Roborodentia Robot
Senior Project, Spring 2015

Authors: Jordan Dykstra, Anibal Hernandez, Robert Prosser
Advisor: Dr. John Seng

Table of Contents

T T USSP
a1y =TT USSR TSR
D MBI etttk e e s e e m oo emm e st e n s A m e m e emn e e st 2o sn £ e e emn e en e s ee e nen
L T o) U
L= L T T OSSOSO
B DT BT S ettt e meeames s he e s s e e en 2 e eme et e s et eamnmemm e e et ensean
LA A Lo T OSSOSO OUTR
L P M et e e ceeenes e eee s se e s eemneemnmemnes et e enn s eensseannmenmnmemmeneenneen
=t Ty g T OSSOSO
L= L T OSSOSO
LI I TS oottt ettt emeeemea e ee e e s s S m e e eme sesse s s s e s e amnemmm e nsseenns
T L ST LT o OSSPSR OSSR
L Lot Lo OO USROS
= USSR
o N o SO OSSO
T A DI g ettt e e st e e s et e enenn
BN ettt et e m e en e e 1A AR SRR e e £t 8 <A E A R £t Attt et e
Lot T USROS
o L= Ty L= Tty et Ll LY Ty SOOI
Budget and Bill oF MBTEIIAIS ... et e s s mm e n e e
(e L e T T U U TSSOSO USSR OO OO S U RUT
Mechanical Aspects of Parts and Their IMeEration .o e et e an
Using appropriate wires and REat SHENK ... et s e ecme e e e st e e s e en
A e o T g L] e N L = S
Line sensors aren’t great for detecting wiheel revolutions ...
DT S LB e ettt m oo et e es e e e eme e ees e e s s s e s m e mn e emnn s seenns
L T SO USSR OSSR
Designed for simplicity for reliability, maybe 1o Simiple. e
L 3T L SO SO O

A DI B T ettt e e s e 2o s et e een e e enn

[T- R T R T I

11
11
13
13
14
14
15
16
17
17
17
20
22
24
26
26
26
26
26
27
27
27
27

28

Introduction

Roborodentia is an annual robotics competition at Cal Poly. Robots complete a task to acquire
points. For the 2015 competition, robots moved rings from one side of a course to the other (of
course it's a bit more complex than that, as will be discussed in the problem statement section).
Each match was 1 on 1, and the robot who acquired the most points would win that match. A
double elimination bracket was used to determine the winners. Also, the robots were completely
autonomous (no external control). The team designed a robot for the competition and named
him Steve.

Problem Statement

As mentioned previously, the goal is to move rings from one side of the course to the other. See
the course in Figure 1 below.

i3

1 =

middle line

Figure 1: The Roborodentia 2015 course

There are several rules that make the design of the robot more challenging. The robot has to be
less than twelve inches in height at the start of the match. Notice, however, that the highest
vertical peg is fourteen inches high. This means that the robot must extend up somehow if it
wants to reach that peg. There are width/length requirements as well: eleven inches by eleven
inches at the start which can expand to a max of thirteen by thirteen inches during the match.

Each vertical peg has a different scoring value. Rings placed on the lowest peg are worth two
points, the middle four points, and the top six points. If a robot has rings on all scoring pegs
simultaneously, a fourteen point bonus is awarded and the rings are removed. Otherwise, rings
are removed once four are on a vertical peg and the robot crosses the middle line.

Also note the vertical peg in the middle of the course. The robot with the highest ring on the
middle peg at the end of the match will have its score doubled.

Finally, a robot can be reset during the match. However, the first reset will result in three points
being given to the other team, the second four points, etc.

Only the most relevant rules have been listed here since the list is rather long. The complete
rule list is listed here:
https://docs.google.com/document/d/1hEpUtLgn5UAsiko7 OFaVtgVSniHXmVvJOWFP10OPBKhI/

pub

Software

The software was written in AVR C for the Arduino Uno microcontroller.

The block diagram for the system is shown in Figure 2 below.

