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Executive Summary 

Commissioned by Cal Poly Formula SAE, the Formula Monocoque Development (FMD) senior project 

designed, manufactured, and tested a carbon fiber driver’s cell and structural nosecone. The effort built 

upon 2013’s Formula Chassis Works (FCW) project, but with a narrowed scope to conserve time and 

resources. FCW’s monocoque was also used in 2014 when the team added aerodynamics and a new 

engine. 

FMD focused on specific stiffness; compliance with new rules; weight-saving manufacturing techniques; 

and incorporating changes in suspension and aerodynamics. Specific stiffness was the primary goal of the 

project. Lightweighting the vehicle was critical to success at competition as a sensitivity of 2.2 

points/pound was found in the 2014 Lincoln results for similar vehicles. Stiffness was critical to 

achieving noticeable changes in vehicle dynamics from suspension-setting adjustments. Meeting SAE 

laminate rules, while still achieving specific stiffness targets, became tougher than in past years due to 

more-demanding criteria in the Structural Equivalency Spreadsheet (SES). Particularly the new SES 

regulated the cockpit floor, added a bending requirement to the front bulkhead and anti-intrusion plate, 

and required an energy absorption threshold for the front bulkhead—none of which were required 

previously. Beyond the required tests, FMD performed experiments to realize tub weight savings 

including testing the minimum number of plies required to join the two monocoque halves, short beam 

shear tests to eliminate 4 pounds of film adhesive, part strength comparisons from cures in and out of 

autoclave, and testing multiple prepregs. FMD also accounted for a switch to pullrod suspension and shed 

weight in aero mounting via attaching trusses directly to the nosecone.  

Initial design began with advancing FCW’s FEM by correlating it to a physical torsional test, correcting 

ply orientations, and by incorporating experimental material properties. With these changes, potential 

laminates were selected for specific stiffness and rules adherence via destructive tests specified by SAE’s 

SES. Classical Lamination Theory (CLT) was then used for strength calculations of suspension pickups 

and nosecone mounting. Past experience showed physical testing provided an extremely high return on 

investment so FMD began testing laminates once material arrived. 

FMD also produced an impact-attenuating nosecone constructed entirely of carbon fiber. Even with a 

50.9% heavier nosecone, consolidated aerodynamic mounting allowed for a 5.2% system weight savings 

over the 2014 assembly. The nosecone also passed SAE impact requirements by dissipating 7390J of 

energy with a 21.9g peak and 7.8g average deceleration. 

The prepreg monocoque was manufactured generally as described in the FCW report—with the major 

difference being a post-cure to increase its glass transition temperature in an effort to reduce hot-weather 

induced compliance as seen in the 2013 chassis.  

Future work includes lightening the laminates through more physical testing of the front bulkhead and 

side impact structure. Additionally, weight can be saved through reduced ply overlap and manufacturing a 

mold with tighter template tolerances. Investigating Flex-Core, foaming core-splice, and multistage cures 

may also increase part quality.  

As compared to the 2013 car, the 2015 chassis had a monocoque that was 14.9% lighter and had an 11.5% 

higher specific stiffness. The anti-intrusion plate also weighed 16.6% less. All rules were met or 

exceeded. The changes in suspension architecture were successfully incorporated with iteration and the 

aerodynamic mounting performed well in the available testing time. The team placed 18
th
 out of 79 teams 

entered at the 2015 Lincoln competition.  
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Introduction 

Sponsor Background and Needs  

Formula SAE (FSAE) is a student design competition centered on the scenario that a fictional 

company has contracted a team to develop a Formula-style race car. Each team of university 

students designs, builds, and tests a car based on a set of rules established and enforced by SAE 

International. The teams enter their project in an international competition, in which a series of 

events—including cost, design, and dynamic performance—are used to evaluate the performance 

of the vehicle.  

The Cal Poly Formula SAE team has been competing in FSAE competitions since the 1980’s 

with varying levels of success. Recently the Cal Poly team has been climbing the ranks through 

continued development and knowledge transfer from previous teams.  

Most recently, the team placed 26th out of 120 teams at the 2014 Michigan competition. 

Sustaining this continued increase in performance can be achieved through iterative design and 

advanced development of various vehicle subsystems.  

An FSAE vehicle is composed of several distinct subsystems that are critical to the overall 

vehicle’s performance. These subsystems include the chassis, suspension, engine, drivetrain, 

aerodynamics, driver controls, and electronics. All subsystems must operate in tandem for a high 

performing vehicle. The chassis is a critical subsystem for any high-performance race car, since 

it acts as an interface to connect all of the car’s separate subsystems together. The chassis must 

be adequately stiff in order to transfer loading from the tires and provide tangible response to 

handling tuning done to the suspension. In addition, the chassis must but lightweight, since 

weight is a limiting factor in terms of acceleration-based performance.  

The current Cal Poly FSAE hybrid chassis, developed by Formula Chassis Works for the 2013 

car, is comprised of a carbon fiber monocoque joined to a steel space frame in the rear.  

Formula Monocoque Development will design, manufacture, and test a new monocoque 

laminate and impact attenuator with the goals of maintaining adequate stiffness and reducing 

weight, while complying with the other subsystems of the car and meeting all of SAE’s structural 

requirements and rules.  

Problem Definition  

The carbon fiber monocoque used by the Cal Poly FSAE team for the 2013 & 2014 seasons was 

unnecessarily overweight and insufficiently stiff for an aerodynamically-equipped race car. Due 

to inherent manufacturing errors, approximately 5 pounds of excessive weight was added to the 

monocoque. The measured torsional stiffness of the vehicle was within the range of the expected 

result, but still too soft for the increase in roll stiffness present in a car equipped with large 

amounts of aerodynamic downforce. The electronics placement below the driver in the old 

chassis resulted in an unnecessarily high CG of the driver, which accounts for approximately 

30% of the total vehicle weight. Finally, limited manufacturing and testing time greatly limited 

the previous senior project team in developing the best possible chassis laminate. 
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The overall goal of the Formula Monocoque Development (FMD) team is to develop and build a 

high-performance carbon fiber chassis for the 2015 Cal Poly FSAE team. The primary goals for 

this chassis are low weight and high stiffness, which are directly correlated to the performance of 

the vehicle. Additionally, the chassis must comply with SAE safety and template rules. More 

specifically, FMD will increase the specific stiffness of the tub via development of the carbon 

fiber layup schedule, modifications to the geometry of the tub, and analysis of the rules 

requirements. 

Detailed requirements for the 2014/2015 tub are outlined in Table 1. These requirements were 

developed via a Quality Function Deployment (QFD) (see Appendix B), which takes into 

account all quantitative customer requirements requested by Cal Poly FSAE. 
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Table 1. Engineering requirements for the 2015 Cal Poly FSAE carbon fiber tub. Specification importance 

is measured with risk (high, medium, or low). How each specification will be met is outlined under 

compliance (analysis, test, similarity to previous 

Spec  

# 
Description Target Tolerance Risk Compliance 

1 Weight of monocoque only 25 lb max H A,T 

2 

Torsional stiffness of monocoque and front 

suspension only, determined from torsion test 

displacements between front hub and aft of tub 

(see page 18 for more details) 

2184 lb-ft/deg min H A,T 

3 Area of cockpit opening 440 in
2
 ± 10 L I 

4 
Cross sectional area of front tub, based off of SAE 

rules (ref.) 
195 in

2
 min L I 

5 
Max operating temperature of carbon face sheets, 

based off of glass transition temperature 
150 

o
F min M A 

6 Egress time from seated driving position 5 sec max L T 

7 Visual rating of appearance 9/10 ± 1 L I 

8 Driver rating of comfort 9/10 ± 1 M S,I 

9 

Cost (Cost Report), manipulated by obtaining 

accurate 

measurements and using simplified processes 

$3,500  max M A 

10 

Safety factors for primary loading from suspension 

pickup points, pedal box assembly mounting,  

aerodynamics mounting and joint to rear subframe 

2 min H A,T 

11 
Energy absorption of nosecone,  

undergoing quasi-static loading 
7350 J min M A,T 

12 

Flat mounting regions, used for interfacing with  

other subsystems, primarily suspension,  

aerodynamics, and driver controls 

1.5x required 

mounting area 

(for 

adjustability) 

min M I 

13 

Strength requirements from FSAE rules, located at 

side-impact structure, front roll hoop bracing, 

and front bulkhead support 

67 kN 

35.9 kN 

99 kN 

min H A,T 

14 
Front bulkhead cutout, used for ease  

of accessibility for pedal box assembly changes 
10" x 10" min M I 

15 
Cable routing cutout for brake lines and DAQ 

wires, at side of monocoque near suspension 
5/8" x 3/4" min L I 
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Objective and Specification Development 

As opposed to starting a chassis design from scratch, FMD chose to utilize the design resources, 

documentation, and tooling from the 2013 chassis team to create an improved iteration of their 

composite tub.  

The 2013 FSAE chassis team designed a chassis with a wealth of design potential, but time and 

resource restraints prevented the extensive composites testing necessary to further refine the 

laminate. A large portion of their development time was spent designing and manufacturing the 

plaster tub mold, securing donations of core and prepreg, and learning the basics of composites 

manufacturing and design. Composite panel testing and iteration were rushed, and the laminate 

design was not as developed as they had hoped. Despite their stringent time constraints, the 2013 

team was able to design and manufacture a composite tub that would last more than two 

competition seasons and extensive dynamic testing.  

In order to build off of past experience, FMD kept the 2013 chassis team – John Waldrop, 

Matthew Hagan, John Rappolt, and Nick Henderson – in close contact. The 2013 team members 

also left behind extensive design documentation in the form of their senior project report, FEMs, 

Computer-Aided Design (CAD), and many other useful documents. It became very apparent 

early on that remaining in close correspondence with the 2013 team and constantly referencing 

their documentation would be invaluable in both the design and manufacturing process. 

From the comments of the 2013 chassis team and further research into composite tub design, it 

was decided that the primary goals of the 2015 monocoque design would revolve around a 

greater volume of composites testing, improving the chassis finite element analysis (FEA) 

model, physically validating chassis stiffness, and adapting the tub to accommodate a new 

pullrod suspension. The FSAE governing body also released new chassis structural requirements 

that would necessitate different testing methods and a completely new laminate.  

The team’s goal for torsional stiffness was to design a monocoque that meets or exceeds the 

2014 monocoque stiffness.  In that sense, the stiffness of the monocoque must be isolated from 

the rest of the chassis in order to make an effective comparison between the 2014 and 2015 tubs. 

The team conducted a torsion test of the 2014 chassis (see pages 109-113), and deflection values 

were taken along the length of the chassis. These numbers were manipulated to yield the 

component stiffness values for the monocoque and front suspension combined, the subframe-to-

tub joint, and the subframe. Considering the points taken, the team was unable to separate the 

monocoque stiffness from that of the front suspension. As a result, the closest thing to a target 

monocoque stiffness our team could obtain was the stiffness of the tub and front suspension 

combined, which was 2148 ft-lb/deg. Our team used this combined monocoque and front 

suspension stiffness as our effective stiffness goal.  

Future teams should make sure to take deflection values at the front suspension pickups in order 

to separate the stiffness contribution of the front suspension, thus isolating the stiffness of the 

monocoque. Taking this approach would have yielded a more sensible stiffness goal.   
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Project Management  

The large scope of designing, building, and testing a carbon fiber monocoque and impact-

absorbing nosecone required clear responsibilities. To that effect, each team member was 

delegated roles as shown in Table 2. As Chassis Lead, Matthew Lee spearheaded FEA, testing 

analysis, and manufacturing. As Suspension Lead, Tony Loogman determined loadings on the 

chassis and assisted Mr. Lee with FEA and localized attachment analysis. Senior team member, 

Andrew Ferrell led CLT analysis and nosecone laminate development and manufacturing. In 

order to increase productivity and help future teams, Mr. Ferrell also acted as project archivist 

and CAD manager. Outgoing Team Lead Andrew Cunningham was responsible for FMD’s pre-

manufacturing scheduling, budgeting, and material acquisition. Additionally, as 2015 

Aerodynamic Lead, Mr. Cunningham was responsible for providing aerodynamic loadings and 

flow considerations. While the four engineers on the project all had a demonstrated track record 

of commitment and results as members of Cal Poly Formula SAE, a formal contract was 

established to ensure responsibilities were met at a level of quality and in a manner of time that 

was acceptable to the sponsor. 

Table 2. Member roles for the scope of the project. Each member was in charge of a major aspect of the project. 

Matthew Lee Tony Loogman Andrew Ferrell Andrew 

Cunningham 

FEA FEA CLT Analysis Nosecone 

Aerodynamics 

Localized Attachment 

Analysis 

Localized 

Attachment 

Analysis 

Nosecone Design and 

Manufacturing 

Impact Attenuator 

Testing  

Manufacturing Lead Suspension Loading Archive Management Hardware Analysis 

Physical Testing and 

Analysis 

Physical Testing 

and Analysis 

Impact Attenuator 

Testing and Analysis 

Scheduling and 

Budgeting 

Build Scheduling   CAD Management Material Sourcing 

 

A project of this magnitude also required a detailed yet flexible schedule and well-allocated 

resources in order to meet its performance requirements in a timely manner. To that affect, a 

Gantt chart was used to track critical path items, labor requirements, and concurrent engineering 

leading up to manufacturing. Once heavy testing and construction began, the project direction 

was cemented and scheduling was performed via a spreadsheet. The project’s major stages and 

milestone can be found below and detailed scheduling in Table 3. 
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Table 3. Major milestones in the monocoque design and manufacturing included problem definition, selection, 

materials acquisition, and laminate testing, and chassis manufacturing, nosecone production, and testing. The initial 

stages of the project were organized via a Gantt chart and this progressed to a spreadsheet as direction became self-

evident. 

 
 

SAE’s required document deadlines (Table 4) were factored into the schedule because these 

documents command a heavy point penalty for late submission. All data and analysis was 

completed on time and, except for the Notice of Intent for Alternative Frame Rules, passed upon 

the first submission. Of note is that the Alternative Frame Rules were abandoned in favor of the 

Structural Equivalency Spreadsheet for reasons explained later in this report.  

 

Stage Task Start End Duration

Definition 5/1/2014 12/4/2014 217

Design Specifications 5/1/2014 6/1/2014 31

Selection FSAE Preliminary Design Review 8/10/2014 8/10/2014 0

Conceptual Design Review 6/5/2014 6/5/2014 0

Critical Design Review 12/4/2014 12/4/2014 0

Materials Acquisition 9/1/2014 1/15/2015 136

Carbon-Fiber 9/1/2014 11/20/2014 80

Core 12/15/2014 1/15/2015 31

Film Adhesive 11/4/2014 1/4/2015 61

Vacuum Bagging Materials 9/10/2014 10/22/2014 42

Laminate Testing 10/7/2014 1/16/2015 101

2014 Rules Test Panels 10/7/2014 12/8/2014 62

2015 Rules Test Panels 12/8/2014 1/16/2015 39

In-mold Test Layups 12/17/2014 1/14/2015 28

Pull-Out Test 1/14/2015 1/14/2015 0

Short Beam Shear Tests 11/18/2014 11/20/2014 2

Lap Joint 1/26/2015 1/27/2015 1

Chassis Manufacturing 1/15/2015 2/23/2015 39

Prepare Core, Templates and other  Materials 1/15/2015 1/17/2015 2

Layup 1/17/2015 1/20/2015 3

Cure 1/21/2015 1/21/2015 0

Remove Excess Material 1/25/2015 1/26/2015 1

Drill Suspension Holes 1/26/2015 1/28/2015 2

Post Cure 1/28/2015 1/28/2015 0

Bond halves 1/30/2015 2/8/2015 9

Closeouts 2/21/2015 2/22/2015 1

Carbon-Fiber Repair 2/18/2015 2/22/2015 4

Final Material Removal 2/22/2015 2/23/2015 1

Flattening Pedal Box and Pickups 4/18/2015 4/25/2015 7

Vehicle Assembly 2/24/2015 4/7/2015 42

Nosecone Manufacturing 3/21/2015 3/31/2015 10

Layup 3/21/2015 3/30/2015 9

Impact Testing 3/26/2015 3/31/2015 5

Mounting Holes 3/28/2015 3/29/2015 1

Testing 4/7/2015 5/28/2015 51

First Drive 4/7/2015 4/7/2015 0

Torsion Test 5/28/2015 5/28/2015 0
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.  

Table 4. Deadlines for SAE chassis design, analysis, and costing are strictly enforced with a point penalty for late 

submission. All documents were submitted on time and met or exceeded SAE requirements. 

 
 

While the composite portion of the chassis was largely designed by the four members of FMD 

building upon FCW’s foundation, a large and specialized labor pool was needed for the carbon 

fiber manufacturing. Recognizing this, a Composites subteam was formed under Cal Poly 

Formula SAE for the 2015 season. This team worked with Chassis and Aerodynamics to elevate 

part quality-assurance through studying successes and failures as well as developing standard 

operating procedures for test panels and other layups. The Composites subteam worked with 

FMD to produce over 120 test panels and assisted during the tub layup. As such, the team should 

be considered essential for future monocoque development. Beyond laminating skills, FMD also 

enlisted one of the team’s CNC operators to machine the nosecone mold foam.  

Material availability is always a large component in Formula SAE chassis senior projects due to 

the team’s limited budget and the high cost of composite materials. Cal Poly Formula SAE is the 

sponsor of record, but industry partners are critical to the success of the project. Most notably, 

TenCate Advanced Materials, C&D Zodiac, Toray Composites of America, and SpaceX, 

Plascore, and Airtech International have been exceedingly generous with material donations. 

Material types, usages, and sources are detailed in Table 5. The team thanks these industry 

partners and hopes to provide a return on investment via media promotion during testing and 

competition as well as training to become highly-contributing future employees.  

The Formula SAE team committed $3,000 to the project for all materials and other expenses not 

covered by industry partners. In total, the project cost the team only $215 due to FMD and team 

management seeking industry partners who donated $44,080 worth of materials and services 

(Table 5). This shows that by maintaining positive sponsor relations and putting forth significant 

effort in gaining new partners, a composite chassis can be produced for less than the cost of a 

steel-tube chassis’ raw materials.  

  

Requirement Date 

Notice of Intent for Alternative Frame Rules 11/3/2014

Structural Equivalency Form 3/2/2015

Impact Attenuator Data 4/1/2015

Cost Report 4/1/2015



22 

 

Table 5. The budget breakdown shows that a monocoque is only possible with large sponsorships. 

Material/Item Value 
FMD 
Cost Funding Source 

Mold Tooling (From 
2013) $20,000 $0  C&D Zodiac 

Carbon Fiber Prepreg $18,000  $0  TenCate/Toray/SpaceX 

Dry Carbon Fiber Cloth $80  $0 Cal Poly MESFAC 

Vacuum Bagging 
Materials  $3,000  $0  Airtech/C&D Zodiac 

Core  $1,600  $0  Plascore 

Low Temp Foam $1,000  $0  Coastal Enterprises 

Sealant Tape $400  $0  General Sealants 

Hardware $165  $165  Formula SAE 

End Grain Balsa $50  $50 Formula SAE 

Total $44,295  $215  
  

Background 

Team History 

In 2011, the Cal Poly FSAE team built a new car from the ground up. The chassis was a full 

steel-tube frame, which was one aspect that led to an overweight car. Unfortunately, the car was 

not completed in time for the 2011 FSAE competition. In 2012, the car was completed and taken 

to the FSAE competition in Lincoln, Nebraska, and finished 36th out of 66 teams. Because the 

car was so heavy, one of the primary goals of the 2013 team was to make the car lighter. 

Formula Chassis Works, the senior project group who set out to redesign the chassis, originally 

planned to develop a full carbon fiber monocoque. Due to temperature and packaging issues, 

mostly regarding the engine, this plan was scrapped in favor of a hybrid chassis. Because the 

switch to a hybrid chassis occurred so late in the design phase, there was very little time for 

development. This was also the first carbon fiber tub these team members had built so there was 

not much experience. The Cal Poly FSAE team had built carbon fiber monocoques in the past; 

however, none of the previous driver’s cells would have been strong enough to meet the new set 

of SAE rules. Due to unfamiliarity with composites, the team designed the 2013 tub with 

excessively high safety factors, which lead to unnecessary weight. In addition, manufacturing 

inexperience led the team to add approximately 5 extra pounds of honeycomb core during the 

layup. Problems also arose due to a lack of time.  

For example, due to the last minute design change from a full monocoque to a hybrid chassis, 

there was not much time to develop the laminate to be lightweight. In addition to the laminate, 

the geometry of the monocoque was not developed in depth. This lead to a tub that was 

unnecessarily long, as well as more complicated than necessary. Lack of development time also 

lead to heavy mounting brackets. Finally, a shortage of development time for the strap joint that 

joins the two monocoque halves resulted in excess weight. Largely due to insufficient dynamic 

testing time (only 30 minutes of drive time total), the 2013 Cal Poly FSAE team placed 44th out 

of 62 teams at the Lincoln competition.  
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In 2014, the Cal Poly FSAE team used the same tub as the year prior in the interest of testing and 

development time. Minor changes were made to the vehicle, including the addition of an 

aerodynamics package and integration of a new engine. This allowed the car to be driving much 

sooner than in 2013, and 11 hours of testing time were logged. The result of this large increase in 

testing time allowed many problems to be worked out, most of which were reliability issues. 

With an improved and well tested car, Cal Poly FSAE competed in the Michigan FSAE 

competition and placed 26th out of 120 teams.  

Resources 

FMD’s most valuable resource is the 2013 FSAE Chassis Report, written by Formula Chassis 

Works (Reference 4). This report documents how the 2013 chassis was designed, manufactured, 

and tested. It has a plethora of valuable information about the entire process of designing a 

monocoque, such as initial concepts and ideas, how they conducted their analysis, their decision 

making, and the manufacturing processes they used. The 2013 Chassis report also had 

suggestions for future work to improve the monocoque. They recommend using over-expanded 

core to help reduce the amount of excess core used, spending more time developing the layup 

schedule in order to save weight, and further developing the strap joint, the closeouts, and the 

nosecone. Ideally, FMD will be building upon this report, therefore advancing the current design. 

Having access to the 2013 Chassis Report and the lessons learned was a significant advantage to 

FMD. 

Current State of the Art  

The current state-of-the-art in regards to track vehicle racing is Formula 1 (F1), which is a 

single-seat auto racing competition organized by the FIA. It is very similar in design 

requirements to the Formula SAE competition, with an emphasis on maneuverability around an 

autocross-style course. While F1 cars do experience much higher loading conditions, certain 

design principles can still be applied to a FSAE racecar. 

The chassis of a F1 racecar is composed primarily of a carbon fiber sandwich structure because 

of its superior specific stiffness. As visible in Figure 1, F1 chassis’ use variable-thickness 

aluminum honeycomb core with CFRP face sheets. In previous years, the Cal Poly Racing team 

has used Nomex core in the interest of ease-of-manufacturing and due to availability. Table 6 

shows the shear stiffness and density properties of Nomex and aluminum honeycomb core. 
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Figure 1. Formula 1 chassis, showing the use of carbon fiber and aluminum honeycomb core. 

Table 6. Properties of possible core materials to be used in the 2015 monocoque. 

  
Density 
[lb/ft3] 

Shear Strength 
[psi] 

Shear Modulus 
[ksi] 

HRH-10 Nomex 3.0 175 6 

PAMG Aluminum 3.1 210 70 
 

Additionally, F1 chassis are cured in autoclaves, which allow the use of external pressure to 

improved carbon compaction, which is directly correlated to strong performance. Unfortunately, 

the autoclave located on the Cal Poly campus is far too small to fit the chassis molds, so the large 

oven must be used to cure the chassis, which doesn’t allow the option of additional pressure. The 

Formula Monocoque team was able to gain access to Swift Engineering’s autoclave, which 

would have allowed the use of a pressurized cure. Unfortunately, due to time constraints and 

logistical issues, this opportunity was abandoned. 

Sandwich Structures 

A composite sandwich structure is composed of core sandwiched by two face-sheets. The skins 

take the in-plane tensile and compressive forces, while the core takes the out of plane shear and 

compressive loading. The core also serves to increase the second area moment of inertia of the 

sandwich panel, thus increasing its bending stiffness.  

An important laminate design consideration is the carbon fiber and its mechanical properties. 

When selecting prepreg carbon, the strength, stiffness, failure strain, fiber volume, weave type 

(or absence of weave), and resin type have to be taken into account. The fiber strength 

determines the permissible load on the fiber before failure, and the stiffness determines the 

amount of deflection the laminate sees given a certain load. Failure strain is a large concern in 

composites design, because laminates often reach their failure strains before their maximum fiber 

stress. The fiber volume (the volume of fiber versus the volume of resin) is also important, 
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because excessive resin content will dilute the ply strength and stiffness in exchange for better 

adhesion and bonding. 

Modern composites design strives for high strength and high stiffness at reduced weight. 

Depending on a composite part’s geometry and load path, certain regions of the part may be 

stiffness dominated, strength driven, or in need of both high stiffness and strength. For example, 

high load areas like suspension pickups will require high strength to prevent failure and high 

stiffness to avoid roll stiffness compliance. However, there are other lightly loaded parts of the 

tub that do not require a great deal of strength, but must be stiff in order to promote chassis 

torsional stiffness. In the pursuit of high performance at minimal weight, the designer aims to 

tune the laminate to meet the unique requirements of each chassis region using various fiber 

types in different orientations at different locations. With these considerations in mind, FMD 

considered a variety of fiber types within the limitations of what was available from donations. 

FMD considered fibers like Toray M55J unidirectional tape (“uni”) for its high fiber stiffness, as 

well as M46J and T800 for their high strength and superior surface finish. With a wide variety of 

fibers at our disposal, our goal was to minimize ply count by placing certain types of fibers in the 

direction of the load.  

Core bonding 

In order for a composite sandwich structure to function properly in bending, the face-sheets must 

be securely bonded to the core. This can be achieved using film adhesive designed for core 

bonding. Despite the high core-bonding strength film adhesives provide, these adhesives are very 

costly and still add weight to the laminate. An alternative to film adhesive is to use a prepreg 

with a resin system designed to be self-adhering to core. This method reduces laminate weight 

considerably, but the integrity of the core-skin bond may not be ideal. From a safety standpoint, 

it was suggested that film adhesive be used, even if it were a redundant measure against possible 

core-skin delamination. In order to justify the use or exclusion of film adhesive, composites 

testing is necessary to determine the bond strength of each core bonding method. 

Temperature Resistance 

The expected operating temperature of a composite part is also a large component of composites 

design. All resins are rated to a specific temperature for safe operation. If a cured resin is heated 

beyond its rated temperature, then it may soften and lead to delamination in the part. Since 

regions of the tub would be exposed to intense prolonged sunlight and radiant heat from the 

exhaust and engine, proper precautions would have to be taken to ensure that the tub is rated to 

the expected operating temperature. All resins have a suggested operating temperature, and some 

resins can be post-cured to further elevate the operating temperature.  

Applicable Standards 

Our laminate design is governed by the loads expected from the suspension, pedals (from the 

driver’s feet), driver weight, and other considerations. In addition, the laminate must pass SAE’s 

rules governing laminate properties and dimensions. The SAE-mandated tests are intended to 

isolate specific mechanical properties of the laminate, which are then compared to the properties 
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of a baseline steel tube design. The properties considered are: bending stiffness (EI), yield 

strength, ultimate strength, and absorbed energy. Depending on the region of the tub, the 

laminate must meet or exceed the properties of one, two, or three baseline steel tubes.  

There are three tests required by SAE regarding the chassis laminate: the 3-point bend test, 

perimeter shear test, and off-axis pullout test. The details of each test are summarized in Table 7. 

All of the composite tests were performed on an Instron tensile tester under the safety guidelines 

set forth by the Mechanical Engineering Department.  

Table 7. SAE-mandated laminate tests 

 Long beam 3-point 

bend 

 

Perimeter Shear Off-axis Pullout 

Property Tested  Skin strength  

 Skin stiffness 

 Panel Shear 

Strength 

 Harness 

pickup 

strength 

 

The SAE tests cover a variety of loading conditions that are intended to replicate actual on-car 

loading. However, the Hexcel and ASTM tests provide more generalized laminate properties that 

are useful for design outside of the SAE requirements. 

The ASTM D2344 short beam shear test is a 3-point bend test that isolates the interlaminar shear 

strength (ILSS) of a composite, coreless panel. The ILSS is essential to the integrity of the resin.  

Hexcel’s short beam sandwich shear test is a 3-point bend test with a reduced support span. The 

test is designed to isolate the ILSS or core shear strength of the laminate, depending on the 

failure mode. Failures in delamination isolate the core-to-face-sheet bonding strength. If the core 

fails, then the test results isolate the core shear strength. If the panel experiences failure in the 

core before any delamination occurs, then the core-skin bond is sufficient.  

SAE provides two chassis design rulesets: the Structural Equivalency Spreadsheet (SES) and the 

Alternative Frame Rules (AFR). The SES approach utilizes the composites testing data to 

determine if a laminate meets or exceeds the stiffness and strength of an established baseline 

steel design for a given region of the chassis. The AFR is more open-ended, in that it requires 

teams to use an FEA simulation to prove chassis strength and stiffness given a series of different 

loading conditions.  

The SES is the older and more developed ruleset. The Structural Equivalency Spreadsheet 

compiles all of SAE’s chassis requirements into a large spreadsheet, complete with formulas and 

guidelines to quickly check laminate equivalence. Checking whether a laminate passes is almost 

instant, in that the user does not need to program any mechanical formulas. However, it does 

help to fully examine the formulas in order to extrapolate which laminate properties drive the 

design.  
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The Alterative Frame ruleset requires teams to produce a full chassis finite element model (FEM) 

using material properties derived from testing. The model is then subject to a series of loads that 

examine the structural integrity of the design. Alternative frame designs are exempt from several 

dimensional and loading requirements present in the main chassis ruleset, thus allowing for a 

greater freedom of chassis geometry. Despite these advantages, creating a functional, accurate 

FE model takes considerable time and a great deal of specialized expertise. In addition, some 

loading cases (especially for frontal impact) are very high, and will cause an imperfect model to 

break down. Since the AF ruleset is relatively new, SAE takes several weeks to respond to rules 

clarifications or analyze a submitted model. This added down-time significantly impedes the 

laminate iteration process. 

At the start of the design phase, FMD explored the possibility of designing an AFR chassis by 

modifying a pre-existing chassis FEM. As FMD began altering the FEM to accommodate the AF 

loads, the team quickly realized that significant modifications needed to be made to the model in 

order to obtain feasible results. In addition, the rules clarifications and sample models submitted 

did not receive responses until weeks after submittal. Considering the team’s manufacturing 

timeline, FMD felt that pursuing the AFR any further would severely impact the timely 

completion of the chassis. For that reason, FMD promptly switched to the SES ruleset. 

Details on FMD’s attempt to satisfy the AF rules can be found in Appendix T.  

Design Conceptualization 

Mold and Tooling 

In order to devote design resources to laminate development and speed up manufacturing, the 

2013 monocoque molds were reused. In 2013, C&D Zodiac machined the foam bucks on their 5-

axis gantry mill. After hand-finishing by FSAE members, a plaster-hemp mold was pulled off of 

the bucks. Again, team members sanded and filled these tools to ensure a high-quality surface 

finish and C&D finished them with an industrial gelcoat. Details of the mold construction are 

covered in the FCW report. In total, it is estimated that these molds took 400 hours of team labor 

to produce, excluding design time. Moreover, the molds were rated for 3-5 heat cycles and only 

2 had been used in 2013 for a test layup and the final part. For the aforementioned reasons, FMD 

did not see a positive return on investment coming from manufacturing new molds. 

Target Stiffness  

The primary concern when determining a target torsional stiffness for a performance vehicle is 

how well the chassis transfers loads between the front and rear suspension. The success of any 

race car is largely dependent on tuning made to the vehicle, both for specific courses and for 

specific track conditions. When tuning the suspension of a vehicle for steady-state handling and 

transient performance, the primary concern is the lateral load transfer, from the inside tires to the 

outside tires of the vehicle. This lateral load transfer determines the normal load on the tire, 

which is directly proportional to how much lateral grip the tire can create. More specifically, the 

distribution of the lateral load transfer between the front and the rear tires will determine the 

oversteer/understeer characteristic of the vehicle since the normal loads are responsible for how 
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much grip is created at the front and rear of the vehicle. The lateral load transfer at the tires is 

primarily controlled by changing the roll stiffness distribution of the vehicle, which is typically 

adjusted via springs and anti-roll bars. In order for these adjustments to take effect, the chassis of 

the vehicle must be able to transfer the difference in loading between the front and rear 

suspension components. With an inadequately stiff chassis, changes made in the suspension 

parameters will have little to no effect on the actual lateral load transfer, since the chassis will 

absorb the energy transfer. 

The front roll rate, chassis torsional stiffness, and rear roll rate act like successive springs in 

series and an increase in the roll rate of the suspension will require a proportional increase in the 

chassis stiffness to retain the same handling response. The previous tub was designed for a front 

and rear suspension roll rate of 130 and 135 lb*ft/deg, respectively. The addition of 

aerodynamics to the car required an increase of the front and rear roll rate to 450 and 330 

lb*ft/deg, respectively, in order to meet the aerodynamics subsystems wing displacement 

requirements. As a result, a much stiffer chassis was required to adequately support the lateral 

load transfer. 

In order to quantify the effects of torsional stiffness on the ability to tune suspension parameters, 

a model was developed that determines lateral load transfer based off of an input change in roll 

stiffness distribution for any given chassis torsional stiffness. This model is based off of several 

basic vehicle dynamics equations, as well as the constitutive relationship shown in Figure 2.
Ref 3 
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𝑚𝑓 = 𝐾𝑟𝑜𝑙𝑙𝑓∅1 − 𝐾𝑐ℎ∅3     (1) 

𝑚𝑟 = 𝐾𝑟𝑜𝑙𝑙𝑟∅2 + 𝐾𝑐ℎ∅3     (2) 

∅1 + ∅3 = ∅2                     (3) 

𝑚𝑓 = 𝑓𝑟𝑜𝑛𝑡 𝑚𝑎𝑠𝑠 

𝑚𝑟 = 𝑟𝑒𝑎𝑟 𝑚𝑎𝑠𝑠 

𝐾𝑟𝑜𝑙𝑙𝑓 = 𝑓𝑟𝑜𝑛𝑡 𝑟𝑜𝑙𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 

𝐾𝑟𝑜𝑙𝑙𝑟 = 𝑟𝑒𝑎𝑟 𝑟𝑜𝑙𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 

𝐾𝑐ℎ = 𝑐ℎ𝑎𝑠𝑠𝑖𝑠 𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 

𝜙1 = 𝑓𝑟𝑜𝑛𝑡 𝑟𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒 

𝜙2 = 𝑟𝑒𝑎𝑟 𝑟𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒 

𝜙3 = 𝑐ℎ𝑎𝑠𝑠𝑖𝑠 𝑡𝑤𝑖𝑠𝑡 𝑎𝑛𝑔𝑙𝑒 

 

Figure 2. Relationship between suspension and chassis roll angles and roll rates. 

