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A review on the analysis of characteristics of dye-sensitized solar cells (DSSC) is provided. DSSC de-

sign, materials that are used for the manufacture of functional layers and the characteristics of elements 

depending on their properties are analyzed. The basic disadvantages DSSC, the factors leading to their 

appearance, as well as solutions to eliminate or reduce the impact of these factors are revealed. 
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1. INTRODUCTION 
 

Problems of solar energy can be solved by improving 

the efficiency of photoconversion and as results reduce 

the production cost of solar cells (SC). Organic solar 

cells outperform silicon analogues in economic efficien-

cy, however inferior to them in photoconversion effi-

ciency. As a result, dye-sensitized solar cells (DSSC) 

cause an increased interest today. 

The maximum value of the efficiency of DSSC 

  15.0 % [1] and received on a cell area of 1 cm2. The 

cost of such elements is less than 60 % of cells based on 

other materials such as silicon. In addition, no expen-

sive equipment and materials that do not require a 

high level of purification, is used in the DSSC produc-

tion. 

Thanks to these advantages, DSSC may be installed 

in places where the angle of light incidence is not opti-

mal and others solar cells are not suitable, for example, 

glass buildings, outer panels of cars, housings of mobile 

phones. For this reason DSSC are among the most 

promising types of photovoltaic cells today. The largest 

companies that produce and sell them around the 

world are "Solaronix" and "Dyesol". 

 

2. FUNCTIONAL MATERIALS 
 

The typical structure of DSSC is shown schemati-

cally in Figure 1. From the list of functional materials 

forming this structure, the DSSC characteristics (coef-

ficient of photoelectric conversion, open circuit voltage, 

short circuit current, fill factor, external quantum effi-

ciency) depends on morphological properties of semi-

conductors, spectroscopic properties of dyes and electri-

cal properties of electrolyte. 

 

2.1 Transparent Conductive Substrate 
 

Two glass substrates, on which are deposited thin 

films of a transparent conductive oxide (TCO), are used 

as electrodes in DSSC. Transparency of such electrodes 

must be high ( 80 %) in the visible region of the spec-

trum, to facilitate the passage of solar light maximum 

amount into the active area of cell. The electrical conduc-

tivity of substrates must be large for efficient charge 

transport and minimize energy losses. These two pa-

rameters greatly influence on the DSSC efficiency. 
 

 
 

Fig. 1 – DSSC structure 
 

Indium oxide doped with tin (ITO) is often used as 

the TCO. ITO thin films are usually deposited on the 

surface of a soda-lime-silicate glass by magnetron sput-

tering in the DSSC production. An alternative method 

of deposition is used in the department of "Nano and 

microelectronics" Penza State University. This method 

is called spray pyrolysis. Today deposition conditions 

are selected so that transparency of the TCO thin films 

is T ≥ 80 %, and surface resistance Rs ~ 30 Ohm/□ [2]. 

 

2.2 Metal-oxide Semiconductor 
 

Semiconductor absorbing dye accepts electrons from 

it and transfers into the external circuit DSSC. The 

rate of electron transfer greatly depends on the crystal 

structure, morphology and surface area of semiconduc-

tor. The following metal oxides are used: titanium diox-

ide (TiO2), zinc oxide (ZnO) and tin dioxide (SnO2). To-

day, however, titanium dioxide is considered to be an 

ideal semiconductor material for DSSC, due to the best 

morphological and photovoltaic properties. 

Semiconductor layer should consist of TiO2 nano-

particles and have a porous structure that provides 

high surface area (at least 200 m2/g) of photoelectrode. 

This in turn improves concentration of a sensitizing 
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dye and efficiency of light collection with photoconver-

sion. The diameter of TiO2 particles should be 10-30 nm 

at layer thickness 10 microns for the 50 % porosity 

formation [3]. 

The main cause of losses in DSSC is the recombina-

tion of injected electrons with electrolyte. Dark current 

is the result of this phenomenon. It leads to decrease 

the DSSC efficiency. Dark current may be minimized 

by means structural changes, such as using a TiO2 sur-

face treatment or special insulating layer (Nb2O5, SiO2 

and Al2O3) deposited on the semiconductor [4]. 

