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By using an electrical-optical AMPS-1D program (One Dimensional Analysis of Microelectronic and 

Photonic structures), a n-i-p type solar cell, based on hydrogenated amorphous silicon (a-Si : H) and hydro-

genated nanocrystalline silicon oxide (nc-SiOx : H) has been investigated and simulated. The numerical 

analysis describes the modeling of the external cell performances, like, the short-circuit current (JSC), the 

open circuit voltage (VOC), the fill factor (FF) and efficiency (Eff) with the oxygen content in the p-nc-

SiOx : H window layer by varying its mobility band gap (Eg) associated simultaneously to the effect of the 

absorber layer (i-a-Si : H) thickness. Also, the i-a-Si : H absorber layer band gap was optimized. The simu-

lation result shows that the VOC depend strongly on the band offset (ΔEV) in valence band of p-side. But, 

VOC does not depend on the thickness of the intrinsic layer. However, VOC increases when the energy band 

gap of the intrinsic layer is higher. It is demonstrated that the highest efficiency of 10.44 % 

(JSC  11.67 mA/cm2; FF  0.829; VOC  1070 mV) has been obtained when values of p-nc-SiOx : H window 

layer band gap, i-a-Si : H absorber layer band gap and i-a-Si : H absorber layer thickness are 2.10 eV, 

1.86 eV, and 550 nm, respectively. 
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1. INTRODUCTION 
 

The cost of manufacturing cells in thin layers based on 

amorphous silicon (a-Si : H) is smaller and present a lot of 

opportunities for deposition on different substrates types 

(rigid, flexible, lightweight). All the works carried out in 

this direction, try to develop new manufacturing processes 

and invent new designs in order to improve the solar cells 

performances with a low production cost [1-4]. Many tech-

niques can be used to improve the conversion efficiency of a 

solar cell. On the one hand, the interfaces between the 

materials of the window, the electrodes and the intrinsic 

region (active area) must be of good quality. On the other 

hand, a wide band gap semiconductor material, p-type, 

may be used as window layer in order to improve light 

transmission. This same layer must be of high conductivi-

ty to increase the electrical potential in the structure and 

reduce the effects of the series resistance [5]. This leads to 

a better match between the different layers of the struc-

ture. In this work there is a window layer based on nano-

crystalline silicon oxide (p-nc-SiOx : H), with a gap which 

can vary from 2 eV to 2.25 eV, depending on the dosage of 

oxygen atoms. It is found in the experiment by Rémi Biron 

et al. [6], the incorporation of oxygen in the H-diluted p-

layer leads to the linear widening of the band gap. How-

ever, when the content of oxygen varying from 0 % to 36 % 

the gap Eg of the p-n-SiOx : H layer increase from 1.81 to 

2.29 eV [6]. Pingate et al. reported an increase in efficien-

cy in a cell based on c-Si and with a p-nc-SiOx layer [7]. 

In a study conducted by Pingate et al. on the electrical and 

optical characteristics of the layers of p-nc-SiOx, it has 

been revealed that there is a clear separation of phases in 

these films between rich in silicon (Si) and those rich in 

oxygen (O) [7]. It was also shown that the microstructure 

of nc-SiOx p-layers can improve the efficiency of Micro-

morph cells (Tandem). In particular, a layer of p-nc-SiOx 

improve the contact quality by reducing the effect of the 

roughness of the front electrode over the performances of 

cells, either in single or Micromorph configuration [8]. 

This work, consists in a study of the performances of a 

solar cell at single n-i-p design, using hydrogenated amor-

phous silicon (i-a-Si : H) as active layer and p-nc-SiOx : H 

as a window layer. On one hand, our purpose is to study 

simultaneously the effect of the active layer thickness 

associated to the variation in the mobility band (Eg) of 

window layer on the cell performances. On the other hand 

it was achieved the extraction of physical parameters 

characterizing each layers constituting the structures. 

Also, the effect of absorber layer band gap was studied. 

 

2. DISCRIPTION OF THE SIMULATED  

STRUCTURE 
 

We have considered a model based on hydrogenated 

amorphous silicon (a-Si : H) and nanocrystalline silicon 

oxide to design our simulated n-i-p+ substrate structure. 