The model takes any input chassis torsional stiffness and total suspension roll stiffness, and then 

creates an arbitrary roll moment to simultaneously solve the above equations for their respective 

roll angles. From the front and rear roll angles, the lateral load transfer distribution can be 

determined. With an insufficiently stiff chassis, excessive twist angle in the chassis causes the 

difference in roll angles between the front and rear suspension, which is the cause of poor lateral 

load transfer distribution. With the results of the model, the effect of different chassis torsional 

stiffnesses can be seen (Figure 3). 



30 

 

 

Figure 3. The effect of poor torsional stiffness on the correlation between roll stiffness distribution and lateral load 

transfer distribution. A stiffer chassis results in a more linear relationship. 

The ideal race car would have a perfectly linear rate between the designed lateral load transfer 

distribution and the actual lateral load transfer distribution. With a linear relationship, any given 

change in the roll stiffness of the suspension would directly correlate to a change in the lateral 

load transfer distribution, thus affecting the tire grip. However, due to chassis flex, this is not the 

case. The nonlinearity means that a change in the roll stiffness distribution does not cause a 

direct change in the lateral load transfer distribution and does not cause the change that the race 

engineer is expecting.  

As visible in Figure 3, a decrease in chassis stiffness results in a more nonlinear relationship 

between the desired total lateral load transfer distribution (TLLTD) and the actual TLLTD. As 

stiffness increases, the relationship becomes more linear, but the improvements are a case of 

diminishing returns. However, the complete plot can be misleading, because typically the 

suspension subsystem is only tuned in a certain range of TLLTD. Figure 4 shows a zoomed-in 

view of the tuning range that is desired by the suspension subsystem.  Based off of the design of 

the suspension, the desired range of tuning was 0.48-0.53 TLLTD, which allowed a range of 

10% greater rear lateral acceleration to 10% greater front acceleration, depending on the roll 

rates selected. A chassis stiffness of 500 lb*ft/deg is too little because the desired tuning range is 

greatly limited. With a torsional stiffness of only 500 lb*ft/deg, the TLLTD tuning range is 

restricted to 0.49-0.517, which is determined from the constitutive relationship presented in 

Figure 2.  The lack of ability to tune the TLLTD with this little chassis torsional stiffness could 

seriously inhibit the ability to tune the handling of the car. However, chassis stiffnesses of 1500, 

2000, and 2500 have been determined to be stiff enough, because the actual tuning range of the 

car is within 20% of the desired tuning range and this is a realistic goal based off of previous 

years’ achievements. From these results, the FMD team determined that the stiffness of the 2015 

chassis must be increased to a minimum of 1500 lb*ft/deg, with 1700 lb*ft/deg as an optimistic 

goal. 
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Figure 4. Zoomed-in view of planned TLLTD tuning range of 2015 vehicle. 

Monocoque Shortening 

Upon examining the 2013 tub, it became apparent that there was 1 inch of unused space at the 

front of the tub. Using the 2013 laminate weights, FMD predicted that eliminating this excess 

material would save about 0.8 pounds. In the event that the pedal box could be shortened by 

relocating the fluid reservoirs further rearward, the tub could be shortened by a total of 4 inches, 

thus saving 3.4 pounds. 

Shortening the tub would require CNC machining of an MDF plug that would be bonded to the 

front end of the mold. Although conceptually simple, machining an MDF part to the contours of 

the tub would require CNC expertise, as well as considerable CAM, setup, and machining time. 

As the laminate design and testing went on, it was determined that manufacturing the tub 

shortening plug would divert crucial manpower away from composites testing and ultimately 

delay the final tub layup. Moreover, maintaining the existing length allowed for lower driver 

placement, which allowed for higher quality rear wing flow. It was thus ruled that shortening the 

tub presented more of a logistical problem than the weight savings would warrant. 

Cockpit Cutout 

Another potential weight-cutting measure was reducing the height of the driver cell sidewall and 

seat back. The SAE rules state that the side impact structure need only extend from the cockpit 

floor to a point 13.8 inches above the ground. This meant that the side impact structure of the 

2013 tub was 5” too tall. Removing the excess material would save approximately 5.4 pounds. 

However, the driver’s cell is an open-section region that suffers from low stiffness compared to 

the closed-section front of the tub. Any reduction of material from the top of the driver’s cell will 

further impact chassis stiffness. Analyzing the effects of this change required a significant 

modification to the chassis FEA model. The current tub model would have to be replaced and re-

meshed, and all the ties and constraints would have to be redone. FMD determined that making 
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these FEM changes would adversely impact our design and manufacturing timeline, so the effort 

was dropped. 

In order to effectively transfer the load between the skins along the top of the driver’s cell, FMD 

decided that carbon prepreg closeouts needed to be bonded over the exposed core to bridge the 

gap between the discontinuous skins. A single ply at 45° was selected per recommendation from 

Dr. Mello as well as from the 2013 chassis team. The chassis FEM was not used in selecting a 

layup schedule because it did not capture the out of plane load transfer that the closeouts would 

pick up. This is due to the use of shell elements in the FEM. 

Material Selection 

Material selection began by assessing the mechanical properties of prepreg and core, and running 

a torsional stiffness test in ABAQUS to determine the performance of each possible 

arrangement. 

Several types of carbon prepreg were obtained. According to the fiber datasheets, each prepreg 

has unique mechanical properties, as shown in Table 8. The goal was to design a laminate that 

satisfied the SAE testing standards and fulfilled the localized loading conditions from the pedal-

box and suspension mounts. In order to make a final selection, FMD considered the laminate 

stiffness, strength, and density of each material. Fiber selection would ultimately be determined 

through laminate testing and iteration. 
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Table 8. The mechanical properties for the available fibers vary significantly, especially with respect to stiffness. 

Fiber 

Tensile Modulus 

(Msi) 

Tensile Strength 

(ksi) 

AS4 33.5 640 

T800 42.7 796 

M46J 63.3 611 

M55J 78.2 583 

 

In regards to core, a variety of Nomex paper core and aluminum core were considered. The 2013 

team utilized 3.0 lb/ft
3
 paper core to good effect. Nomex is easy to form and bend to complex 

geometry, resulting in parts with minimal bridging. Nomex is also easy to splice, because the 

partially crushed cells tend to spring out and expand into the crevice being filled. However, 

Nomex does not possess the stiffness and strength of aluminum core of similar density, as 

detailed in Table 9. Finite element simulations also show that aluminum core yields higher 

chassis stiffness compared to Nomex core of similar weight, mainly due to aluminum core’s 

superior shear modulus. These numbers convinced FMD that using aluminum core would be a 

worthwhile upgrade with very little weight penalty. 

Table 9. Nomex and Aluminum core comparison. All torsional stiffness simulations utilized the 2013 laminate. 

 Density 

(lb/ft
3
) 

Shear Modulus 

(ksi) 

 

Plate Shear 

Strength (psi) 

FE 

Simulated 

Chassis 

Torsional 

Stiffness 

(lb-ft/deg) 

Specific 

Chassis 

Stiffness 

WRT core 

density (lb-

ft/deg)/(lb/ft
3
) 

Ribbon Transverse Ribbon Transverse 

HRH10 

Nomex 
3.0 6.0 3.5 175 155 1260 420 

PAMG 

5052 

Aluminum 

Core 

3.1 45.0 22.0 210 130 1407 469 

 

One of the drawbacks of hexagonal-cell aluminum core is its poor formability and tendency to 

bridge over contours. When bent over a curve, aluminum core is too stiff to keep its bent shape. 

This results in frequent bridging over internal curves. The use of aluminum Flex-Core mitigates 

this problem by using elongated hexagonal cells to facilitate bending in one direction.  

In addition, splicing aluminum core is difficult without expanding core-splice foam. Unlike 

Nomex (cells spring back after compression), aluminum core cells yield and thus do not expand 

to fill in empty spaces when splicing.  
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During the core selection process, the team was aware that Flex-Core would provide improved 

manufacturability over conventional-cell aluminum core. However, FMD was yet to discover 

that conventional-cell aluminum core would produce bridging and facesheet compaction 

problems. 

Since there was no guarantee of obtaining Flex-Core from sponsors, FMD was open to the 

possibility of using the more readily available conventional-cell aluminum core. Finite element 

simulations showed that 3.1 lb/ft
3
 PAMG-XR1 5052 conventional-cell aluminum core provided 

an 11.67% increase in both torsional stiffness and specific stiffness (Table 9). The team reasoned 

that using conventional-cell aluminum core would be worth the performance gain over Nomex, 

and that the manufacturing issues could be worked out with test layups. 

The use of foaming core-splice adhesive was recommended by several sources in the industry. 

However, the cost of the recommended FM-410 adhesive was prohibitively expensive, with ten 

8.5’’x11’’ sheets retailing for around $500. As an alternative to foaming adhesive, the team was 

advised to either use film adhesive or paste adhesive for core splicing. Paste adhesive would 

require a multistage cure according to Dr. Mello and was abandoned.  

Using loading data from the 2013 team, it was determined that aluminum core would not have 

sufficient strength in areas of high out-of-plane loading such as the pedal box and suspension 

pickups. A perimeter shear test was conducted with two panels of identical skin layup – one with 

aluminum core and one with end-grain balsa core. The testing results (Table 10) show that balsa 

core panels have much higher perimeter shear strength than aluminum core panels. These results 

mean that balsa is a more suitable core material for monocoque regions with high out-of-plane 

loading. Balsa core was easily sourced from Specialized Balsa Wood.  

Using Garolite G10 as a core material in areas of high out-of-plane loading was considered but 

not pursued, due mainly to the high density of G10 compared to end-grain balsa. The density of 

the balsa core used in the 2013 tub was 6.0 lb/ft
3
, whereas G10 is 112 lb/ft

3
. The use of end-grain 

balsa produced satisfactory perimeter shear testing results (Table 10), so the team did not feel 

that testing a G10 core panel was necessary.   

Table 10. Perimeter shear comparison between balsa core and aluminum core panels. 

 Balsa Core panel Aluminum Core panel 

Failure Load (lb) 4114.08 2000 

Perimeter Shear (lb/in) 1309.52 636.62 

 

Although the possibility of omitting film adhesive from the laminate design was considered, 

FMD felt that it would be prudent to obtain film adhesive anyways, in case the core-bonding 

strength of the prepreg resin was insufficient. Unfortunately, all of the existing film adhesive 

available to the team had terminally degraded. Since film adhesive was believed to be 

exceptionally expensive, FMD began reaching out to various suppliers for a donation. Late in the 

design phase, the team received a generous donation of TC-263 low-tack film adhesive from 

TenCate. Future testing would show that using film adhesive was not needed for an effective 

core-skin bond (see page 57). However, the team reasoned that keeping film adhesive on hand 

for core splicing would be prudent. 
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Driver Fitment 

In addition to the laminate testing requirements, SAE mandates that the chassis design be sized 

to fit the 95
th

 percentile male (“Percy”) template. Following these requirements, the driver’s cell 

must be proportioned so that Percy’s feet can reach the pedals. In addition, the driver must be 

situated so that the subframe roll hoops and bracing members provide adequate protection in 

rollover. Since the 2013 tub molds were already sized to these requirements, the FMD tub had no 

problem passing the driver fitment rules.  

 

Figure 5. 95
th

 percentile male template 

To ensure that the driver harnesses properly protects the driver in case of collision, SAE requires 

that the harness mounting points fall within a certain region of the tub relative to the driver’s 

hips. In 2013, the driver assumed an upright position because the driver sat on an elevated 

Plexiglas case that housed the electronics. In 2015, the electronics were moved outside of the 

cockpit, allowing a more reclined driver position. This arrangement brought the driver’s weight 

lower, thus lowering the car’s center of gravity. In accordance with SAE’s rules, the lap belt and 

anti-submarine belt mounts were placed on the cockpit floor and moved further forward to better 

line up with the driver’s hips. The harness clips were secured to the tub via 7/16”-20 eyebolts, 

and the backing plates were sized to a cross-sectional area of 0.093 in
2
, as mandated by the rules. 
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Figure 6. Lap belt and anti-submarine harness attachment locations. This bracket arrangement is replicated on both 

sides of the cockpit floor. 

Each front and rear roll hoop pickup is required to be 0.080” thick and sustain a 30 kN load 

before failure. In order to size the perimeter of each bracket, the perimeter shear value (shear 

load per inch) from laminate testing was taken and solved for the bracket perimeter, given a 30 

kN load. As per SAE rules, the front roll hoop has two pickups on each side, and one along the 

top strap of the tub. The main roll hoop is secured with two pickups on each side. Each backing 

plate incorporates two AN5 bolts. 

Geometry Layout 

The geometry of the monocoque was designed to accommodate the driver, as well as the 

components attached. To accommodate the driver, it had to meet SAE rules as well as the team’s 

ergonomic requirements. One of the SAE rules requirements for the driver’s cell is that it must 

be large enough to fit a template of given geometry through it (SAE Rule section T3.10, see 

Appendix I). This ensures that the driver will have sufficient room inside while driving the car. It 

also ensures that in the event of a rollover, the drivers head will be protected by the main and 

front roll hoops. 

Other considerations taken into account when designing the monocoque geometry were 

mounting. Components like the suspension, subframe, and pedal box all played a role. This is 

evident by the flat regions where most of these components mount. Another consideration was 

torsional stiffness. Shaping the monocoque like a tube is an efficient way to be torsionally stiff. 

Integrated Front Roll Hoop 

One design change that was looked into was integrating the front roll hoop into the monocoque 

(see Figure 7 for an example). This could be achieved by either integrating the roll hoop into the 

layup or by bonding the roll hoop to the tub after the initial layup. The thought process behind 

integrating the front roll hoop is that it would increase stiffness as well as reduce weight. 

Stiffness could be increased because the roll hoop would become a much more structural 
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member (bonded to monocoque along its entire length, instead of being held in place by bolts). 

Weight could be saved because the mounting hardware would be replaced by much lighter epoxy 

resin. 

While there could be benefits of successfully integrating the front roll hoop into the monocoque, 

there would also be disadvantages. The largest deterrent to pursuing an integrated front roll hoop 

is the increased manufacturing complexity. Moving forward with an integrated front roll hoop 

would also necessitate additional design and testing time to prove equivalency. Due to the 

increased complexities, added risks, and longer development time associated with an integrated 

front roll hoop, this design change was not pursued further. 

 

Figure 7. Global Formula Racing uses a roll hoop bonded to the outside of their monocoque. A 0.3” circular 

indentation was made in the mold to locate the roll bar and provide additional bonding surface area. Relocating the 

roll hoop to the outside of the 2015 Cal Poly vehicle would increase tubing weight from 4.2 pounds to 7.5 pounds. 

Front Access Cutout 

In order to access components inside the front half of the monocoque, such as the pedal box, a 

front access window is needed. The 2013 monocoque utilized a rectangular cutout in the front 

bulkhead as an access point. While driving, the cutout was covered by the anti-intrusion plate, 

which was covered by the nosecone. 

Concept 1a. Front cutout identical to 2013 monocoque. 

The 2013 car had a front-facing cutout that was 9” wide and 7.5” tall (Figure 8). Using the same 

geometry for the 2015 monocoque is a viable option. 
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Figure 8. Solid model of 2013 monocoque showing cutout geometry and placement. . 

Concept 1b. Front cutout of larger dimensions. 

Due to a very thick front bulkhead laminate, the SES allowed for an increase in cutout size 

relative to 2013. Each square inch of front bulkhead weighs approximately 0.0185 pounds, so 

increasing the size to 11”x11” (Figure 9) would save 0.99 pounds over maintaining the previous 

dimensions. It is unknown what effect this would have on torsional stiffness. 

 

Figure 9. Solid model of monocoque showing new cutout dimensions and placement. 

Concept 2. Top cutout. 

Another option for a front access window would be to have a cutout on the top of the tub, most 

likely directly over the pedal box area (see Figure 10). A top cutout would allow the combination 

of the front bulkhead with the anti-intrusion plate. With this configuration, a single laminate 

could satisfy both requirements, saving weight. The main disadvantage to a top cutout would be 

its effect on torsional stiffness of the monocoque. Other disadvantages to a top cutout include 

increased difficulty in accessing components inside the monocoque as well as finding a new way 

to close the opening.  
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Figure 10. Solid model of the monocoque with a potential top cutout. 

Cockpit Closeouts 

In the sandwich structure used in the monocoque, the core carries the shear load well in the 

middle of the structure; however, near the edges extra reinforcement in the form of closeouts is 

often necessary. The 2013 monocoque utilized wet-layup carbon closeouts to connect the two 

face-sheets around the cockpit opening. 

Concept 1. No closeouts.  

Research indicated that one of the most important things to do when designing a sandwich 

structure is to use properly developed closeouts. Closeouts increase stiffness, strength, and help 

prevent delamination near the edges. They do add weight, but the benefit greatly outweighs the 

weight penalty. Due to these reasons, it would be unwise to not use closeouts.  

Concept 2. Standard closeouts. 

According to Mechanical Engineering composites specialist Dr. Joseph Mello, closeouts should 

be at least the same thickness as the face sheets. The amount of overlap area in order to have 

enough bonding surface is calculated from the shear stress in the laminate. As long as the 

closeouts are strong enough, they will transfer the shear flow between the two face sheets and 

greatly increase torsional stiffness around the cockpit opening. They also prevent delamination 

from occurring near the edges of the cockpit opening. Finally, they prevent water and other 

unwanted materials from degrading the core. See Figure 11 for an example of where a closeout is 

utilized. 
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Figure 11. Example of size and location of closeout used on monocoque. The black strip represents where part of 

the closeout is located. Note how it wraps over the edge of the sandwich structure. 

Concept 3. Large channels as closeouts. 

At the 2014 FSAE competition in Michigan, a few teams had large channels around the edges of 

their cockpits where closeouts would be. It was originally believed that this was to promote 

torsional stiffness. However, after consulting Dr. Mello and further researching closeouts, it is 

believed that they serve as structural members so their monocoque does not fail during driver 

egress. Since thick carbon closeouts would be comprised of many layers of carbon laid up over 

the region, they would add quite a bit of weight (1.5 pounds per foot, assuming 10 plies). 

Because the monocoque will be strong enough to support driver egress with standard closeouts, 

thick carbon closeouts were an unnecessary weight addition and therefore were not used. 

Nosecone Geometry 

The nosecone of the car serves four different purposes. Primarily, it functions as the car’s impact 

attenuator, and therefore must meet FSAE impact attenuation requirements (see Appendix C). 

Additionally, the nosecone provides mounting for the front wing, aids the car’s overall 

aerodynamics by providing a smoother transition to the tub region, and covers the front bulkhead 

cutout along with the anti-intrusion plate. 

Energy absorption considerations 

Because the FSAE impact attenuation requirements are referenced to a head on impact, the 

nosecone must be able to attenuate high levels of energy in the axial direction. The 2013 

nosecone accomplished this by having thick sides that were minimally angled. This allowed the 

fibers in the sides to take a high load in the axial direction of the fiber, where it is strongest. The 

consistent tapered geometry also allowed for a progressive failure as the impact transpires, and 

the effective crush area increases. See Figure 12 for the 2013 nosecone geometry.  
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Figure 12. Solid model of 2013 nosecone. Note that bolt flanges are not included in this drawing, as they were not 

included in impact attenuation test. 

Because this geometry proved to be effective at absorbing energy, a similar design was used. See 

Figure 13 for a potential 2015 nosecone geometry. 
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Figure 13. Proposed 2015 nosecone geometry. Note the flat regions where front wing mounting trusses mount. 

Front wing mounting considerations 

In 2013, the car was not designed or manufactured with an aerodynamics package. In 2014, an 

aerodynamics package consisting of front and rear wings was added to the car. Because the front 

wing was added on after the car was completed, it was inefficiently integrated. The 2014 front 

wing mounting amounted to 4.43 pounds. This year, one goal was to mount the front wing in a 

more weight efficient manner. Instead of having supports begin at the tub, they could be smaller 

and lighter by being mounted to the nosecone. These mounts would bolt to the nosecone at flat 

regions designed into the nosecone geometry (see Figure 14 for a potential design). 
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Figure 14. Potential nosecone design with integrated front wing mounting. Multiple holes are present to conduct 

ground clearance testing before producing a final version of the mount. Placing the additional holes in the mounts 

instead of the nosecone allows for less stress concentration introduction into the nosecone.  

Local Ply Reinforcement 

The use of additional tapered carbon fiber layers at localized areas of high load offers increased 

strength and stiffness (Figure 15). The theory behind pad-ups is directed from the line-moment 

distribution used in Classical Lamination Theory. The greater thickness of the face sheet helps to 

distribute the localized loads throughout the laminate. 

 

Figure 15. An example of pad-ups used to reinforce regions with excessive localized loading. 

It was determined that pad-ups would be advantageous at the lower suspension pickups, which 

are the points of the greatest expected load. Two additional plies of cloth at these points act to 

help distribute the large localized loads.  Based off of instinct, doubling the ply count in that 
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region would provide sufficient support, hence why two plies were used.  It would be useful for 

future teams to test the effectiveness of using pad ups for structural support. 

Preliminary Analysis 

Localized Loading Conditions 

The monocoque must withstand loading from several of the vehicle’s subassemblies, including 

the suspension, subframe, and pedal box. The chassis experiences localized loadings at 

suspension pickup points, pedal box assembly mounting points, and rear subframe attachment 

points, as well as loading from the driver upon egress. These are regions where excessive contact 

stresses and deflections have potential to develop, so special attention was given when designing 

the laminate at these regions. 

Suspension loading occurs at several different pickup mounting locations, including lower A-

arms, upper A-arms, rockers, and coilovers. Three loading cases were analyzed for the following 

suspension loads: a max lateral acceleration of 2.3 g, max braking deceleration of 1.6 g, and 

combined lateral/braking acceleration of 1.5 g and 0.5 g, respectively. These accelerations are 

based off of data collected from the 2014 FSAE vehicle, which has been scaled to represent the 

predicted performance of the 2015 car with improved aerodynamics and reduced overall weight. 

Individual A-arm forces were calculated based off of tire normal, lateral, and longitudinal forces 

acquired from Calspan tire-testing data. The tire forces are projected through the suspension 

members, assuming quasi-static loading. The lower A-arms see the largest loads, around a 

maximum of 1200 pounds (axial compression, per arm) for the combined loading case. This 

loading condition induces a combination of in-plane shear and bending moment on the chassis. 

The maximum loading case for the upper A-arms is 500 pounds (axial tension, per arm), 

inducing out-of-plane shear on the side of the monocoque, which can be modeled as a simply 

supported plate in bending. The rocker mounting location experiences loads of 500 pounds max, 

due to a combination of the pullrod force and spring displacement, which induces in-plane shear 

and bending moment on the monocoque. Similarly, the damper mount experiences 300 pounds 

(axial compression) of loading in extreme driving conditions. Finally, the anti-roll bar 

experiences forces of 300 pounds under pure lateral acceleration, which induces out-of-plane 

shear on the bottom of the tub. The laminate design at the front floor and front bulkhead was 

driven by the upper and lower A-arm forces and ARB forces, so these loading cases were 

incorporated into the CLT strength analysis code (explained below) and are depicted below in 

Figure 16.  
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Figure 16. Suspension induced loads acting on the monocoque. The largest loading case occurs at the lower A-arms, 

which induce shear and a bending moment into the tub. 

Stiffness requirements for the suspension mounts are based off of effects of deflection on the 

contact patch of the tire. The tolerance for camber change and toe change are 0.2
o
 and 0.02

o
, 

respectively, determined by the suspension subsystem. Since the lower A-arm forces primarily 

load the chassis in-plane, which is relatively stiff, deflection of the upper A-arm mounting point 

was focused on, which acts as a plate in bending. To account for compliance stack-up in the 

chassis, suspension members, and uprights, the suspension system set a requirement of 0.1
o
 of 

camber change due to upright/suspension member compliance and 0.1
o
 of camber change due to 

monocoque compliance. This amount of camber change corresponds to 0.010” of deflection at 

the upper A-arm pickup point. 

The pedal box assembly experiences force inputs from the driver during operation. Maximum 

forces occur under the case of threshold braking. Based on the strength of the driver, the largest 

input expected is 450 pounds, applied to the brake pedal, which is located 9” above the front 

floor panel. This force induces a large bending moment load and in-plane shear on the 

monocoque. Additionally, the cockpit floor experiences its most extreme loading condition upon 

driver egress. Assuming that the driver jumps out of the monocoque, a max load of 500 pounds 

at the cockpit floor is expected. Both of these loading conditions can be seen below in Figure 17. 
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Figure 17. Pedal box assembly and driver egress forces applied to the front floor and cockpit floor of the 

monocoque. 

The final major localized loading condition is experienced upon frontal impact in the case of a 

crash. Assuming quasi-static loading from a 40g deceleration in the case of front impact, a force 

of 20,000 pounds is applied across the perimeter of the front bulkhead,  

The seat back laminate was originally validated with CLT. The seat back was modeled as a beam 

with a 15’’ span and an 18’’ width, with a 7000 pound load applied at the midspan. This loading 

was intended to simulate the seat back supporting the driver in the case of a 40g impact. The 

final seat back schedule of [45c/0c/𝑐̅]s was validated using this requirement (see Table 21), and 

the seat back was manufactured to this design. However, discussions with our advisor revealed 

that this loading condition was an inaccurate representation of frontal impact. In the case of 

frontal impact the chassis rapidly decelerates, and the driver moves forward relative to the 

chassis. The shoulder, lap, and anti-submarine harnesses are then pulled in tension to restrain the 

driver, thus resulting in an off-axis out-of-plane load at the tub’s harness pickups. This type of 

loading is represented by the SAE cockpit off-axis pullout test (see page 61 and Appendix M), 

which simulates loading through the harness, at an angle representative of the harness angle 

relative to the monocoque. The cockpit floor laminate was sized using this test.  

Possible loading conditions for the seat back involve any forces going through the subframe 

pickups during driving. Applying these forces in the FEA model at the applicable pickup points 

will show how the seat back responds. The FEA model can be used to examine a variety of 

loading conditions, as was attempted in our pursuit of the Alternative Frame rules (Appendix T). 

Loading conditions applied to the seatbelt harness attachments were based off of the requirement 

mandated by SAE rules, which is a 2900 pound load acting along the vector designated by the 

lap belt angle. Since inertial effects are relevant in this case, these are overly conservative 

estimates that help simplify the analysis process. 
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Figure 18. Front impact forces applied to the front bulkhead and seatback of the monocoque. 

An additional localized loading region of potential concern is the junction of the monocoque and 

the rear subframe. Based on the preliminary design, this connection will be similar to previous 

designs, with backing plates held in place by several bolts. Two worst case scenarios were 

considered for this critical joint: 3 g’s of bump loading and 3 g’s of cornering.  Tire forces under 

these conditions were projected to the joint using simple static relationships.  The large amount 

of connectors used in the joint design (8 5/16” bolts) help distribute the stress over a large area, 

so both of these extreme loading cases resulted in negligible forces at any specific bolting 

location.  The maximum load was determined to be 450 lbs of in-plane shear due to the 3g 

cornering condition. Based off of static tests, the strength of a basic honeycomb sandwich 

structure will be sufficient at these points since the loads act primarily in-plane. 

Finite Element Analysis 

A full-chassis ABAQUS FEM was used to analyze the torsional stiffness of the monocoque. This 

model is an assembly consisting of the monocoque, rear subframe, front roll hoop, suspension 

arms, uprights, and engine (Figure 19). The monocoque was modeled with thick shell elements 

with laminate properties. The subframe and front roll hoop were modeled as beam elements with 

appropriate steel material properties and tubular cross-section profiles. The control arms of the 

suspension were modeled as truss members in order to simulate the effect of heim joints, where 

moments are not reacted at the ends of each arm. Finally, the uprights were modeled as infinitely 

stiff beams to simplify the analysis.  

Bolted connections between the tub and roll hoops were modeled as rigid connectors for 

simplicity. However, a more accurate approach would be to model the bolts as springs with 

stiffness values derived from testing or manufacturer data. Rigid connectors artificially increase 

the torsional stiffness performance of the chassis model. Considering this, developing the 

modeling of bolted connections is a worthwhile pursuit for future teams.  

Unlike the suspension arms, suspension rockers were modeled as rigid connectors for simplicity, 

with forces applied at each joint to imitate the loading from a 1 pound upward force at the 

upright. In pursuit of a more accurate model, the team was advised to model the rocker as a 

volute, with rotation only being allowed along the axis of the rocker pivot. The rocker pivots was 



48 

 

modeled using HINGE connectors. Unfortunately, the model encountered errors that proved too 

time-consuming to fix. Given more design time, refining the modeling of the rockers would be a 

worthwhile development. 

 

Figure 19. ABAQUS full chassis model subjected to a torsional load. 

The individual components of the chassis assembly are tied together with rigid connectors. In the 

case of a torsional stiffness simulation, three of the four uprights were assigned partial 

constraints, with a downward load applied at the unconstrained upright. Constraints were 

configured so that the system was neither under-constrained nor over-constrained. Under-

constrained systems do not adequately support an object in space, resulting in excessively high 

deflections. On the other hand, over-constrained systems output artificially-low deflection values 

due to the presence of redundant constraints. Since the torsional performance of the chassis will 

be physically tested, the FEA constraints (Figure 20) were configured so that a fixture could be 

feasibly manufactured to imitate the model.  



49 

 

 

Figure 20. Torsional stiffness model with constraints. The X, Y, and Z directions correspond to the 1, 2, and 3 axes, 

respectively.  

Manipulating the monocoque material properties in the FEA model resulted in the conclusion 

that the core shear moduli influenced torsional stiffness more than fiber stiffness. The 2013 skin 

laminate focused on uni fiber stiffness to increase chassis torsional stiffness (Figure 21). 

 

Figure 21. Chassis torsional stiffness response to unidirectional fiber stiffness. 
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Changing the core properties to reflect different honeycomb thicknesses yields a much more 

pronounced torsional stiffness response (Figure 22). According to the Hexcel datasheets, core 

thickness is directly related to the ribbon and transverse shear moduli (G13 and G23, 

respectively). Since torsional stiffness is so heavily influenced by core shear moduli, it was 

determined that using stiffer aluminum core was the most efficient way to increase chassis 

stiffness. However, thicker core means more difficulties in manufacturing. Thicker core is more 

difficult to bend into tight radii and corners. The monocoque geometry is already not very 

accommodating for 0.7” core, so increasing core thickness was not seriously considered. 

 

Figure 22. Chassis torsional stiffness response to core thickness (Nomex core). 

Classical Laminate Theory Analysis  

A CLT MATLAB script used in previous years was further developed for use in analyzing 

specific strength requirements at regions of high localized load. Each loading condition 

implemented in the CLT strength code is summarized below in Table 11. Simplifying 

assumptions were made to model the complex loading cases in a way that was easier to analyze. 

For example, the loading induced from the upper A-arm mounting locations was modeled as a 

plate in bending. Additional common CLT assumptions were employed, such as the core 

carrying all of the shear loading. 
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Table 11. Summary of loads used in CLT Analysis. 

Loading Case Laminate Loading Specification 

Front Impact 
Front 

Bulkhead 

20,000 pounds applied longitudinally 

across perimeter of front monocoque, to 

simulate 40g impact. 

Seatback Seatback 

7,000 pounds applied across area of 

seatback experienced during front impact, 

to simulate seat back supporting driver in 

40g impact. 

Upper 

Suspension 

Front 

Bulkhead 

Support 

500 pounds applied to middle of plate beam 

with width and span corresponding to the 

front bulkhead support of monocoque 

Lower 

Suspension 
Front Floor 

1200 pounds applied to plate in-plane with 

offset corresponding to eccentricity of 

suspension pickup points 

Pedal Force Front Floor 450 pounds applied at 9" eccentricity 

Driver Egress Cockpit Floor 
500 pounds applied to middle of plate beam 

with cockpit floor dimensions 

Anti-Roll Bar Front Floor 
300 pounds applied to middle of plate beam 

with front floor dimensions 

 

With the above loading conditions implemented into a MATLAB script, the strength of the 

monocoque was theoretically analyzed. The carbon fiber and core material properties were 

inserted in the code, along with ply orientations at each section of the monocoque. The code uses 

CLT in order to determine the stiffness matrices of the composite, and uses these matrices along 

with a max-strain failure theory to determine the failure indices of each composite section. The 

results of the analysis are then summarized in a spreadsheet for ease of post-processing. The 

matrix failure indices, fiber failure indices, and failure loads for each iteration were summarized 

in the output. Additionally, all ply angles, thicknesses, and materials were recorded for later 

reference. 

Because the nosecone was designed to have the front wing mounted to it, new loading conditions 

were introduced. CLT was used to analyze local bearing strength where the mounting truss bolts 

attached to the nosecone, as well as the bolt flats where the nosecone bolts to the monocoque. 

The bearing stress calculation was straightforward, and resulted in a safety factor of 6.8. This 

also meant that the bolt would fail before the carbon, so if the front wing were to hit a cone, the 

nosecone would not be damaged. The nosecone mounting bolt flats were assumed to be plates in 

bending, fixed on one side. Because it is actually fully fixed at two adjacent sides, this is a 

conservative assumption. The resulting safety factor on the bolt flat was 3.4. 
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Laminate Iteration  

In order to pursue increases in torsional stiffness, iterations were performed using the CLT 

strength code and the FEA torsional stiffness test in conjunction. Plies were added and 

subtracted, ply angles were varied, and changes were made between unidirectional fibers and 

woven cloth fibers. However, all material properties stayed constant, since the team was limited 

to using the materials it had already acquired. 

The iteration process is summarized below in Figure 23. Equations were added to the CLT code 

so that the torsional stiffness could easily be calculated and recorded along with the strength 

criteria results. Results were summarized in a spreadsheet for future reference. 

 

Figure 23. Laminate iteration process flowchart. 