Wheel PWM
Wheel PWM »
5 ADC Collected Control Code
Line Line
Sensor Sensor
Data ADC Data
—_— Lt
Read Code
Rack Motor T:ﬂ;f’fk
) (Non PWM) ,
F’nmary FSM » Movement
Beam Break Pin Code
Claw
Claw PWM PWM
Open/Close [——»
Code

Figure 2: High level software block diagram for the system

Input Data

The system collects input data from five analog line sensors and a digital beam break sensor.
The line sensor data is used as one of the primary drivers for the state machine and helps the
robot to determine it's position. The beam break sensor is used to determine when the claw has

https://docs.google.com/document/d/1hEpUtLgn5UAsiko7OFaVtgVSniHXmVvJ0WFP1OPBKhI/pub
https://docs.google.com/document/d/1hEpUtLgn5UAsiko7OFaVtgVSniHXmVvJ0WFP1OPBKhI/pub

moved up or down to the desired position (for a more detailed explanation of how the beam
break is used to determine the claw’s position, see the mechanical design section of the report).

All five analog sensors output analog data. In order for the arduino to interpret this data, it must
be driven through the ADC. The Arduino Uno ADC can only process one ADC input channel at
a time. This means that the data from each channel must be read sequentially, as demonstrated
in the ADC read function shown in Figure 3 below.

void AvgReadAllADCValues (adcData *data)

{

uintlée t ind = 0;
uintl6é t samples = 0;
uintl6é t max sample ;

for (ind = 0; ind < data->len; ++ind)
data->readings[ind] = 0O;

while (samples < max sample)

{

ind = 0;

//read all desired adc values into the adcData struct
while (ind < data->len)

{

//Select the current adc mux value

ADMUX &= ~(); //clear lower 4 bits, which are the mux values
ADMUX |= ind; //set the correct mux value

ADCSRA |= (1 << ADSC); //Start measuring!

while (ADCSRA & (1 << ADSC)) //wait for measurement to complete

data->readings[ind] 4= ADCH; //add the reading to the data
++ind;

++samples;

for (ind = 0; ind < data->len; ++ind)
data->readings[ind] /= samples;

Figure 3: Function to read ADC data

Note how the data is read sequentially off of each analog input pin based on the ADMUX value
(an average is collected to help acquire more reliable input data). All of the data is read into an
adcData struct, as shown in Figure 4 on the next page.

typedef struct adcData {
uintlé _t len;
intl6é_t readings[NUM ADC];
} adcbhata;

Figure 4: struct that contains adc data

The second piece of input is from the beam break sensor, as mentioned earlier. The beam
break input is used by the MoveClawUp and MoveClawDown functions, an example of which is
shown in Figure 5 below.

void MoveClawDown ()

{
PORTD |= RACK MOTOR RED;
PORTD &= ~(RACK MOTOR BLACK) ;
_delay ms();
while (PINB & BEAM BREAK INPUT)
PORTD &= ~(RACK MOTOR RED) ;
PORTD &= ~(RACK MOTOR BLACK) ;

}

Figure 5: MoveClawDown code that utilizes the beam break input

The function drives the rack motor’s red wire high and the rack motor’s black wire low (this is
done by enabling pins on the motor control chip, which will be discussed later in the report). This
will result in the motor moving the claw down. There is a short delay because the beam break
will always start at a location where the beam is being broken. The delay allows the beam break
sensor to move past this position. The beam break input pin is then polled until it goes low
(when the beam is broken, the output is low). This means the claw has reached the desired
destination. The wires are then both driven low to stop the motor.

The State Machine

The state machine code is the heart of the system. It determines what the robot should be doing
at every moment in time.

The state machine begins by reading data from the line sensors. Some logic (shown in Figure 6
on the next page) is then run which is specific to state 0 and state 6. State 0 and 6 are the
states in which the robot follows a black line until horizontal lines have been crossed. These
states correspond to when the robot moves from one end of the board to the other.