These tow materials were used by other authors to real-

ize experimentally a p-i-n superstrate solar cells by RF-

PECVD technology (Radio Frequency Plasma-Enhanced 

Chemical Vapor Deposition) [1, 2]. The n-i-p+ character-

ized device contain a 10 nm thick front p-doped layer of 

nc-SiOx : H, a 10 nm thick back n-doped layer of a-Si : H, 

an intrinsic a-Si : H absorber layer of variable thickness. 

An intrinsic buffer layer based on carbon hydrogenated 

amorphous silicon (i-a-SiC : H) with a thickness of 3 nm, 

has been incorporated between the p-window and the 

absorber i-layer. Our structue was considred deposited 

on a metal substrate which functions as a back contact. 

For the front contact, a 80 nm thick TCO (Transparent 

Conducting Oxide) layer has been deposited on the p-

side (Fig. 1).  
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Fig. 1 – Shematic diagram of the n-i-p+ simulated solar cell 

 

3. SIMULATION MODEL FOR AMORPHOUS  

(a-SI : H) AND HYDROGENATED NANO-

CRYSTALLINE SILICON OXIDE (nc-SIOX : H) 

 

The AMPS-1D program, used in this study, solves 

Poisson's equation coupled to electrons and holes conti-

nuity equations, at each position throughout the device 

[9]. The resolution uses finite differences and the New-

ton-Raphson methods. AMPS-1D simulates device op-

eration by taking into account the Shockley-Read-Hall 

recombination statistics. The numerical simulation also 

requires a model for the density of trap states in the 

structure. In the simulation presented here, the density 

of states (DOS) for the localized states in the mobility 

gap of a-Si : H and nc-SiOx : H materials, it has been 

assumed that there are both exponential Urbach tail 

states and Gaussian-shaped midgap states (associated 

to silicon dangling bonds). The tail states consist of a 

donor tail coming out of the valence band and an 

acceptor tail coming out of the conduction band. The 

valence and the conduction band tail states have an 

exponential distribution in energy and are usually 

given as follows: 
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Where GAO(E) and GDO(iE) are the densities per energy 

range for tail states at the band edge energies EV and 

EC, respectively; and EA and ED are characteristic pa-

rameters for the conduction and valence band tail 

states, respectively. 

While the midgap states are composed of an accep-

tor Gaussian and donor Gaussian described by: 
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Where EACPG and EDONG are the peak energy posi-

tion, NAG and NDG are the effective density of statesand 

WDSAG and WDSDG are the standard energy deviation of 

the Gaussian acceptor and donor levels, respectively. 

The peak energies for the Gaussian donor-and accep-

tor-like states are measured from the conduction and 

valence bands, respectively. Since the gap states can 

exchange carriers with the conduction and valence 

bands, capture cross-sections for each state must be 

specified for both electrons and holes [6]. 

 

4. ELECTRICAL AND OPTICAL INPUT  

PARAMETERS FOR SIMULATION 
 

The calculation using the AMPS-1D program re-

quires input parameters such as surface recombination 

velocities, barrier heights, power density of the radia-

tion and characteristics of the layers forming the struc-

ture to simulate. 

For electrons and holes, we used the value of 

107 cm/s as speeds of surface recombination [10, 11]. 

According to Arch et al. [12], the barrier height for 

electrons (φb0) at front contact (TCO / p-layer) is related 

to the electron affinity (χe) of p-layer and the work func-

tion (Фw, front) of TCO, by: 
 

 φb0  Фw, front – χe|x  0 (5) 
 

In our case, the values of 5.21 eV and 3.76 eV are 

used for Фw, front and χe, respectively. These values leads 

to a value of φb0 equal to 1.45 eV. The back contact 

barrier height φbL (n layer / metal) is chosen equal to 

0.21 eV. φbL represents the activation energy of the n-

layer [13]. In hydrogenated nanocrystalline oxide layer, 

the values of 5 cm2V – 1S – 1 and 0.5 cm2V – 1S – 1 were 

used, for the electrons (e) and holes (h) mobility, re-

spectively [14]. However, the electron affinity (χ) is 

assumed different for layers based on p-nc-SiOx : H and 

their based on a-Si : H. All other electrical parameters 

used in the simulation are summarized in Table 1. 