Results from the iteration are displayed below in Figure 24. Plies were added and ply 

orientations were varied in an attempt to stiffen the monocoque, however the overall torsional 

stiffness of the chassis increased only slightly. This lead to the specific stiffness of the chassis 

decreasing. Instead, if plies are removed in an attempt to save weight, the specific stiffness of the 

monocoque increased. 
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Figure 24. Primary laminate iteration results. Total chassis stiffnesses and specific chassis stiffness are plotted 

against the total monocoque weight. 

In order to analyze where the major stiffness losses were located in the 2013 chassis, the FEA 

model was modified to analyze the torsional stiffness of three specific components: the 

suspension, the monocoque, and the rear subframe. With specific component torsional stiffnesses 

determined, the design of the tub torsional stiffness can be determined such that it will meet the 

overall chassis torsional stiffness requirement without adding unnecessary weight to the vehicle. 

Since these three components act as springs in series, having an exceptionally stiff monocoque 

with a highly compliant subframe would be unreasonable if it is possible to equalize the stiffness 

between the three aforementioned components. 

The first analysis involved the torsional stiffness of the tub only. All other parts were set to 

infinite stiffness material properties. The resulting deflection corresponded to a torsional stiffness 

of 5060 lb*ft/deg. The second analysis involved the deflection due to only the subframe. The tub 

was modified to act as an infinitely-stiff shell. The result was a torsional stiffness of 3220 

lb*ft/deg. Finally, the torsional stiffness of the suspension was determined. Again, the tub was 

defined as an infinitely-stiff shell and all other parts were also set to infinite stiffness. The 

suspension was found to have a torsional stiffness of 7730 lb*ft/deg. However, the theoretical 

torsional stiffness is expected to be greater than the actual torsional stiffness of the suspension 

subsystem, since the FEA model does not take into account bearing slop and deflection due to 

chassis pickup points and attachment bolts. 
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Table 12. Component stiffnesses of the chassis. The subframe offers the most room for improvement. 

 

 

  

 

 

 

By modeling these component stiffnesses as springs in series, a system stiffness of 1570 

lb*ft/deg is obtained. The reason this value is different than the original FEA model’s torsional 

stiffness of 1260 lb*ft/deg is because the subframe mounting tabs and front roll hoop were not 

included in the analysis. These components are included in the complete FEA model.  

These results suggest that the highest potential gain for overall system stiffness lies in increasing 

the torsional stiffness of the rear subframe. Since the weakest spring in the group has the most 

influence on the overall chassis stiffness, it would be counterproductive to increase the stiffness 

of the monocoque if substantial increases in weight were required to do so. However, with a 

stiffened subframe, it could be possible to remove plies from the monocoque (and thus decrease 

its weight and stiffness) in order to better meet the holistic chassis torsional stiffness goal and 

team’s weight goals. 

In addition to FEA, a physical torsion test was performed on the 2013 chassis (with the new 

monocoque to subframe joint). The results can be viewed in Table 13. While physical testing 

results are more reliable than theoretical finite element results, the physical torsion test of the 

2013 chassis was performed too late in the design phase to be of use. However, one lesson 

learned was that physical torsional stiffness will always be lower than theoretical torsional 

stiffness predicted by a FEM. This lesson was used when determining a target stiffness. 

Table 13. Results of physical torsion test performed on 2013 chassis. 

Component 
Torsional Stiffness 
(ft-lb/deg) 

Monocoque and front suspension 2148 

Joint 36480 

Subframe and rear suspension 2193 

Total 1054 

 

Since this project is primarily concerned with the performance of the monocoque, the relative 

stiffness of the monocoque was further analyzed. All components aside from the monocoque 

were stiffened so that the stiffness of the monocoque would dominate. Vertical deflections of the 

monocoque were probed along its longitudinal axis, and then transformed into rotations using the 

lateral distance from the centerline. Since the major concern is where large changes in rotation 

 

Load 

[lb] 

Moment 

Arm [in] 

Deflection 

[in] 

Torsional Stiffness 

[lb*ft/deg] 

Tub Only 1 47 0.0006345 5061 

Subframe Only 1 47 0.0009978 3218 

Suspension Only 1 47 0.0004156 7727 
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are occurring (e.g. where stiffness is lost), the derivative of the rotation was taken and analyzed. 

The results of this analysis can be seen below in Figure 25. 

 

Figure 25. Relative stiffness of the monocoque with respect to the longitudinal axis. Results were obtained from 

probing the FEA model along the length of the chassis and determining the rotations about the chassis centerline 

from the results. 

The largest change in rotation occurs at the start of the cockpit opening. This suggests that the 

primary region for improvement of the monocoque in terms of stiffness is stiffening the cockpit 

opening. The change in rotation between the front suspension and the start of the cockpit opening 

is relatively constant. The rotation also experiences a large jump fore of the front suspension, but 

the rotation of this region of the tub is not of primary importance because the torsional stiffness 

is quantified between the front and rear axles of the vehicle. 

From the above results, it can be deduced that, if the torsional stiffness of the monocoque is to be 

increased, the area to focus on is the cockpit opening. The result of adding four +/- 45 degree 

plies at the side impact support are also shown in Figure 25. This change corresponds to a 7% 

increase in torsional stiffness, but an 8% increase in weight. Alternatively, there are other 

methods that will theoretically increase the stiffness in this area, such as increasing the size of 

the close-outs to improve shear flow around the cut out or increasing the girth of the front roll 

hoop in order to further restrict compliance. Unfortunately, FMD was limited to the geometry 

designed into the molds used for manufacturing the monocoque, so geometrical modifications 

were not pursued. 

In the event that a new monocoque shape can be achieved through the manufacture of a new 

mold, several dimensions of the tub can be downsized to save weight and more closely adhere to 

the SAE template requirements.  
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Considering the template dimensions (Appendix I), the cockpit opening size can be further 

downsized. The template could be lowered past the minimum height (13.8 inches) above the 

ground. This remained the case, until a hand clutch was mounted to the side impact structure, 

thus obstructing the depth that the template can be lowered into the tub. Thankfully, the driver 

cell still passed the template test. In addition, inserting the cockpit opening template into the 

driver cell showed an approximately ½’’ clearance (all around) between the template and the 

very top of the driver cell sidewalls. Considering these observations, the driver cell cutout can be 

downsized slightly. Future teams should consider the tradeoffs between cockpit size, driver 

comfort, and extra room for components mounted to the driver cell sidewall.  

Currently, the cockpit internal cross-section (where the driver’s legs lie) is significantly larger 

than the applicable template. The tub cross-section can be downsized in this region, at the 

expense of driver comfort and leg room. For future teams designing new mold geometry, a study 

should be conducted that examines driver comfort and leg positioning versus the height, width, 

and length of the front end of the tub. 

The length of the monocoque can be further reduced, as the distance between the pedal face and 

Percy’s feet is substantial. Future teams should consider shortening the monocoque, and then 

increasing the height of the monocoque so that the driver can place his or her knees higher.  It 

would be worthwhile to examine the weight tradeoffs between shortening and raising the height 

of the monocoque, considering driver leg comfort. 

Design Development 

Film Adhesive 

In order to evaluate whether sheet resin was needed for sufficient skin-to-core bonding, FMD 

laid up several short-beam shear panels – one with sheet resin, one with AS4 cloth only, and one 

with T800 cloth only. Depending on the failure load and failure mode of each panel, FMD could 

determine whether prepreg resin alone could effectively bond the skin to the core. Using 

aluminum core and AS4 cloth, the testing results (Table 14) were unexpected. The panels with 

film adhesive proved to be weaker than those without film adhesive. This proved the feasibility 

of omitting film adhesive from the layup schedule, saving approximately 4 pounds. Note that per 

Dr. Mello’s recommendation, it was decided to still use film adhesive between core splices in 

order to transfer the shear between core sections. Hexcel standards detailing the test setup and 

calculations can be found in Appendix D. To further strengthen the bond, the aluminum core was 

scuffed with Scotch-Brite, blown clean of large particulate using a high-powered hair dryer, and 

wiped clean with acetone (see Appendix Q Part I for details). Note that compressed air from a 

shop compressor may contain moisture and oil and should not be used to clean aluminum core. 

The scuffing method was brought to the FMD’s attention via a team member’s internship at a 

major composites manufacturer. From short beam testing conducted by FMD, it was shown that 

scuffing increased interlaminar shear strength by 7.4%.  
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Figure 26. Short-beam shear test. 

Table 14. Short beam shear test results verifying the viability of omitting film adhesive.  

 Shear Stress 

(PSI) 

Failure Mode 

with Film Adhesive 107.49 Core shear failure 

without Film Adhesive 95.15 Core shear failure 

% Difference 11.48%  

Resin Integrity 

The first step in validating our laminate was to verify the integrity of the prepreg resin. 

Considering that the majority of the donated prepreg received is more than a year old (expired by 

aerospace standards), checking resin properties was essential to building safe parts that do not 

delaminate unexpectedly. Prepreg resin typically retains its properties for multiple years, 

assuming proper storage. 

To assess resin strength, the ASTM D2344 short beam shear test was utilized to isolate ILSS. 

These tests were conducted for all available prepreg types, as shown in Table 15. Testing details 

and formulas can be found in Appendix E. 

Table 15. ILSS test results. 

Fiber Resin No. of 

Samples 

Avg. 

Failure 

Load (lbs) 

Avg. 

Tested 

ILSS (ksi) 

Manufacturer 

Spec ILSS 

(ksi) 

% 

Difference 

M55J uni MTM 49 10 286.487 8.529 16.80 -49.2% 

AS4 cloth TC250 5 294.952 7.535 8.59 -12.3% 

M46J  TC250 9 442.273 10.028 8.59 +16.7% 
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As the testing shows, the ILSS of the AS4 and M46J prepreg resins were similar to the 

manufacturer’s specifications. The ILSS of the M55J prepreg proved to be very low compared to 

the manufacturer’s specifications. Upon consulting Dr. Mello, it was determined that the 

manufacturer’s specification was optimistic, and was indicative of perfect manufacturing and 

testing processes. Dr. Mello felt that the ILSS numbers were sufficient, and that the resins in 

FMD’s prepregs were still good. 

Laminate development 

After verifying the integrity of the core bonding and the strength of the resin, FMD proceeded to 

develop the laminates to satisfy the SAE testing standards. These tests include the long beam 3-

point bend, perimeter shear, and off-axis pullout tests.  

The 3-point bend test (Figure 27) entails a composite beam loaded in bending along its midspan. 

The resulting load-deflection curve and failure load is then used to extrapolate the skin’s bending 

strength and stiffness. The support span is significant enough that direct shear can be neglected, 

thus isolating the effect of the bending moment in the skins. Panels tested in this manner will 

experience skin compressive failure in the upper face-sheet. 

 

Figure 27. Long beam bend test. Safety tabs were welded onto both sides of the 4-inch diameter impactor to prevent 

specimens from sliding off the fixture. 

One of the most critical SAE regulated regions, the side impact laminate, is required to have an 

energy absorption that is greater than or equal to that of two 1010 steel tubes (1”OD x 0.065 wall 

thickness). In order to establish a baseline for comparison, two of these tubes were tested in a 

long beam 3-point bend fixture (Figure 28) to a final displacement of 1”. The force-displacement 

curve was then integrated to find energy absorption. The force-displacement long beam results 

from the side impact laminate results were also integrated, and the energy absorption values were 
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compared. The comparative results (Table 16) showed that the side impact structure (SIS) 

laminate passed the SAE requirements by exceeding the steel tube energy absorption standard. 

This test was repeated until all SAE regulated region requirements were met. 

Table 16. Energy absorption results for the SIS laminate and steel tube baseline 

 Energy Absorption (J) 

SIS laminate 66.5 

Two 1010 steel tubes 40.9 

 

 

Figure 28. Long beam test of two 1010 steel tubes to establish an energy absorption standard for the side impact 

structure laminate. 

The perimeter shear test (Figure 29) involves lowering a cylindrical impactor into a composite 

plate until the impactor punches through both skins. The plate support is configured so that the 

panel is stressed in direct shear. The failure load data is then used to determine the perimeter 

shear (shear load per inch) of the laminate for sizing the perimeter of brackets. 
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Figure 29. Perimeter shear test setup 

Lastly, the off-axis pullout test (Figure 30) involves securing a panel in an angled jig that 

imitates a harness bracket undergoing an out-of-plane load at a specific angle. The panel is 

secured with tabs and fasteners, and is pulled in tension till the skins fail. Data from this test is 

used to determine whether the tub can sustain the load through the driver restraint harnesses in 

the case of impact. This test applies to regions of the tub where harness brackets are mounted. In 

this case, the performance of the cockpit floor laminate was validated using this test.  
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Figure 30. Off-axis pullout test. 

In the early design phase, FMD developed a laminate in FEA to satisfy the Alternative Frame 

loadings. Considering the undeveloped nature of the FE model, the laminate was overbuilt in 

order to compensate for issues with proper constraints and element selection. To satisfy the SES 

requirements, testing began with the overbuilt AFR laminates, which were downsized as 

necessary. The laminates of each tub region were iterated over the course of two weeks in 

accordance to their applicable tests, until the layup schedule was finalized (Table 17, Figure 31, 

and Appendix X). This layup schedule presented resulted in a theoretical torsional stiffness of 

1679 ft-lb/deg. 
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Table 17. Monocoque regions and their respective layups and SAE tests. Materials used are: AS4 cloth and M55J 

uni. 

Tub Region Layup Schedule Applicable SAE 

Tests 

Side Impact 

(vertical 

sidewall) 

[45c/0c/45/          

-45/0c/𝑐]s 

 3-point bend 

 Perimeter 

Shear 

Front 

Bulkhead 

Support 

[45c/0c/𝑐]s  3-point bend 

Front Roll 

Hoop Support 

[45c/0c/𝑐]s  3-point bend 

 Perimeter 

Shear 

Cockpit Floor [45c/0c/𝑐]s  3-point bend 

 Off-axis 

pullout 

Seat Back [45c/0c/𝑐]s  N/A 

 

Front 

Bulkhead 

[(45c/0c)5/𝑐]s  3-point bend 

 Perimeter 

Shear 
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Figure 31. Layup schedule layout for each tub region. 

Comparing AS4 and T800 cloth 

The first round of laminates utilized AS4 cloth and M55J uni. Later laminates included the use of 

T800 cloth, but the results from these panels were underwhelming. Manufacturer data sheets 

showed that T800 fiber has superior strength, modulus, and failure strain values than AS4. Yet, 

long beams using AS4 cloth outperformed panels with T800 cloth, assuming the same layup 

schedule and uni selection. This situation enforces the importance of having a variety of prepreg 

types to test with, as the technically superior material may not always translate to better testing 

results.  

A single ply of T800 cloth, however, is thinner than a single ply of AS4. In short, there are more 

fibers present in a single ply of AS4 cloth than in a ply of T800. Considering this, FMD 

predicted that increasing the T800 cloth ply count to more closely match the thickness (and thus 

fiber content) of a standard AS4 laminate would yield test results indicative of the mechanical 

superiority of T800 cloth. A single ply of T800 cloth weighs 0.00085 lb/in
2
, compared to AS4’s 

single ply weight of 0.00156 lb/in
2
. Given these weights, FMD reasoned that two plies of T800 

cloth would be equitable to one ply of AS4 cloth in terms of fiber content. As shown in Table 18, 

long beam tests were conducted with several T800 cloth alternatives, and the results, again, 

showed that the AS4 panels performed better for the weight. Adding T800 plies in hopes of 

passing would have increased the area weight past that of a comparable AS4 panel that already 

passed. 

 

•Layup regions  
BLUE – Side Impact Structure  
RED – Front Bulkhead Support 
GREEN – Front Hoop Bracing  
Grey – Cockpit Floor  
BLACK – Front Floor  
YELLOW – Seat Back 
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Table 18. Test result comparison between T800 and AS4 cloths 

Layup 

Schedule 

Cloth 

Material 

Uni Material Area Weight 

(lb/in
2
) 

Failure 

Load (N) 

Pass or 

Fail 

[45c/0c/45/-

45/0c/ 𝑐]s 

T800 M55J 0.00796 5814 FAIL 

AS4 M55J 0.01222 11722 PASS 

[45c/0c/0c/ 𝑐]s T800 M55J 0.00636 4671 FAIL 

[45c/0c/ 𝑐]s AS4 M55J 0.0075 6093 PASS 

 

It is believed that T800’s poor testing performance is due to the nature of the 3-point bend test 

itself. Contrary to the FSAE standard 3-point bend test, composites industry leader Hexcel 

recommends a 4-point bend test. Compared to a 3-point test, the 4-point test distributes the load 

over two impactors (as opposed to one), thus decreasing the localized compressive load on the 

core and skin. Thus, a 4-point test is more suited to measuring the skin properties, because the 

localized compressive effects are spread more evenly between the two impactors. To this effect, 

it was observed that 3-point tests produced inconsistent failure modes, including skin failure, 

skin delamination, and core compressive failure. On the contrary, the few 4-point tests conducted 

produced very consistent skin compressive failure. Considering these points, there is reason to 

believe that the 3-point bend loading does a poor job of properly isolating the skin properties. 

Contrary to the 3-point tests, four-point tests show that T800 cloth produces superior skin 

strength and stiffness compared to AS4 panels of similar area weight, as detailed in Table 19.  

Table 19. 4-point bend test results comparing AS4 cloth and T800 cloth. Both specimens utilized 1/8’’ aluminum 

core. 

 AS4 cloth, [0c/𝑐]s T800 cloth, [(0c)2/𝑐]s 

Skin Strength (psi) 29437.04 39407.75 

Skin Modulus (psi) 58.93 66.41 

Skin area weight (lb/in
2
) 0.00156 0.0017 

 

The final laminates met the SAE 3-point bend and perimeter shear requirements as closely as 

possible while fulfilling the loading conditions in the CLT code. Due to the superior shear 

strength of the aluminum core, the perimeter shear requirements were very easily met. Load-

deflection curves for several laminate tests can be referenced in Appendix F.  

With nearly 120 panels tested, it became apparent how time consuming laminate design and 

testing is. Thankfully, a dedicated composites team diligently manufactured three to four panels 

a day for the iteration process.  

Pressure Cure 

During the laminate testing, Swift Engineering notified the team that their autoclave would be 

available for a pressure cure. The original plan was to cure the monocoque in the ME department 
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oven with vacuum pressure (out-of-autoclave). Pressure cures involve pressurizing the 

environment around the composite part during the cure, thus exerting additional force evenly on 

the bagged part. The added pressure improves laminate compaction, thus decreasing void content 

and in turn increasing part strength and stiffness. Pressure-cured laminates also experience less 

core-bridging and better surface finish than out-of-autoclave parts.  

In order to validate any potential strength and stiffness gains from a pressure cure, long beam 

bend performance was compared between two panels of equal layup – one cured at 30 PSI and 

the other cured with vacuum only.  

Both panels were tested, and the panel that was cured without vacuum achieved a failure load of 

1607 pounds, whereas the panel cured at 30 psi failed at only 1063 pounds. Considering these 

unexpected results, it was unclear whether this large gap in performance was due to the faults of 

the pressure or a manufacturing error. Before investigating further, it was determined that 

moving the molds and materials to Swift Engineering and performing the layup there would be a 

logistical hindrance that had the potential to severely impact the team’s timeline. The possibility 

of a pressure cure was dropped in light of the test data and scheduling demands.  

Post-cure 

The issue of laminate operating temperature becomes an issue when the tub is in close proximity 

to hot exhaust runners or exposed to long periods of sun. To investigate the effects of heat, 

temperature stickers (260°F max readable temperature) were placed on various parts of the tub. 

During prolonged testing, the 2013 tub reached a top surface temperature of over 260°F near the 

exhaust tubing, even with the addition of heat-shielding foil. The effects of exhaust heat put the 

resin fairly close to its glass transition temperature (Tg) of 275°F, thus risking a compromise in 

laminate strength.  

A post-cure involves re-curing a part at an elevated temperature to further increase the resin’s Tg. 

Post-curing the TC250 resin involves completing an initial cure at 275°F, then curing the panel 

again at 350°F. The post-cure increases the Tg from 284°F to 347°F, thus making the tub 

temperature safe to surface temperatures well above what was measured on the 2013 tub.  

In order to test whether a post-cure would introduce problems like warpage and laminate 

discoloration, FMD post-cured a sandwich panel at 350
°F

. The panel came out of the oven as flat 

as it was before the post-cure, with a slightly dull orange sheen. Since the panel experienced no 

warpage, it was decided that the final monocoque layup would undergo a post-cure.  

Strap Joint 

The initial plan to bond the two cured monocoque halves was to apply high temperature resin 

and microballoons to the exposed core where each half meets, then lay up a carbon prepreg strip 

over the joint on both the inside and outside of the tub. The resin and microballoon slurry was 

mixed to a peanut butter consistency.  

Applying stress analysis to the carbon joint would have proved difficult without a very robust FE 

model, so a short beam sandwich bend test was conducted to determine the minimal width of the 

carbon strip. The biggest concern involved the delamination of the prepreg strip from the 

surrounding laminate due to inadequate bond area or poor resin adhesion to pre-cured surfaces. 
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To test the bond strength, two short beam sandwich panels with prepreg strap joint widths of 

three inches and four inches were laid up (Figure 32).  

 

Figure 32. Short beam shear test panels for strap joint width design 

For each panel, the two halves were bonded together with Fiberglast 3000 resin and 3120 

hardener, held together with c-clamps, and cured at room temperature. Once the adhesive had 

cured, a prepreg strip of AS4 cloth was laid up on each side of the panel, with schedule [45c/0c]. 

This layup schedule was chosen so that torsional shear loading on the chassis could be most 

effectively transferred between the tub halves. In the case of simplified tube in torsion, the 

principal loading is ±45 degrees relative to the axis of the tub, so running fibers in that 

orientation would be most efficient. The 0-direction ply was included so that the strap joint 

replicated the surrounding monocoque laminate. 

Short beam test results (Table 20) show that three inch and four inch joints provide roughly the 

same bond strength. For both panels, the core along the periphery of the strip failed in 

compression (Figure 33). This failure mode indicates that the joint reinforcement is stronger than 

the surrounding laminate in core shear. No delamination occurred in either of the specimens. In 

light of the results, it was concluded that a three inch strap joint would perform just as well as a 

four inch joint. To save weight, FMD chose to apply a three inch strap joint on the chassis. 

Considering the similar performance of the two panels, it would have been prudent to investigate 

the viability of a smaller width joint. However, the manufacturing scheduling did not allow for 

this development. 
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Table 20. Testing results comparing prepreg strap joint widths 

Prepreg Joint Width (in) Failure Load (lb) Shear Strength (psi) 

3 698.7 257.3 

4 723.1 266.3 

 

 

Figure 33. Core-shear failure on the periphery of the prepreg joint. Upon close examination, no delamination 

occurred in the panel. 

Blob layups 

Unlike Nomex, aluminum core is significantly more difficult to form to complex contours 

without bridging. In order to test the viability of using aluminum core in the tub molds, FMD 

laid up and cured several test layups (blob layups) in different regions of the mold. The team 

initially laid up on fairly flat surfaces, and then proceeded to layup on areas of simple and 

complex curvature (Figure 34).  
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Figure 34. Sample blob layup in a region of the tub mold with complex curvature. 

Various core-splicing techniques were investigated in an attempt to mitigate bridging. For 

several blob specimens, the core was slit with a razor (halfway through core thickness) along the 

line of the desired bend so that the core cells would more easily fold into each other. In another 

experiment, a rotary tool was used to cut a slot along the bend line to make the honeycomb more 

pliable (see Figure 35). Specimens with slit core showed no bridging at the bends, whereas parts 

with slots along the bends showed a triangular gap in the core where the bent core bridged over 

itself. Core bridging was evidenced by local face-sheet resin dryness, suggesting that the face-

sheets unsupported by core are subject to exaggerated resin flow. Regions with no bridging 

displayed shiny and smooth surface finishes with satisfactory resin content. Additionally, it was 

found that core splices needed to be spaced about three inches from any bend to avoid bridging. 
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Figure 35. Core bending results from an area of simple curvature 

No loaded tests were conducted to assess the viability of laminates with bridging or low 

facesheet resin content; however they are advised and suggestions for how to do so are included 

in the Conclusions and Recommendations section.  

Final Design Details 

Layout and Design 

Formula Monocoque Development is in charge of four unique components on the 2015 Cal Poly 

Formula SAE car: the monocoque, nosecone, anti-intrusion plate, and firewall. See Appendix G 

for an assembly drawing. 

Monocoque 

After the design phase, it was determined that the monocoque would be composed of TC250 

AS4 8HS prepreg cloth, MTM49 M55J uni, and 0.7” thick 3.1 lb/ft
3
 3/16” cell size 5052 

aluminum honeycomb core, with a theoretical torsional stiffness of 1679 ft-lb/deg. Suspension 

and pedal-box mounting points would be reinforced with end grain balsa. Core splices would be 

positioned at least three inches from any radius or bend. Additionally, film adhesive would be 

omitted from the layup, except where joining core at splices. See Figure 36 for a solid model of 

the monocoque. 
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Figure 36. Isometric view of carbon fiber monocoque. 

Nosecone 

The nosecone would be a carbon fiber skin that mounts to the front of the monocoque. The 

nosecone serves as the car’s impact attenuator while concurrently providing mounting for the 

front wing. Because it serves as the impact attenuator, it must comply with SAE rules. The SAE 

energy absorption standards state that the impact attenuator must absorb 7350 Jules of energy 

while not exceeding a 40 g peak deceleration or a 20 g average deceleration. This would be 

accomplished with a layup schedule of [45C/90/02/90/02/90̅̅ ̅]S. CLT was used to verify that the 

layup was strong enough to support the front wing loads. The nosecone would mount to the front 

bulkhead by slipping over 4 studs installed in the monocoque. See Figure 37 for a solid model of 

the nosecone. 
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Figure 37. Isometric view of carbon fiber nosecone 

Anti-Intrusion Plate  

The anti-intrusion (AI) plate would be a flat composite plate composed of AS4 cloth, M55J uni, 

and 0.7” aluminum core. It would be mounted to the front bulkhead by being slipped onto the 

nosecone studs and being sandwiched between the nosecone and front bulkhead. It would be cut 

to the shape of the front bulkhead, so when mounted to the front of the monocoque the plate’s 

perimeter is flush with curvature of the tub. The AI plate would be mounted by slipping over 4 

studs installed in the front bulkhead of the monocoque. The purpose of the anti-intrusion plate is 

to prevent foreign objects from entering through the front of the monocoque and injuring the 

driver. SAE mandates that the bending and shear properties of the AI plate laminate be 

comparable to a 0.063” mild steel plate. After a battery of laminate tests, a laminate of 

[(45c/0c)2/45/-45/0c/𝑐]s was selected. 

 

Figure 38. Isometric view of anti-intrusion plate. 
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Firewall 

A firewall is required as per Formula SAE rule T4.5, which states, in part, that the cockpit must 

be sealed from fluid discharges and fire by a non-permeable, rigid, flame-resistant material. Rule 

T4.3.2 also requires that the driver compartment be shielded to an unspecified degree from 

convection, conduction, and radiation heat transfer. The FMD team would implement two 

provisions to meet these requirements. First, a shield that protects the driver’s head and neck 

would be attached near the engine region. Second, a carbon sandwich structure would provide 

heat insulation behind the driver’s torso, while the face sheet provides protection from flame due 

to carbon fiber’s inherent fire-resistive qualities. Convective and radiative heat transfer would be 

prevented by the solid panel. Conduction would be limited by a 1” air gap between hot coolant 

lines, engine components and the seatback of the monocoque. Reflective Aerolite tape 

manufactured by Coast Fabrication (see Figure H4 in Appendix H for data sheet) would be 

bonded to the rear of the driver’s cell addresses radiation and is 2.3 times lighter than the 

standard gold foil. See Figure 39 for a solid model of the firewall. 

 

Figure 39. Isometric solid model view of firewall. 

The firewall was designed to be laid up as a flat panel, cut in predetermined locations, folded 

using a jig to fit the chassis roll hoop geometry, and bonded into shape while in the jig. This 

method of construction is termed “cut-and-fold.” Brackets welded to the steel rear subframe hold 

the firewall in place via AN3 bolts, all-metal locknuts, and fender washers to transmit the loads 

to the fiber.  Inserts were not designed into the firewall, though they should have been in order to 

carry the clamping load of the bolts and distribute shear bearing forces over a larger area. The 

firewall was designed using a layup schedule of [0c/45c/core]s where the 0° direction is the 

vertical. Prepreg Toray 2510-T800 was selected for the cloth and 3/8 inch thick, 3/16 inch cell 

1.8lb/ft
3
 Nomex was used selected for the core. Wet layup was selected for bonding the folded 

firewall into place. Two plies of 2x2 twill, 3K, 199GSM fabric from Soller Composites was 

chosen due to its high strength and strong past performance. Strips were chosen to be 2 inches 

wide and placed only on the side of the “cut” in the 0°/90° direction. West Systems 105 resin and 
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207 hardener were selected for the fabric. Unaccounted for in the initial design was the forward 

position that the driver’s head would be placed in when the required padding was installed on the 

firewall. The final solution arrived at was to cut the upper portion of the firewall (the headrest), 

move it rearward using a piece of aluminum angle, and secure the headrest from rearward motion 

via two 5/16” OD 4130 steel rods. 

Geometry Layout 

The geometry of the monocoque was designed to accommodate the driver, as well as the 

components attached. To accommodate the driver, it had to meet SAE rules as well as the team’s 

ergonomic requirements. One of the SAE rules requirements for the driver’s cell is that it must 

be large enough to fit a template of given geometry through it (SAE Rule section T3.10, see 

Appendix I). This ensures that the driver will have sufficient room inside while driving the car. It 

also ensures that in the event of a rollover, the drivers head will be protected by the main and 

front roll hoops. Because the rules requirements were the same when the geometry was designed 

in 2013, using the same tub molds along with the same core thickness ensured that the 

monocoque would meet template. 

Other considerations taken into account when designing the monocoque geometry were 

mounting. Components like the suspension, subframe, and pedal box all played a role. This is 

evident by the flat regions where most of these components mount. Another consideration was 

torsional stiffness. Shaping the monocoque like a tube is an efficient way to be torsionally stiff. 

Again, all of these considerations were the same in 2013, so using the same geometry ensured 

that all of these considerations would be met. 

Laminate Design and Selection 

The laminate used in the monocoque was chosen for reasons very similar to that of the geometry. 

Torsional stiffness, localized strength, and SAE rules requirements all influenced the design 

(Figure 23 on page 52). To satisfy SAE rules, potential laminates were laid up as flat panels and 

tested for strength and stiffness properties (description of testing procedures starts on page 58). A 

FEM of the chassis and suspension was used to analyze torsional stiffness of these different 

laminates used in different regions (description of finite element analysis starts on page 47). For 

example, it was shown that adding plies at ±45° at the side impact structure increased specific 

torsional stiffness more than adding ±45° plies elsewhere (see discussion on page 54). The FEM 

also showed that using stiffer aluminum honeycomb core increased specific torsional stiffness 

much more than adding plies of carbon fiber (Figure 22 on page 50). The final consideration was 

localized loading, mainly at suspension pickup points and pedal box mounting points. CLT was 

used to analyze failure indices and determine if the laminate selected would be strong enough 

(CLT discussion begins on page 50). In the end, a laminate was selected that met all of these 

criteria, and can be found on Table 17 on page 61. 

Fastening Methods  

All accessory components fastened to the monocoque utilize potted aluminum inserts. The 

aluminum inserts carry the clamping load of the bolt on the sandwich structure. Inserts also 

provide a larger bearing-stress area for in plane load transfer to the carbon facesheets. Backing 

plates on both facesheets where bolted joints are present help to carry out of plane loadings by 

transferring the load into the direction of the fiber. 3M DP420 structural adhesive (see Figure H5 
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in Appendix H for specification sheet) permanently anchors the insert within the monocoque. 

Due to the short lifecycle of the vehicle, aluminum-carbon galvanic corrosion is not a significant 

concern.  

CLT Analysis Results 

As previously explained starting on page 50, an automated CLT script was used to analyze the 

strength of the monocoque under numerous loading conditions seen during normal driving 

(review Table 11 on page 51). From this script, the failure loads for the final laminate were 

determined, and are summarized below in Table 21. This analysis step was part of the laminate 

iteration phase (review Figure 23). 

Table 21. CLT analysis results for failure load of final laminate design. 

  
Seat 
Back 

Upper 
Suspension 

Lower 
Suspension 

Pedal 
Box 

Driver 
Egress ARB 

Failure Load [lb]: 12300 3650 7000 750 2080 2500 

Safety Factor: 1.8 7.3 5.8 1.7 4.2 8.3 

 

The minimum safety factor occurs at the pedal box, with a failure load of 750 pounds, 

concentrated at the base of the pedal-box. It is highly unlikely that the driver would be able to 

exert this amount of force on the pedal, so the likelihood of failure in this region is not a primary 

concern. Additionally, the safety factor of 1.8 on the seatback is under the assumed case of 

impact deceleration, so failure in this region is unlikely unless a crash occurs. 

Cost Breakdown 

As part of the SAE competition, the Formula team submits an itemized cost report that accounts 

for every component on the car. In order to reflect a mass-produced car, SAE provides 

hypothetical raw material, manufacturing, and assembly costs. Regardless of how the chassis is 

made, teams are free to creatively combine and simplify the manufacturing processes to lower 

the hypothetical cost. The items included in the cost report are comprehensive, including parts 

like roll hoop fasteners, inserts, carbon prepreg, and core, as well as manufacturing processes 

like cutting carbon, bonding inserts, and curing. In an effort to reduce costs, many processes 

were simplified. For example, the cost to physically cut each ply of carbon out of a roll is 

incredibly expensive since the length of cut is an itemized cost. To simplify the process, the 

claim was made that all similarly-shaped carbon plies were stacked and waterjet cut in one 

operation. Once all processes were streamlined, a hypothetical tub cost of $2927.38 was 

achieved. The cost breakdown (Table 22) details how the costs were distributed between 

materials, processes, fasteners, and tooling. 
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Table 22. Monocoque cost report breakdown. 

Materials Processes Fasteners Tooling Total 

$2017.50 $705.41 $2.80 $201.67 $2927.38 

 

Although the results of the cost report are theoretical at best, it does provide some insight into the 

costs associated with mass production. Tooling costs are low, because it was claimed that the 

plaster molds could accommodate 10 cure cycles. This claim is untested in the context of the 

molds utilized but it is a realistic assumption for similar molds in a mass-production setting. 