AvgReadAllADCValues (&data) ;
if ((data.readings[OUTER LEFT LINE SENSOR] > THRESHOLD ||
data.readings[OUTER_RIGHT_LINE_SENSOR] > THRESHOLD) &&
(state == || state == 6) && blackOn == 0)

StopLeftWheel () ;
StopRightWheel () ;
++crossCount;
blackOn = 1;

}
else if ((data.readings[OUTER LEFT LINE SENSOR] < THRESHOLD &&

data.readings[OUTER RIGHT LINE SENSOR] < THRESHOLD) && blackOn == 1)
blackOn = 0;
if (crossCount == 2)
{
++state;
++crossCount;

Figure 6: Initial State Machine Code

In both states 0 and 6, the robot must detect two horizontal lines (represented by the
crossCount variable). If an outer left line sensor is activated, this means that a horizontal line
has been crossed. The check isn’'t run again until the robot has passed the horizontal line.

Once the crossCount variable has reached two, the state progresses. The code in the actual
states merely performs line following (refer to Figure 7 on the next page).

case 0: //follow the line
if (data.readings[MIDDLEALINEisENSOR] > THRESHOLD)

{
LeftWheelForward() ;
RightWheelForward() ;

}
else if (data.readings[INNER LEFT LINE SENSOR] > THRESHOLD)

{
StopLeftWheel() ;

RightWheelForward() ;
_delay ms(MOVE DELAY) ;

}
else if (data.readings[INNER RIGHT LINE SENSOR] > THRESHOLD)

{
StopRightWheel () ;
LeftWheelForward() ;
_delay ms(MOVE DELAY) ;

break;
Figure 7: Case 0 and Case 6 code

The code follows the line by interpreting data from the inner left, middle, and inner right line
sensors. The inner left and inner right line sensors should not be detecting the line (only the
middle line sensor should be on the line). If a line sensor detects it is on the line, the wheel
corresponding to that sensor is stopped for a small amount of time to allow the robot’s trajectory
to recover. For example, if the inner left line sensor detects it is on the line (meaning the robot is
veering to the right), then the code stops the left wheel for a moment and the robot turns left
slightly to correct.

After the robot has progressed past state 0, it needs to open the claw and move forward. State
1 sets up a timer that has the robot go forward for an empirically determined amount of time
until it hits the wall (a bumper prevents damage). State 2 line follows until the timer goes off.
Once the timer goes off, an interrupt occurs that puts the robot into state 3.

In state 3, the robot’s claw closes around the rings. The code then immediately jumps to state 4.
In state four, the robot backs up until it hits a horizontal line (using essentially the same line
following code as state 0 and state 6). After the horizontal line is hit, the state changes to state
5. Refer to Figure 8 on the next page for the code.

case
//turn right until middle line sensor hits middle line
LeftWheelReverse() ;
RightWheelForward() ;
_delay ms(),

AvgReadAllADCValues (&data) ;

while (data.readings[MIDDLE LINE SENSOR] < THRESHOLD)
AvgReadAllADCValues (&data) ;

StopLeftWheel() ;

StopRightWheel () ;

turning = 0;

state = 6;
crossCount = 0;
blackOn = 0;
break;

Figure 8: Turn around code

The left wheel is put into reverse mode and the right wheel is put into forward mode. This results
in the robot turning left. There is a slight delay before the line detection code begins so that the
middle line sensor can get past the horizontal line. Data is then repeatedly read until the middle
line sensor hits a black line. CrossCount is then set to 0 to prepare for state 6. State 6 repeats
the same process of line following until two lines are crosses exactly like in state 0.

After the second horizontal line is hit, the state changes to state 7. State 7 sets up an interrupt
for state 8 which when triggered will change the state to 9. State 8 reverse line follows until the
interrupt is activated. The reverse line following is necessary because when the robot hits the
horizontal line, the claw/rings are actually on the lowest peg. The robot therefore needs to back
up so that the claw can be raised.

In state 9, the robot stops moving then moves the claw up. The robot then changes to state 10
and line follows until the second horizontal line is hit again. The state then changes to 11.

