random vector  TXX 21,X  to Gaussian random 

vector  T
ZZ 21,Z  is given by 

 XZ 
.   ( ) 

The values of the sample observations or bivariate 

data points NXXX ,,, 21   are normalized using the 

transformation (1). 

The Mahalanobis squared distance for each bivariate 

data point i, Ni ,,2,1  , is denoted by 2
id  and given 

by 
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ii Sd 12

, (2) 

where Z  is the sample mean vector and NS  is the 

sample correlation matrix 
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A test statistic for 2
id  can be created as follows [5] 

 
   122 22  NdNN i ,  (4) 

which has an approximate F distribution with 2 and 

2N  degrees of freedom. 

The equation for the prediction ellipse is defined by 

[6].  
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where  ,2,2 NF  is a quantile of the F distribution;   

is significance level. We take   as 0.05. 

A test statistic for MSD (4) is compared with 

 ,2,2 NF . The data values for which a value of TS (4) is 

greater than the quantile of the F distribution are 

considered as outliers and these values are cut off. After 

outlier cutoff the reduced number of bivariate data points 

are normalized using the transformation (1) again until all 

values of TS (4) will be less than or equal to the quantile 

of the F distribution. 
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III. BIVARIATE NORMALIZING TRANSFORMATIONS 

Some transformations have been proposed for 

normalizing multivariate non-Gaussian data, such as, 

transformation on the basis of the decimal logarithm, the 

Box-Cox transformation, the Johnson translation system 

and others. However, only a few normalizing 

transformations are bijective. Such bijective 

transformation is the transformation of US  family of the 

Johnson translation system. The Johnson normalizing 

translation is given by [7] 

 
   
XληhγZ

1


 ,0mmN

, (6) 

where   is the correlation matrix; γ , η ,   and λ  

are parameters of the Johnson normalizing translation; 

 T21, γ ;  21, diagη ;  T21, ; 

 21, diagλ ;        Tyhyhyy 221121 ,, h ;  ih  is 

one of the translation functions 
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IV. EXAMPLES 

We consider the examples of detecting outliers in two 

bivariate non-Gaussian data sets: the first, actual effort 

(hours) and size (adjusted function points) from 145 

maintenance and development projects [8], the second, 

effort (hours) and mass (tonnes) of designed the section 

of the ship from 188 designs of sections. 

Table I contains the data from 145 maintenance and 

development projects [8], MSD and TS for MSD for 

standardized data sample units, which are [2] 

 
kXkkiki SXXZ 

 2,1k ; .145,,2,1 i (7) 

The last column in Table I reveals that projects 3, 9, 

38, 51, 101 and 102 are bivariate outliers, since 

05.0,143,2F =3.06. 

 

 

TABLE III.  TS FOR MSD FOR THE STANDARDIZED DATA 

Pro

-

ject 

Size 

(adjusted 

function 

points) 

Actual 

effort 

(hours) 
i

Z1  
i

Z2  2
id  

TS 

for 

MS

D 

1 101.65 485 -0.28088 -0.74421 0.57 0.28 

2 57.12 990 -0.31024 -0.46733 0.22 0.11 

3 1010.88 13635 0.31859 2.97504 11.17 5.51 

4 45.6 1576 -0.31783 0.14631 0.24 0.12 

… … … … … … … 

9 144.72 584 -0.25248 2.82538 12.41 6.12 

… … … … … … … 

17 609.7 186 0.05408 -0.15302 0.05 0.02 

… … … … … … … 

38 172.96 497 -0.23386 2.17432 7.50 3.70 

… … … … … … … 

51 15.36 462 -0.33777 1.91240 6.29 3.10 

… … … … … … … 

101 1285.7 548 0.49978 2.55597 7.61 3.75 

102 18137.48 946 11.6103 5.53437 135.5 66.8

3 

… … … … … … … 

138 698.54 308 0.11266 0.75995 0.70 0.35 

139 752.64 217 0.14833 0.07896 0.02 0.01 

140 809.25 40 0.18565 -1.24560 2.58 1.27 

141 178.1 253 -0.23047 0.34837 0.37 0.18 

142 81.48 405 -0.29418 1.48585 3.89 1.92 

143 1093.86 241 0.37330 0.25856 0.14 0.07 

144 1002.76 156 0.31323 -0.37753 0.52 0.26 

145 551.88 92 0.01596 -0.85646 1.05 0.52 

 

Table II contains the normalized data from 145 

projects, MSD and TS for MSD for normalized data. 