As a source of illumination, an AM 1.5 solar radia-

tion with a power density of 100 mW/cm2 was used. The  

reflection of light at the front  face (RF) was set at 0.2. 

For the back contact we chose the value of 0.6, for ret-

ro-reflection (RB). The light absorption coefficient, for 

the different layers was already incorporated in the 

AMPS-1D program. 

 

5. SIMULATION RESULTS AND DISCUSSION 
 

5.1 Optimization of p-nc-SiOX : H Window Layer 

Band Gap 
 

In p-i-n solar cell, the window layer perform an im-

portant role, therefore its band gap define the amount of 

light achieved the intrinsic layer. However, a wide band 

gap material is recommended to reduce the losses due to 

the absorption. Also we konw, that electrons and holes 

generated in doped layers usually do not contribut to the 

photocurrent for their short life time. Forthermore, in p-

i-n single a-Si : H based solar cells, i-layer thickness is 

one of the fundamental factors which influence the re-

duction of material costs and improve collection efficien-

cy. Hence, a simultaneous optimization of p-window 

layer band gap and i-absorber layer thickness was per-

formed in order to realize efficient solar cells. During the 

optimization of p-nc-SiOX : H layer band gap and i-a-

Si : H layer thickness the values of i-a-SiC : H buffer, i-a-

Si : H and n layer band gaps where kept as 1.80 eV, 

i-a-SiC : H buffer                                

Thickness  3 nm 

 

 

 

i-a-Si : H                                      

Thickness  200-650 nm 

 

TCO (80 nm, Ф  5.21 eV) 

p+ nc-SiOx : H                                     

Thickness  10 nm 

 

 

 

n-a-Si : H                                      

Thickness  10 nm 
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1.90 eV and 1.75 eV, respectively. The thicknesses of p-

layer, buffer layer and n layer were kept as 10 nm, 3 nm 

and 10 nm, respectively. For this, we varying simultane-

ously the thickness of i-a-Si : H from 200 nm to 650 nm 

and the gap of the p-window layer from 2 eV to 2.25 eV. 

Fig. 2a-d shows the variations of JSC, VOC, FF and effi-

ciency with simultaneous variations of p-nc-SiOX : H 

window layer band gap and i-a-Si : H absorber layer 

thickness. From Fig. 2a, JSC is not affected by p-nc-

SiOX : H window layer band gap variations but JSC 

increase from 10.55 mA/cm2 to 12.45 mA/cm2 with in-

creasing the i-layer thickness from 200 nm to 650 nm. 

This can be attributed to an increase in the quantum 

efficiency in the whole of wavelengths. 

In our case, the values of 5.21 eV and 3.76 eV are 

used for Фw, front and χe, respectively. These values leads 

to a value of φb0 equal to 1.45 eV. 

The back contact barrier height φbL (n layer / metal) 

is chosen equal to 0.21 eV. φbL represents the activation 

energy of the n-layer [13]. 

In hydrogenated nanocrystalline oxide layer, the 

values of 5 cm2V – 1S – 1 and 0.5 cm2V – 1S – 1 were 

used, for the electrons (e) and holes (h) mobility, re-

spectively [14]. However, the electron affinity (χ) is 

assumed different for layers based on p-nc-SiOx : H and 

their based on a-Si : H. All other electrical parameters 

used in the simulation are summarized in Table 1. 

As a source of illumination, an AM 1.5 solar radia-

tion with a power density of 100 mW/cm2 was used. The 

reflection of light at the front face (RF) was set at 0.2. 

For the back contact we chose the value of 0.6, for ret-

ro-reflection (RB). The light absorption coefficient, for 

the different layers was already incorporated in the 

AMPS-1D program. 

The variations of VOC with p-nc-SiOx : H layer band 

gap where presented in Fig. 2b. We can see that the 

variations with i-a-Si : H thickness are not very im-

portant for example at p-nc-SiOx : H layer band gap 

equal to 2.10 eV the VOC decreased from 1015 mV to 

990 mV when i-a-Si : H thickness increased from 

200 nm to 650 nm. But, the variations of VOC with  

p-nc-SiOx : H layer band gap can be found increased 

initially from 991 mV to1015 mV with the increasing  

p-nc-SiOx : H layer band gap from 2 eV to 2.10 eV. 