In state 11 the timer/interrupts are setup so that the robot will go forward for a specific amount of
time in state 12. After the timer expires, the state updates to state 13. In state 13 the claw opens
and the rings are released onto the pegs. A timer is then setup for reverse line following and the
state is updated to 14.

In state 14 the robot reverse line follows until the timer expires and the state is then updated to
state 15. The robot then turns around like in state 5. The robot then stops and the claw is moved
down. The state machine is then reset to allow the entire process to repeat and more points to
be collected! See Figure 9 on the next page for a pictorial representation of the whole state
machine process.

0
Follow

Twice

8

15

Down

1

6

Twice

9

2

Follow Reverse
Line Until Line Follow
Horizontal Until

Line Hit Horizontal

10

Go
Go Stop and Stop and
Backward Move i'onyardtt? Setup
For a Bit Claw Up orizonta Timer

Line

Turn 14 12

Around, Reverse Go
Stop, and for a Bit Forward
Move Claw For a Bit

3

Line Until Stop and Go
Horizontal Setup Forward C?;gg glr; i‘
Line Hit timer for a bit

4

Line Hit

11

Figure 9: The complete state diagram for the system

Wheel Drivers

The wheels are controlled by pulse width modulated square waves. The waves run at 50 HZ (a
20 ms period). Depending on the duty cycle, the wheels move forward, backward, or are
stopped. A 2 ms high pulse corresponds to moving a wheel forward, and a 1 ms high pulse
corresponds to moving a wheel in reverse. Refer to Figure 10 on the next page for the interrupt
code.

ISR(TIMER2 COMPA vect) {
switch (motorState)
{ //16 MHz, 1024 prescaler -> 64 uS periood

case
OCR2A = ;
TCNT2 = 0;
++motorState;
break;
case
OCR2A = 5;
TCNT2 = 0;
++motorState;
break;
case 2: //2 ms pulse
if (leftWheelState == LEFT_WHEEL_FORWARD)
PORTD |= LEFT WHEEL PIN;
if (rightWheelState == RIGHT WHEEL FORWARD)
PORTD |= RIGHT WHEEL PIN;
if (leftWheelState == LEFT_WHEEL_STOP)
PORTD &= ~(LEFT_WHEEL_STOP);
if (rightWheelState == RIGHT WHEEL STOP)
PORTD &= ~(RIGHT WHEEL STOP) ;
OCR2A = §;
TCNT2 = 0;
++motorState;
break;
case 3: //1.5 ms pulse
OCR2A = 83
TCNT2 = 0O;
++motorState;
break;
case 4: //1 ms pulse
if (leftWheelState == LEFT WHEEL REVERSE)
PORTD |= LEFT WHEEL PIN;
if (rightWheelState == RIGHT_WHEEL_REVERSE)
PORTD |= RIGHT WHEEL PIN;
OCR2A = ;
TCNT2 = 0;
++motorState;
break;
case
PORTD &= ~(LEFT WHEEL PIN | RIGHT WHEEL PIN) ;
motorState = 07
break;

Figure 10: Motor driving ISR Code

10

The code uses a 8 bit timer. OCR2A represents how many timer ticks will occur before
generating an interrupt. The timer has a 1024 prescaler for the 16 MHz clock, which means that
the timer will tick every 64us. This isn’t exact in practice (most likely because of interrupt
overhead), so the value of OCR2A to result in 18ms was determined with an oscilloscope.

The states orchestrate the interrupts so that one occurs at 18ms, 18.5 ms, 19 ms, and 20 ms.
Keep in mind that because the timer is only 8 bits, there’s an extra interrupt before the 18 ms
one. The wheel state variables determine when the signals go high (if at all) at each of the
points. So depending on the wheel state variables, the pulse width may be 1 ms, 2 ms, or no
pulse. See Figure 11 below for a pictorial representation of this description.

-

0 1 2 3 4 5

Figure 11: Pictorial description of where interrupts occur on the waveform

Each number in the picture corresponds to a state in Figure 10 on the previous page. The wave
goes high at state two in the picture, but it's also possible that the wave could go high at state
three, four, or not at all depending on the wheel state variables.