Safety Considerations 

As with most manufacturing processes, working with carbon fiber entails its own safety 

considerations. Cutting and grinding cured carbon requires a respirator or dust mask to prevent 

inhalation of carbon dust. In order to prevent carbon dust from imbedding itself in clothing or 

skin, gloves and paper coveralls are recommended personal protective equipment. 

Safety precautions also must be taken when conducting destructive laminate testing. Users must 

ensure that the testing machine is configured so that specimens do not slip off their fixtures at 

any point during the test. Test machine feed rates should be monitored so as to avoid crashing the 

machine. Unlike metals, carbon fiber parts fail catastrophically, ejecting carbon splinters in 

unpredictable directions. Although testing did not produce airborne debris, a Plexiglas shield was 

placed between the specimen and the user to avoid any potential safety risks.  

Maintenance and Repair Considerations 

Once completed, the tub requires very little maintenance under normal driving conditions. In the 

case of local failure, the failed section of the tub can be cut out and replaced with a post bond 

layup. In the case of a global failure, the best route would be to manufacture a new monocoque. 

Four studs were installed longitudinally in the front bulkhead to allow mounting of the nosecone 

and AI plate. This means that both components will be removable, so if either gets damaged, 

they can easily be replaced. The removability of the AI plate and front bulkhead to reveal the 

front bulkhead cutout also promotes ease of maintenance for components inside the monocoque. 

A second nosecone was manufactured so if the one on the car gets damaged at competition, there 

will be a backup one available for replacement. 

Product Realization 

Flat Panels 

In order to determine laminate properties, FMD manufactured flat panels. The use of a flat panel 

allowed for applying mechanics of materials to test data in order to calculate different strengths 

and stiffnesses. This is extremely valuable because composite parts are highly dependent on 

manufacturing methods. Being able to measure actual strengths and stiffnesses as opposed to 

theoretical values proved to be very important. 

All flat panels were manufactured in the same general manner. An aluminum caul plate with 

dimensions that were slightly larger than that of the final part was selected. Then carbon and core 
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(if necessary) were cut using the caul plate as a template. If the carbon did not have backing 

material on both sides and the plate had to be set directly on the carbon, it was thoroughly 

cleaned first. The carbon and core was then laid up on top of an aluminum tool with a sheet of 

Airtech PTFE-coated fiberglass slightly larger than the part. Note that while the caul plate 

doesn’t need to be very thick, having a thicker tool greatly reduces the possibility of warping 

during curing. Finally, Teflon, the caul plate, and then breather cloth were placed on top of the 

carbon and the part was vacuum bagged. Panels were cured in the ME composites lab autoclave. 

Additional detailed methods and standard operating procedures (including a layup diagram and 

dimensions) for panel manufacturing can be found in Appendix Q.  

When laying up composite parts, inconsistencies tend to occur close to the part edges. Therefore, 

it is recommended to lay up extra and trim to size after cure. Long beam panels, for example, 

needed to be 11 inches wide as per the SES. 12 inch wide panels were laid up, and a half inch of 

material was cut off of each side using the tile saw in the Bonderson machine shop (see Figure 

41). 

 

Figure 40. Test panel being cut on the tile saw. 

Tub Layup 

Layup Preparation 

Once layup development and blob testing were completed, the tub layup was given the go-ahead. 

The layup was completed over a 3 day weekend in January in order to allow the team members 

to focus solely on the layup. The layup began Saturday morning with preparing the molds and 

creating templates. Mold preparation included cleaning, affixing the nylon stripping for the joint 

joggle, and applying release agent. 
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Cleaning was done by first vacuuming lose debris and dust from the molds using a shop-vacuum 

with the operator’s hand covering the hard plastic nozzle to prevent marring the mold surface. It 

should be noted that to prevent this type of contamination in the future, the molds were sealed 

with vacuum bag and sealant tape around the outside edge of the flange when placed in storage 

following the 2015 production period. Next acetone was applied to WypAll brand disposable 

towels and all gel-coated surfaces were lightly-scrubbed until no residue appeared on the towels.  

Nylon stripping was applied to the mold surface next to act a joggle for the strap joint that was 

utilized post-cure to bond the two monocoque halves (Figure 41). The same high-temperature 

nylon and double-sided fiberglass tape was used as in 2013. Since the nylon strip resists in-plane 

bending, curves in the joggle, such as those around the cockpit, were accomplished by placing 

small, wedge-shaped pieces along the path of curvature. Once the nylon was in place, the release 

agent could be applied to the mold surface. 

Coating the mold with release agent is vital in preserving the molds upon pulling the part and to 

the part quality. Loctite Frekote 770-NC was selected for the release agent as it was used 

successfully in 2013 and was available via donation from C&D Zodiac. To ensure proper 

application, the manufacturer’s technical datasheet was consulted. This process involved 

applying 5 coats with10 minutes between applications using WypAll towels. 30 minutes is 

required before applying the first layer of carbon-fiber. Frekote produces noxious airborne 

vapors and was applied wearing gloves and half-face respirators; and with both composites lab 

doors open. Since the doors have alarms that are triggered if left ajar, this required the 

Mechanical Engineering technician to come in on the weekend (when the coating was 

performed). See Appendix R for standard operating procedures on mold cleaning and release 

agent application.  

Note that in order to save a large amount of development time and manufacturing time, the 

molds from 2013 were used. 
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Figure 41. Tub mold with nylon strap. Note that the nylon strap is applied right inside the scribe line, so the recess 

would be along the edge of the tub when joined. Release agent was applied after the nylon stripping was added.  

Laying Up the Carbon 

In order to cut and lay down plies of carbon consistently, templates were made before the tub 

molds were cleaned. Paper templates were initially made. Since paper doesn’t drape like the 

carbon prepreg that would be used on the final part, the team decided fashion templates out of 

scrap prepreg. Slits were cut in the templates to allow them to lie flat in the molds. Regions of 

the monocoque defined by SAE rules (i.e. front bulkhead, side impact structure) were accounted 

for by shaping the template to cover the entire governed region. This ensured that the correct 

layup schedule would be applied to the region. The templates were cut so at least 1” of overlap 

would be present at each junction. 

The AS4 prepreg was cut with a razor blade by placing the template on the carbon, then tracing 

the template with the blade. Slits in the templates were replicated on the ply. This was another 

big advantage of using templates, because cutting prepreg on a table is easier and more precise 

than cutting in the air. Each section was cut twice, with the template flipped over so a ply was 

cut for each tub half. Flipping the template was necessary because the AS4 cloth is a satin 

weave, which means that it is not symmetric about itself (meaning if the template was not 

flipped, a supposed 0° ply would actually be a 90°, and a 45° would be a -45°). Before each ply 

was laid down, the orientation was checked by at least one team member who understood the 

dual directionality of the satin weave.  

Once a ply had been correctly assigned to a tub half, it was laid down. This was done by placing 

the ply inside the tub mold and lining it up. A small part of the ply was lifted up, and the poly 
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(prepreg backing material) was removed. The bare carbon was then laid down for that small 

section, and the poly was progressively removed as the ply was pressed into the mold. This 

process was often done with 2, 3, or 4 team members working on one ply at once. Once the ply 

was completely laid down, the top layer of poly was removed. During the carbon layup process, 

all team members wore rubber gloves. See Figure 42 for team members working on laying down 

plies. At intermediate steps along the way, each tub was vacuum bagged and vacuum pressure 

was applied in order to compact the carbon against the mold (this process is called a debulk). 

Debulks were performed twice per face-sheet (both inner and outer), and once more after the 

core had been laid down.  

 

Figure 42. The team hard at work laying down plies on the tub molds. Note that multiple people are working on a 

single ply. 

Laying Up the Core 

During the blob layups, by far the largest problem was getting desirable results with the 

aluminum core. Progress had been made and lessons had been learned from the blob layups, but 

a solid method that eliminated all problems had not been fully realized. Flat sections were easy, 

and sections that were slightly contoured didn’t prove to be difficult. Difficulties were 

encountered when splicing core, particularly near radii. To make sure carbon didn’t get sucked 

between two sections of core at a splice, extra core was cut and compressed into any cavities 

present. The compressed core was then re-expanded with picks to fill in any remaining gaps 

(Figure 43). To place the core over radii, the core was slowly bent into shape before being put 

into place. This took practice, patience, and time. Note that templates were used for cutting core. 

These templates were different than the carbon templates because core splices were located away 

from radii. 
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Figure 43. An example of how core splicing was taken care of. Note the placement of film adhesive between the 

core sections. 

In order to avoid splicing core over contoured regions (including the entire SIS), it was decided 

to use one large piece of core to cover the entire SIS and the radii surrounding it, which included 

the compound radii of the bottom rear corner of the tub (Figure 44). Each piece was bent into 

shape by placing it in the mold and slowly working it by hand. This process took about 2.5 hours 

per tub half, but the end result was worth it. Due to diligence in core template design, no core 

splices were over contoured surfaces.  
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Figure 44. Large single core piece used in the SIS and surrounding radii. 

Finally, balsa inserts were placed at suspension and pedal box mounting points. The balsa was 

sanded so it sat flush with the tub mold. To locate the balsa, suspension mounting points were 

marked on the tub molds by triangulating off the old suspension scribe marks (this was done 

before the layup began). When core templates were made, cutouts were made in the templates 

based off of these new marks. The aluminum core was cut out following the template profiles 

and replaced with balsa. 

Cure and Post-cure 

Once both tub halves were laid up, fluorinated ethylene propylene (FEP) was laid over the 

carbon. Breather was placed over the FEP, and the molds were bagged with high temperature 

vacuum bag. The team ensured that the bag did not bridge by incorporating pleats into the bag 

and by pressing the bag down in the areas prone to bridging (such as the corners) when first 

applying vacuum pressure. Bridging hinders vacuum pressure from being evenly distributed on 

the laminate, thus resulting in poor compaction and excess resin flow. Both of these scenarios 

result in a weakened or failed part. 

Monocoque halves were cured in the Mechanical Engineering Composites Lab oven. Due to the 

large thermal mass of the molds, FMD knew that a high set point would be required in order to 

get the molds and part up to the desired 260°F. The set point on the oven was programmed to 

325°F, which allowed the part to slowly get up to temperature. Oven air temperature is measured 

1 foot above the upper flange of the mold surface at the side of the oven. During the cure, 

thermocouples were embedded in the facesheets in areas that were later cut off the final part. By 

placing thermocouples inside the part, it was possible to ensure adequate cure temperatures and 

soak durations. Two thermocouples were placed on the front bulkhead: one on the tool-side skin 

and one on the bag-side facesheet. Unfortunately, the bag-side thermocouple on the front 

bulkhead failed. However, an additional two thermocouples had been placed on the SIS—again 

one on the tool-side facesheet and one on the bag-side skin. The temperature deltas for the inside 

and the outside SIS facesheets are seen in Figure J2 in Appendix J and only varied by 5°F during 

the soak. The thermocouples were placed on the non-core side of the facesheets because the 
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aluminum core’s high thermal conductivity would result in similar temperatures for the two 

innermost layers. All thermocouples were labeled with Mylar tape (“flash tape”) and their jack 

numbers recorded prior to starting the cure. Temperatures were recorded every 15 minutes in 

order to ensure that the parts were getting up to the temperatures that were required. Cool-down 

temperatures were a function of the thermal mass of the molds as the oven does not evacuate 

heat effectively and were not recorded. The exhaust and circulation fans were left on for an 

additional two hours after the cure’s ramp-down commenced and one door was cracked 6 inches 

overnight to prevent thermal shock. According to C&D Zodiac, cracking induced from thermal 

shock is common if the tool is cooled too quickly. See Figure J1 in Appendix J for cure cycle 

data; and Figure 45 for a picture of the thermocouples and tub halves after being removed from 

the molds. 

 

Figure 45. The two tub halves after being removed from the molds. Thermocouple locations are circled in red. 

After the tub halves had been removed from the molds, they were post-cured freestanding in the 

oven to 350°F. The post-cure continued the resin crosslinking that was started in the standard 

cure. This increased the Tg of the resin, which means that a greater temperature would be 

required in order for the resin to begin losing strength and stiffness. Upon consultation with 

TenCate, a freestanding post-cure should have been possible with no part warpage. Assuming 

there would be no part warpage in a freestanding cure and knowing that the molds are only rated 

to 250°F, this post-cure method was pursued. Preserving the molds for a second 2015 part (if 

needed) and for possible use in 2016 was a priority. 

Suspension Holes Locating and Drilling 

Suspension attachment holes were drilled prior to bonding the two tub halves together in an 

attempt to save manufacturing time.  Holes were located via triangulation from the previous 

year’s suspension mounting locations.  The previous year’s suspension hole locations were 

scribed into the monocoque mold using a 5
th

 axis Gantry mill, so it was trusted that their location 
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was accurate.  From the CAD model, distances were measured between these scribed holes and 

the location of the new suspension bolt locations.  Using a compass, calipers and a fine-point 

sharpie, arcs were drawn around the scribe marks, and where the arcs intersected marked the 

location of the new suspension mounting hole (see Figure 46).  

 

Figure 46. Positions of new suspension holes located via triangulation. 

Once all of the bolt positions were located, a center punch was used to make a small indentation 

at each hole center.  Then a center drill was used to pilot hole, before the holes were drilled using 

increasing drill bit sizes of 1/8”, 1/4”, and finally 3/8”.   

Unfortunately, this method of locating holes proved to be less accurate than expected.  As visible 

in figure 47, not all holes matched with the mounting brackets.  The primary culprit of this error 

was the fact that center drilling the holes was not very accurate.  Since no jig was used to locate 

the center drill, walking of the center drill was possible.  Additionally, after the two halves had 

been bonded together, an 1/8” offset was measured between the right and left suspension 

mounting brackets, due to a poorly design jigging structure that relied on keeping the outer 

monocoque surfaces flush rather than keeping the suspension holes in the right position.  While 

this error can partially be contributed to the possible warpage caused by the post-cure (discussed 

below), it could have been avoided if proper jigging was used to locate suspension holes after the 

two halves had been bonded together (see Future Recommendations section for further 

discussion).   
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Figure 47. Mismatch between the suspension bracket holes and tub inserts required additional machining on the 

brackets in order for them to fit. 

Monocoque Half Bonding and Closeouts 

The next step in manufacturing the monocoque was to bond the two halves together. The excess 

from the layup was cut off using a reciprocating saw with an abrasive blade.  It is highly 

recommended that his method not be used in future years, since the reciprocating blade can 

delaminate the sandwich structure.  Instead, an abrasive cutoff wheel should be used to trim the 

monocoque. Approximately 1/8” excess was left so the halves could be sanded flat. The two 

halves were sanded flat by sliding them back and forth over a layer of sandpaper taped to the 

frame table (see Figure 48). This did not get the halves completely flat, but it got them close 

enough to allow for hand sanding off the rest of extra material. Hand sanding was performed 

until the two halves lined up flush with each other. 

 

Figure 48. Tub half being sanded flat. Note the multiple pieces of sandpaper taped together on the frame table. 
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Once the two halves were flat, they were adhered together using a slurry of Fiberglast 3000 

series high temperature resin and microballoons. Graphite powder was also added to the slurry to 

color it black. The slurry was first applied to both halves individually. The two halves were then 

pressed against each other, ratchet strapped together, and then aligned by making sure the 

surfaces lined up (see Figure 49). FEP was placed over the ratchet straps and inside the 

monocoque to keep the slurry from sticking to anything other than the bond surface. Although 

the slurry was thick enough to not run (due to its high microballoon content) and plenty of it was 

applied, a second application of slurry was still needed to fill in all gaps. Once the resin had fully 

cured, the excess was sanded off. 

 

Figure 49. The monocoque while the resin slurry is curing. Note how FEP was placed between the monocoque and 

ratchet straps to prevent unwanted bonding. 

With the monocoque now a single structure, the strap joint was laid up. The resin and 

microballoons held the two halves together during this process. With a glass transition 

temperature of 309°F, the high temperature resin bond would hold the two halves in alignment 

during the strap joint cure. However, the resin bond itself would not be strong enough to handle 

normal driving conditions. Therefore, a prepreg layup with the same layup schedule as the rest of 

the monocoque was laid up over the two halves (see Figure 49). The entire monocoque was then 

vacuum bagged and cured in the oven. In order to bag the monocoque, the structure was 

sandwiched between an inner vacuum bag and an outer vacuum bag, completely enclosing the 

tub. This was done after an initial attempt to bag to the surface of the monocoque. This method 

was unsuccessful because the surface finish of the tub was too porous to hold vacuum pressure. 

Since the post-cure was at 350°F, the new glass transition temperature of the part was 374°F 

according to TenCate’s datasheet. With only a 260°F cure used on the strap joint, matrix 

crosslinking of the original part was minimally changed during the additional cure and part 

strength was maintained. 
Ref 9
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Figure 50. Carbon prepreg strap joint used to transfer load between the two tub halves. 

Unlike the strap joint, the cockpit opening closeouts were only one ply of carbon prepreg. The 

closeouts were done as 4 separate pieces of carbon for ease of manufacturing.   

Steering Rack Location & Cutout  

In order to properly locate the steering rack relative to the suspension, a jigging plate was CNC’d 

in-house. The plate bolted to the underside of the monocoque at the suspension holes which had 

already been located. The plate was used to locate the steering rack mounting holes and cutout. 

The mounting holes were located using the jig and drilled using steel drill-guides to ensure holes 

were normal to the surface of the monocoque. The steering rack opening was cut using a 

diamond-tipped cutoff wheel on a rotary tool. The hole was filled with a resin-microballoon 

mixture to protect the core. 
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Figure 51. Jig plate located underneath the monocoque, used for drilling steering rack mounting holes and steering 

rack cutout. 

Repair Patches and Pad-ups 

After the tub halves were pulled out of the molds, it was apparent that there were a few defects. 

In some spots, the core was not formed well enough to the contour of the tub mold, and it didn’t 

allow vacuum pressure to be applied to the outer face sheet. This resulted in resin dry spots 

(Figure 52 same as below). These were fixed by applying resin to the affected areas. 

Microballoons were not added to the repair resin because they reduce the structural integrity of 

the resin and prevent it from flowing freely into the dry fibers. 

In addition to dry spots, the carbon had bridged over core splices in a few locations. This meant 

that the carbon in that area was no longer structurally sound (Figure 52). To fix these spots, resin 

and microballoons were applied into the recesses in order to make the surface flat. Then, carbon 

prepreg was laid over the affected spots and cured. Pad-ups were added at suspension mounting 

locations as well. See Figure 53 to see the locations of repair patches and pad-ups. The repair 

patches, pad-ups, and cockpit opening closeouts were laid up and cured at the same time to 

reduce thermal cycling on the monocoque. 
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Figure 52. Dry spots occurred where the carbon fiber was not fully compressed into the mold by the core as shown 

inside the purple circle. Dry spots were corrected with the addition of high-temperature resin. Additionally, carbon 

bridging occurred at several core splice locations as indicate by red arrows. The cavities were filled with resin and 

microballoons, and then patched with carbon fiber.  

 

Figure 53. The dry spots pictured above are shown here coated with high-temperature resin. Additionally, the 

carbon bridging is shown with the repair patches. A minimal amount of material was used to save weight though an 

argument could be made, based on team goals, to use more material in single rectangular strops for aesthetic 

reasons.  
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Figure 54. Pad-ups (shown with red arrows) were used at suspension mounting locations to increase the strength of 

the laminate in these areas of concentrated loading.  

Flatness Repairs 

Pedal Box Mounting 

Upon bonding the two tub halves together, it became apparent that the halves were slightly 

warped relative to each other, which was most likely caused by the free-standing post-cure.  

When bonding the two monocoque halves together, the team prioritized the width of each half. 

This allowed for the front suspension mounts to be as symmetrical as possible in the transverse 

direction (y-axis in SAE J760) about the longitudinal axis (x-axis) of the vehicle. The tub halves 

were cut very closely to the joggle line impression on the tub surface, ensuring that the width of 

the monocoque was kept true to the design. Moreover, the front of each half of the monocoque 

was aligned so not only would suspension pickups by transversely symmetric, but also 

longitudinally equal. Lining up the z-axis was more difficult as this is the direction in which the 

monocoque warped as evidenced by a visible (3/16”) step between the right and left halves. The 

left half has either expanded or the right half had contracted as the joggle lines were properly 

placed in the layup and the halves were carefully trimmed to these lines. The best overall fit 

between the seatback and front bulkhead was when the tops of the halves were aligned flush. 

This also was the most aesthetic when viewing the vehicle from eye-level; therefore this is the 

position in which the monocoque halves were aligned. However, aligning the top surface of the 

tub created a step at the bottom of the tub, which was later found to interfere with flush mounting 

of the pedal box and steering rack (see below). To ensure correct z-axis alignment in the future, a 

jig similar to that used by FCW should be used and the recommendations in the Drilling Holes 

subsection of this report’s Conclusions and Recommendations should be followed. 

Due to the aforementioned issue, problems arose when attempts were made to bolt the pedal 

assembly to the front floor of the tub, as the pedal-box could not mount flush to the uneven 

surface. A flush fit is imperative for proper load transfer between the two systems, so metallic 

shims were applied to the uneven portion of the tub. The pedal-box mounting bolts were then 

routed through holes in the shims. After a day of testing, some of the shims started dislodging 

themselves, so a more permanent solution was necessary. 
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Figure 55. Pedal box placed on the uneven tub floor. A considerable gap between the pedal box and the tub is 

visible on the left. A visible step is present where the two halves of the tub join. 

A resin and chopped fiberglass shim was the final solution to the aforementioned problem. The 

resin pools up and settles into a flat shape due to gravity, while the fiberglass increases the 

structural integrity of the cured mixture.  

It was decided that physical testing was necessary to assess the compressive strength and 

cracking resistance of the shim, considering different fiber contents. Two test panels were 

manufactured: one with 20 grams and one with 30 grams of West Systems 105 resin (with the 

corresponding recommended hardener ratio). Each portion of resin was mixed with 1 tablespoon 

of chopped fiberglass and prepared on a flat plate (Figure 56). Both panels were drilled out to 

accept the mounting bolt, and a backing plate was bolted onto each panel with as much torque as 

could be managed by hand. Results showed no cracking in either of the panels. Considering 

these results, the team was confident that this arrangement would work. A ratio of one pump of 

resin to one tablespoon of fiber was selected for the final application. 
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Figure 56. Two samples of the resin and chopped fiberglass mixture for the pedal box floor were prepared. Both had 

1 tablespoon of chopped fiberglass, while one had 20 grams and the other 30 grams of West Systems 105 resin (with 

the corresponding recommended hardener ratio).  

The area around the pedal-box was cleaned with acetone and dammed to prevent resin bleed. The 

slurry was poured in and allowed to cure for 24 hours. Since the resin settled flat from gravity, 

the resulting shim did not require much sanding to attain a perfectly flat mating surface for the 

pedal-box. Re-drilling the pedal-box mounting holes presented no difficulty, and did not crack 

the regions around the holes.  

 

Figure 57. The resin and chopped fiber shim can be seen under the pedal-box. Graphite was added to the slurry to 

give it a black color. Remnants of yellow damming tape are visible along the periphery of the shim. 
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Subframe Mounting Surface 

After applying the bridging repair patches, it was discovered that one of the patches produced a 

step along the rear of the tub, where the subframe was to be mounted. As with the pedal-box, this 

region of the tub needed to be flat.  

 

Figure 58. The darker repair patch runs along the length of the subframe mounting surface, creating an uneven step 

that prevented flush mounting. 

In order to avoid disassembling the suspension and running another cure cycle on the 

monocoque, a wet layup was applied along the seam to restore a flat mounting surface. Since 

pulling vacuum on the surface proved difficult, tensioned cling wrap was used to apply even 

pressure on the wet layup strip. The layup was allowed to cure at room temperature for 24 hours, 

and the resulting surface was flat with no noticeable seam where the flatness repair layup met the 

patch.  

Rocker Mount Shim 

The problem of flat mounting surfaces revealed itself again in the case of the front rocker 

mounts. During the car’s initial shake down drive, it became clear that the area of the tub where 

the rocker mounted was deflecting much more than it should. The highest deflection was at the 

lower bolt. Deflections at the backing plate measured 0.017” while the monocoque surface 

surrounding the bracket showed a deflection of 0.030”. Upon closer inspection, it was discovered 

that the bracket did not mount flush to the tub. The bracket was positioned low enough on the 

side of the tub that the lower half hung over a tub area of slight curvature. Since there was about 

1/8” of clearance between the bracket and the tub in this area, the mounting bolt provided no 

clamping load on the tub. Due to the absence of clamping force between the outer and inner 

brackets, the backing plates could not properly distribute the bolt load. This caused a 

concentrated out-of-plane load at the bolt, which put the surrounding laminate in magnified plate 

bending. It is very likely that this unintended loading case caused progressive core failure, which 

was reflected in the high deflection measurements.  
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The solution to this issue was to shim the rocker bracket to the tub using structural aluminum 

repair putty. A sheet of FEP was taped to the tub, and aluminum putty was slathered onto the 

mating surface of the bracket. The puttied bracket was then pressed against the tub and bolted 

down, causing any excess putty to ooze out the side of the bracket (Figure 59). After 24 hours of 

cure time, the bracket was removed to reveal a perfectly contoured shim (Figure 60). 

Unfortunately, the shim did not reduce the deflection, so it was determined that the core had 

failed. 

 

Figure 59. Structural aluminum putty was used to create a matching surface for the upper and lower suspension 

mounts. FEP was used to keep the adjacent areas clean during the process.     
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Figure 60. Rocker mount with cured aluminum paste shim. The grey aluminum paste shim is visible where the 

bracket meets the tub. The paste shim appears thicker than it actually is due to leftover residue adhering to the side 

of the bracket. 

Core Failure Repairs 

To permanently solve this deflection issue, the outer face sheet was cut off and the core was 

removed from a 4” square around the rocker mount area (see Figure 61). End grain balsa was 

sanded to shape and bonded in using resin and microballoons. Once the resin dried, the top of the 

balsa was sanded so it was flush with the tub, and a wet layup patch was placed over the area. To 

reduce risk of delamination, the patches were made using a similar tapering style as the pad-ups 

with an overlap of 0.75” and 1.0” for the inner and outer plies, respectively. See Appendix S for 

additional photos of the core failure repair process.  

This rocker shim fix, along with the replacement of the local honeycomb with balsa, reduced the 

localized backing plate deflection from 0.017” to 0.007”. Deflection of the laminate around the 

backing plate was reduced from 0.030” to 0.005”. Measurements taken before and after driving 

sessions confirmed the same deflection numbers, thus ruling out the possibility of progressive 

failure. With the repairs in place, the entire backing plate showed similar deflection at different 

points, whereas before the repair most of the deflection was localized close to the bolt. These 

measurements indicated that sufficient clamping force was being provided, and that the balsa 

core had not experienced failure.  
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Figure 61. Location and size of repair section at front rocket mount. Note how both the outer face sheet and 

aluminum core have been cut out, but the inner face sheet was not. 

Attachments  

As previously stated, aluminum inserts were used at all points on the monocoque where 

accessory parts attached. Inserts were custom machined for each hole using aluminum rod. It is 

critical that the insert be the correct length so that the loading is distributed properly from the 

bolt to the laminate.  Proper load transfer is reacted through the face sheets, so the inserts must 

be in good contact with both the inner and outer face sheet.  Similar to previous years, 7/16” OD 

inserts were used for 1/4” fasteners and 3/8” diameter inserts were used for #10 fasteners, based 

off of insert pullout testing results and the expected loads (see Appendix F for testing results).  

After the fit of each insert was checked for proper length, the inserts were bonded into the 

monocoque using 3M 420 Structural Adhesive, similar to the approach used in the test panels 

mentioned above. First, the core area and insert were scuffed using Scotch-Brite, and then 

cleaned with Acetone.  The 3M adhesive was inserted into the hole cut into the monocoque using 

a mixing gun, and spread on the outside of the insert prior to final insert placement. After the 

inserts were placed inside of the monocoque, tape was placed over the inserts to prevent the 

inserts from dislodging themselves in the case that anyone moved the monocoque. 
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Figure 62. Aluminum inserts potted into the monocoque. 

Backing plates were manufactured for each component being attached to the monocoque. The 

increased surface area covered by a backing plate helps to distribute the load across the laminate 

and limits stress concentrations. Backing plate surface area for each component was based off of 

perimeter shear testing data, which failed at a loading pressure of approximately 600 psi (see 

Appendix F). SAE rules mandates that all roll hoop backing plates be a minimum thickness of 

0.080” steel. Ungoverned backing plates were manufactured out of 0.063” steel in order to save 

weight. 

 

Figure 63. Backing plates used for the upper suspension mounts.  Sizing was based off of perimeter shear testing 

results. 

Front Bulkhead Cutout 

Due to reasons discussed previously, a front bulkhead cutout was created to serve as an access 

window for the pedal box assembly. The maximum cutout size of the front bulkhead is 

determined by the SES, and a final cutout size of 11”x11” was chosen given the laminate testing 

properties. The geometry of the cutout was traced on the front bulkhead, and holes were drilled 

inside each of the four corners. The reciprocating saw was then used to cut out the square 

opening. As stated previously, this is not the preferred method of cutting through a carbon fiber 
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sandwich structure. Once cutting was completed, resin and microballoons were applied to the 

exposed core in order to protect it. 

Finishing  

Aesthetic finishing was saved until just prior to competition in order to facilitate any chassis 

modifications or repairs that became evident during testing. The two primary options for 

improving the appearance of the vehicle were paint and vinyl covering. Properly executed 

painting produces a finer finish than vinyl. However, this level of quality is difficult to achieve 

and added 4.8 pounds to the 2013 monocoque. In addition, sponsor logos must be cut out and 

applied individually—a process taking approximately 10 man-hours when digitizing and 

application are considered. The advantages of a vinyl wrap are that it is lighter than paint, can be 

printed with partner logos, and conceals surface imperfections better than paint. The inherent 

advantages of vinyl combined with VE Signs offering to fully sponsor, design and apply this 

wrap, made choosing this option straightforward. Partner logos and chassis manufacturing 

drawings were sent to VE Signs designers to produce digital templates for the wrap. Beyond 

being aesthetically pleasing, a high-quality finish is important in gaining the confidence of 

design judges, securing additional industry support, and recruiting new students for the team. 

Prior to the wrap’s application, resin and microballoons were applied to the tub surface to fill any 

pinholes and steps in the carbon. The resin-microballoon slurry was applied in excess and then 

sanded down with 280 grit sandpaper to tangency in a manner similar to that of standard 

automotive body-filler. Only 0.1 pounds of the slurry was used on the 2015 monocoque, as 

opposed to the 2013 chassis which needed 0.3 pounds due to the vehicle being painted. From 

there, the vehicle was turned over to VE Signs for final finishing. As a professional company, 

their methods are beyond the scope of this report and it is suggested that future teams evaluate 

their resources before deciding on the best finishing method. The wrap itself added 0.6 pounds to 

the vehicle weight according to VE Signs. The end result was not as aesthetically pleasing as the 

2013’s vehicle’s finish partially due to repair patches; however, it was sufficient for a racecar 

over 75% lighter (Figure 64).  
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Figure 64. The finish was over 75% lighter than in 2013 and had good aesthetics when on-course. The repair patches 

were still moderately visible under the vinyl wrap but not noticeable from a short distance.  

Nosecone Manufacturing 

Foam Molds 

Because a controlled outer surface finish is desired for front wing mounting and mounting to the 

tub, a female mold was used for the nosecone. The front wing mounting flats necessitated a draft 

angle of 0°, which could make it more difficult to remove the part from a one-piece mold. 

Machinability of the mold was also an important consideration. The mold would need to be 15 

inches deep due to the depth of the nosecone. Getting an end mill long enough to accurately 

machine was not feasible given the available resources. These two factors lead to the decision of 

using two separate mold halves, split down the centerline. This allowed the molds to be 

machined on their sides, which required a shallower depth of cut. It also allowed for the molds to 

be pulled apart once the cure was completed, so the part could be easily removed. 

Two blocks of foam large enough for the molds were not available, so smaller blocks of 15 lb/ft
3
 

Coastal Enterprises Precision Board LT were glued together using PTM&W high-temperature 

epoxy foam glue. After bonding the foam was CNC machined on a Haas VF3 mill. In addition to 

the mold cavity, 4 alignment holes were also drilled with the CNC machine. Due to the high 

density of the foam, the machine didn’t take out any chunks of foam, and left a finish that 

required little sanding. Next, the molds were sprayed with a Duratec Polyester Sealer, then 8 

layers of Duratec Polyester Surfacing Primer. The first two layers of Duratec were dyed green, 

the rest were left white. If sanded down to green, it was obvious that most of the Duratec had 
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been sanded through. The molds were sanded down to 600 grit sandpaper, which left a very 

smooth finish to lay up on. See Figure 65 for a view of the left nosecone mold. 

The high density foam used for the molds worked extremely well. Not only did it machine easily, 

but it proved to be very durable. The team pulled 5 nosecones off of the same molds, and they 

still appear to be in good working condition. On the other hand, the team this year had multiple 

lower density (8lb/ft
3
) molds for other components break during their first cure cycle. 

 

Figure 65. The two halves to the nosecone mold. Note the alignment dowels. 

Layup 

The nosecone layup was done in a similar manner to that of the monocoque layup. The molds 

were cleaned with acetone in the same manner as the monocoque molds, and then prepped with 

both Meguiar's Mold Release Wax #8 and Frekote (see Appendix R). For the first layup, a ply of 

carbon prepreg was cut in the general shape of the side, and then slowly trimmed down until it 

fit. The poly backing paper obtained off of the initial layer was then used as a template. 

Rectangular pieces of prepreg were used for the top and bottom. For the unidirectional prepreg, 

the roll was too narrow to cut side pieces as one piece. As a result, two pieces were cut and then 

placed side-by-side. Due to the nature of unidirectional carbon, splitting the ply in two parts 

parallel to the fiber direction would not affect part strength. 

The top, bottom, and sides all had the same layup schedule. Both the T800 cloth and uni only 

had backing material on one side, so each ply was laid down by placing it on the mold at one 

location then slowly pushing down while moving across the ply. This proved to be the most 

consistent and time-efficient method. Due to the small opening on the top of the mold, it was 

most efficient for one team member to lay down the carbon at a time (Figure 66). 
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Figure 66. Laying down a ply on the side of the nosecone mold. 

Due to temperature constraints of the foam molds and epoxy, the cure cycle had to be adjusted to 

a 200°F cure. This meant elongating the cure cycle to an 8 hour dwell in order to fully cure the 

resin as suggested by Dr. Mello. Thermocouples were used in order to monitor part temperature. 