After, in the band gap range 2.10 eV-2.15 eV, value of 

VOC remains constant. However beyond 2.15 eV, value 

of VOC was found to decrease gradually. We have shown 

the band diagram of n-i-p+ solar cells in Fig. 3a-f in 

order to understand the variations in VOC with the 

increasing p-nc-SiOx : H layer band gap. 

When the junction field separates the photogenerat-

ed e-h pairs, electrons have to move towards n-side 

through conduction band and holes have to move to-

wards p-side through valence band. 
 

Table 1 – Parameters extracted from the simulation for the studied structure at room temperature 
 

Parameters nc-SiOx : H (p+) Buffer a-SiC : H (i) a-Si : H (i) a-Si : H(n) 

εr 

L (nm) 

χ (eV) 

Eg (eV) 

Ea (eV) 

NC (cm – 3) 

NV (cm – 3) 

e – (cm2V – 1S – 1) 

h + (cm2V – 1S – 1) 

NA (cm – 3) 

ND (cm – 3) 

GDO / GAO(cm – 3eV – 1) 

ED / EA (eV) 

de (cm2) (Tails) 

dh (cm2) (Tails) 

ae (cm2) (Tails) 

ah (cm2) (Tails) 

NDG (cm – 3) 

NAG (cm – 3) 

EDG / EAG (eV) 

de (cm2) (Gauss.) 

dh (cm2) (Gauss.) 

ae (cm2 (Gauss.) 

ah (cm2) (Gauss.) 

11.9 

10 

3.76 

2-2.25 

0.06 

1  1023 

1  1023 

2 

0.2 

1  1019 

0 

2  1020 

0.02 / 0.01 

1  10 – 15 

1  10 – 17 

1  10 – 17 

1  10 – 15 

1  1017 

1  1017 

1.50 / 0.98 

1  10 – 14 

1  10 – 15 

1  10 – 15 

1  10 – 14 

11.9 

3 

3.92 

1.90 

0.07 

2  1020 

2  1020 

2 

0.2 

1  1016 

0 

2  1020 

0.02 / 0.01 

1  10 – 15 

1  10 – 17 

1  10 – 17 

1  10 – 15 

1  1016 

1  1016 

1.38 / 0.78 

1  10 – 14 

1  10 – 15 

1  10 – 15 

1  10 – 14 

11.9 

200-650 

4.00 

1.78-1.90 

0.40 

2  1020 

2  1020 

20 

2 

0 

0 

2  1021 

0.05 / 0.03 

1  10 – 15 

1  10 – 17 

1  10 – 17 

1  10 – 15 

5  1015 

5  1015 

1.22 / 0.70 

1  10 – 14 

1  10 – 15 

1  10 – 15 

1  10 – 17 

11.9 

10 

4.00 

1.75 

0.20 

2  1020  

2  1020 

10 

01 

0 

1  1019 

2  1021 

0.05 / 0.03  

1  10 – 15  

1  10 – 17 

1  10 – 17  

1  10 – 15 

5  1018 

5  1018 

1.22 / 0.70 

1  10 – 14 

1  10 – 15 

1  10 – 15 

1  10 – 17 

 

The abbreviations used in this table are the following: εr –  relative dielectric permittivity, L – film thickness, χ – elec-

tron affinity, Eg – energy band gap, e, h – mobility of electrons and holes, ND, NA – doping donor and acceptor, NC, NV – effective 

densities of states in the conduction and valence bands, NDG, NAG – Gaussian densities for donor and acceptor states, GDO, GAO – 

exponential prefactors of donor-like or acceptor-like tail states, ED, EA – characteristic energy of the donor-like / acceptor-like tail 

states, EDG / EAG – donor and acceptor Gaussian peak energy position. de, dh – Capture cross-section for donor states, e, h and ae, 

ah – Capture cross-section for acceptor states e, h. 
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However, when p-nc-SiOx : H band gap range from 

2 eV to 2.10 eV the band offset (ΔEV) in valence band at 

p-nc-SiOx : H / i-a-SiC : H buffer layer interface is low 

Fig. 3a-c, so the photogenerated holes can move easly 

towards p-side and the value of VOC is improved.  