Rack Motor Driver

The rack motor is simple from the software’s perspective (the complexity is in the motor control
circuit which will be described in the hardware section). The motor has a VCC line and a ground
line. The motor needs to move up and down however, not just up. This accomplished by
changing which wire is ground and which wire is vcc. So all the code needs to do is assign the
correct values to the wires depending on whether MoveClawUp() or MoveClawDown() is called.

Claw PWM

The claw PWM works in almost the exact same way as the wheel control code. Please refer to
Figure 12 on the next page.

11

void FullyOpenClaw ()
{
OpenClaw () ;
_delay ms()
StopClawOutput () ;

void OpenClaw ()
{

timerlBehavior = OpenClawISRHandler;

TCNT1 = 0;
OCRIA = 31;
TIMSK1 = (1 << OCIElR2);

void OpenClawISRHandler ()

{
if (openClawState == 0)
{

PORTB |= PWM PIN;
OCR1A = ;

TCNT1 = O;
openClawState = 1;

}

else if (openClawState ==

{

PORTB &= ~ (PWM PIN) ;
TCNT1 = 0O;

OCR1A = ;
openClawState = 0;

void StopClawOutput ()
{

TIMSK1 &= ~ (1 << OCIE1lA);

Figure 12: Open Claw Functions

When FullyOpenClaw() is called, OpenClaw() is called and the code is delayed. OpenClaw()
starts the PWM, the delay is how long the PWM will occur (or how long the claw should “open”
for), and finally the StopClawOutput() call disables the interrupt for the PWM and the claw stops
opening. This code is somewhat less complex than the wheel code because it uses a 16 bit
timer instead of an 8 bit one. There’s also no pulse width variability.

The interrupt drives the claw pin high for 2 ms and then drives it low for 18 ms. This process
then repeats. The CloseClawVersion is exactly the same except for the timer values which
define how long the pulse is high (In order to close the claw the pulse is high for 1 ms and low
for 19 ms).

Misc Information About Code

As a note, all the timer1 ISR does is call a function pointer called timer1Behavior(). This function
pointer is frequently updated throughout the code to alter the behavior of the ISR for whatever
purpose the timer is being used for. This is necessary because the Arduino Uno has only one
16 bit timer.

Also, there is a mention of a serial library in the code. This is merely for debugging purposes.
The serial API allows information to be sent from the uno to a computer terminal over a serial
cable.

Hardware

The high level hardware diagram for the system is shown in Figure 13 below.

Left
Enable VCC

Outer Left RiarT Motor Rack and
Line Sensor £ Igbl Control | gND Pinion
——=N80%€ | Chip Motor
Inner Left
Line Sensor
Output
PWM
Middle Line 5 wires to glaw
S ervo
ensor ADC ports)
Arduino
Inner Right |T° Dl'?,“ar't Output
Line Sensor nput 7o PWM | Left Motor
Servo
Outer Right
Line Sensor Output -
PWM Right
Motor
Servo

Beam
Break
Receiver

Figure 13: High Level Hardware Diagram for the system

The system works by taking line sensor data and beam break data and then controlling the
various servos and motors based on the current inputs and previous inputs.

13

Line Sensors

The schematic for the line sensors is shown in Figure 14 below.

VC|C GND VCC GND VC|C GN|D VCC GND VCC GND
Outer Left Inner Left Middle Inner Quter
Line Line Line Right Line Right Line
Sensor Sensor Sensor Sensor Sensor
Analog Analog Analog Analog Analog
Port 0 Port 1 Port 2 Port 3 Port 4

*Note that VCC refers to
the component voltage
supply, not the Arduino
supply

Figure 14: Line Sensor Array Schematic

The line sensors are powered by the 6 V supply rail (the power system will be described later in
the report). Each line sensor then outputs an analog value to an analog in port on the arduino.
These values are then handled by software.