These data is normalized by US  family of the 

transformation (6). In these case the parameters are such: 

-1,4484081  , -0,4896062  , 0,7175011  , 

0,6555492  , 71,111671  , 1178,52372  , 

46,092141   and 513,93092  . The sample 

correlation matrix (3) of the Z  is used as the 

approximate moment-matching estimator of correlation 

matrix   

 










0.9931190.716010

0.7160100.993109
NS

.  

In Table II the last column reveals that projects 4, 17, 

101, 102, 138, 140 and 144 are bivariate outliers, since 

05.0,143,2F =3.06. We note, only for two projects 101 and 

102 the results are the same in both cases. For other 

projects, the results of bivariate outliers do not match. 

First of all, this is due to poor normalization (or 

normality) of standardized data by formula (7). It is 

known that Mardia’s multivariate kurtosis [9] 2  equals 

8 under bivariate normality. The values of 2  equal 

respectively 131.20 and 8.21 for the data from Table I 

and Table II. These values indicate that the necessary 

condition for bivariate normality is practically performed 

for the normalized data from Table II and does not hold 

for standardized data from Table I by the formula (7). 

The prediction ellipses (Fig. 1 and Fig. 2) indicate on 

the same results. On Fig. 1 and Fig. 2 the standardized 

and normalized data set for 145 projects and the 

prediction ellipses are presented. On Fig. 2 the prediction 

ellipse (5) also reveals that seven data points (projects 4, 

17, 101, 102, 138, 140 and 144) are bivariate outliers as 

in Table II. 
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TABLE IV.  TS FOR MSD FOR THE NORMALIZED DATA 

Project 
Normalized 

size 

Normalized 

actual effort 
2
id  

TS for 

MSD 

1 -1.002326 -1.216116 1.52 0.75 

2 -1.662999 -0.724990 3.26 1.61 

3 1.212616 2.054895 4.40 2.17 

4 -1.827636 -0.023010 6.88 3.39 

… … … … … 

9 -0.553410 -0.496653 0.33 0.16 

… … … … … 

17 0.814075 -1.140640 6.93 3.42 

… … … … … 

38 -0.348010 0.648245 1.82 0.90 

… … … … … 

51 -2.181756 -1.010318 5.46 2.69 

… … … … … 

101 -0.417388 0.556097 9.29 4.57 

102 1.350987 2.154155 13.70 6.76 

… … … … … 

138 0.923278 -1.354447 9.42 4.64 

139 0.982474 -0.178135 2.62 1.69 

140 1.039605 -1.331836 10.17 5.02 

141 -0.315695 -1.129770 1.81 0.89 

142 -1.288339 -1.344194 2.03 1.00 

143 1.273260 0.666751 1.76 0.87 

144 1.206397 -0.664230 6.40 3.16 

145 0.732924 -0.843953 4.49 2.21 

 

 
Figure 1.  Standardized data set for 145 projects 

 
Figure 2.  Normalized data set for 145 projects 

On Fig. 3 the data set for 145 projects and the 

transformed prediction ellipse are presented. 

 

Figure 3.  Data set for 145 projects 

On Fig. 3 the transformed prediction ellipse also 

reveals that seven data points (projects 4, 17, 101, 102, 

138, 140 and 144) are bivariate outliers. We note, if the 

anomaly detection technique [10] based on the Grubb test 

applies for detecting outliers in the normalized data for 

145 projects then 144 data sample units do not appear to 

be an outlier in each of the univariate distributions. 

CONCLUSIONS 

From the examples we conclude that the proposed 

technique is promising. For other bivariate non-Gaussian 

data set of effort and mass of designed the section of the 

ship from 188 designs of sections the results are similar. 
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