However, when p-nc-SiOx : H band gap range from 

2.15 eV to 2.25 eV there will be an important band 

offset (ΔEV) in valence band of p-side, because band gap 

of buffer layer is kept as 1.90 eV Fig. 3d-f. This offset 

creates barrier for holes as they have to move towards 

p-side which increase the recombination rate at  

p-nc-SiOx : H / i-a-SiC : H interface and lower the VOC. 

The variations of FF with i-a-Si : H layer thickness and 

p-nc-SiOx : H layer band gap where presented in 

Fig. 2c. Initially, in the band gap range 2 eV-2.10 eV, 

value of FF remains constant. However beyond 2.10 eV, 

value of FF was found to decrease gradually. In one 

hand, the decrease of FF with increasing i-a-Si : H 

layer thickness from 200 nm to 650 nm can be attribut-

ed to the insufficient collection within the i-layer. On 

the other hand, the decrease of FF with 

 increasing p-nc-SiOx : H layer band gap from 

2.10 eV to 2.25 eV is du to the high value of band offset 

(ΔEV) in valence band. 

Fig. 2d showed the simulated result of efficiency. 

Firstly, with i-layer thickness variations, the efficiency 

was found to gradually increase from 9 % to 9.92 % 

with increasing i-a-Si : H layer thickness from 200 nm 

to 550 nm and becomes constant in the range of 

550 nm-650 nm. Secondly, with p-nc-SiOx : H layer 

band gap variations, value of efficiency increase gradu-

ally from 9.83 % to 9.92 % with increasing p-nc-

SiOx : H band gap from 2 eV to 2.10 eV. However, be-

yond 2.10 eV value of efficiency drastically decreased 

from 9.92 % to 8.89 %. Hence, i-a-Si : H absorber layer 

thickness of 550 nm and p-nc-SiOx : H window layer 

band gap of 2.10 eV where optimized for obtaining high 

efficiency for n-i-p+ solar cell. 

 

5.2 Optimization of i-a-Si : H Absorber Layer 

Band Gap 
 

The i-layer in n-i-p+ solar cell acts as absorber layer 

and absorption of incident light strongly depends on the 

band gap. Hence, optimization of i-layer band gap was 

performed in order to realize efficient solar cells. During 

the optimization of i-a-Si : H layer band gap, the values 
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Fig. 2 – Variations of (a) JSC, (b) VOC, (c) FF and (d) efficiency with i-a-Si : H absorber layer thickness and p nc-SiOx : H window 

layer band gap for n-i-p+ solar cell 
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Fig. 3 – Energy band diagram of n-i-p+ solar cells when p-nc-SiOx : H window layer band gap is (a) 2 eV ; (b) 2.05 eV; (c) 2.10 eV; 

(d) 2.15 eV; (e) 2.20 eV and (f) 2.25 
 

of p+ window, i-a-SiC : H buffer and n layer band gaps 

where kept as 2.10 eV, 1.90 eV and 1.75 eV, respective-

ly. The thicknesses of p+ layer, buffer layer, absorber 

layer and n layer were kept as 10 nm, 3 nm, 550 nm 

and 10 nm, respectively. Fig. 4a-d shows the variations 

of JSC, VOC, FF and efficiency with i-a-Si : H absorber 

layer band gap. From Fig. 4a JSC was found decreased 

slowly from 12.20 mA/cm2 to 11.80 mA/cm2 with the 

increasing i-a-Si : H band gap from 1.78 eV to 1.86 eV. 

However, beyond 1.86 eV JSC was found decreased 

drastically from 11.80 mA/cm2 to 10.70 mA/cm2. 

In order to understand the decrease in value of JSC 

with the increasing i-a-Si : H band gap, we explained 

the interaction of incoming light with material in terms 

of light energy (hν) and material band gap (Eg). 