Just like with the monocoque cure, temperatures were recorded every 15 minutes. See Figure J3 

in Appendix J for cure cycle data. 

Nosecone Hole Drilling 

Prior to mounting the nosecone to the chassis and the front wing to the nosecone, holes were 

drilled in the carbon skin. To ensure proper alignment with the mounting studs protruding from 

the chassis, the monocoque stud inserts were placed prior to drilling the nosecone flanges. This 

pattern was transferred to a metal plate that was cut just smaller than the nosecone perimeter—

thus allowing it to sit flat on the mounting flanges. After making holes for the 5/16” studs, the 

plate was then used as a template to drill holes in the flanges. A drill guide was used to keep the 

bit perpendicular to the 0.125” thick carbon present on the flanges.  
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Figure 67. Fixture used to hold front wing mount truss structures in place while holes were drilled. 

The flat sections present on the nosecone for aero mounting have a 90° guide at their top-back 

edge which allowed for level placement of the aluminum trusses. In order to ensure the trusses 

themselves were square with the ground plane and each other, a jig was machined out of a 2” x 

2” aluminum bar with slots for the members. With the trusses secured in the jig, a sharp drill was 

spun by hand in the waterjet-cut holes in the trusses. The trusses were then removed and the 

holes were finished with a guide and hand drill. To facilitate testing of ground clearance and 

minimize the number of holes required to be drilled in the nosecone, the wing mount itself had 

multiple holes at 0.3” height increments.  

Firewall 

The firewall was manufactured first as a flat panel and folded into shaped as noted in the Final 

Design Details section. The jig required adjustment from the solid model design because not all 

features present on the vehicle were in the model and because of subframe variances between the 

model and real life. This process did not go smoothly and it is recommended that if a cut-and-

fold firewall is used in the future, that care is taken to fully and accurately model that region of 

the vehicle prior to jig design. Moreover, compliance was introduced at the bend where the 

headrest portion was recessed to accommodate the driver’s helmet. This was solved via the 5/16” 

steel rods noted in the Final Design Details section, but the joint of the aluminum angle and the 

carbon fiber required bolts and washers—adding weight. Had this joint been accounted for 

initially, it could have been made via the stiffer and lighter cut-and-fold method. This section 
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was extended when the gas tank was found to be too small and the fuel filler neck was extended 

upward to add capacity. Finally, it should be noted that 90° bends were found to strain the carbon 

fiber facesheet to failure, so future designs should test desired angles based on the specific layup 

to be used. The firewall is shown in Figure 68. 

 

Figure 68. The cut-and-fold firewall as driven at competition. The aluminum shield on the right was added when the 

fuel filler neck height was increased. 
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Figure 69. The headrest section of the firewall was recessed to allow for the driver’s helmet to be in a natural 

position. This feature was not part of the initial design and required the use of a (relatively) heavy aluminum bracket 

(red arrow). Steel tubes were added to connect the top of the headrest to the subframe to support the weight of the 

drivers head in a crash scenario (purple arrow).   

 

Figure 70. Two plies of wet layup fabric were used to hold the folded panel in position. Mounts and washers with a 

large surface area were used to distribute the load along the facesheet though inserts were (incorrectly) omitted. 

Recommendations for Future Manufacturing of Design 

Core 

One of the largest advances this year was the use of aluminum core. It theoretically allowed for 

an increase in torsional stiffness without adding weight and helped the laminates pass a stricter 

rule set. Unfortunately, several manufacturing difficulties arose due to the use of aluminum core. 

The two largest issues were the core bridging and core sections imperfectly butting together at 

splices. 

When the aluminum core is not formed to exactly the same geometry as the mold, it does not lie 

down flat flush to the mold surface. The Nomex core used previously was much more formable 

and able to bend into the surface under vacuum pressure. Unfortunately, the stiffer aluminum 

core did not form to the complex geometry as well. Bridging of the core across the surface of the 

mold decreased the quality of surface finish because it hindered vacuum pressure from 

compacting the carbon. 

When two sections of core meet up, it is imperative that there are no gaps between the two. 

Since, the Nomex used in 2013 springs back when compressed, extra core was compressed and 

forced into spliced regions, which acted to fill the gaps. The aluminum core, on the other hand, 

does not spring back so it was much more difficult to fill gaps at the spliced region. During the 

cure, the vacuum pressure would suck the carbon between the two core sections where gaps still 
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existed (see Figure 71). This is the equivalent of a stress concentration, and needed to be repaired 

with patches when found on the monocoque. 

 

Figure 71. The effect of gaps between core sections. Note how the carbon has draped in between the two sections of 

core at the splice. Picture taken of a blob layup cut in half. 

There are a few options to remedy these two manufacturing difficulties. Possible solutions 

include using aluminum Flex-Core, a smaller hex cell size, or thinner core. Any one of these 

would make it easier for the core to bend into contours and radii, but testing is necessary to 

determine the best solution in regards to strength and stiffness. In order to fill gaps between core 

splices, the team should look into expanding core splicing foam. Alternatively, Nomex core 

could be used in these regions since it naturally springs back and fills in gaps. 

Harness Satin Weave 

Another difficulty encountered was the use of a harness satin weave carbon cloth, in which the 

strand of carbon fiber is woven through the perpendicular strands once every 4 or 8 strands. The 

result is a cloth that is not symmetrical about itself, because it is predominantly 0° fibers on top 

and 90° fibers on the bottom. The top and bottom being different orientations means that extra 

care must be taken when determining the correct orientation of a satin weave cloth. 

Satin weave cloths typically drape over contours easier and are stronger than plain weave cloths. 

However, figuring out how to deal with the asymmetry requires a solid understanding of the 

material. Therefore, the use of a harness satin weave cloth is only advised if the team has a solid 

understanding of the material and its effects on the laminate (asymmetry, warping, residual 

stresses, etc.). 
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Carbon Overlap 

A significant amount of weight can be saved by incorporating less overlap between adjacent 

carbon sheets. After trimming both halves of the chassis, an almost 0.5 pounds difference 

between the two halves was measured. The most probable cause of this discrepancy is 

inconsistent amount of overlap used between the two halves. 

Many aerospace manufacturers use a rule of 1:10, in which the overlap is approximately 10 times 

the thickness of the cloth or tape being used. Alternatively, a simple tensile test comparing the 

amount of overlap and the strength of a laminate can be conducted, to get a more accurate 

comparison of strength vs. weight due to overlap. It is projected that with a consistent amount of 

overlap enforced, the chassis could be approximately 1 pound lighter. 

Multi-Stage Cure 

Potential performance and aesthetic gains can be obtained by curing the monocoque in stages. A 

multi-stage cure entails curing the outer face-sheet, curing the core to the face-sheet, and then 

curing the inner face-sheet to the core. Increased compaction can greatly improve surface finish 

and the integrity of the laminate. Additionally, there is no risk of cavitation of the outer face 

sheet at core splices. However, there is a risk that the core may not fully bond to the facesheet, 

thus creating an interface incapable of transferring shear. Thus, if this method is pursued, non-

destructive testing utilizing sample layups on all representative contours and/or ultrasonic 

inspection is recommended.  

In order to minimize residual stresses within the laminate, the facesheet layup schedule would 

have to be designed to be symmetric about its own centerline so that no thermal warping 

occurred during each individual cure cycle. 

Locating Suspension Holes 

Suspension holes were located and drilled prior to bonding the two monocoque halves together. 

This resulted in geometrical consequences due to the apparent warpage of the two halves, most 

likely caused by the post-cure of the monocoque. It was observed after bonding the two halves 

together that one side of the suspension mounts was offset vertically approximately 1/8” from the 

opposite side. This error creates a difference in the kinematics of the suspension from the 

designed target and is disadvantageous to the vehicle’s handling. In order to avoid similar 

mistakes in the future, it is recommended that the suspension holes be drilled after the entire 

chassis is assembled using a jig to properly locate each point. 

Nosecone Manufacturing 

In an attempt to reduce weight of the front wing mounting, the front wing was mounted to the 

nosecone. While the front wing was successfully mounted to the nosecone, it brought up a few 

challenges as well. The largest issue with having flat spots to accommodate front wing mounts is 

the stress concentration that they cause (see Appendix P). The main reason that the 2015 

nosecone is almost 1 pound heavier than the 2013 nosecone is because the sides are so much 

weaker. With a constant profile such as the 2013 impact attenuator, the load is able to follow a 

continuous path. In 2015, the transition of the flat spots cause the load to travel through a 

discontinuous load path, which puts the carbon skin in bending instead of in-plane compression 

and acts as a stress concentration. A carbon skin is much weaker in bending than it is with in 
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plane compression, and as a result the layup schedule had to be increased in order to compensate. 

A second disadvantage to this mounting method was manufacturing. Getting the carbon to drape 

over the complex geometry was possible, but difficult. 

A solution to these problems could be to mount the front wing differently. Other FSAE teams 

have mounts sticking through the nosecone that are attached to the chassis front bulkhead (see 

Figure 72). This would allow the geometry to be continuous like the 2013 nosecone, and would 

make the structure much stronger. One issue with this is the stress concentration introduced by 

drilling holes for the mounts to go through. However, these would most likely be much less 

significant than having a discontinuous geometry that introduces laminate bending.  

 

Figure 72. University of Washington’s car. Note the front wing mounts coming through the nosecone, and how it 

allows the nosecone to maintain a continuous geometry. 

An alternative mounting solution that would eliminate stress concentrations even further would 

be bonding wing trusses onto the exterior of the nosecone. This could be done easily by shaping 

the upper inboard portion of the wing trusses using a mold generated from the nosecone tool’s 

CAD. To allow for proper positioning of the truss, low-depth markings should be made on the 

nosecone mold via CNC during manufacturing as done for the 2013 monocoque suspension 

pickups. Since during impact testing the wing mounts do not need to be physically mounted, no 

stress concentrations would be added in the test. However, the force required to shear off the 

front wing must still be added mathematically to the testing results. Because the bonding shear 

strength of the team’s adhesive is approximately 3000 lb/in
2
, it may be advantageous to use the 

lower bolts that secure the mounts to the wing for these calculations. While performing this 

trade-off analysis, it would be best to calculate the failure load for the adhesive using the front 

wing leading edge as the point of impact. This not only represents real-life crash conditions but 

allows the mathematically added forces to be reduced since they will include a moment.  

Another aspect that should be investigated is the use of a male mold. A male mold would be 

much easier to layup on than a female mold. It would also potentially eliminate dry spots (Figure 

73) because the carbon would not bridge like it does on the interior surface of a female mold. 
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Disadvantage to the use of a male mold would be an uncontrolled outer surface, which may be 

undesirable depending on what other purposes the nosecone has. Another possible problem with 

a male mold would be getting the mold out once the part has been cured. An alternative option 

would be to look into machining a male buck then pulling a plaster female mold off of it, similar 

to 2013. This would allow vacuum bag to be taped to the mold, instead of bagging the entire 

mold. Also, even though plaster is more dense than foam, much less plaster would be required to 

make the mold (a layer of plaster formed to the geometry, instead of large foam blocks). This 

would result in a lower thermal mass, which would help the part follow the cure cycle more 

closely. 

 

 

Figure 73. Picture of nosecone dry spots, most likely caused by carbon bridging hindering vacuum pressure from 

pushing carbon against mold surface. 

Design Verification and Testing 

Drive Testing 

In the early stages of drive testing in Cal Poly’s H1 parking lot, the driver noticed a large degree 

of body roll through turns. This problem was mitigated by stiffening the suspension, but it was 

soon found that the region around the front rocker mounts had failed at the lower pickup. Details 

on the fixes can be found on pages 87-97.  



108 

 

 

Figure 74. The car rounding a cone at the Buttonwillow Raceway kart track where a combination of curbs, fast 

sweepers and medium-speed banked corners provide loadings somewhat higher than those expected at competition. 

These loadings quickly failed the core behind the rocker mounts where balsa wood was not present.   

After the rocker deflection had been fixed, tuning the suspension was positive and repeatable 

based off of driver feedback, thus indicating a sufficiently stiff chassis. After each major drive 

day, bolts were checked for tightness and the tub examined for cracks or failures. As of writing 

this report, the car has logged over 5 hours of drive time without any additional incidents.  

Mass Properties  

Mass properties taken from the vehicle are presented in Table 23. Some mass properties from the 

2013 report were not individually available and the weight of the cockpit closeout and repair 

patches was estimated (±0.5lb) for the 2015 vehicle.  
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Table 23. Mass properties for the 2013 and 2015 chassis. Some information was not broken out for the 2013 

vehicle; however, the totals are correct. 

 

Physical Torsion Test Results 

In order to validate the theoretical chassis stiffness, a torsional stiffness test fixture was 

constructed. In order to maintain consistency with the FEM, the test fixture was designed with 

the same constraints. Three of the four wheel hubs were constrained, with the remaining hub 

loaded using weights cantilevered off of a tube slipped onto the axle stub. See page 47 for 

description of boundary conditions. 

With the wheels still attached, the car was lifted and rolled onto the frame table. The front and 

rear of the car were then propped up with foam blocks, and the wheels and alignment pins 

removed to expose the hubs. In order to ensure that the rear fixtures mounted flush with the hubs, 

upright camber was set to zero with adjustment shims. Solid steel dummy shocks were installed 

in place of the coilovers, and the steering was locked with vice grips that were rigidly attached to 

the front roll hoop. 

With the rear fixtures loosely bolted to the hubs, the car was lifted and a large steel I-beam was 

slipped under the fixtures. The fixtures were then bolted to the I-beam, and the I-beam was then 

c-clamped securely to the frame table (see Figure 75). This process was repeated for the I-beam 

and fixture arrangement in the front (Figure 76). 
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Figure 75. Torsion test rear view. The rear fixtures are shown bolted to the wheel hubs and the I-beam supports. 

 

Figure 76. Torsion test front view. The front right upright is resting on a solid steel cylinder, while the front left 

upright is instrumented with a dial indicator and left unconstrained. 

With the car fully suspended in the fixture, a dial indicator was placed at the upright of the 

unconstrained wheel hub. Varying weights were placed on the free hub, and deflection was 

recorded for each weight. The results were then averaged to yield a torsional system stiffness of 

1224 ft-lb/deg (Table 24), which is a 16.6% increase over the 2013 chassis stiffness of 1050 ft-

lb/deg. The 2015 chassis also has 24.4% improved specific stiffness, considering its lower 

weight (Table 25). 
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Table 24. Physical torsional stiffness results and deflections. 

Weight Applied (lbs.) Deflection at Upright (in.) Torsional Stiffness (ft-lb/deg) 

21.64 0.056 1329.02 

45.06 0.129 1229.66 

66.62 0.204 1174.53 

89.98 0.278 1196.15 

146.06 0.47 1190.78 

AVERAGE 1224.03 

 

Table 25. 2013 vs. 2015 stiffness comparison 

 Torsional Stiffness (ft-

lb/deg) 

Weight w/o Hardware 

(lb) 

Specific Stiffness 

(ft-lb/deg-lb) 

2013 Chassis 1050 32 32.8 

2015 Chassis 1224 30 40.8 

% Difference 16.6 6.7 24.4 

 

However, the results shown above include some data points that should be disregarded for both 

of the 2013 and 2015 tests. The first data point likely includes slop in the mounting hardware and 

should therefore be omitted. The last data point was obtained with an extremely high load on the 

upright which it is believed, induced uncharacteristic behavior. These trends are shown in Figure 

77. When the average of the remaining three points is taken, the 2015 chassis had an 11.5% 

higher specific stiffness than the 2013 version (Table 26). 
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Figure 77. Data from the 2013 and 2015 vehicle torsional tests. The first data points (circled in orange) likely 

include slop in the bolted connections and should be omitted from analysis. The final data points (circled in green) 

were obtained with an extremely high load and may include uncharacteristic behavior. When these points are 

omitted, the average torsional stiffness of the 2015 chassis is 2.5% greater than the 2013 version.  

Table 26. With the omission of the aforementioned data points, the 2015 chassis outperformed the 2013 version by 

11.5% in terms of specific stiffness. 

 

These results are in line with our goals, but the chassis weight could have been further reduced if 

excessive bridging did not necessitate heavy repair patches and resin application. 

During the physical torsion test, measurements were taken allowing the stiffness of the 

monocoque and the subframe to be calculated. These can be seen in Table 27. As can be seen, 

more stiffness is lost in the monocoque than the steel tube subframe. Ideally, these stiffnesses 

will be the same. However, that is not feasible for a real world chassis. 
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Table 27. Component stiffnesses calculated from the physical torsion test. 

Component 2013 (ft-lb/deg) 2015 (ft-lb/deg) Change 

Monocoque and front suspension 2148 1982 -7.7% 

Joint 36480 83433 128.7% 

Subframe and rear suspension 2193 2670 21.7% 

Total 1070 1097 2.5% 

 

Unfortunately, the measured stiffness was lower than our predicted stiffness of 1679 ft-lb/deg. 

This discrepancy is most likely due to manufacturing difficulties with aluminum core, which 

caused bridging and localized resin dryness. 

Note that sister senior project CP Speed also performed a torsional test on the 2013 and 2015 

chassis. These results are believed to be slightly less accurate in relation to overall chassis 

stiffness though cover longitudinal stiffness in depth. These overall results are presented in 

Appendix W and the longitudinal results are in the CP Speed report itself. Results from this 

report include hysteresis of the 2015 chassis that are worthy of additional future examination.  

Nosecone Results 

As discussed previously, a quasi-static crush test was performed on the nosecone in order to 

ensure that it was sufficient as the car’s impact attenuator (see Table 28 for results). The first 

nosecone (9 plies) only absorbed 2792 Jules of energy, which does not meet SAE’s energy 

absorption requirement. The second nosecone (15 plies) absorbed 7391 Jules of energy, which 

meets the requirement. The nosecone also met both the peak and average deceleration 

requirements. Note that the peak deceleration requirement of 40 g is reduced by the front wing 

mounting bolts. See Appendix O for the Impact Attenuator Data sheet submitted to SAE. 

Table 28. Quasi-static crush test results. 

Specification Requirement 

9 Plies  

[45c/03/45c]s 

15 Plies  

[45c/90/02/90/02/90]s 

Energy Absorbed 7350 J min 2792 J 7391 J 

Average Deceleration 20 g max 3.196 g 7.759 g 

Peak Deceleration 27.4 g max 11.351 g 21.873 g 

 

The goal of mounting the front wing to the nosecone was to save weight compared to the 2014 

mounting system. The front wing mounting flats had an adverse effect on energy absorption, 

leading to a heavier nosecone than 2014. However, the entire mounting system, including the 

nosecone, is lighter than 2014 by 0.23lb (see Table 28). Due to higher front wing loading, as well 

as stricter SAE rules requirements (front wing mounting failure load of 12.6g is subtracted from 

the allowable peak deceleration of 40g), decreasing the system weight is considered a success. 
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Table 29. Nosecone weight comparison. 

Component 

2014 
Weight 

2015 
Weight Change Change 

(lb) (lb) (lb) % 

Nosecone (2013-2014) 2.094 3.16 -1.066 51% 

Trusses 1.846 0.69 1.156 -63% 

Nosecone Mounting Hardware 0.138 0.138 0 0% 

Aero Mounting Hardware  0.35 0.215 0.135 -39% 

Total 4.428 4.203 0.225 -5.1% 

 

Specification Verification Checklist  

In order to quantify the achievements of the FMD team, the following specification verification 

checklist was made.  All critical design specifications were met, which means that the 

monocoque successfully passed safety and drivability requirements.  Unfortunately, some of the 

important performance goals set by FMD were not met, such as the final weight and torsional 

stiffness goals.  While it is unfortunate that these goals were not met, the chassis has still 

performed well during testing and served its purpose as a lightweight racecar chassis. 

  



115 

 

 

Table 30. Design specification verification checklist, used to quantify the results of the project. 

Spec  
# 

Description Target Tolerance Result 
Specification 

Met (Y/N) 

1 Weight of monocoque only 25 lb max  30.0 lb  N 

2 
Torsional stiffness of monocoque and front suspension only, 

determined from torsion test displacements between front 

hub and aft of tub 
2148 lb*ft/deg min 

1982 
lb*ft/deg 

 N 

3 
Area of cockpit opening, which varies based on size 

of closeouts used around cockpit opening 
440 in2 ± 10 595 in2  Y  

4 
Cross sectional area of front tub, based off of 

SAE rules 
195 in2 min  235 in2 Y 

5 
Max operating temperature of carbon face sheets, 

based off of glass transition temperature 
150 oF min 350 oF  Y 

6 Egress time from seated driving position 5 sec max 4 sec  Y 

7 Visual rating of appearance 9/10 ± 1  5 N 

8 Driver rating of comfort 9/10 ± 1 8   Y 

9 
Cost (Cost Report), manipulated by obtaining accurate 

measurements and using simplified processes 
$3,500  max $2,925   Y 

10 
Safety factors for primary loading from suspension 

pickup points, pedal box assembly mounting,  
and joint to rear subframe 

2 min  1.7  N 

11 
Energy absorption of nosecone,  
undergoing quasi-static loading 

7350 J min  7391 J Y 

12 
Flat mounting regions, used for interfacing with  

other subsystems, primarily suspension,  
aerodynamics, and driver controls 

1.5x required 
mounting area 

(for 
adjustability) 

min Modular  Y 

13 
Strength requirements from FSAE rules, located at 

side-impact structure, front roll hoop bracing, 
and front bulkhead support 

67 kN 
35.9 kN 
99 kN 

min 

201 kN 

64 kN  

145 kN 

Y 

14 
Front bulkhead cutout, used for ease  

of accessibility for pedal box assembly changes 
10" x 10" min 11” x 11”   Y 

15 Cable routing cutout for brake lines and DAQ wires 5/8" x 3/4" min ∅3/4" Y 
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Conclusions and Recommendations 

Time Management 

Designing and manufacturing a composite monocoque necessitates enormous resources. 

Ensuring that these resources are in place by concrete deadlines is a requirement for a successful 

project.  

Design must incorporate interfaces with other systems and their loads, a robust FEM, an 

understanding of manufacturing with composite materials, and quick flexibility that comes with 

an iterative design process such as a Formula SAE car.   

Manufacturing also requires many areas of competency including rapid production of test 

samples, development of successful methods for every complex procedure on the final part, a 

large and skilled labor pool, and materials availability.  

Effective time management of design and manufacturing requirements was successful in some 

areas of this project and lacking in several others. The first success was limiting the project scope 

to the monocoque laminate, nosecone, anti-intrusion plate, and firewall. This scope should have 

allowed sufficient time to develop all of these components. Maintaining this type of focus is 

recommended for future teams. Secondly, a group of skilled composites workers was rapidly 

developed at the start of the 2014 school year. This is discussed in more depth shortly, and is also 

recommended. Thirdly, a detailed Gantt chart schedule was created at the start of the project and 

incorporated all major and most minor milestones. Lastly, FMD rapidly developed laminates that 

met the SES upon its late-into-the-design-cycle release in December. Tapping a large reserve of 

resources at this time is what allowed for rapidly-developed laminates despite labor also being 

diverted to other manufacturing concerns.     

While some successes in time management occurred, many more could have been implanted that 

would have allowed a high-quality product to be completed at an earlier date. Significant time 

was spent at the beginning of the project (Spring 2014) on improving the FEM instead of on 

other considerations such as improvements in the torsional test fixturing, monocoque geometry, 

and driver positioning. While many advancements were incorporated into the model, in the end, 

going into the summer months with a more comprehensive set of design requirements rather than 

one honed tool would have benefited the project. Additionally, having basic design near 

completion at this time would have allowed for testing of manufacturing methods over the 

summer and into the fall when only minor design changes from other systems’ iterations could 

have otherwise been implemented. Thus, FMD recommends that basic design and model 

improvement is completed prior to the summer break. This could mean starting the design 

process earlier (i.e. winter quarter) and producing the same amount of design tool improvements, 

but given the manufacturing schedule of the prior year’s Formula SAE car, this option is 

unlikely. Instead, prioritizing design tool capabilities and requirements should be performed at 

the embryonic stages of the project and given hard deadlines.  

The above however assumes material availability, which was also problematic for FMD. Here 

some factors were out of the group’s control such as the team’s previous supplier of carbon fiber, 

core, and film adhesive backing out of their prior commitment for the 2015 vehicle. Prepreg 

carbon fiber was extremely difficult to procure. Several prepreg manufacturers and aerospace 

companies told FMD that they had high-modulus 350°F cloth and unidirectional tape available, 
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but given the 250°F rating of the molds, this was unusable. See the recommendation below on 

using carbon fiber tooling as a means to take advantage of these materials in the future. 

Additionally, there are a highly-limited number of core manufacturers and suppliers. Of them, 

many are uninterested in supplying the small quantities required for a Formula SAE vehicle. 

Finally, film-adhesive and foaming core splice were believed to be beyond budget of the team, 

when in actuality, variants of them could have been purchased. All of the above and a freezer 

failure are good reasons for why material was unavailable for testing during the summer and fall; 

however, the major takeaway from the above is that composite materials are difficult to source 

on a Formula SAE budget and provisions must be established to keep future chassis on schedule 

if materials are unavailable.  

Instead of producing a schedule of major milestones and modifying it when milestones are not 

achieved on time, contingencies must be established. For instance, if all composite materials 

required for testing manufacturing methods and SAE rules compliance are not obtained by a set 

date, then either the previous year’s chassis is used (if applicable) or a steel-tube design is 

pursued. Another provision could include setting aside emergency funds to purchase the 

materials outright from an industry composites supplier. If this option is selected, it should be 

noted that some materials like core are custom order and have lead times. These lead times 

should be incorporated into the set date. A composite chassis cannot be manufactured without 

sample experimentation of manufacturing techniques such as core splicing and bends around 

compound radii. As such, if the materials are not present to perform these tests, the tests will 

need to be done at a later date and thus push back the final part’s completion date. If these 

experiments are not performed, errors such as carbon bridging and dry spots will be present in 

the final part which will increase repair time and extend the project’s completion date. A later 

chassis finish date most likely will be detrimental to the vehicle’s dynamic testing program. With 

68% of the available points at competition resulting from dynamic events, this delay could prove 

costly.  

Additionally, future teams should consider SAE’s timetable for releasing the SES when 

scheduling a monocoque’s production. It should be noted here that the AFR timetable for review 

is unacceptable in producing a vehicle with sufficient dynamic testing time as noted in the 

Applicable Standards subheading of the Background section of this report. SAE releases new 

rules every two years in August, with the SES released in December. The SES in these two-year 

periods typically remains unchanged, and in the second year, it would be safe to assume parity 

and begin laminate development as soon as resources become available. However, when the two-

year cycle expires, the SES can change dramatically and a laminate which met the old SES may 

no longer comply with the updated version. As such, during these transitory years, time spent 

developing a laminate (in depth) in the summer and fall is poorly utilized. Instead, it is 

recommended to perform manufacturing technique experimentation during this time and leave 

only the SES laminates to be developed during December when the rules are released.  

The above issues of not establishing contingencies for missed deadlines (in design or material) 

and of developing SES laminates too early are the primary reasons for FMD’s delay in finishing 

the monocoque and for the manufacturing errors covered previously in the report. Material delay 

led to concurrently developing manufacturing techniques and laminates. The results were 

techniques that were not entirely successful and laminates that were heavier than needed. To 

reiterate: had suitable materials been obtained earlier, testing on techniques such as core-splicing, 

compound radii core forming, lap-joint overlap widths, and other manufacturing methods could 
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have been conducted in the summer and fall; and SES testing could have begun in December. 

While this is later than desired in terms of the Formula SAE’s team Critical Design Review, 

potential laminate schedules are of little use without the rules specifications being known, so 

presenting an arbitrary laminate schedule at this review is not entirely useful. Moreover, now that 

the FEM has been dramatically improved, time can be spent in the spring improving SES rules 

models so that once the document is released, more work can be done analytically in terms of 

developing a laminate for strength and stiffness. Additionally, since materials will already be on-

hand, actual mechanical properties can be evaluated via destructive testing and incorporated into 

the FEMs (as done late in Fall 2014)—further improving correlation.     

Despite the problems mentioned above in material acquisition, it should be noted that the 

composite materials sponsors of this project including TenCate, Plascore, Toray, and SpaceX, 

and C&D Zodiac, and Airtech were all phenomenal in their service and speed in delivering 

products at low or no cost to the team. Once contact was made with these companies, they were 

quick to respond and rushed delivery of the requested materials.  

Dedicated Composites Advisor and Sub-Team 

Designing, testing, and building a composite chassis requires a large body of first-hand design 

experience, manufacturing knowledge and skilled physical labor. For these reasons, FMD 

recommends future teams secure one or more advisors with composites-specific experience and 

continue the Formula SAE Composites sub-team.  

Frequent meetings or regular design reviews on topics such as mold production, finite element 

modeling, laminate construction, and more could be conducted with this advisor resulting in a 

high-quality part and increased knowledge transfer. Moreover, closer industry collaboration will 

lead to better trained graduates that are more capable of immediately contributing to composites 

companies during internships or upon graduation.  

Additionally, recognizing the increased use of composites on the Cal Poly Formula SAE racecar, 

a Composites sub-team was created at the end of the 2014 season to assist with chassis, 

aerodynamic, and other systems’ composites parts. FMD strongly recommends the continuation 

of this sub-team which significantly contributed knowledge and skilled labor toward passing 

rules and manufacturing the monocoque. Over 120 test panels were produced in order to pass 

rules, test core-forming, evaluate lap joint requirements, and more—and without the dedicated 

Composites team to share in manufacturing requirements, this large number of parts could not 

have been produced. Combining proven industry methods for designing and manufacturing 

composite parts with a skilled body of capable workers is yet another resource to ensure that 

future monocoques continue to progress.  

Monocoque Strength 

With the exception of the core failure at the front rocker mounts, the monocoque has not 

experienced any noticeable mechanical failures. Periodic inspection of the suspension, pedal-

box, and roll hoop pickups showed no evidence of face-sheet cracking or any visible deflection 

characteristic of core failure. Considering the CLT analysis, the monocoque laminate is 

performing as expected, with no observable skin failures after approximately 5 hours of driving 

time.  
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Future teams should consider doing comparative long beam bend tests to assess the facesheet 

performance of core-bridged and resin-dry panels, compared to properly manufactured panels 

since it is likely at least a minimal amount of bridging or dryness will occur on the monocoque. 

For example: a long beam flat panel can be intentionally manufactured with a core bridge along 

the mid-span, which will likely result in local resin dryness. Long beam testing will isolate the 

flawed panel’s facesheet stiffness and strength, which can be compared to values from a properly 

manufactured panel. This testing approach will at least provide insight into the impact of 

bridging on laminate performance. Similar tests can be conducted to examine the performance 

effects of core splicing, facesheet overlap, and splice filler material. 

Monocoque Geometry 

The geometry of the monocoque can be modified to ease manufacturing and post-processing. As 

noted earlier, one of the major obstacles experienced by the FMD team was contouring the 

aluminum core around radii, especially compound radii with multiple curvatures. Minimizing 

compound bends in the geometry would significantly ease manufacturing time and improve the 

final quality of the part. Bridging would be less likely to occur with less radii in the geometry of 

the mold. Any radii used should be large enough so that the core can easily be bent into the 

mold. 

Additionally, all points where brackets are attached to the monocoque should be made perfectly 

flat. This allows balsa core to be easily placed in these regions, without additionally forming 

required. Additionally, areas that are highly loaded need to be flat to ensure maximum surface 

area contact between the load-bearing bracket and the monocoque. This should prevent the need 

for shims experienced by the FMD team at places like the suspension rocker mounting location. 

As noted previously, decreasing the size of the cockpit opening has the potential to increase 

torsional stiffness. Future teams should conduct a weight vs. stiffness study on the size of the 

cockpit opening. A smaller cockpit opening offers better transfer of torsional load across the 

chassis, thus increasing torsional rigidity. Unfortunately, ergonomic requirements will restrict the 

opening from being decreased indefinitely. However, the oversized opening in the current 

chassis offers potential for improvement. 

Carbon-Fiber Tooling 

Utilization of prepreg tooling carbon-fiber to produce a female mold for the monocoque provides 

several key benefits for future teams.  

The first benefit is matching coefficients of thermal expansion that would allow the use of 350°F 

cure carbon-fiber prepregs. When constructing a chassis intended to produce the highest specific 

stiffness with a suitable specific strength, the stiffest and strongest aerospace prepregs are the 

best choice. In the process of obtaining materials for the 2015 monocoque, sponsors offered 

several 350°F cure carbon-epoxy prepregs with moduli and ultimate strengths far exceeding the 

laminates used the actual layup, but their offers had to be declined given the available 250°F-safe 

tooling. Bringing the plaster-hemp molds past 250°F can lead to temperature-induced cracking 

and mold breakdown. Moreover, since the plaster molds expand with heat and contract with 

cooling at a greater rate than carbon-fiber tooling, the monocoque has residual stress that 

weakens the final part. Thus using carbon-fiber tooling with similar coefficients of thermal 
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expansion solves two problems by allowing the use of even higher-grade base material and 

reducing residual stresses in the chassis.  

The second benefit of a carbon-fiber tool is improved heat transfer rates between the oven 

surroundings and the part. The thickness of the plaster molds and the insulating properties of this 

ceramic material resulted in low and uneven heat transfer rates from the oven air to the part 

surface as measured by thermocouples. The result of which was uneven resin content and poor 

surface finish due to excess resin flow in some regions and insufficient movement in other zones. 

Moreover, cure cycles of over 10 hours were required which meant the manufacturer-

recommended recipes could not be utilized. With the thinner mold and higher heat transfer rates 

that carbon tooling allows resin flow and cure cycling can be improved significantly, with the net 

result being a better-looking, higher-performance part.  

The third set of benefits of carbon-fiber tooling is increased durability and transportability over 

the plaster-hemp molds. C&D Zodiac regularly obtains 3-5 heat cycles from the ceramic molds 

whereas carbon-tooling typically lasts at least 20 cures. Scaled sample layups (“blog layups”) 

inside the actual mold are the best for experimenting with layup technique and the 3-5 heat cycle 

capability of the plaster molds is limiting here, especially if the molds are used for multiple 

years. Moreover, the plaster molds weigh 500 pounds each and are time consuming and 

potentially dangerous to move on campus or to offsite autoclave facilities (if desired). The longer 

life and reduced weight of carbon-fiber molds would again lead to higher part quality through 

increased experimentation and better allocation of team labor.  