Beam Break Sensor

The beam break sensor schematic is shown in Figure 15 on the next page.

14

VCC GND VCC GND

| | Infrared | |

Beam Beam Beam
Break » Break
Emitter Receiver
Arduino
Pin 8

Figure 15: Beam break sensor schematic
There are two physical halves to the sensor. The beam break emitter creates an infrared beam
and the beam break receiver looks for an infrared beam. If the beam is unbroken and the

receiver recognizes an incoming beam, the output from the receiver will be high. If the beam is
broken, the output from the receiver will go low.

Rack Motor

The schematic for the rack motor is shown in Figure 16 below.

Motor Control Chip

0 = 16
VCC Y2 EN \VCC1 VCC
Pin7 1A an H— e

Rack Motor rauino

211y ay 4 Ne
GND 3{eND GND 3 GnD
GND 41 GND GND 2 GnD
5 oy 3y :; NC
o6 6| on 3A 5 NC
Arduino vee Lvce2 3/4 EN GND

*NC means not
connected

15

Figure 16: Rack Motor Control Schematic
The rack motor cannot be directly driven by the Arduino because it will draw more current than
the arduino can supply. This problem is circumvented by using a SN754410NE motor control
chip. A separate voltage supply is connected to the chip. When the enable pin is driven high
(and the enable for the corresponding side of the chip is high), the supply will be passed through
the corresponding output pin. In this way the motor can be controlled by the arduino without
exceeded current draw capabilities of the board.

The chip is fairly simple to use. Voltage supplies are connected, the 1/2 , %, or both enables are
driven high. The “A” pins in the schematic represent the enable pins (notice that the arduino

pins are connected to these). When an enable goes high, the output (or “Y” pin) will go high as
well, but with the voltage supply connected to the chip.

Servos

The schematic for the servos (full rotation) is shown in Figure 17 below.

VCC GND VCC GND VCC GND
Left Motor Right Motor Claw Motor
Arduino Arduino Arduino

Pin 4 Pin 5 Pin 9

Figure 17: Servo Schematic

The servos are controlled through one wire. The duty cycle of the input wave determines which
direction they rotate, as discussed in the software section.

16

Power Circuit

The schematic for how the system is powered is shown in Figure 18 below.

Peripheral VCC
V Switch Rail
6 V Battery Suppl
attery supply GND
GND GND
Rail
Arduino
GND
9 V Battery Suppl
Y SUpPY V_Ii Switch Power In

Figure 18: Power Control Circuit
The system requires two separate power supplies due to current output limitations on the
Arduino. The system originally used only one power supply, but the arduino could not supply
enough current for the motors. Therefore, a second pack was added from which peripherals are
powered. Both supplies have a switch attached so that they can conveniently be turned on and
off.

Mechanical Design

Claw

The mechanical drawing for the claw is shown in Figure 19 on the next page.

17

Claw Top View

Extender Actual
Plates Claw

Foam ~

Layer >

Layer

Figure 19: Claw Mechanical Drawing

The gripping portion of the claw the team purchased was only about a fourth of an inch wide,
which wasn’t wide enough to properly grip all of the rings. Therefore, the team went to the
machine shop and made custom extender plates out of sheet metal. These plates allowed the
claw to grip the rings properly (even if the claw wasn’t exactly aligned!).

Also, the claw had difficulty grasping the rings with just the metal as the contact point.
Therefore, a layer of compressible foam was added with a layer of gripping material on top of
that. Note that at certain weak grip points extra foam had to be added to compensate. This was
done empirically during the testing phase.

18

See Picture 1 and Picture 2 below for the top and side view of the claw respectively.

Picture 2: Side View of the Claw

19

Rack and Pinion

The mechanical drawing for the rack and pinion is shown in Figure 20 below.