 

2.3 Dye 
 

The function of dye is the light absorption and elec-

trons transfer into the conduction band of semiconduc-

tor. Dye should intensively absorb radiation in the visi-

ble region of the spectrum, should be adsorbed on the 

semiconductor surface, is stable in an oxidized form 

and should recover via electrolyte. The molecular struc-

ture of dye affects the DSSC efficiency. 

Metal complex, non-metallic organic and natural 

dyes used. Ruthenium compounds (N-719) have the 

highest efficiency (  11.2 %) among metal complex 

dyes. However, they are rarely used because of the high 

cost. To date, the efficiency of organic dyes (e.g., indo-

line,   9 %) is less than that of metal complex dyes, 

but they are cheaper and have better electronic proper-

ties. 

The advantages of natural dyes are easy extraction, 

lack of toxicity and low cost. However, the minimum 

coefficient of photoelectric conversion is generated 

when they are used in DSSC. Dyes based on red turnip 

pigment have the highest efficiency (  1.7 %) among 

this type [5]. 

 

2.4 Electrolyte 
 

The DSSC operability also depends on the properties 

of electrolyte. Its function is to regenerate dye and trans-

fer of positive charge to counter electrode. Therefore 

electrolyte should have a high conductivity and low vis-

cosity for rapid diffusion of electrons, a good interfacial 

contact with semiconductor and counter electrode, 

should not induce the desorption of dye with oxidized 

surface and its degradation. Electrolytes used in DSSC 

are three types: liquid, solid and quasi-solid electrolytes. 

Liquid electrolytes are classified into organic and 

ionic, depending on the type of solvent. Couple I3 –/I is 

considered the ideal option because of good solubility, 

rapid regeneration of dye, low light absorption in the 

visible region of the spectrum, compatible redox poten-

tial and slow kinetics of recombination between inject-

ed electrons in semiconductors and triiodide. 

Leakage is a major problem for DSSC based on liq-

uid electrolytes, because it greatly reduces long-term 

stability elements. Therefore solid electrolytes are de-

signed to improve its [6]. Here, the liquid phase is re-

placed by p-type semiconductor or material p-type con-

ductivity. Compounds based on copper (CuI, CuBr and 

CuSCN) are used as inorganic materials with p-type 

conductivity. However, organic materials (e.g. Spiro-

OMeTAD) are more profitable due to the low cost and 

ease of deposition. DSSC based on solid electrolytes 

have a very low efficiency (  3.8 % for CuI) because of 

poor contact with photoelectrode and high rate of re-

combination of charges. 

Almost all of the above problems are solved by using 

quasi solid electrolytes. They have better long-term sta-

bility, high conductivity and good interfacial contact 

compared to liquid materials [7]. Such properties appear 

due to the formation of unique polymers network struc-

ture. DSSC based on trimethylolpropane with ethylene 

carbonate as a solvent has a maximum coefficient of 

photoelectric conversion (  8.1 %) among this type. 

 

2.5 Counter Electrode 
 

Counter electrode is used in the process of electro-

lyte regeneration. The layer of catalyst is required to 

accelerate the reduction reaction. The counter electrode 

efficiency depends on several factors: type of catalyst, 

process of its formation on TCO, compatibility with 

electrolyte. It is preferable to use platinum because of 

the high exchange current density, good catalytic activ-

ity and transparency. However, the activity of plati-

num catalyst decreases with time in presence the redox 

couple iodide/triiodide. Also the cost of platinum or its 

compounds is high [8]. Graphene and conductive poly-

mers used as alternative materials for the production 

of counter electrode [1]. However, their efficiency is 

very low compared with the platinum catalyst. 

 

3. CONCLUSIONS 
 

The following decisions need to be taken to improve 

the efficiency and stability of DSSC: 

1) Optimizing the morphology of semiconductor (to re-

duce the dark current). 

2) The development of low volatile and less viscous 

electrolytes (to increase the rate of charge transport). 

3) To improve mechanical contact between two elec-

trodes. 

4) Selection of specific additives (to improve the proper-

ties of electrolytes and dyes). 
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