Lastly, C&D Zodiac has been extremely generous is donating time, expertise, and materials to 

several past Cal Poly Formula SAE teams that utilized their plaster-hemp molds to produce 

quality monocoques. With improvements in composites technology gained through FCW and 

FMD, tougher SAE rules, and a higher level of performance required at competition it is 

believed that the switch to carbon-tooling in imminent. Should C&D Zodiac be in a position to 

sponsor future molds, this type of construction would provide the benefit of reducing their cost 

as only plugs would need to be manufactured. For this reason and those above, FMD 

recommends future teams perform a proof of concept utilizing newly-acquired tooling carbon-

fiber prepreg and begin seeking out ultra-high performance 350°F aerospace cloth and 

unidirectional tape.  

Drilling Holes 

The FMD team ran into problems several times when drilling holes for components that mounted 

to the monocoque. Holes were typically located by center-punching hole-centers through the 

component that was to be mounted, and then center drilling the punch before stepping up drill 

sizes to the final insert size. A steel drill guide was used to keep the holes normal to the 

monocoque surface. Unfortunately, sometimes the holes did not initially match so some 

additional machining was required to attach the accessory component.  In order to allow the 

same brackets to be used, the holes on the attachments were slotted such that the bracket would 

fit without further alteration of the monocoque. 

A more accurate way to locate holes would be to score the buck where bolt holes are required. 

Ideally, this would be done with the CNC router machining the buck. The score will show up in 

the final monocoque layup, and the holes can be drilled accurately with a center drill and drill 

guide. However, even with hole centers located through the mold, it is still recommended that 
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jigs are used to properly locate holes once the tub is finally bonded and post-cured, in order to 

prevent error in between these steps.  For example, see Formula Chassis Work’s report on how 

suspension holes were located. 
Ref. 4 

Surface Finish and Facesheet Continuity  

The surface finish took on a dull and clouded appearance, with yellow colored concentrations of 

resin visible in certain areas. Before the repair patches were applied, resin dryness and exposed 

fibers were present in areas of bridging.  

Contrary to the lackluster appearance of the tub, flat test panels were uniform and glossy. The 

improved surface finish of the flat panels is likely do to sufficient compaction of the face-sheets, 

which is easy to achieve with a flat tool and caul plate. For the tub layup, this degree of 

compaction was impossible to achieve considering the poor formability of standard hexagonal 

aluminum core. The vacuum cure did not sufficiently and evenly press the laminate tightly 

against the mold surface. This compromised skin compaction, producing visible resin pools and 

a muddy appearance. More important than aesthetics is the strength loss such a compromised 

compaction produces.  

These surface finish and facesheet continuity issues could be remedied by using a more formable 

core material, like honeycomb Nomex or Flex-Core (aluminum or Nomex). It is considered 

essential by FMD that future monocoques utilize one of these formable core variants on radii. 

Honeycomb Nomex is relatively easy to compress and springs back against adjacent core 

sections, thus reducing bridging. However, this compaction adds weight as seen in 2013 and 

therefore using Flex-Core (aluminum or Nomex) for all simple radii corners is recommended. 

2013 had good results with bridging and surface finish on compound radii by compressing 

honeycomb Nomex into these regions.  

Speaking with a former Lotus F1 composites engineer, one of the Cal Poly Formula SAE team 

members also learned of a method where heat is used to loosen the core-ribbon adhesive in order 

to form the core to the mold. Flat sheets of core are placed over the mold and the whole unit is 

placed inside a vacuum bag. Next the unit is heated in an oven under slight vacuum pressure 

until the core adhesive begins to bond and the flat sheets starts to contour into the mold. The core 

is adjusted as needed and vacuum is increased until the core is formed to the tool. This is done in 

sections for the entire mold surface.  

A pressure cure could have also produced better compaction and mitigated the severity of core 

bridging on the tool side, though good core-splicing is more important on the exposed facesheet 

with the addition of external pressure.   

Finally, the use of the correct film-adhesive and foaming core-splice should be pursued with new 

sponsorships available to the team. Late in the year, contact was made with a major supplier that 

has provided samples of high-tack film adhesive and foaming epoxy core splice. High-tack 

adhesive will allow for better core to facesheet bonding. From speaking with FCW, this film-

adhesive is much more difficult to work with given its propensity to quickly adhere, but given 

the complex geometry of a Formula SAE chassis, high-tack adhesive is required. If the prepreg 

used is not proven to be as self-adhering as the TC250-AS4, then this film-adhesive should be 

used on the entire facesheet. This will add weight but reduce the likelihood of delamination. 
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Lastly, foaming core splice, not film adhesive should be used between core sections. This epoxy 

product expands rapidly with heat and prevents carbon at core splices.  

Using the Structural Equivalency Spreadsheet 

During the laminate development phase, FMD assumed that using the structural equivalency 

spreadsheet would be straightforward and relatively free of ambiguity. SAE has iterated and 

improved on the SES for several years, but the most recent version had a multitude of revisions 

and additions that were not without flawed formulas. On several occasions, inputting laminate 

testing data would return questionable equivalency results. For instance, the equivalency 

formulas governing the cockpit floor required a skin thickness of 8 millimeters, which was 

entirely unfeasible. FMD submitted four SES formula corrections, all of which were 

acknowledged by SAE as legitimate claims. SAE fixed three of these four errors and updated the 

SES accordingly, while the fourth error is scheduled to be fixed in next year’s SES version. 

Collectively, these SES clarifications set the laminate design process back a week, and many 

potential laminates tested prior to the inquiries were later found to be overbuilt. In the event that 

the SES undergoes significant changes, it is highly recommend that FSAE teams start 

preliminary laminate testing early in order to identify potential formula errors. Laminates that 

have passed in previous years can be inputted into newer SES versions to check for any gross 

errors or unexpected results. 
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Appendix B  
House of Quality 
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Appendix C 
Impact Attenuator Data Requirement 

T3.22 Impact Attenuator Data Requirement T3.22.1 All teams, whether they are using their 

own design of IA or the “standard” FSAE Impact Attenuator, must submit an Impact Attenuator 

Data Report using the Impact Attenuator Data (IAD) Template found at “Downloads” at 

http://www.fsaeonline.com.  

T3.22.2 The team must submit test data to show that their Impact Attenuator Assembly, when 

mounted on the front of a vehicle with a total mass of 300 kg (661 lbs.) and run into a solid, non-

yielding impact barrier with a velocity of impact of 7.0 meters/second (23.0 ft/sec), would give 

an average deceleration of the vehicle not to exceed 20 g’s, with a peak deceleration less than or 

equal to 40 g’s. Total energy absorbed must meet or exceed 7350 Joules.  

NOTE 1: These are the attenuator functional requirements not test requirements. Quasi-

static testing is allowed.  

NOTE 2: The calculations of how the reported absorbed energy, average deceleration, 

and peak deceleration figures have been derived from the test data MUST be included in 

the report and appended to the report template.40 © 2014 SAE International. All Rights Reserved 

2015 Formula SAE® Rules – 09/17/2014 Revision  

T3.22.3 Teams using a front wing must prove the combined Impact Attenuator Assembly and 

front wing do not exceed the peak deceleration of rule T3.22.2. Teams can use the following 

methods to show the designs does not exceed 300 kg times 40g or 120 kN:  

a. Physical testing of the Impact Attenuator Assembly with wing mounts, links, vertical plates, 

and a structural representation of the aerofoil section to determine the peak force. See 

fsaeonline.com FAQs for an example of the structure to be included in the test.  

b. Combine the peak force from physical testing of the Impact Attenuator Assembly with the wing 

mount failure load calculated from fastener shear and/or link buckling.  

c. Combine the Standard Impact Attenuator peak load of 95kN with the wing mount failure load 

calculated from fastener shear and/or link buckling.  

T3.22.4 When using acceleration data, the average deceleration must be calculated based on the 

raw data. The peak deceleration can be assessed based on the raw data, and if peaks above the 

40g limit are apparent in the data, it can then be filtered with a Channel Filter Class (CFC) 60 

(100 Hz) filter per SAE Recommended Practice J211 “Instrumentation for Impact Test”, or a 100 

Hz, 3rd order, low pass Butterworth (-3dB at 100 Hz) filter. 
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Appendix D 
Hexcel Short Beam Sandwich Shear Test 

 

Figure D1. Hexcel short-beam shear test details. 
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Appendix E 
ASTM D2344 Short Beam Shear Test 

Test Fixture Requirements:  

Support span: 0.5’’ 

Panel dimensions: 1’’ x 0.25’’ 

ILSS calculations: 

𝐼𝐿𝑆𝑆 =
0.75 ∗ 𝑃

𝑡 ∗ 𝑤
 

P: panel failure load (in.) 

t: panel thickness (in.) 

w: panel width (in.), as measured with calipers 

ILSS: Interlaminar Shear Stress (ksi) 
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Appendix F 
Performance Curves for Final FSAE Laminates 

 

 

Figure F1: Long beam 3-point bend test results for the side impact structure laminate. Load-deflection behavior is 

fairly linear until sudden facesheet failure. The upper facesheet fails in compression. 

 

Figure F2: Long beam 3-point bend test results for the cockpit floor, front floor, seat back, front hoop bracing, and 

front bulkhead support laminates. 
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Figure F3: Long beam 3-point bend test results for the front bulkhead. 

 

 

 

Figure F4: Long beam 3-point bend test results for two 1010 steel tubes, 1’’OD x 065 Wall.  
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Figure F5. Perimeter shear test results for the side impact structure laminate. The first peak represents the failure of 

the first facesheet, and the second peak indicates the failure of the second facesheet.  

 

 

Figure F6: Perimeter shear test results for the front bulkhead laminate.  
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Figure F7. Cockpit pullout test results for the cockpit floor laminate. 
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Appendix G 
Assembly Layout Drawing 
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Appendix H 
Material Data Sheets 

Figure H1. AS4 Data sheet. 

Figure H2. TC250 Data sheet. 

Figure H3. T800 Data sheet. 

Figure H4. 2510 Data sheet. 

Figure H5. M55J Data sheet. 

Figure H6. MTM49 Data sheet. 

Figure H7. Aluminum Core Data sheet. 

Figure H8. Reflective Tape Data sheet. 

Figure H9. 3M DP420 structural adhesive Data sheet. 

  



 

	  

HexTow® AS4 
Carbon Fiber 

Product Data 

	  

 

HexTow® AS4 carbon fiber is a continuous, high strength, high strain, PAN based fiber available in 3,000 (3K),  
6,000 (6K) and 12,000 (12K) filament count tows.  This fiber has been surface treated and can be sized to improve  
its interlaminar shear properties, handling characteristics, and structural properties, and is suggested for use in 
weaving, prepregging, filament winding, braiding, and pultrusion.  

AS4-GP 3k (1%), AS4-GP 12k (0.9%), and AS4 12k carbon fibers have been qualified to NMS 818 Carbon Fiber 
Specification (NCAMP).  This allows customers to call out an industry standard, aerospace grade carbon fiber without 
the need to write and maintain their own specification.  

Typical Fiber Properties U.S. Units SI Units 
Tensile Strength 

3K 
6K 

12K 

 
670 ksi 
640 ksi 
640 ksi 

 
4,620 MPa 
4,410 MPa 
4,410 MPa 

Tensile Modulus (Chord 6000-1000) 33.5 Msi 231 GPa 
Ultimate Elongation at Failure 

3K 
6K 

12K 

 
1.8% 
1.7% 
1.7% 

 
1.8% 
1.7% 
1.7% 

Density 0.0647 lb/in3 1.79 g/cm3 
Weight/Length 

3K 
6K 

12K 

 
11.8 x 10-6 lb/in 
23.9 x 10-6 lb/in 
48.0 x 10-6 lb/in 

 
0.210 g/m 
0.427 g/m 
0.858 g/m 

Approximate Yield 
3K 
6K 

12K 

 
7,086 ft/lb 
3,485 ft/lb 
1,734 ft/lb 

 
4.76 m/g 
2.34 m/g 
1.17 m/g 

Tow Cross-Sectional Area 
3K 
6K 

12K 

 
1.82 x 10-4 in2 
3.70 x 10-4 in2 
7.43 x 10-4 in2 

 
0.12 mm2 
0.24 mm2 
0.48 mm2 

Filament Diameter 0.280 mil 7.1 microns 
Carbon Content 94.0% 94.0% 

Twist Never Twisted Never Twisted 
 

Typical HexPly 8552 Composite Properties  
(at Room Temperature) U.S. Units SI Units Test Method 

0º Tensile Strength 320 ksi 2,205 MPa 
0º Tensile Modulus 20.5 Msi 141 GPa 

0º Tensile Strain 1.55% 1.55% 
ASTM D3039 

0º Flexural Strength 274 ksi 1,889 MPa 
0º Flexural Modulus 18.4 Msi 127 GPa 

ASTM D790 

0º Short Beam Shear Strength 18.5 ksi 128 MPa ASTM D2344 
0º Compressive Strength 222 ksi 1,530 MPa 
0º Compressive Modulus 18.6 Msi 128 GPa 

ASTM Mod. D695 

0˚ Open Hole Tensile Strength 64 ksi 438 MPa ASTM D5766 
90º Tensile Strength 11.7 ksi 81 MPa ASTM D3039 

Fiber Volume 60% 60%  



               

 

	  

HexTow® AS4 Product Data 

 

Yarn/Tow Characteristics U.S. Units SI Units 
Specific Heat 0.28 Btu/lb-°F 0.27 cal/g-°C 

Electrical Resistivity 5.6 x 10-5 ohm-ft 1.7 x 10-3 ohm-cm 
Coefficient of Thermal Expansion -0.35 ppm/ºF -0.63 ppm/ºC 

Thermal Conductivity 3.95 Btu/hr-ft-ºF 6.83 W/m-ºK 
	  

Carbon Fiber Certification 
This carbon fiber is manufactured to Hexcel aerospace grade specification HS-CP-5000.  A copy of this specification 
is available upon request.  A Certification of Analysis will be provided with each shipment. 

Available Sizing 
Sizing compatible with various resin systems, based on application are available to improve handling characteristics 
and structural properties.  Please see additional information on available Sizes on our website or contact our 
technical team for additional information. 

Packaging 
Standard packaging of HexTow® AS4 is as follows: 

Nominal Weight Nominal Length 
Filament Count 

(lb) (kg) (ft) (m) 
3K 4.0 1.8 28,340 8,640 
6K 4.0 1.8 13,940 4,250 

12K 8.0 3.6 13,870 4,230 

Other package sizes may be available on request.  The fiber is wound on a 3-inch ID by 11-inch long cardboard tube 
and overwrapped with plastic film. 

Safety Information 

Obtain, read, and understand the Material Safety Data Sheet (MSDS) before use of this product. 

 

 

 

 

 

 

 

 

 

 

 

 



               

 

	  

HexTow® AS4 Product Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important 

Hexcel Corporation believes, in good faith, that the technical data and other information provided herein is materially 
accurate as of the date this document is prepared. Hexcel reserves the right to modify such information at any time.  
The performance values in this data sheet are considered representative but do not and should not constitute 
specification minima. The only obligations of Hexcel, including warranties, if any, will be set forth in a contract signed 
by Hexcel or in Hexcel's then current standard Terms and Conditions of Sale as set forth on the back of Hexcel's 
Order Acknowledgement.  

For more information 
Hexcel is a leading worldwide supplier of composite materials to aerospace and other demanding industries.  
Our comprehensive product range includes: 

 Carbon Fiber 
 RTM Materials 
 Honeycomb Cores 
 Carbon, Glass, Aramid and Hybrid Prepregs 

 Structural Film Adhesives 
 Honeycomb Sandwich Panels 
 Special Process Honeycombs 
 Reinforced Fabrics 

	  
For US quotes, orders and product information call toll-free 1-866-556-2662 and 1-800-987-0658.   
For other worldwide sales office telephone numbers and a full address list, please click here: 
http://www.hexcel.com/contact/salesoffice                

                                                                                    
Copyright © 2014 – Hexcel Corporation – All Rights Reserved. HexTow®, Hexcel and the Hexcel logos are registered trademarks of  
Hexcel Corporation, Stamford, Connecticut. 
                                                                                                                             February 2014 



TENCATE ADVANCED COMPOSITES 

TECHNICAL DATA

PRODUCT DESCRIPTION
TC250 is a member of TenCate Advanced Composites' newly derived TC family of toughened 

matrices for structural advanced composite applications. TC250 offers an excellent balance of 

toughness, mechanical property translation and hot/wet performance and is easily processed 

via vacuum bag/oven, autoclave, or press curing operations. Although TC250 is a 265°F (130°C) 

cure system, it develops very high dry and wet Tg values which enhance the product's elevated 

temperature performance. TC250 can also be cured or free standing post cured to 350°F (177°C) 

to increase its high temperature performance.

TC250 is available with virtually all fiber reinforcements in unidirectional tape, slit unidirectional 

tape, woven and nonwoven prepreg formats.

 
PRODUCT BENEFITS/FEATURES

• Excellent Mechanical Property Translation 

• Can Be Initially Cured at 180°F (82°C) and post cured free standing to 265°F (130°C)  

  or 350°F (177°C) for Prototyping with Low  Cost Tooling  

• Good Toughness 

• Good Surfacing Properties 

• Low Laminate Void Content with Low Pressure Vacuum Curing 

• NCAMP Tested 
• Easy Processing 
• Self-Adhesive to Core

 
NEAT RESIN PHYSICAL PROPERTIES

Density ....................................................................1.21 g/cc 

Dry Tg ......................................................................285°F (140°C) cured at 265°F (130°C) 

Wet Tg  ...................................................................257°F (125°C) cured at 265°F (130°C) 

 

Dry Tg  .....................................................................356°F (180°C) post cured at 350°F (177°C) 

Gel Time ..................................................................6-10 min. at 265°F (130°C) 

PRODUCT TYPE
265°F (130°C) Cure

Toughened Epoxy Resin System 

TYPICAL APPLICATIONS
• Aircraft Structures

• Space Structures

• Radomes and Antennae

• Reflectors 

SHELF LIFE
Tack Life

45 days at 75°F (24°C)

Out Life

60 days at 75°F (24°C)

Frozen Storage Life

12 months at <0°F (-18°C)

Tack life is the time during which the 
prepreg retains enough tack, drape and 
handling for easy component lay-up.

Out life is the maximum time allowed  
at room temperature before cure.

TC250
Resin System

Page 1 of 7 TC250_DS_102013

STANDARD MODULUS UNITAPE LAMINATE PROPERTIES 
Laminate data used UD Tape Prepreg Laminate - HTS-40 12k Carbon Fiber, 150 gsm FAW.  

The data below represents limited lot data.

Property Condition Method Results

Tensile Strength 0° RTD ASTM D 3039 305 ksi 2,103 MPa

Tensile Modulus 0° RTD ASTM D 3039 20.3 Msi 140 GPa

Tensile Strength 0° ETW ASTM D 3039 303 ksi 2,089 MPa

Tensile Modulus 0° ETW ASTM D 3039 19.5 Msi 134.4 GPa

Tensile Strength 0° CTD ASTM D 3039 293 ksi 2,018 MPa

Tensile Modulus 0° CTD ASTM D 3039 20 Msi 138 GPa

Poisson's Ratio RTD 0.3

Poisson's Ratio ETW 0.29

Poisson's Ratio CTD 0.35

Vacuum bag oven cure at 14.5 psi, normalized to 60% fiber volume, ETW: 180°F (82°C) Wet, CTD: -65°F (-54°C) 

* Wet conditioning done at 145°F (63°C) and 85% RH until complete saturation                                          Continue to page 2.





MJ type  h igh  modu lus  f i be r  w i th  enhanced  tens i l e  and  compress i ve  s t reng th  ove r
M se r i es  f i be rs . Ma in l y  used  fo r  p remium spor t i ng  goods , ae rospace , and  indus t r i a l
app l i ca t i ons .

F I B E R  P R O P E R T I E S

English Metric Test Method

Tensile Strength 583 ksi 4,020 MPa TY-030B-01
Tensile Modulus 78.2 Msi 540 GPa TY-030B-01
Strain 0.8 % 0.8 % TY-030B-01
Density 0.069 lbs/in3 1.91 g/cm3 TY-030B-02
Filament Diameter 2.0E-04 in. 5 µm

Yield 6K 6,833 ft/lbs 218 g/1000m TY-030B-03

Sizing Type 50B 1.0 % TY-030B-05
& Amount

Twist Untwisted

F U N C T I O N A L  P R O P E R T I E S

CTE -1.1 α⋅10-6/˚C
Specific Heat 0.17 Cal/g⋅˚C
Thermal Conductivity 0.372 Cal/cm⋅s⋅˚C
Electric Resistivity 0.8 x 10-3 Ω⋅cm
Chemical Composition: Carbon >99 %

Na + K <50 ppm

C O M P O S I T E  P R O P E R T I E S *

Tensile Strength 290 ksi 2,010 MPa ASTM D-3039
Tensile Modulus 49.0 Msi 340 GPa ASTM D-3039
Tensile Strain 0.6 % 0.6 % ASTM D-3039

Compressive Strength 130 ksi 880 MPa ASTM D-695
Flexural Strength 180 ksi 1,230 MPa ASTM D-790
Flexural Modulus 40.5 Msi 280 GPa ASTM D-790

ILSS 10.0 ksi 7 kgf/mm2 ASTM D-2344
90˚ Tensile Strength 5.0 ksi 34 MPa ASTM D-3039

*  To r a y  2 5 0 ˚ F  E p o x y  R e s i n . N o r m a l i z e d  t o  6 0 %  f i b e r  v o l u m e .

T O R A Y  C A R B O N  F I B E R S  A M E R I C A ,  I N C .

®

M55J DATA SHEET
TECHNICAL
DATA SHEET

No. CFA-017



T O R A Y  C A R B O N  F I B E R S  A M E R I C A ,  I N C .
6  H u t t o n  C e n t r e  D r i v e , S u i t e  # 1 2 7 0 , S a n t a  A n a , C A   9 2 7 0 7    T E L : ( 7 1 4 )  4 3 1 - 2 3 2 0    FA X : ( 7 1 4 )  4 2 4 - 0 7 5 0

S a l e s @ To r a y c f a . c o m    Te c h n i c a l @ To r a y c f a . c o m    w w w. t o r a y u s a . c o m  

P A C K A G I N G
The  tab le  be lo w summar i zes  the  to w s i zes , tw is t s , s i z i ng  t ypes , and  packa g ing  a va i l ab le
fo r  s tandard  ma te r i a l . O the r  bobb in  s i zes  may  be  a va i l ab le  on  a  l im i ted  bas i s .

Bobbin Spools Case
Tow Net Bobbin Bobbin Size (mm) per Net
Sizes Twist1 Sizing Weight Type2

a b c d e Case Weight
(kg) (kg)

6K B 50B 0.5 II 76 82 192 107 156 24 12

1 Twist A: Twisted yarn B: Untwisted yarn made from a twisted yarn through an untwisting process C: Never twisted yarn

2 Bobbin Type   See Diagram below

T Y P E I T Y P E II T Y P E III

C O M P O S I T E  P R O P E R T I E S * *

Tensile Strength 270 ksi 1,860 MPa ASTM D-3039
Tensile Modulus 43.5 Msi 300 GPa ASTM D-3039
Tensile Strain 0.6 % 0.6 % ASTM D-3039

Compressive Strength 120 ksi 835 MPa ASTM D-695
Compressive Modulus 41.5 Msi 285 GPa ASTM D-695

In-Plane Shear Strength 6.5 ksi 44 MPa ASTM D-3518
ILSS 10.5 ksi 7.5 kgf/mm2 ASTM D-2344
90˚ Tensile Strength 5.0 ksi 35 MPa ASTM D-3039

** Toray Semi-Toughened 350˚F Epoxy Resin. Normalized to 60% fiber volume.

See Section 4 for Safety & Handling information. The above properties do not constitute any warranty or guarantee of values.

These values are for material selection purposes only. For applications requiring guaranteed values, contact our sales and technical team

to establish a material specification document.

M55J
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MTM®49‐3 

MTM49‐3 is an 80 to 160°C (176 to 320°F) curing, toughened epoxy prepreg 

resin system developed specifically for the manufacture of components.  

 

MTM49‐3 prepregs exhibit excellent ambient and hot mechanical performance 

combined with good impact resistance after only moderate cure cycles making 

them ideal for use in the motorsport industry. 

 

Features  
 Autoclave and press curable  
 60 days out life at 21°C (70°F) 
 12 months storage at ‐18°C (0°F) 
 Versatile cure temperatures  

 190°C Tg 

 Bonds directly to Nomex core in bodywork type 

applications 

Product variants 

 MTM49‐3:  High Tg and moderate toughness 

 MTM49‐3B:  Black pigmented variant of MTM49‐3 

 MTM49‐3BB:  Black pigmented variant of MTM49‐3 (higher pigment loading) 

 MTM49‐3BD:  Black dyed variant of MTM49‐3 

Related documents 

 De‐bulking guidelines (TDS1036) 

 Autoclave processing – lay‐up and bagging guidelines (TDS1037) 

Related products 

 MTA240 adhesive film (PDS1166) 

 MTF246 surface improvement film (PDS1240) 

Cure cycle 

Autoclave cure 
 

Vacuum bag pressure  Minimum of 980mbar (29”Hg)* 

Autoclave pressure  6.2 bar (90 psi)† 

Ramp rate  1 to 3°C (1.8 to 5.4°F)/minute 

Recommended cure cycle   90 minutes at 135°C +5°C/‐0°C (275°F, +9°F/‐0°F)** 

Cool down  Maximum of 3°C (5.4°F)/minute to 60°C (140°F) 
 
*This is the ideal vacuum level, however, it is recognised that it is not always possible to attain. If in doubt, please contact our technical support staff for 
advice. 
 
†
If producing sandwich panels, apply the maximum pressure allowable for the honeycomb type. 

 
**This is an industry standard cure cycle, however it is possible to cure at 135°C in a shorter time. Consult our technical support staff for further information. 
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Press cure 
 
Mould tools should restrain the flow sufficiently under moulding conditions to avoid fabric or fibre distortion.  

 
Press pressure  Minimum of 2.8 bar (40 psi) 

Ramp rate  A suitable rate (dependant on mould tooling) 

Recommended cure cycle   90 minutes at 135°C +5°C/‐0°C (275°F, +9°F/‐0°F)* 

Cool down   A suitable rate (dependant on mould tooling) to 60°C (140°F) 
 
*This is an industry standard cure cycle, however it is possible to cure at 135°C in a shorter time. Consult our technical support staff for further information. 
 
Note: 

 Demoulding at the cure temperature may be possible if the tooling is suitably designed. A specific trial is recommended.  

 
Alternative cure cycles 
 

Temperature  Duration 

70°C (158°F) 
80°C (176°F) 
100°C (212°F) 
120°C (248°F) 
140°C (284°F) 
160°C (320°F) 

24 hours 
16 hours 
4 hours  
1 hour 

25 minutes  
7 minutes  

Post‐cure 

In applications demanding maximum temperature or environmental resistance, it is essential that the component is post‐
cured to fully develop the glass transition temperature.   
 
 

Ramp rate  0.3°C (0.5°F)/minute  

Post‐cure cycle  2 hours at 180°C ‐0/+5°C (356°F ‐0/+9°F)  

Cool down   Maximum of 3°C (5.4°F)/minute to 60°C (140°F) 
 
* Temperature must be measured by the lagging thermocouple attached to the part. 

 
Notes: 

 Parts may be loaded into a pre‐heated oven or heated at 3°C (5.4°F)/minute to the initial cure temperature. 

 Large components should be adequately supported to avoid distortion. 

 Post‐cures from 100 to 200°C (212 to 392°F) may be used to suit specific applications.  Please consult our technical support staff if you require assistance 
in determining the correct cure cycle for your application. 

Physical properties 

Test  Sample conditions  Results 

Cured resin density  90 minutes at 135°C (275°F)  1.22 g/cm3  

DMA E’ onset Tg 

16 hours at 80°C (176°F), dry 
90 minutes at 135°C (275°F), dry 

Maximum dry Tg 
Maximum wet Tg* 

95°C (203°F) 
140°C (284°F) 
190°C (356°F) 
115°C (240°F) 

 
* Wet conditioning – 14 days immersion at 70°C (158°F) 
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Mechanical properties 

Cure cycle:   90 minutes at 135°C (275°F), 6.2 bar (90 psi) 
Test conditions:   Room temperature, dry 
 

 
Data normalised to 55%Vf except for ILSS and IPSS & IPSM. 

 
Cure cycle:   90 minutes at 135°C (275°F), 6.2 bar (90 psi) 
Test conditions:   Room temperature, dry 
 

Test 
Test 

method 
Units 

Material 

MTM49‐3/ 
CF2115*‐42%  

MTM49‐3/ 
CF4534†‐42%  

MTM49‐3/ 
CF1218**‐42%  

0° Tensile strength 

ASTM 
D3039 

MPa (ksi)  590 (85.6)  1065 (155)  870 (126.2) 

0° Tensile modulus  GPa (msi)  104 (15.1)  72.0 (10.4)  67.0 (9.72) 

90° Tensile strength  MPa (ksi)  573 (83.1)  1035 (150)  834 (121) 

90° Tensile modulus  GPa (msi)  102 (14.8)  70.0 (10.2)  65.0 (9.43) 

0° Compressive strength 

SACMA 
SRM01R94 

MPa (ksi)  400 (58.0)  640 (92.8)  630 (91.3) 

0° Compressive modulus  GPa (msi)  89.0 (12.9)  59.0 (8.56)  59.0 (8.56) 

90° Compressive strength  MPa (ksi)  370 (53.7)  610 (88.5)  580 (84.1) 

90° Compressive modulus  GPa (msi)  87.0 (12.6)  57.0 (8.27)  57.0 (8.27) 

In‐plane shear strength (IPSS)  ASTM 
D3518 

MPa (ksi)  82.7 (12.0)  108 (15.7)  123 (17.8) 

In‐plane shear modulus (IPSM)  GPa (msi)  3.98 (0.58)  3.74 (0.54)  4.39 (0.64) 

0° Interlaminar shear strength (ILSS) 
ASTM 
D2344 

MPa (ksi)  50.2 (7.28)  64.2 (9.31)  78.3 (11.4) 

 
Data normalised to 48%Vf except for ILSS and IPSS & IPSM 
 
*CF2115 is a 200g/m2 2x2 twill fabric with 6k M46J fibres 
†CF4534 is a 283g/m2 5HS fabric with 12k T1000 type fibres 
**CF1218 is a 200g/m2 2x2 twill fabric with 6k T800HB fibres 

 

 

 

 

Test 
Test 

method 
Units 

Material 

MTM49‐3/ 
M46J‐124‐36% 

MTM49‐3/ 
T1000 GB ‐
124‐36% 

MTM49‐3/ 
T800 GB ‐124‐

36% 

0° Tensile strength 

ASTM 
D3039 

MPa (ksi)  1709 (248)  2999 (435)  2211 (321) 

0° Tensile modulus  GPa (msi)  235 (34.1)  155 (22.5)  149 (21.6) 

90° Tensile strength  MPa (ksi)  25.8 (3.74)  19.3 (2.80)  ‐ 

90° Tensile modulus  GPa (msi)  6.87 (1.00)  6.80 (0.99)  ‐ 

0° Compressive strength 

SACMA 
SRM01R94 

MPa (ksi)  875 (127)  1431 (208)  1396 (202) 

0° Compressive modulus  GPa (msi)  201 (29.2)  127 (18.4)  122 (17.7) 

90° Compressive strength  MPa (ksi)  189 (27.4)  199 (28.9)  ‐ 

90° Compressive modulus  GPa (msi)  7.59 (1.10)  7.51 (1.09)  ‐ 

In‐plane shear strength (IPSS)  ASTM 
D3518 

MPa (ksi)  69.0 (10.0)  132 (19.1)  107 (15.5) 

In‐plane shear modulus (IPSM)  GPa (msi)  4.09 (0.59)  3.09 (0.45)  3.10 (0.45) 

0° Interlaminar shear strength (ILSS) 
ASTM 
D2344 

MPa (ksi)  88.2 (12.8)  105 (15.2)  107 (15.5) 
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Availability 

MTM49‐3 prepregs are available on all key motorsport reinforcements (fabrics and unidirectional tapes). 

Storage 

Out life* at 21°C (70°F)  60 days  

Storage at ‐18°C (0°F)   12 months from date of manufacture 
 
*Out life refers to accumulated time out of the freezer before the part is cured. 
 
Note:  
The actual freezer storage life and out life are dependent on a number of factors, including; fibre type, format and application. For certain formats, it may be 
possible for the storage life and out life to be longer than stated. Please contact our technical support staff for advice. 

Exotherm 

MTM49‐3 prepregs are reactive formulations which can undergo severe exothermic heat up during the initial curing 
process if incorrect curing procedures are followed.  
 
Great care must be taken to ensure that safe heating rates, dwell temperatures and lay‐up/bagging procedures are 
adhered to, especially when moulding solid laminates in excess of 10mm (0.4in) thickness.  The risk of exotherm increases 
with lay‐up thickness and increasing cure temperature. It is strongly recommended that trials, representative of all the 
relevant circumstances, are carried out by the user to allow a safe cure cycle to be specified.  It is also important to 
recognise that the model or tool material and its thermal mass, combined with the insulating effect of breather/bagging 
materials can affect the risk of exotherm in particular cases.   
 
Please contact our technical department for further information on exotherm behaviour of these systems. 

Health & safety 

MTM49‐3 resins contain epoxy resins which can cause allergic reaction on prolonged or repeated skin contact.  Avoid 
contact with the skin. Gloves and protective clothing must be worn.  
 
Wash skin thoroughly with soap and water or resin removing cream after handling.  Do not use solvents for cleaning the 
skin.  
 
Use mechanical exhaust ventilation when heat curing the resin system. Exhaust from vacuum pumps should be vented to 
external atmosphere and not into the work place. 
 
For further information, consult Cytec Safety Data Sheet numbers: 
 
MTM49‐3:   SDS 291 
MTM49‐3B:   SDS 291 
MTM49‐3BB:   SDS 291 
MTM49‐3BD  SDS 449 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

All statements, technical information and recommendations contained in this data sheet are given in good faith and are based on tests believed to be reliable, but their accuracy and completeness are not guaranteed.  They do not constitute an offer to any person and 

shall not be deemed to form the basis of any subsequent contract. All products are sold subject to the Cytec’s Standard Terms and conditions of Sale.  Accordingly, the user shall determine the suitability of the products for their intended use prior to purchase and shall 

assume all risk and  liability  in connection therewith.  It  is the responsibility of those wishing to sell  items made from or embodying the products to  inform the user of the properties of the products and the purposes for which they may be suitable, together with all 

precautionary measures required in handling those products.  The information contained herein is under constant review and liable to be modified from time to time.  