Rack And Pinion Rack and Pinion
Side View Front View
Claw
Mounting
] Plate
Motor > Beam Break Screws that
Sensors beam break
sensors detect

Sliding /

Bracket

Figure 20: Rack and Pinion Mechanical Drawing

The rack and pinion moves the claw up and down. Note that the team decided that for simplicity
we would only deposit rings on the highest vertical peg (hence only two “detection” screws for
the beam break in Figure 20 above. A motor is attached to a sliding bracket. The motor turns a
gear in the sliding bracket that is attached to a toothed rail. Therefore, when the gear spins the
the sliding bracket will move up or down. Beam break sensors are attached to the sliding
bracket so that when the bracket slides past a screw the software can detect it.

Note the claw mounting plate attached to the sliding bracket. The bracket is necessary because
of the initial maximum height of twelve inches at the start of the competition. The combined
height of the robot base and the bars the sliding brackets move on is twelve inches. The claw
mounting plate extends upwards, so that when the sliding bracket is at the top screw, the claw is
actually higher than twelve inches and can therefore deposit rings on the top most vertical peg.

20

Most of the actual height requirements were determined empirically. Initial measurements were
determined, however in practice they were somewhat off. When this was the case, the
components were taken back to the machine shop and then altered accordingly.

See Picture 3 below for an actual photo of the rack and pinion system.

il

Picture 3: The Rack and Pinion System

21

Front Bumper/Line Sensor Mount

The mechanical diagram for the bumper and line sensor mount is shown in Figure 21 below
(note that the whole front apparatus, not the base/wheels, was custom made).

Base Side View

1_\ Line Sensor

Bumper
Mounting
Plate
Line Sensor Mounting Line Sensor Mounting
Bracket Top View Bracket Front View
[o]
Line
Sensors

\

Line Ground

Sensors

Figure 21: Mechanical Drawings for the front bumper
The front bumper is necessary so that when the robot drives forward, the back of the claw does

not hit the PVC pipe. Otherwise, the robot would try and go forward too much and potentially tip
over.

The line sensor mount keeps the line sensors at an appropriate height above the ground. They
have a small range in which they work optimally, so the metal mount makes sure they are
always at the correct height.

See Picture 5 on the next page for an actual picture of the front of the robot.

22

Picture 5: The Front of the Robot

Also notice the base plate and wheels shown in Figure 21 on the previous page. The base was
purchased and the wheels were given to the team from our advisor. A metal plate was attached
to the back of the base on risers to mount the electronics (the plate was insulated with electrical

tape) and the arduino battery pack. The peripheral battery pack was mounted under this plate.
See Picture 6 on the next page.

23

Picture 6: Battery Pack Locations on the Robot

Budget and Bill of Materials

The project didn’t have a defined budget, however the goal was to make the robot as cheap as
possible. Unfortunately, the components from Vex Robotics (the rack/pinion system without the
custom components we made) were quite expensive, driving the cost up significantly. Several
failed design ideas were examined as well, again driving the cost up somewhat. Some
components also had to be replaced after failures. The total cost for the project ended up being
$338.02 dollars including all of the previously mentioned costs. See the Bill of Materials in Table
1 on the next page.

24

Component

Analog Line Sensor
Robotic Claw
Chassis (Original)
Full Rotation Servo
Digital Line Sensor
Linear Motion Kit
Advanced Gear Kit
Shaft collars

Drive Shafts

2-Wire Motor

Sheet Metal

Chassis (New)

Sponges
Grip Material

Misc Electrical
Components

Batteries

Course Test Materials

Screws/Nuts

Table 1: Bill of Materials

Description

Senses lines

Claw that can grab
Robotic Chassis

Servo to move claw
Digital Line Sensor
rack/pinion components
rack/pinion components
rack/pinion components
rack/pinion components
rack/pinion components

Metal for custom
components

New chassis after old one
broke

Sponges for claw padding
Grip material for claw

Switches, wire, solder,
caps, etc

batteries for peripherals

PVC, Board, Electrical
Tape, etc

Screws/Nuts/Washers

Quantity Price Per

Unit
5 2.95
1 14.95
1 14.95
1 13.95
2 2.95
1 24.99
1 19.99
1 7.99
1 5.49
1 14.99
1 19.99
1 14.99
1 8
1 5
1 60
3 14.03
1 30
1 20
Total:

Total
Cost

14.75

14.95

14.95

13.95

5.9

24.99

19.99

7.99

5.49

14.99

19.99

14.99

60

42.09

30

20

338.02

25

Lessons Learned

Mechanical Aspects of Parts and Their Integration

It would have been beneficial to pay attention to some of the structural properties of the parts
and how they interacted. For example, the rack and pinion was placed on part of the base that
allowed the base to oscillate when moving. After many of these oscillations occurring during the
testing phase, the base eventually cracked and the team had to purchase a new one. Paying
attention to issues such as this would have saved on the overall system cost.

Using appropriate wires and heat shrink

At the start of the project the system used purely solid core wires. Solid core wires are nice for
plugging into an Arduino, but they break very easily. Early on, quite a few wires were breaking
until we switched to stranded core. We also had many issues with solders breaking (even with
stranded core). Once we started heat shrinking the solder joints, joints stopped breaking. Taking
the time to make proper electrical connections is critical.

Pay more attention to power usage

During the project, we didn’t pay a whole lot of attention to the systems power usage. In the
end, Steve was eating through batteries at an alarming rate. It would have made more sense to
have a battery bank that wouldn’t die as quickly. Battery costs add up quickly, so it pays off to
choose an appropriate power source.

Line sensors aren’t great for detecting wheel revolutions

We thought it would be useful to be able to precisely calculate the distance wheels moved.
Therefore, we covered the wheels in white paper and drew black lines at specific intervals. A
digital line sensor hovered over the wheel to detect these lines, and the number of lines
detected could be translated to distance since we knew how far the lines were apart. In practice,
however, the line sensors had difficulty detecting the lines because the wheels were moving too
fast. This is still a cool idea (suggested by our advisor), but a more appropriate detector would
be needed.

26

Don’t use claw

We decided to use a claw at the start of the project (because it seemed like the most obvious
choice), however it caused difficulties later on. For example, the claw position had to be
extremely precise so that when opening the claw wouldn’t hit adjacent pegs. Also, it had
difficulty grasping the rings (we had to do a significant amount of fine tuning to get it to work).
Many other teams used a stick attached to a servo and that seemed to work much better.

Use better motors

The initial motors we had burnt out fairly quickly. On the day before the competition we had to
swap them out for new ones (that used a different control scheme) and write the drivers for
them. So it pays to understand how much a system’s motors can handle and whether the
motors are appropriate for how the system uses them.

Bumper button

When the robot went forward to either grab or deposit rings, it would go forward for a fixed
amount of time and then stop. This meant that the bumper would hit the wall and the robot
would still be trying to go forward (which in hindsight may have contributed to the original motors
burning out). Attaching a button to the front that detected when the bumper hit the wall would
have avoided this problem.

Designed for simplicity and reliability, maybe too simple

We came up with several designs at the start and decided to pick the simplest one. Our robot
grabbed the rings from the middle horizontal peg and deposited them on the top vertical peg.
Nothing particularly fancy. We figured it would be smarter to pick something that would be more
reliable and more practical to implement (since we did a lot of our work from scratch and not a
kit). In retrospect though, it cost us somewhat. With the knowledge we have know, it would have
been nice to be able to deposit rings on all of the vertical pegs and also to place a ring on the
middle peg. That would have increased the number of points we received significantly.

27

Conclusion

Steve did significantly better than we expected. He came in fourth place, and almost came in
3rd (he was only behind three points that round, the match was 54-51!). Designing a robot is no
easy task, primarily because it encompasses various fields such as mechanical engineering,
electrical engineering, and computer engineering. Knowledge from all of these fields has to be
pulled together to create a complete and functioning system. This is one of the reasons why
robotics is so great, and why it was a pleasure to compete in Roborodentia.

28

Appendix A: Code

For the code in its entirety, please visit the following GitHub Repository:

https://qithub.com/jtdykstra/SeniorProject

29

https://github.com/jtdykstra/SeniorProject