Upon interaction of light with material, three follow-

ing cases are possible : (i) when hν  Eg, in this case no 

light should absorb and it transmit through the materi-
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al; (ii)  when hν  Eg, in this case all light should absorb 

and give rise to generation of maximum quantity of e-h 

pairs without a heat loss; and (iii) when hν  Eg, in this 

case though light will absorb but amount of light that 

have energy higher than band gap of material may leads 

to heat loss [15, 16]. This explains why as soon as the 

band gap of i-a-Si : H was increased, absorption of light 

having energy less than band gap was reduced. This 

leads to generation of less e-h pairs and hence, reduction 

in the value of JSC was observed. 

From Fig. 4b, it is clear that the value of VOC is con-

tinuously increase from 980 mV to 1076 mV with the 

increasing i-a-Si : H layer band gap from 1.78 eV to 

1.90 eV. 

The increase in VOC with the increasing i-a-Si : H 

layer band gap is due to the reduction of the values of 

band offset (ΔEV) in valence band at i-a-SiC : H / 

i-a-Si : H and at i-a-SiC : H / p+-nc-SiOx : H intefaces. 

The variations of FF with i-a-Si : H layer band gap 

where  presented in Fig. 4c. Initially value of FF was 

increased from 0.817 to 0.829 with the increasing i-a-

Si : H layer band gap from 1.78 eV to 1.86 eV. However 

beyond 1.86 eV, value of FF was found to decrease 

gradually from 0.829 to 0.816. The simulated value of 

efficiency showed in Fig. 4d, was found to gradually 

increase with the increasing i-a-Si : H layer band gap 

and reaches a maximum value of 10.44 % when band 

gap becomes 1.86 eV. However, beyond 1.86 eV value of 

efficiency decreased from 10.44 % to 10 %. Hence, i-a-

Si : H absorber layer band gap of 1.86 eV was optimized 

for obtaining high efficieny for n-i-p+ solar cell. 
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Fig. 4 – Variations of (a) JSC, (b) VOC, (c) FF and (d) efficiency with i-a-Si : H absorber layer band gap for n-i-p+ solar cell 
 

The conversion efficiency (Eff) of a solar cell can be 

written as: 
 

      
         

   
 , (6) 

 

where Pin is the incident power per unit area. 

According to Eq. (6), the efficiency increases with 

increasing the band gap of i-a-Si : H absorber layer 

from 1.78 eV to 1.86 eV is due essentially to the simul-

taneous increases of the VOC and the FF. But, after 

1.86 eV the decreases of efficiency is due essentially to 

the drastically decreases of JSC. 

 

6. CONCLUSIONS 
 

We have simulated a n-i-p+ solar cell by using the 

AMPS-1D code. Our objective, was to determine the 

simultaneous variation of the i-a-Si : H absorber layer 

thickness and the band gap of the p-nc-SiOx:H window 
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Fig. 5 – Energy band diagram of n-i-p+ solar cells when  

p-nc-SiOx : H window layer band gap is 2.10 eV, i-a-SiC : H 

buffer layer band gap is 1.90 eV and i-a-Si : H absorber layer 

band gap is 1.86 eV 
 

layer on the external performances of the solar cell. 

Also, the band gap of the i-a-Si : H active layer was 

optimized. In one hand, the simulation results shows 

that the JSC does not depend on the p-nc-SiOx : H win-

dow layer band gap. But, JSC depend strongly on the 

band gap and thickness of the absorber layer. On the 

other hand, the VOC was found not more affected by the 

thickness of the absorber layer. However, the VOC de-

pend strongly on the band offset (ΔEV) in valence band 

at i-a-SiC : H / p+nc-SiOx : H interface with increasing 

of p+nc-SiOx : H layer band gap and at i-a-SiC : H /  

i-a-Si : H interface, with increasing of i-a-Si : H layer 

band gap. Finally, it is demonstrated that the efficiency 

reaches a maximum value of 10.44 % (JSC  

11.67 mA/cm2; FF  0.829; VOC  1070 mV) when values 

of p-nc-SiOx : H window layer band gap, band gap and 

thickness of i-a-Si:H absorber layer are 2.10 eV, 

1.86 eV, 550 nm, respectively. 
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