© Copyright 2012 – Cytec Industrial Materials (Derby) Ltd. All rights reserved worldwide. All trademarks or registered trademarks are the property of their respective owners. 



PAMG-XR1 5052
Aluminum Honeycomb

Description:
PAMG-XR1 5052 aerospace grade aluminum honeycomb is a lightweight core material which offers superior 
strength and corrosion resistance over commercial grade aluminum honeycomb. PAMG-XR1 5052 honeycomb 
is made from 5052 aluminum alloy foil and meets all the requirements of AMS C7438 Rev A.

Applications: 
PAMG-XR1 5052 honeycomb uses include aircraft floors, aircraft leading and trailing edges, missile wings,  
fan casings, fuel cells, fuselage components, helicopter rotor blades and navy bulkhead joiner panels, energy  
absorption, air/light directionalization and EMI/RFI shielding. PAMG-XR1 5052 honeycomb is suitable for  
applications where materials conforming to AMS C7438 Rev A are required.

Availability: 
PAMG-XR1 5052 honeycomb is available in four forms: unexpanded  
blocks, unexpanded slices, untrimmed expanded sheets and cut to  
size expanded sheets. It is also available with or without cell  
perforations to facilitate cell venting for certain applications.

Cell Sizes:  1/8" - 3/8"

Densities:  1.0 pcf - 8.1 pcf

Sheet “Ribbon” (L):  48" typical

Sheet “Transverse” (W): 96" typical

Tolerances:  Length:  + 6", - 0" 
 Width:  + 6", - 0" 
 Thickness:  ± .005" (under 4" thick) 
 Density:  ± 10% 
 Cell Size:  ± 10%

 
NOTE:     Special dimensions, sizes, tolerances, CNC machining  
 and die cut to size can be provided upon request.

Features: 
•  Elevated use temperatures

•  High thermal conductivity

•  Flame resistant

•  Excellent moisture and  
 corrosion resistance

•  Fungi resistant

•  Low weight / High strength



PAMG-XR1 5052 aluminum honeycomb is specified as follows: 
Material - Density - Cell Size - Foil Thickness - Perforation - Alloy - Corrosion Level

Example:  PAMG - XR1 - 3.0 - 3/8 - .002 - HP - 5052 - CL2

Designates aluminum military grade 

Designates XR1 corrosion coating

The nominal density in pounds per cubic foot Indicates corrosion level

Cell size in inches

Designates the foil thickness in inches

Indicates cell walls are highly perforated (HP); not perforated (N)

Designates the 
alloy of the foil

Tested at 0.625” per AMS C7438 Rev A at room temperature.

PLASCORE® Honeycomb 
Designation

CELL SIZE FOIL GAUGE
NOMINAL
DENSITY

PCF
STRENGTH PSI MODULUS KSI

STRENGTH PSI MODULUS KSI

1/8
1/8
1/8
1/8

3/16
3/16
3/16
3/16
3/16
1/4
1/4
1/4
1/4
1/4
1/4
1/4
3/8
3/8
3/8
3/8
3/8
3/8

.0007
.001

.0015
.002
.001

.0015
.002

.0025
.003

.0007
.001

.0015
.002

.0025
.003
.004

.0007

.0015
.002

.0025
.003
.004

3.1
4.5
6.1
8.1
3.1
4.4
5.7
6.9
8.1
1.6
2.3
3.4
4.3
5.2
6.0
7.9
1.0
2.3
3.0
3.7
4.2
5.4

130
220
320
455
130
215
300
375
455
50
85

150
210
265
315
440
30
85

125
170
200
280

“L” “W”

75
150
240
350
75

145
220
285
350
20
45
90

140
190
235
340
10
45
70

105
135
200

210
340
505
725
210
330
460
590
725
85

140
235
320
410
495
700
45

140
200
260
310
430

Plate Shear 

PAMG-XR1 5052 Mechanical Properties

22
31
41
54
22
30
38
46
54
11
16
24
29
35
40
52
7

16
21
26
29
36

“L” “W”

45
70
98

135
45
68
90

114
135
21
32
50
66
82
96

130
12
32
43
55
65
86

Bare Compressive

270
520
870

1400
270
500
770

1080
1400

85
165
320
480
670
850

1360
30

165
260
370
460
720

Corporate Headquarters  
Plascore Incorporated 
615 N. Fairview St. 
Zeeland, MI 49464-0170  
Phone  (616) 772-1220 
Toll Free (800) 630-9257
Fax  (616) 772-1289
Email  sales@plascore.com
Web  www.plascore.com

Europe  
Plascore GmbH&CoKG 
Feldborn 6 
D-55444 Waldlaubersheim  
Germany 

Phone +49(0) 6707-9143 0
Fax  +49(0) 6707-9143 40
Email  sales.europe@plascore.com
Web  www.plascore.de© 2014 Plascore, Inc. All Rights Reserved. v12.14

Plascore, Inc., employs a quality management system that is AS/EN/JISQ 9100, ISO 9001:2008 and ISO 14001:2004 certified. 

IMPORTANT NOTICE: The information contained in these materials regarding Plascore’s products, processes, or equipment, is intended to be up to date, accurate, and complete. However, Plascore cannot 
warrant that this is always the case. Accordingly, it is a purchaser’s or user’s responsibility to perform sufficient testing and evaluation to determine the suitability of Plascore’s products for a particular 
purpose. Information in these materials and product specifications does not constitute an offer to sell. Your submission of an order to Plascore constitutes an offer to purchase which, if accepted by Plascore, 
shall be subject to Plascore’s terms and conditions of sale. PLASCORE MAKES NO WARRANTIES OF ANY KIND REGARDING THESE MATERIALS OR INFORMATION, EITHER EXPRESS OR IMPLIED, INCLUDING 
WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Plascore owns and shall retain all worldwide rights in its intellectual property, and 
any other trademarks used in these materials are the property of their respective owners. The information in these materials shall not be construed as an inducement, permission, or recommendation to 
infringe any patent or other intellectual property rights of any third parties.



Coast Fabrication, Inc.  

16761 Burke Lane, Huntington Beach CA 92647 
Ph: (714) 842-2603     
Fax: (714) 847-1824 
info@coastfab.com    
www.coastfab.com 

 
 

HEAT REFLECTIVE TAPES 

-- Definitions and Data – 

 

 Tapes are a passive thermal control system. Their purpose is to minimize heat 

transfer through the panel or surface being protected by the tape.  

 

 For aerospace, tapes are defined by an emittance number. The lower the 

number, the less heat actually transferred through. 

1. Real Gold:  emittance = 0.02 

2. Aluminum mirror: emittance = 0.03 

 

 In space, the gold material is used primarily to keep hear inside a satellite. This, 

0.02 to 0.03 emittance difference is on the order of 50%: important in a 30 year 

life satellite . Gold is also completely inert. Gamma rays will not pass through it 

which is why it is also used on exterior surfaces in space. 

 

 On earth where we are heating by both conduction and radiance, the 0.02 to 0.03 

emittance difference is that between 98% and 97% of heat reflected (i.e. not 

passed through.) 

 

 Coast Aerolite tape is composed of multiple layers: 

 

1. Acrylic overcoat: resistance to humidity, chemicals, salt fog 

2. Aluminum mirror; 0.001” thickness: heat reflection 

3. Polymide Kapton; 0.001” thickness: heat insulation and burn resistance to 

750°F 

4. Acrylic overcoat: see #1 

5. 3M high-temperature Pressure-Sensitive Adhesive (PSA) 

Total thickness < 0.005” 

Weight 98g/m2   or   2.9oz./square yard 

 

mailto:info@coastfab.com


Coast Fabrication, Inc. 
16761 Burke Lane, Huntington Beach CA 92647 

 Ph: (714) 842-2603   Fax: (714) 847-1824   info@coastfab.com 

COAST FABRICATION HEAT REFLECTIVE TAPE COMPARISION 

Coast Fabrication Inc. is pleased to announce the latest addition to its line of heat-reflective tapes; test results 
are detailed below. Material is in stock for immediate delivery and may also be obtained through Earls 
Indianapolis (317-241-0318; mark@earlsindy.com). 

In order to get an apples-to-apples comparison between our tapes and the corrugated “gold” material that is in 
universal circulation, we performed the following tests. The tapes were applied to an aluminum panel (.063” 
3003H14). A constant heat source was fixtured at the noted distance and heat was applied to the front (tape) 
side and temperature measured on the backside. 

PLEASE NOTE THE FOLLOWING   

Several samples of the corrugated “gold” tape were tested and performance was very inconsistent. The 
material referenced in the tables below was the HIGHEST PERFORMING samples. The performance of other 
samples we tested barely exceeded bare metal. We were unable to identify any visual differences between the 
“good” and “bad” material. OUR RECOMMEDATION IS TO AVOID THIS MATERIAL UNLESS YOU VERIFY 
ITS PERFORMANCE WITH YOUR OWN TESTS. 

Heat Source: 1,000° F; Fixture 2.38" from panel; Ambient 80° F; Panel 80°-85°F 
Tape Seconds to 180° F Seconds to 210° F Seconds to 240° F 

Coast Fab USA (Aerolite) 17.5 28.0 46.0 
Corrugated “gold” 18.9 31.9 49.3 
Coast Fab USA Plus (Aerolite Plus)  26.5 41.8 66.0 

Heat Source: 1,000° F; Fixture 4.38" from panel; Ambient 80° F; Panel 80°-85°F 
Tape Seconds to 180° F Seconds to 210° F Seconds to 240° F 

Coast Fab USA (Aerolite) 35.4 60.0 116.0 
Corrugated “gold” 42.0 65.0 125.0 
Coast Fab USA Plus (Aerolite Plus) 49.3 85.0 151.0 

Material Specifications 

Tape  
Material  

Specifications  
weight 
oz./yd² 

weight 
g/m² 

Coast Fab USA (Aerolite) Protected Aluminum with 1 mil Kapton and Acrylic PSA 2.9 98 
Coast Fab USA Plus (Aerolite Plus) Aluminized dual mirror, aramid cloth, PSA 8.5 288 
Corrugated “gold” Gold colored film over aluminum, Kapton, PSA 6.8 230 
 
 

Racer prices per square foot (less applicable discounts) 
Coast Fab USA (Aerolite) $21.35 Rolls are 15” wide x 30ft long   
Coast Fab USA Plus (Aerolite Plus) $11.52 Rolls are 20” wide x 30ft long 
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Scotch-WeldTM

 

Epoxy Adhesive 
DP420 Black • DP420 NS Black • DP420 Off-White • DP420 LH 

 
 
 

Technical Data May, 2015 
 

 
 
 

Product Description 3M™ Scotch-Weld™ Epoxy Adhesives are high performance, two-part epoxy 
adhesives offering outstanding shear and peel adhesion, and very high levels of 
durability. 

 
 
 

Features • High shear strength 
 

• High peel strength 
 

• Outstanding environmental 
performance 

 
• Easy mixing 

 
• 20 minute worklife 

• Controlled flow (3M™ Scotch-Weld™ Epoxy 
Adhesive DP420 NS Black) 

 

• Recognized as meeting UL 94 HB – Underwriters 
Laboratory Horizontal Burn Flammability Test 
(3M™ Scotch-Weld™ Epoxy Adhesive DP420 
Off-White) 

 

• Low halogen content (3M™ Scotch-Weld™ 
Epoxy Adhesive DP420 LH) 

 
 
 

Typical Uncured 
Physical Properties 

Note: The following technical information and data should be considered representative 
or typical only and should not be used for specification purposes. 

 
 
 

Product 

3M™ Scotch-Weld™ Epoxy Adhesive 

DP420 Black DP420 NS Black DP420 Off-White DP420 LH 

Viscosity (approx.) Base 20,000-50,000 cP 190,000-270,000 cP 20,000-50,000 cP 20,000-50,000 cP 
@ 73°F (23°C) Accelerator 8,000-14,000 cP 60,000-130,000 cP 8,000-14,000 cP 8,000-14,000 cP 

Base Resin Base 
Accelerator 

epoxy 
amine 

epoxy 
amine 

epoxy 
amine 

epoxy 
amine 

Color Base 
Accelerator 

black 
amber 

black 
amber 

white 
amber 

white 
amber 

Net Weight Base 9.3-9.7 9.4-9.8 9.3-9.7 9.3-9.7 
Lbs./Gallon Accelerator 9.0-9.4 9.1-9.5 9.0-9.4 9.0-9.4 

Mix Ratio (B:A) Volume 2:1 2:1 2:1 2:1 
 Weight 2:0.97 2:0.97 2:0.97 2:0.97 

Worklife, 73°F (23°C) 20 g mixed 15 minutes — 15 minutes 15 minutes 
10 g mixed 20 minutes — 20 minutes 20 minutes 

 5 g mixed 30 minutes — 30 minutes 30 minutes 
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Appendix I  
SAE Rules Requirements 

T3.10 Main and Front Roll Hoops – General Requirements 

T3.10.1 The driver’s head and hands must not contact the ground in any rollover attitude. 

T3.10.2 The Frame must include both a Main Hoop and a Front Hoop as shown in Figure 1. 

T3.10.3 When seated normally and restrained by the Driver’s Restraint System, the helmet of a 

95th percentile male (anthropometrical data) and all of the team’s drivers must: 

a. Be a minimum of 50.8 mm (2 inches) from the straight line drawn from the top of the main 

    hoop to the top of the front hoop. (Figure 1a) 

b. Be a minimum of 50.8 mm (2 inches) from the straight line drawn from the top of the main 

    hoop to the lower end of the main hoop bracing if the bracing extends rearwards. (Figure 1b) 

c. Be no further rearwards than the rear surface of the main hoop if the main hoop bracing        

extends forwards. (Figure 1c). 

 

95th Percentile Male Template Dimensions 

A two dimensional template used to represent the 95th percentile male is made to the following 

dimensions: 

• A circle of diameter 200 mm (7.87 inch) will represent the hips and buttocks. 

• A circle of diameter 200 mm (7.87 inch) will represent the shoulder/cervical region. 

• A circle of diameter 300 mm (11.81 inch) will represent the head (with helmet). 

• A straight line measuring 490 mm (19.29 inch) will connect the centers of the two 

200 mm circles. 

• A straight line measuring 280 mm (11.02 inch) will connect the centers of the upper 200 mm 

circle and the 300 mm head circle. 
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Figure I1. Helmet clearance requirements. 
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Monocoque Geometry Templates 

 

Figure I2. Cockpit Opening Template 

T4.1.1 “In order to ensure that the opening giving access to the cockpit is of adequate size, a 

template shown (above) will be inserted into the cockpit opening. It will be held horizontally and 

inserted vertically until it has passed below the top bar of the Side Impact Structure (or until it is 

350 mm (13.8 inches) above the ground for monocoque cars). No fore and aft translation of the 

template will be permitted during insertion.” 
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Figure I3. Cockpit Internal Cross Section 

T4.2.1 “A free vertical cross section, which allows the template shown (above) to be passed 

horizontally through the cockpit to a point 100 mm (4 inches) rearwards of the face of the 

rearmost pedal when in the inoperative position, must be maintained over its entire length. If the 

pedals are adjustable, they will be put in their most forward position.” (FSAE Rules, page 46-47) 
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Appendix J  
Cure Temperature Data 

 

 

Figure J1. Final monocoque cure temperature trends. 
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Figure J2. Final monocoque layup temperature deltas between the inner and outer facesheets equalized to within 

5°F by the time the soak started.  
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Figure J3. Nosecone cure data. 
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Appendix K 
Chassis Mass Properties 

Table K1. Mass properties of monocoque, anti-intrusion plate, and nosecone with aero mounting. 
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Appendix L 
Technical Drawings 

 

Figure L1. Drawing of Steering Rack Jig Plate. 

 

Figure L2. Drawing of Anti-Intrusion Plate 
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Appendix M 
Cockpit Pullout Test Fixture Detail Images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure M1. Cockpit pullout test fixture dimensions. 

Figure M2. Test laminate set up in the cockpit pullout test 

fixture. 
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Appendix N 
Gantt Chart 

Table N1. A Gantt chart developed in Microsoft Project® is used for scheduling and forecasting. Predecessors are 

utilized in the manufacturing phase to automatically reschedule tasks should delays occur. 

Task Name Duration Start Finish Predecessors 

Start 0 days Sun 6/1/14 Sun 6/1/14 
 

Definition 
37.47 
days 

Thu 5/1/14 Sun 6/1/14 
 

   Design specifications submitted, draft 1 0 days Thu 5/1/14 Thu 5/1/14 
 

   Discuss design specifications with sponsor 1 day Sun 6/1/14 Sun 6/1/14 
 

   Design specifications submitted, draft 2 0 days Sun 6/1/14 Sun 6/1/14 
 

Selection 
36.98 
days 

Wed 
4/30/14 

Sat 5/31/14 
 

Preliminary Design Review (with Formula SAE 
team) 

1 day Sat 6/28/14 Sat 6/28/14 
 

Project Proposal submitted to sponsor 0 days Thu 5/1/14 Thu 5/1/14 
 

Develop pool of potential laminates 11 days Mon 6/2/14 
Tue 
6/10/14  

Conceptual Design Report draft submitted to 
sponsor 

0 days Tue 6/3/14 Tue 6/3/14 
 

Conceptual Design Report Presentation 1 day Thu 6/5/14 Thu 6/5/14 
 

Torsion test for 2013-2014 Monocoque (on 
hold) 

75.95 
days 

Mon 
6/16/14 

Sun 
8/17/14  

   Design of monocoque (only) torsion tester 22 days 
Mon 
6/16/14 

Fri 7/4/14 
 

   Construction of monocoque torsional tester 23 days 
Wed 
7/16/14 

Mon 8/4/14 
 

   Torsional test of 2013-2014 monocoque  2 days Sat 8/16/14 
Sun 
8/17/14  

Materials Acquisition 3.5 days 
Fri 
10/31/14 

Mon 
11/3/14  



161 

 

   Obtain all prepreg material to be used in test 
and final laminates 

0 days Sat 11/1/14 Sat 11/1/14 
 

   Obtain all core materials to be used in test 
and final sandwich structures 

0 days 
Mon 
11/3/14 

Mon 
11/3/14  

   Obtain layup materials: vacuum bag, 
breather, tacky tape, etc.  

0 days 
Fri 
10/31/14 

Fri 
10/31/14  

Layup Testing 
217.34 
days? 

Sat 
10/18/14 

Tue 
4/14/15  

   Test Material Properties 4 wks 
Sat 
10/18/14 

Mon 
11/3/14  

   Prepare in tub layup test samples 4 days 
Mon 
11/3/14 

Thu 
11/6/14  

   Test in tub sample layups 2 days 
Thu 
11/6/14 

Sat 11/8/14 26 

   Prepare rules test layups 2 days 
Thu 
11/6/14 

Fri 11/7/14 
 

   Test rules layups 2 days Sat 11/8/14 
Sun 
11/9/14 

28 

Make final layup selection 0 days 
Mon 
11/10/14 

Mon 
11/10/14  

Critical Design Review (with Formula SAE 
team) 

0 days 
Sun 
11/2/14 

Sun 
11/2/14  

Design changes from CDR feedback 11 days 
Mon 
11/3/14 

Tue 
11/11/14 

31FS+2 days 

Final Design Report due 0 days 
Thu 
10/30/14 

Thu 
10/30/14  

Monocoque Manufacturing 10 days 
Tue 
11/11/14 

Thu 
11/20/14  

   Template cutting 1 day 
Tue 
11/11/14 

Wed 
11/12/14 

32 

   Core cutting 1 day 
Tue 
11/11/14 

Wed 
11/12/14 

32 
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   Outer skin layup 0.4 days 
Wed 
11/12/14 

Wed 
11/12/14 

36 

   Core placement 0.2 days 
Wed 
11/12/14 

Thu 
11/13/14 

37 

   Inner skin layup 0.4 days 
Thu 
11/13/14 

Thu 
11/13/14 

38 

   Oven cure 1 day 
Thu 
11/13/14 

Fri 
11/14/14 

39 

   Trimming joint edges and bulkhead 2 days 
Fri 
11/14/14 

Sun 
11/16/14 

40 

   Align halves 1 day 
Sun 
11/16/14 

Mon 
11/17/14 

41 

   Join halves 0.5 days 
Mon 
11/17/14 

Mon 
11/17/14 

42 

   Cockpit and bulkhead closeout 2 days 
Mon 
11/17/14 

Tue 
11/18/14 

43 

   Additional post-bonding (if required) 1 day 
Tue 
11/18/14 

Wed 
11/19/14 

44 

   Drill insert holes 0.5 days 
Wed 
11/19/14 

Thu 
11/20/14 

45 

   Manufacture inserts 4 days 
Tue 
11/11/14 

Sun 
11/16/14 

32 

   Bore suspension and steering cutouts 0.5 days 
Tue 
11/18/14 

Wed 
11/19/14 

44 

Mass properties without inserts but with all 
cutouts, post bonding structures, closeouts, 
etc. 

1 day 
Wed 
11/19/14 

Thu 
11/20/14 

48,45 

Bond potted inserts 0.5 days 
Thu 
11/20/14 

Fri 
11/21/14 

49 

Torsion Test for 2015 Monocoque 4 days 
Sun 
11/23/14 

Tue 
11/25/14  

   Prepare equipment and monocoque for 
torsional test 

1 day 
Fri 
10/24/14 

Sat 
10/25/14  
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   Torsional test of 2015 monocoque  1 day 
Sun 
11/23/14 

Sun 
11/23/14 

52FS+1 day 

   Monocoque ready to accept sub-system 
assemblies 

0 days 
Mon 
11/24/14 

Mon 
11/24/14 

53FS+1 day 

Nosecone/Impact Attenuator 31 days 
Mon 
11/3/14 

Fri 
11/28/14  

   Nosecone manufacturing 7 days 
Thu 
11/20/14 

Tue 
11/25/14 

34 

   Impact attenuator testing 2 days 
Tue 
11/25/14 

Thu 
11/27/14 

56 

   Impact attenuator analysis and report 
construction 

1 day 
Thu 
11/27/14 

Fri 
11/28/14 

57 

   Impact attenuator report submitted 0 days TBD 
  

   AFR Intent Due 0 days 
Mon 
11/3/14 

Mon 
11/3/14  

Structural Equivalency Spreadsheet (Incl. AFR) 
154.38 
days 

Sun 
10/26/14 

Mon 
3/2/15 

29 

   Structural equivalency spreadsheet testing, 
perimeter shear, 3-point bend, harness 
attachment, fixture compliance  

7 days 
Sun 
10/26/14 

Fri 
10/31/14 

28 

   SES analysis and report construction 2 days 
Sun 
11/9/14 

Mon 
11/10/14 

62 

   Submit SES 0 days Mon 3/2/15 Mon 3/2/15 
 

Finish and Paint 2 days Fri 5/1/15 Sun 5/3/15 
 

   Paint monocoque 2 days Thu 5/1/14 Fri 5/2/14 
 

   Apply signage to monocoque 1 day Sat 5/3/14 Sun 5/4/14 66 

Vehicle assembly  0 days Fri 2/14/14 Fri 2/14/14 
 

First drive  0 days Sat 2/15/14 Sat 2/15/14 68 

2015 Lincoln competition 4 days 
Thu 
6/18/15 

Sun 
6/21/15  

Finish Project 0 days 
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Appendix O 
Impact Attenuator Data Sheet Submitted to SAE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    APPENDIX T-2 

2015 FSAE® IMPACT ATTENTUATOR DATA REPORT 

 

© 2014 SAE International. All Rights Reserved  Page 1 of 8 

 
This form must be completed and submitted by all teams no later than the date specified in the Action Deadlines 

on specific event website. The FSAE Technical Committee will review all submissions which deviate from the 

FSAE® rules and reply with a decision about the requested deviation. All requests will have a confirmation of receipt 

sent to the team. Impact Attenuator Data (IAD) and supporting calculations must be submitted electronically in Adobe 

Acrobat Format (*.pdf). The submissions must be named as follows: schoolname_IAD.pdf using the complete school 

name.  Submit the IAD report as instructed on the event website.  For Michigan and Lincoln events submit 

through fsaeonline.com. 

 

*In the event that the FSAE Technical Committee requests additional information or calculations, teams have one 

week from the date of the request to submit the requested information or ask for a deadline extension. 

 

University Name: California Polytechnic State Univ - SLO Car Number(s) & Event(s): 025 FSAE Lincoln 

Team Contact: Henrique Chan         E-mail Address: henryk242@gmail.com  

Faculty Advisor: John Fabijanic  E-mail Address: jfabijan@calpoly.edu 

 

Material(s) Used Unidirectional and woven carbon fiber prepreg 

Description of form/shape Pyramidal skin with front wing mount flats 

IA to Anti-Intrusion Plate 

mounting method 

IA fastened using four (4) axial M8x1.25 Grade 8.8 bolts to Front 

Bulkhead (AI plate is clamped between IA and Front Bulkhead) 

Anti-Intrusion Plate to Front 

Bulkhead mounting method 

IA fastened using four (4) axial M8x1.25 Grade 8.8 bolts to Front 

Bulkhead (AI plate is clamped between IA and Front Bulkhead) 

Peak deceleration (<= 40 g's) 21.873 

Average deceleration (<= 20 g's) 7.759 
 

Confirm that the attenuator contains the minimum volume 200mm wide x 100mm high x 200mm long  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Force-Displacement Curve (dynamic tests must show displacement during collision and after the point v=0 

and until force becomes = 0) 

 

ATTACH PROOF OF EQUIVALENCY 

TECHNICAL COMMITTEE DECISION/COMMENTS 

_______________________________________________________________________________________ 

Approved by__________________________________________ Date_____________ 

NOTE: THIS FORM AND THE APPROVED COPY OF THE SUBMISSION MUST BE PRESENTED 

AT TECHNICAL INSPECTION AT EVERY FORMULA SAE EVENT ENTERED 

 yes 
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University Name: California Polytechnic State Univ - SLO Car Number(s) & Event(s): 025 FSAE Lincoln 

 

 

 

Figure 2: Energy-Displacement Curve (dynamic tests must show displacement during collision and after v=0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3: Attenuator as Constructed   Figure 4: Attenuator after Impact 

 

 

Energy Absorbed (J): 

Must be >= 7350 J 

7390.1 Vehicle includes front wing 

in front of front bulkhead?     

Yes 

IA Max. Crushed Displacement 

(mm): 

324 Wing structure included in 

test? 

No 

See page 4 

IA Post Crush Displacement - 

demonstrating any return (mm): 

95.25 Test Type: (e.g. barrier test, 

drop test, quasi-static crush) 

Quasi-static crush test 

Anti-Intrusion Plate 

Deformation (mm) 

0 Test Site: (must be from 

approved test site list on 

website for dynamic tests) 

Cal Poly Civil 

Engineering 

Department 
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University Name: California Polytechnic State Univ - SLO Car Number(s) & Event(s): 025 FSAE Lincoln 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Length (fore/aft direction): 381  mm (>=200mm) 

Width (lateral direction):    365  mm (>=200mm) 

Height (vertical direction): 384  mm (>=100mm) 

Attenuator is at least 200mm wide by 100mm high for at least 200mm: Yes 

Attach additional information below this point and/or on additional sheets 

Test schematic, photos of test, design report including reasons for selection and advantages/disadvantages, etc. 

Additional information shall be kept concise and relevant. 
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Figure 5: Quasi-static crush test setup. 
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Figure 6: Photos of quasi-static crush test. 
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Figure 7: Front wing mounting configuration.  

 

Figure 8: Front wing mounting configuration. Note the AN3 bolts (2 per side, 4 total) fastening the wing to the truss 

structure. Note endplates are not shown. 
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Appendix P 
Impact Attenuator Test Additional Photos 

 

Figure P1. Nosecone crush testing revealed the failure mode to be fiber bending stress concentrations created by the 

wing mount flat sections (indicated with red arrow). Eliminating these flats or providing additional localized 

reinforcement would reduce the overall weight of the nosecone.  

 

Figure P2. The rectangular tube (indicated by red arrows) was used to constrain the nosecone in the horizontal 

plane. However, these tubes created an undesired secondary failure mode for the nosecone. This lowered the overall 

strength and was remedied by the addition of plies. Creating a continuous perimeter around the nosecone would 

allow the reduction of these stress concentrations and a lighter part. However, in the interest of driver safety, the best 

method for securing the nosecone to the fixture is the actual hardware type and location as found on the vehicle. 
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Figure P3. With increased displacement of the impact head the nosecone broke past the rectangular tube (shown 

with red arrows) and the edge protruding beyond the fixture lost ability to carry significant load. The primary failure 

mode continued to be the wing supports at this stage as indicated by the purple arrows. Note that the threaded rod 

was only used for repositioning the test machine head, not during dynamic testing.   

 

Figure P4. The recesses for the bolt/attachment flanges (one of four shown with the red arrow) held nearly 775lb of 

force over 4” total of travel. This value could be improved by bolting the flanges onto the fixture as they began to tilt 

prematurely. The geometry’s resistance to buckling and ability to raise load-holding capability far into the 

displacement spectrum can be exploited by future teams to help meet energy requirements.  
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Appendix Q 
Standard Operating Procedure for Test Panel Manufacturing 

 

Figure Q1. A typical flat panel prepreg layup for the FMD project shown with all materials except fiberglass tows. 

Part I: Preparation 

Mold Tool 

Step 1: Size aluminum mold tools based on testing panel dimensions. Select a mold tool with at 

least 3.5” of extra material on each side of the laminate (1” for sealant [“tacky”] tape, 1” for 

taping release film, 1” for edge dam leaves 0.5” clearance). Note that the laminate size will vary 

significantly from the test panel size as laminates will be trimmed after cure. Mold tool should be 

at least 0.70”-0.25” thick. Thicker tools promote flatter panels.  

Step 2: Clean excess resin from the surface of the aluminum mold using a razor blade. Be careful 

not to score the surface of the aluminum with the blade. Wipe the mold with acetone using a 

paper towel. 

Step 3: Apply sealant tape to the edge of the aluminum plate, leaving the paper backing on one 

side to prevent dust from collecting on the surface. 

Step 4: Cut Teflon-coated fiberglass (Airtech Release Ease 234 TFNP) or nonporous FEP to 

cover the aluminum mold surface. Cover the surface up to about ¾” offset inward from the 

inside edge of the sealant tape. Use flash tape to secure the release film to the tool at each corner 

and midpoint of each long edge. If FEP is used, take care to tension the FEP to remove all 

ripples.  

Cutting Prepreg Cloth, Tape, and Film-Adhesive 

Step 1: All resin-containing materials should be thawed for 1-2 hours at room temperature in 

sealed bags (which should contain moisture absorbing desiccant pouches) to prevent moisture 
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buildup on part. Out of autoclave panels are especially sensitive to moisture and should be 

handled accordingly. Out times for each roll should be recorded so that material does not exceed 

its projected “out life.” Plan layups accordingly. 

Step 2: Open the bag containing the desired roll of prepreg or film-adhesive. If possible, unroll 

desired amount of material to cut on a clean, smooth surface. Use a metal straightedge and a 

razor blade to cut major pieces of material from which smaller pieces will be cut. Then replace 

prepreg roll back into bag. Reseal with desiccant inside, and replace in freezer. This process 

minimizes out time for the roll overall. 

Step 3: Use a caul plate as a cutting template for individual pieces. Use a razor blade to carefully 

cut along the edge of the caul plate, ensuring a straight cut.  

Caul Plate 

Note: Must be completed after all core, film-adhesive, and prepreg materials are cut. 

Note: Based on 2015 SES rules, Hexcel guidelines, and ASTM codes for laminate testing, the 

following sized caul plates should be used (values in parenthesis indicate the actual trimmed size 

of the panel). See Figures Q2-Q6 for graphical representations of these size requirements.  

 For long beams: 12.0” x 21.0” (10.8” x 19.7”) 

 For perimeter shear: 5.0” x 5.0” (4.0” x 4.0”) 

 For cockpit pullout: 12.0” x 12.0” (11.0” x 11.0”) 

 For short beams with core: 3.0” x 7.0” (2.0” x 6.0”). Note that since short beam panels 

are easily made in large numbers and easy to cut with the tile saw, 7.0” x 7.0” caul plates 

can be used to make 3 short beams for statistical analysis.  

 For short beams without core: 2.0” x 3.0” (1.0” x 0.25”) 
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Figure Q2. Long beam panels as laid up (top) and after trimming (bottom). All dimensions are in inches. Height 

varies based on core and facesheet thicknesses. 

 

Figure Q3. Perimeter shear panels as laid up (top) and after trimming (bottom). All dimensions are in inches. Height 

varies based on core and facesheet thicknesses. 
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Figure Q4. Cockpit pullout panels as laid up (top) and after trimming (bottom). All dimensions are in inches. Height 

varies based on core and facesheet thicknesses. 

 

Figure Q5. Short beam shear panels with core as laid up (top) and after trimming (bottom). All dimensions are in 

inches. Height varies based on core and facesheet thicknesses. 
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Figure Q6. Short beam shear panels without core as laid up (top) and after trimming (bottom). All dimensions are in 

inches. Height varies based on core and facesheet thicknesses. 

Step 1: Clean excess resin from the surface of the aluminum caul plate using a razor blade. Be 

careful not to score the surface of the aluminum with the blade. Wipe the mold with acetone 

using a paper towel. 

Step 2: Cut Teflon-coated fiberglass or nonporous FEP to cover the aluminum mold surface, 

cutting approximately 1.5” extra material on each edge. 

Step 3: Fold the 1.5” extra material over the back end of the caul plate, taking care to tension the 

release film so no ripples are present. Use flash tape to secure the release film on the back of the 

plate so that the flash tape will not contact the completed laminate.  

Fiberglass Tow Application (Vacuum Bag Only Parts) 

Note: Fiberglass tows are only placed between consecutive plies of laminated prepreg material. 

They are not placed between laminate and film adhesive, or between film adhesive and core. The 

inclusion of fiberglass tows aids in laminate gas evacuation in out of autoclave application. 

Step 1: Placement of fiberglass tows is determined prior to layup as it impacts laminate, tool and 

caul plate sizes. Fiberglass tows must have at least 3” of extra length extending past each end of 

their respective laminate edge so they can extend past the damming material and facilitate edge 

breathing. Cut fiberglass tows using scissors, ensuring that no smaller strands become separated 

from the main strand. Alternatively, pull tows from dry fiberglass cloth and cut to length.  

Step 2: Remove the polyethylene or paper backing sheet from the top of the prepreg ply. 

Step 3: Carefully place the fiberglass tows along the desired edges of the laminate, ensuring that 

contact is restricted to the edges. First, hold the tows taut above the edge of the part. Then, 

carefully press the tows onto the part, to prevent wrinkling. 

Step 4: Remove the backing material from the next prepreg ply. 

Step 5: Place the next prepreg ply over the fiberglass and previous ply.  

Core Material 

Step 1: Nomex core material must be heated to 250° F in order to evaporate volatiles and reduce 

moisture during cure. Aluminum core material does not need to be heated.  
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Step 2: Using a caul plate as a template, cut core material using a razor blade, ensuring that the 

ribbon direction (direction of the pointed ends when using a hexagonal honeycomb core) follows 

that specified in the layup schedule. 

Step 3: For aluminum core, “scuffing” the core with Scotch-Brite has been shown via short beam 

shear tests to increase bonding strength. Lightly pass the Scotch-Brite along both sides of the 

core. Next, use a high-powered hair dryer to blow air over the core and evacuate Scotch-Brite 

particulate. Do not use shop air as it is most and may contain oil. Finally, lightly wipe the surface 

with acetone.  

 

Part II: Layup 

Layup Stacking 

Step 1: Remove backing from first ply in the layup sequence and place onto a smooth surface 

covered with a release film. Note the 0° ply direction relative to the short or long edge (as 

specified in the layup schedule) using a marker on the release film.  

Step 2: Place subsequent plies, using fiberglass tows if necessary, following the angle patterns 

specified in the layup schedule. Ensure careful alignment of each ply. Because ply size varies 

slightly, line up all panels at one corner for each layer.  

Step 3: With the protectant film still on the plies, roll a 1” OD steel tube cleaned with acetone 

over the laminate as one would use a bread roller. An actual bread roller deflects too much and 

applies uneven pressure to the laminate.  

Step 4: Place in debulking setup for at least 15 minutes every three plies. A debulking setup is a 

resealable vacuum bag that can apply vacuum pressure to the laminate.   

Film adhesive and Core Application 

Step 1: Place film adhesive onto the side of the face sheet to be bonded to core, following the 

same alignment procedure specified in Step 2 of the “Layup Stacking” procedure. Fiberglass 

tows should not be placed between the film adhesive and the laminate.  

Step 2: Carefully peel away backing paper, leaving film adhesive on the surface of the laminate. 

Step 3: Place core on the film adhesive, following the same alignment as specified in step 2 of 

the “Layup stacking” procedure. Ensure that the ribbon direction matches the one specified in the 

layup schedule. 

Step 4: Follow the same process to place the corresponding face sheet on the other side of the 

core. 

 

Part III: Bagging and Cure 
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Edge Dam Placement 

Step 1: Place completed laminate on release film, then select edge dam pieces to box in the 

laminate. 

Step 2: Place the silicon edge dams as close to the edges of the laminate as possible. Ensure that 

there are no holes in the “fence” around the laminate, as this will allow resin to flow out of the 

part. If fiberglass tows are used, ensure that they continue over the edge dams. 

Step 3: Use flash tape to hold the silicon dams in place. 

Caul Plate and Breather Placement 

Step 1: Place a caul plate over the laminate. 

Step 2: Place two layers of breather cloth in bagging sequence, making sure it contacts the 

fiberglass tows (if any).  

Vacuum Bag and Line Setup 

Step 1: Disassemble vacuum end insert and place lower piece on the breather cloth, ideally not 

over a caul plate.  

Step 2: Carefully seal vacuum bag over the tool. Start at the short edge of the part, and then 

slowly and evenly seal the bag by pressing it against the tape, while keeping the bag in tension. If 

necessary, use additional sealant tape to seal any “dog ears” of extra vacuum bag material. 

Step 3: Use a razor blade to cut a hole in the vacuum bag over the hole in the lower piece of the 

vacuum end insert.  

Step 4: Insert the upper half of the vacuum end insert and twist clockwise to seal. 

Step 5: Turn on vacuum pump, then attach the universal hose end seal to the upper end of the 

insert. 

Step 6: Check for a minimum of 25 in-Hg vacuum pressure and seal any leaks as required.  

Cure 

Step 1: Obtain material datasheet for recommended cure cycle  

Step 2: Select the oven if using a large mold or want to replicate heat transfer properties for 

“blob” layup testing. Select the autoclave (with or without pressure) if part consistency, ease of 

use, and quality are the primary concerns.  

Step 3: Place thermocouples (if desired) on the parts to be cured. Note the corresponding jack 

numbers.  

Step 4: Follow instructions provided by Dr. Mello for either the oven or the autoclave.  

Step 5: Upon completion of the cure, remove the part from the bag and mark with a permanent 

marker the tool side and the caul plate side.  
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Cutting Panels  

Step 1: Since the panels were made larger than needed, they must be cut to size. Size 

requirements may be dictated by SAE, Hexcel, or internal standards.  

Step 2: Most panels will fit in the tile saw located in the rear of the Mustang ’60 machine shop. 

This is the preferred method of cutting as the edges are clean and straight and the water from the 

saw reduces airborne carbon particulate. Ensure the saw and blade are in good working order and 

the water level is above the uppermost surface of the sump. Before using the saw, put on a half-

face respirator with filters suitable for carbon particulate. Also ensure safety glasses or goggles 

are worn.  

Step 3: Use a square and a paint pen as a guide to cut the panels to size. Initial cuts with the tile 

saw to remove larger sections of excess material may be required to fit the panel flush onto the 

saw bed.  

Step 4: Confirm dimensions are as marked/required since the SAE tests have specific dimensions 

that are checked during technical inspection.  

Step 5: Unplug and clean the saw using shop towels. Wipe the saw blade cover, motor, and table. 

Refill water if level is below the sump’s uppermost surface. Remove any debris on the floor.   

Step 6: Dry panel with a shop towel, taking care to avoid splinters. The panel is now ready for 

destructive testing.  
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Appendix R 
Meguiar’s Mold Release Wax #8 and Loctite Frekote 770-NC Application 

Standard Operating Procedure 

Part I: Preparation 

Step 1: Remove lose debris and dust from inside mold using a shop vacuum. Cup a hand around 

the shop vacuum nozzle to prevent the mold surface from being scratched by the hard plastic.  

Step 2: Don nitrile gloves and safety glasses 

Step 3: Apply a moderate amount of acetone to a WypAll disposable towel if available or a 

regular paper towel. The WypAll towels are softer than the paper towels available at the 

university and are tear-resistant. Wipe the mold surface with acetone anywhere that Duratec or 

other gel-coating is present. 

Step 4: Repeat Step 3 until no residue appears on the paper towel.  

Part II: Wax Application 

Step 1: Apply a moderate amount of wax to an automotive wax applicator pad. Rub the wax in a 

circular motion on the mold surface. Immediately after the wax begins to haze, use a clean 

microfiber towel to buff the wax coat by briskly rubbing it in a circular motion. Note that wax 

should be applied beyond the region where the laminate is intended to be placed to account for 

errors in the layup process; however, wax should not be applied where vacuum bag sealant tape 

it to be used.  

Step 2: Repeat Step 5 until the mold has a thick, even layer of wax. Good results had been 

achieved with 0.75oz/1ft
2
 of mold surface. Take care to buff the final coat to a highly-smooth 

finish as this has a large effect on the part smoothness.  

Part III: Frekote 770NC Application  

Step 1: Frekote can be used with or without mold release wax. Should wax be used, apply the 

Frekote onto the wax without cleaning the waxed surface. Cleaning will strip wax and damage 

the buffed finish from Step 2 in Part II: Wax Application. If wax is not used, just follow the 

procedures in Part I: Preparation.  

Step 2: Frekote produces noxious vapor, so ensure the room is well-ventilated and that a half-

face respirator suitable for gases is being worn.  

Step 3: Invert the bottle of Frekote onto a WypAll or standard paper towel. Take care not to 

saturate the towel as excessive release agent will leave swirls on the final parts. Lightly rub the 

mold with the towel. Replace the towel if it tears.  

Step 4: Wait 10 minutes and apply the next coat as done in Step 3.  

Step 5: Steps 3 and 4 can be repeated for a total of 3-5 coats depending on mold value, part 

value, and tool porosity.  

Step 6: Wait 30 minutes after the last coat before applying the first layer of the laminate.  
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Step 7: Note that Frekote is self-building and less layers can be applied on subsequent parts. 

However, if wax is used, the full process must be performed.  

Part IV: Post-Layup Cleaning and Mold Storage 

Step 1: To make future layups quicker and easier, molds should be cleaned after the part is pulled 

from them. In addition to marking the pull count on the mold, the entire surface should be 

cleaned with acetone as described above. Acetone will generally remove resin, though firmer 

wiping may be required than for an unused mold.  

Step 2: Apply sealant tape to the mold as far “off-part” as possible.  

Step 3: Place a packet of desiccant inside the sealant tape boundary.  

Step 4: Apply vacuum bag over the mold and secure it to the sealant tape. By keeping the mold 

surface clean and dry, less labor will be required for future pulls and the tool will be less likely to 

be damaged from water expansion during the next curing cycle.   
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Appendix S 
Core Failure Repair Process Photos 

 

Figure S1. First a small opening was made with a rotary tool to inspect the core for damage. 
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Figure S2. When full core failure was observed, the repair began and a 2" x 2" square was cut using a rotary tool 

and cutoff wheel. 
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Figure S3. A sample of the failed core shows the results of continued out of plane loading after the core sheared 

loose inside the sandwich structure (shown later). 
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Figure S4. The core sheared loose from the inner facesheet. Balsa wood or another solution that provides higher 

compressive strength is highly recommended for future vehicles. Prior to bonding in a balsa wood insert, the 

remnants of the sheared core were removed by pulling a shard razor blade along the affected region. The blade was 

not pushed in an effort to reduce cutting fibers.  
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Figure S5. 0.750” thick end-grain balsa wood was cut into a 2”x 2” square and test fit in the cavity. Next it was 

scuffed with sandpaper and wiped clean with a new towel.  

 

 

Figure S7. Following preparation of the balsa plug, resin and microballoons were mixed to a frozen-yogurt 

consistency (to allow for flow into the core). An excess amount of the resin and microballoons were inserted into the 

cavity to reduce potential voids in the dried slurry. The excess protruding beyond the facesheet was then wiped flush 

before curing. 
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The next steps are not pictured but included the following:  

1. Cover balsa wood plug with FEP.  

2. Pull FEP taut and tape it onto the surrounding monocoque.  

3. Place wooden blocks on top of the FEP and use a ratchet strap to apply firm pressure onto 

the balsa wood.  

4. Let resin cure and sand excess resin and balsa wood flush with the monocoque’s outer 

facesheet.  

 

 

Figure S8.The carbon fiber used to cover the balsa wood was labeled carefully to prevent improper ply orientation.   

 

 

Figure S9. A 2x2 twill, 3K, 199 GSM, 640 KSI Aerospace fiber manufactured by Soller Composites was used for 

the repairs due to its strength properties and the team’s prior positive experiences with the fabric. 
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Figure S10. Tapering was used in accordance with Bailie’s et al. recommendations for reducing delamination.
Ref 1

 

The ±45° plies were placed on the outside and the 0°/90° plies were placed on the inside to mimic the prepreg layup 

in the associated region. The interior plies had 0.75” overlap and the exterior plies had 1.0” overlap.  

 

 

Figure S11. The tapered stack prior to application onto the monocoque. FEP was used to apply pressure to the fabric 

since the facesheet would not hold vacuum and bagging the entire vehicle was not possible. West Systems 105 resin 

and 207 hardener were applied to the fabric. 
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Figure S12. The stack was placed onto the monocoque and pulled taut with FEP and tape. Resin and fabric were 

mixed at a 1:1 ratio allowing for the elimination of peel ply. The FEP is slightly porous which aids in achieving a 

proper cure.  
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Appendix T 
Pursuing the Alternative Frame Rules  

The alternative frame rules require that a full FEA model of the chassis meet the strength and 

stiffness requirements set forth by several loading conditions (summarized in Table T1). Under 

each loading condition, the chassis must not deflect more than 25mm, nor can any region of the 

chassis fail. See Appendix U for full details on the loading conditions and structural 

requirements. 

In order to gain clearance from SAE to pursue the AF rules, FMD was required to model a 

sample chassis, apply the applicable loadings, and submit the results to SAE. FMD managed to 

submit several iterations of the sample chassis model, but all were rejected because elements 

were missing from the NASTRAN output files they requested. A summary of the sample AF 

chassis results can be found in Appendix V.  

Table T1. Summary of Alternative Frame loading tests 

Test 

Number 

Evaluated Chassis Region  

AF1 Main Roll Hoop, Bracing and 

Bracing Supports 

AF2 Front Roll Hoop 

AF3 Side Impact 

AF4 Front Bulkhead & Bulkhead 

Support 

AF5 Shoulder Harness Attachment 

AF6 Lap & Anti-Sub Harness 

Attachment 

AF7 Front Bulkhead & Bulkhead 

Support Off-Axis 

 

The model utilized in the simulations is an assembly of four components: the monocoque, 

subframe, suspension, and front bulkhead. The monocoque and front bulkhead are modeled as 

composite shells. The subframe is composed of beam elements, and the suspension is made of 

truss elements. What differentiates the AFR model from the torsional stiffness model is the fact 

that the front bulkhead is tied to the front of the monocoque in order to better reflect the frame’s 

performance under the off-axis frontal impact load. The addition of the front bulkhead was not 

transitioned to the torsional stiffness model.  
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Table T2. Alternative Frame test results 

Test 

Number 

Maximum Measured Deflection 

(in.) 

AF1 0.1492 

AF2 0.8885 

AF3 0.3605 

AF4 0.1363 

AF5 0.1569 

AF6 0.01987 

AF7 0.8457 

 

The results of each test (Table T2) show a maximum frame deflection of less than 25 mm, which 

indicates sufficient stiffness. Contour plots of each test can be referenced in Figures T1 – T7. 

The individual ply stiffnesses incorporated in the model were derived from manufacturer’s 

prepreg and core data sheets. The FSAE rules body notified the team that laminate properties 

needed to be based on the 3-point long beam test data, and that inputting individual ply 

properties from manufacturer data sheets did not fall in line with the rules. In order to be rules 

compliant, the results of a long beam test needed to be inputted into the SES in order to calculate 

overall laminate strength and stiffness in both the 1 and 2 directions. Then, an FEA model could 

be composed that incorporated a single-ply monocoque with the new SES-derived material 

values. Once that news reached us, the team had already decided to halt the pursuit of the AF 

rules, since doing so would likely put significant delays on the monocoque layup.  

Future teams pursuing the AF rules should first re-confirm the method of tying the testing data to 

the creation of the FEA model, as the AF ruleset is in a state of constant evolution. Also, teams 

are encouraged to submit AF rules queries very early, as there is considerable lead time on any 

response.  
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Figure T1. Deflection contour plot for test AF1. 

 

 

 

Figure T2. Deflection contour plot for test AF2 
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Figure T3. Deflection contour plot for test AF3 

 

 

 

Figure T4. Deflection contour plot for test AF4 
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Figure T5. Deflection contour plot for test AF5 

 

 

 

Figure T6. Deflection contour plot for test AF6 
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Figure T7. Deflection contour plot for test AF7 
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Appendix U 
Alternative Frame Loading Conditions and Structural Requirements 

The following alternative frame loading conditions were taken from the pages 76 through 79 of 

the 2015 FSAE rules  

ARTICLE 3: DEFINITIONS  

The following additional definitions apply throughout the Rules document in addition to the ones 

listed in T3.3  

a. Failure - Tensile, compressive, shear load or buckling critical load lower than the specified 

load. All failure modes have to be considered for every load case.  

b. Directions – The following coordinate system and labeling convention is used within these 

rules 

- Longitudinal (X)  

- Transverse (Y)  

- Vertical (Z)  

 

 

 

ARTICLE 4: STRUCTURAL REQUIREMENTS AF4.1 Main Roll Hoop, Bracing and 

Bracing Supports AF4.1.1 Load Applied: Fx = 6.0 kN, Fy=5.0 kN, Fz=-9.0 kN  

 

 

AF4.1.2 Application point: Top of Main Roll Hoop 
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AF4.1.3 Boundary Condition: Fixed displacement (x,y,z) but not rotation of the bottom nodes of 

both sides of the front and main roll hoops.  

 

AF4.1.4 Max Allowable Deflection: 25mm  

 

AF4.1.5 Failure must not occur anywhere in structure  

 

AF4.2 Front Roll Hoop AF4.2.1 Load Applied: Fx = 6.0 kN, Fy=5.0 kN, Fz=-9.0 kN  

 

AF4.2.2 Application point: Top of Front Roll Hoop  

 

AF4.2.3 Boundary Condition: Fixed displacement (x,y,z) but not rotation of the bottom nodes of 

both sides of the front and main roll hoops.  

 

AF4.2.4 Max Allowable Deflection: 25mm  

 

AF4.2.5 Failure must not occur anywhere in structure  

 

AF4.3 Side Impact AF4.3.1 Load Applied: Fx = 0 kN, Fy=7 kN, Fz 0 kN. Vector direction of 

lateral load to be in toward the driver.  

 

AF4.3.2 Application point: All structural locations between front roll hoop and main roll hoop 

that are also required by AF6.4 (intrusion protection). Load may be distributed by the overlap of 

the impactor circle to the structural members. In Nastran this can be best accomplished through 

a “RBE3” (zero stiffness multi-point constant) with the dependent node at the circle center and 

the independent nodes being all remaining nodes within a 5” (127 mm) radius. Most solvers 

have a similar type of element. The analysis may show worst case only but need to support 

choice of location to justify why it is worst.  

 

AF4.3.3 Boundary Condition: Fixed displacement (x,y,z) but not rotation of the bottom nodes of 

both sides of the front and main roll hoops.  
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AF4.3.4 Max Allowable Deflection: 25 mm  

 

AF4.3.5 Failure must not occur anywhere in structure  

 

AF4.3.6 Accumulator Side Impact protection (EV cars only) use AF4.3 to satisfy EV3.4.4.  

 

AF4.3.7 Tractive System Side Impact protection (EV cars only) use AF4.3 with a 5.5 kN load 

instead of 7 kN to satisfy EV4.2.2.  

 

AF4.4 Front Bulkhead & Bulkhead Support AF4.4.1 Load Applied: Fx = 120 kN, Fy=0 kN, 

Fz 0 kN.  

 

AF4.4.2 Application point: use the actual attachment points between the impact attenuator and 

the front bulkhead  

 

AF4.4.3 Boundary Condition: Fixed displacement (x,y,z) but not rotation of the bottom nodes of 

both sides of the main roll hoop and both locations where the main hoop and shoulder harness 

tube connect. Monocoques should use both sides of the bottom of the main hoop and both sides 

of the upper attachment point between the main hoop and monocoque.  

 

AF4.4.4 Max Allowable Deflection: 25mm  

 

AF4.4.5 Failure must not occur anywhere in structure  

 

AF4.5 Shoulder Harness Attachment AF4.5.1 Load Applied: 13- kN load for Monocoque 

chassis or 7kN load for steel space frames applied at each hardness attachment point with the 

worst case for the range of angles specified in T5.4.4.  

 

AF4.5.2 Application point: Both harness attachment points simultaneously  

 

AF4.5.3 Boundary Condition: Fixed displacement (x,y,z) but not rotation of the bottom nodes of 

both sides of the front and main roll hoops.  
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AF4.5.4 Max Allowable Deflection: 25mm  

 

AF4.5.5 Failure must not occur anywhere in structure  

 

AF4.6 Lap & Anti-Submarine AF Harness Attachment AF4.6.1 Load Applied: 13kN load 

applied at each lap belt attachment point with the worst case for the range of angles specified in 

T5.3.5. 6.5 kN load applied at each sub-marine belt attachment point with the worst case for the 

range of angles specified in T5.3.5. If the lap and sub-marine belts share the same attachment 

points, then a 19.5 kN load is applied at each belt attachment point with the worst case for the 

range angles specified in T5.3.5.  

 

AF4.6.2 Application point: All harness attachment points simultaneously (same load case)  

 

AF4.6.3 Boundary Condition: Fixed displacement (x,y,z) but not rotation of the bottom nodes of 

both sides of the front and main roll hoops.  

 

AF4.6.4 Max Allowable Deflection: 25mm  

 

AF4.6.5 Failure must not occur anywhere in structure  

 

AF4.7 Front Bulkhead & Bulkhead Support Off Axis AF4.7.1 Load Applied: Fx = 120 kN, 

Fy=10.5 kN, Fz 0 kN.  

 

AF4.7.2 Application point: Create load application node in the front bulkhead plane at the center 

of the front bulkhead. Load application node may be rigidly connected to the front bulkhead and 

impact attenuator attachment points.  

 

AF4.7.3 Boundary Condition: Fixed displacement (x,y,z) but not rotation of the bottom nodes of 

both sides of the main roll hoop and both locations where the main hoop and shoulder harness 

tube connect. Monocoques should use both sides of the bottom of the main hoop and both sides 

of the upper attachment point between the main hoop and monocoque.  

 

AF4.7.4 Max Allowable Deflection: 25mm 
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AF4.7.5 Failure must not occur anywhere in structure  
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Appendix V 
Alternative Frame Sample Chassis Notice of Intent 

 

 

2015 Alternative Frame Rules 

 Notice of Intent 

Cal Poly SLO FSAE Team 

Introduction 

 This is Cal Poly’s FSAE team proposal to use the Alternative Frame Rule set for the 2015 

North America competitions. The purpose of this notice is to demonstrate our team’s finite 

element capability when analyzing our vehicle. Through the sample problem given by the FSAE 

committee, we hope to prove we are able to meet the analytical requirements specified in the 

rules. The software used to conduct all of the finite element analysis was done in ABAQUS 6.11. 

 

Procedure and Requirements 

 Given a list of coordinates and tube number, a solid 3D curve was used in Solidworks to 

generate the sample chassis profile, shown in Figure V1. Since we will be using composites, the 

chassis profile in Figure V1 has its two side impact and two front bay diagonals removed for the 

composite plates that will used instead. This profile was then saved as a wireframe, IGES file 

and imported into ABAQUS.  
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FigureV1. Solidworks model of sample chassis with the side impact and front bay diagonals removed. 

Once the file was imported, the material property of the specified core, skin and steel (E 

= 29,000 ksi) were created. Then the frame profiles and material were created and assigned to 

their appropriate sections. The four required composite plates were made and assigned with the 

specified composite layup. The plates were constrained using the tie function and the assembled 

was made. A meshed image of the chassis without the plates is shown in Figure V2. According 

to the rules, the tubes with a thickness of less than 0.047 inch, shown in pink, are excluded from 

the mesh and will not be included in the analysis. Specified boundary conditions and loadings are 

then applied, analyzed, and recorded. 

 

 

Figure V2. ABAQUS model of the sample without the composite plates. Unmeshed regions (pink) are excluded 

because of FSAE rules. 
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Results 

 A brief mesh convergence study was used to determine our seed size and element type. 

Shown in Table V1, convergence was achieved using quadratic elements but not linear. Thus, 

our results are analyzed using a seed size of 0.75 and quadratic elements for all parts. The steel 

frame is made of B32, 3-node quadratic beam elements, while the composite plates are meshed 

with S8R, 8-node doubly curved thick shell, reduced integration elements. The boundary 

conditions used were fixed in the U1, U2, and U3 directions for every location specified. This 

pin constraint will prevent the node from translating but allow for rotation in the three directions. 

 

Table V1. Mesh convergence study on FSAE sample problem. 

Element Seed Size - Linear DOFs Max Displacement (in.) 

2 33216 0.1533 

1.75 33864 0.1536 

1.5 34842 0.1542 

1.25 36336 0.1545 

1 39180 0.1542 

0.75 44550 0.1547 

0.5 60882 0.1556 

Element Seed Size - 

Quadratic 

DOFs Max Displacement (in.) 

2 37248 .1535 

1.75 39132 .1536 

1.5 41958 .1531 

1.25 46350 .1536 

1 62868 .1541 

0.75 68792 .1540 

0.5 68388 .1540 

 

The mesh convergence analysis was done using only the Main Roll Hoop boundary and 

loading conditions in order to keep everything constant. Since the linear elements were unable to 

converge, quadratic elements were used. The purpose of this study was to define the number of 

elements used is the sufficient minimum and to prove that our values are at its converging point.  
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Table V2. Max deflection and max Mises stress for the following load and boundary cases. 

Rule Number Rule Description Max Deflection 

(in.) 

Max Mises Stress 

(ksi) 

AF4.1 Main Roll Hoop 0.154 29.9 

AF4.2 Front Roll Hoop 0.451 46.9 

AF4.3 Side Impact 0.663 57.6 

AF4.4 Front Bulkhead & Supports 0.264 69.7 

AF4.5a Shoulder Harness 0° 0.753 152 

AF4.5b Shoulder Harness 10° 0.760 152 

AF4.5c Shoulder Harness -20° 0.733 152 

AF4.6a Lap & Anti-Submarine Belts 

45° 

0.025 42.2 

AF4.6b Lap & Anti-Submarine Belts 

55° 

0.031 47.6 

AF4.6c Lap & Anti-Submarine Belts 

65° 

0.036 51.5 

AF4.7 Front Bulkhead Off-Axis 0.703 96.5 

 

 The smallest, median, and largest angle were analyzed to produce the worst case scenario 

for the Shoulder Harness and Lap & Anti-Submarine Belt case. That will be the Shoulder 

Harness at 0° and Lap & Anti-Submarine Belts at 65°.Smaller individual loadings were 

distributed in different to match the magnitude that is specified. From here, only the worst case 

for those loading case will be displayed. For the side impact load, a pressure load is applied on a 

10 inch diameter circle representing the impactor on the center of the side impact plates. The 

equivalent force is calculated by dividing the specified force by the area of the circle. 
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Table V3. Factor of safety for both deflection and stress. 

Rule Number Rule Description Deflection Factor 

of Safety 

Stress Factor of 

Safety 

AF4.1 Main Roll Hoop 6.39 1.48 

AF4.2 Front Roll Hoop 2.18 0.94 

AF4.3 Side Impact  1.48 0.77 

AF4.4 Front Bulkhead & Supports 3.72 0.63 

AF4.5 Shoulder Harness 10° 1.30 0.29 

AF4.6 Lap & Anti-Submarine Belts 65° 27.6 0.46 

AF4.7 Front Bulkhead Off-Axis 1.40 0.86 

 

The stress factor is calculated by 𝑆𝐹 =  
𝑀𝑎𝑥 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑆𝑡𝑟𝑒𝑠𝑠

𝑀𝑎𝑥 𝑀𝑖𝑠𝑒𝑠 𝑆𝑡𝑟𝑒𝑠𝑠
, where the max allowable is 

specified in the rules to be 44.2 ksi. Similarly, the deflection safety factor is calculated by 

𝑆𝐹 =
𝑀𝑎𝑥 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝑀𝑎𝑥 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
, where the max allowable deflection is 25mm or 0.9843 inches.  
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Table V4. The individual constraint reactions at each load for each loading case. 

Rule 

Number 

Rule Description Constraint Reactions 

(lbf) 

AF4.1 Main Roll Hoop RFRH 1922 

LFRH 1452.2 

LMRH 1661.16 

RMRH 4601.35 

AF4.2 Front Roll Hoop RFRH 1023.04 

LFRH 550.259 

LMRH 559.259 

RMRH 1873.31 

AF4.3 Side Impact  RFRH 1217.7 

LFRH 1108.44 

LMRH 1045.39 

RMRH 1191.07 

AF4.4 Front Bulkhead & Supports RSH 6474.27 

LSH 6420.01 

LMRH 7198.2 

RMRH 7278.16 

AF4.5 Shoulder Harness 10° RFRH 1586.12 

LFRH 1474.61 

LMRH 1738.26 

RMRH 1679.45 

AF4.6 Lap & Anti-Submarine Belts 65° RFRH 409.261 

LFRH 240.925 

LMRH 4242.37 

RMRH 4332.2 

AF4.7 Front Bulkhead Off-Axis RSH 8806.4 

LSH 4013.66 

LMRH 10871.1 

RMRH 3690.95 
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 The constraint reactions measure the loading at each of the four nodes where the 

boundary conditions are placed. The three different acronyms are: FRH – Front Roll Hoop, MRH 

– Main Roll Hoop, and SH – Shoulder Harness. The preceding letter of each acronym defines 

whether it is left or right, looking from the back of the car. 

Table V5. The first three positive eigenvalues for buckling produced in ABAQUS. 

Rule Number Rule Description First Three 

Positive Modes 

Buckling 

Eigenvalues 

AF4.1 Main Roll Hoop Mode 2    8.91 

Mode 4 9.15 

Mode 6 9.80 

AF4.2 Front Roll Hoop Mode 1 7.35 

Mode 2 8.52 

Mode 3 8.88 

AF4.3 Side Impact Mode 1 12.54 

Mode 2 13.16 

Mode 3 13.37 

AF4.4 Front Bulkhead & Supports Mode 1 2.74 

Mode 2 3.02 

Mode 3 3.16 

AF4.5 Shoulder Harness 10° Mode 1 9.89 

Mode 2 10.14 

Mode 3 10.86 

AF4.6 Lap & Anti-Submarine Belts 65° Mode 7 12.75 

Mode 10 16.19 

Mode 14 17.84 

AF4.7 Front Bulkhead Off-Axis Mode 1 2.33 

Mode 2 2.49 

Mode 3 2.98 
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 Here are the first three positive eigenvalues produced for each loading case. Negative 

eigenvalues are excluded because there is a possibility that those modes are not possible and are 

irrelevant. The smaller the eigenvalues, the more likely it is for the part to buckle.  

Attached here is an image of each loading case showing deflection and a caption describing the 

loading case. 

 

 

Figure V3. Main Roll Hoop, point load on top of main roll hoop. 

 

 

Figure V4. Front Roll Hoop, point load on top of front roll hoop. 
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Figure V5. Side Impact Plates, 10” circular pressure load on each plate 

 

 

Figure V6. Front bulkhead/Support. Loading placed on the four nodes of the front bulkhead/attenuator. 
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Figure V7. Shoulder Harness Attachment load applied 8 inch apart 

 

 

Figure V8. Lap & Anti-Submarine Harness Attachment. Load applied 1.62 inches away from both sides of the 

bottom of the main roll hoop. 
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Figure V9. Front Bulkhead/Support with an off axis loading at the center of the front bulkhead. A reference point 

was used along with a coupling constraint to allow application of laod. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



208 

 

Appendix W 
CP Speed Torsional Test Results 

 

Figure W1. Senior project CP Speed reported torsional stiffness values slightly different than FMD. This data 

gathered by CP Speed shows that removing weight during the torsional test resulted in high hysteresis, skewed 

toward the compliant end of the spectrum. When computing the average stiffness, only the values from adding 

weight were used in the 2013 number; whereas, the 2015 average included the data points collected after removing 

weight. 

 

Figure W2. When the values for the same data are used but excluding the points collected when removing weight, it 

is clear that the two stiffnesses are much more similar than originally reported. The average value for the 2013 

vehicle is 1067 lb*ft/deg whereas the 2013 chassis is 1065 lb*ft/deg. More work can be done to examine the effects 

of hysteresis and to explore methods to reduce it such as lubrication of bolted joints and higher-quality dial 

indicators. 
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Appendix X 
Laminate Stacking Order Drawings 

 

Figure X1. Laminate schedules for the regions of the monocoque dictated by SAE. Cloth is TenCate TC250-AS4 

and unidirectional tape is Umeco MTM49-M55J. Core is Plascore PAMG-XR1 5052

 

Figure X2. The side impact structure laminate was the thickest with 3 plies of cloth and 2 plies of unidirectional 

tape. Core was 0.700" thick. 
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Figure X3.The front bulkhead laminate utilizes 2 plies of cloth and 0.700” thick core. 

 

Figure X4. The front roll hoop bracing laminate utilizes 2 plies of cloth and 0.700” thick core. 

 

Figure X5. The cockpit floor laminate utilizes 2 plies of cloth and 0.700” thick core. 



211 

 

 

Figure X6. The front floor laminate utilizes 2 plies of cloth and 0.700” thick core. 

 

Figure X7. The seat back laminate utilizes 2 plies of cloth and 0.700” thick core. 
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Appendix Y 
Additional Core Preparation Information 

Core-Splicing 

 

Figure Y1. One method of core-splicing that was explored was butting two sections of core together and using a 

mallet to smash a third small piece into the cells adjacent to the butt. This method was suggested by an  aerospace 

contractor at AASC in Stockton. Most samples joined well, but FMD was unwilling to hammer the joint together on 

the mold as would have been required. In this sample, 2 cells on each side were overlapped by the third piece and 

offset into the middle of the hexagon. 

 

Figure Y2. Another example of core-splicing using a third piece hammered into the joint. Not offsetting the third 

piece kept the most cells intact. This was the best way FMD found to execute this method. 
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Figure Y3. This section showing the bottom side shows poor joining at the seam. Aligning the smashed-down 

pieces cells reduced this splitting effect. 

 

 

Figure Y4. Two pieces of core butted together with the third piece ready to be smashed into the joint. 
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Figure Y5.The third piece smashed in shows a flat upper surface. The bottom surface was typically flat as well 

when the cells of the third piece were aligned with the other two pieces. 

 

 

 

 

Figure Y6. Simply overlapping two pieces and hammering down was unpredictable. Some samples joined 

exceptionally well and others poorly when the top piece moved downward at an angle. 
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Film Adhesive Application 

 

Figure Y7. Film adhesive was placed at every surface where balsa joined with aluminum core. 

 

Figure Y8. Balsa inserted into the recesses of the core. 
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Figure Y9. Core splices were a tedious process of pulling back core at the joint, inserting thin, compressed strips 

wrapped in film-adhesive and manually expanding the previously-compressed cells (one-by-one). Foaming core 

splice is recommended. 

 

Figure Y10. Film adhesive was used where the front bulkhead core was placed as well. 
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Core Forming 

 

Figure Y11. The core for the SIS was formed out of one continuous sheet to reduce splices. This method worked 

very well.  

 

Figure Y12. The single-piece SIS core in-place. 
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Figure Y13. The core templates were different than the carbon templates in order to minimize compound bends. 

 

Figure Y14. Wood was inserted at the edges of the core by the cockpit opening (shown) and all other edges (not 

pictured) to prevent core from crushing while under vacuum in the debulking and cure cycles.  

 

 


