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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

COMPENSAÇÃO DE INCERTEZAS DE MODELAGEM EM ESTIMAÇÃO DE

DANO POR ABORDAGEM BAYESIANA

Gabriel Lucas Sousa da Silva

Fevereiro/2018

Orientador: Daniel Alves Castello

Programa: Engenharia Mecânica

Esta dissertação apresenta uma aplicação do Approximation Error Approach

(AEA), no contexto de Structural Health Monitoring (SHM). A abordagem proposta

baseia-se na aplicação da Teoria Bayesiana de probabilidade na solução de problemas

inversos. Tal abordagem permite corrigir a resposta prevista por um modelo através

da compensação por um erro de modelagem associado usando uma formulação

matemática que é relativamente simples.

A aplicação de diferentes distribuições a priori para os parâmetros

considerados nas simulações necessárias para o AEA é investigada. Resultados

obtidos utilizando-se AEA e uma abordagem de mı́nimos quadrados são comparados.
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COMPENSATION OF MODEL UNCERTAINTIES IN DAMAGE

IDENTIFICATION BY MEANS OF THE APPROXIMATION ERROR

APPROACH

Gabriel Lucas Sousa da Silva

February/2018

Advisor: Daniel Alves Castello
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This work presents an application of the Approximation Error Approach

(AEA) in the context of Structural Health Monitoring (SHM). Based on the Bayesian

framework of statistical inversion, this approach allows one to compensate for errors

caused by incorrect modeling of a physical system while still providing a relatively

simple mathematical formulation. The application of different prior distributions of

the unknown parameters is investigated. The AEA is compared to a traditional

least-squares approach consisting of a forward model unable to compensate for

modeling related errors.
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Chapter 1

Introduction

1.1 Motivation

There is a consensus among authors (see Section 7 of reference [2] and

references therein) that model uncertainties can successfully hinder identification

strategies, thus leading to the need for means to counteract their effects.

In the context of Structural Dynamics, one can talk about the concept of

resonance frequency of a system. Here we use this concept to exemplify and make

a brief discussion about the effects of uncertainties in inverse analysis.

For a damage state characterized by a reduction in stiffness, a damaged

structure will have lower frequencies associated with it than those correspondent

to an undamaged one.

We refer to Fig. 1.1 for this discussion. Consider that, for the inversion,

one uses a model that is believed to be an exact representation of reality in every

aspect other than an uncertain parameter, and that the only free parameter is the

one related to the damage state of the structure, or simply the damage parameter.

Therefore this model is unable to capture the differences in frequency caused by

the uncertainties. Clearly, under these conditions, even this model with only one

source of uncertainty is unable to produce consistent results: the model is only able

to identify correctly two states (the undamaged blue and damaged red lines), for

a reference value of this unknown variable, and since the damage is the only free

variable, in order to match the measured features, in this case the frequency, it must

find a specific, not necessarily correct, damage state.

1



Figure 1.1: The effects of uncertainties in the 5th resonance frequency of a plate
are illustrated by means of overlapping histograms: the blue bars represent the
undamaged structure and the red bars, the damaged one.

Fig. 1.1 presents the change in (the 5th) resonance frequency due to damage

and compares it to that caused by unknown boundary conditions – unknown in this

context refers to what is modeled incorrectly (but assumed right) versus what is

actually present.

The key concept of this discussion is that the features used in the inversion

process might contain corrupted information (with respect to the model) due to

some uncertainties, thus leading to erroneous identification of the damage state.
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1.2 Objetives

This work is concerned with the handling of model uncertainties in Structural

Health Monitoring (SHM). It is not concerned, however, with the elaboration of

identification strategies nor with comparison between different strategies presented

in literature.

With the intent of mitigating the effects caused by modeling errors, we explore

the application of a technique known as Approximation Error Approach (AEA) [1].

This technique has been shown to be a feasible way to compensate for discretization

errors, uncertain boundary data and geometry, as well as physical modeling errors in

a complex set of problems (see Section 1.3.3). It is relatively simple when compared

to other strategies to compensate for modeling errors.

1.3 Literature Review

In this section, a brief literature review on vibration based techniques is

presented. For a more comprehensive review, we refer to the works by FRISWELL

[2], SIMOEN et al. [3], FARRAR and WORDEN[4], FARRAR et al. [5], CARDEN

and FANNING [6], MONTALVÃO et al. [7], DOEBLING et al. [8].

1.3.1 An Introduction

In this work, we chose to follow the definition given by FARRAR and

WORDEN [4], that is to say damage can be defined as changes introduced into a

system that adversely affect its performance. Implicit in this definition is the

existence of a reference state of the system, often its undamaged one, to which

comparisons can be drawn. Therefore, changes in material properties and/or

geometry as well as boundary conditions fall into this definition.

Damage is, in anyway, a defect that originates at the material level and grows

at different rates depending on the operational conditions – corrosion, impacts, etc.

– leading to a defect at the component level, and finally system (structural) level.

The implementation of processes to identify and monitor the health of a

structure is known as Structural Health Monitoring (SHM) [4]. It consists of

extracting pertinent data from the structure and posterior identification of its

current state, often related to answering questions such as “Is it necessary to

perform maintenance ahead of schedule?” or “ Is the structure currently capable of

continued operation?”. In this sense, it is clear the need for monitoring in various

industrial applications in to order determine the safety and reliability of their

systems.

3



In the context of SHM there are four major concepts: operation evaluation;

feature selection; data acquisition and analysis and model development.

Briefly speaking, operation evaluation concerns itself with the prior evaluation

of possible implementation issues, one needs to answer questions like: “Is it worth to

implement SHM?”, “What needs to be monitored and how?”, “Are there limitations

to online data acquisition?”, “Is there a scenario that is of major concern?”, etc.

Feature selection is the stage in which characteristics of the structure are

selected to be measured in order to estimate damage: vibration data, frequency

response, etc. Data acquisition is closely related to feature selection: excitation

methods, number of sensors, their types and locations, and all the remaining

necessary hardware.

Finally, model development : the development of algorithms that utilize the

selected features in order to differentiate between damaged and undamaged states

of a structure. FARRAR et al. [5] point out that most of the works in literature

do not make use of statistical models to asses if changes in the selected features are

statistically significant to imply damage, and such is the case of this dissertation.

One should seek reference [5] for a more in depth discussion.

RYTTER [9] proposed a leveled approach to damage assessment: detection

or identification; localization; extension or severity ; and prognosis. Following this

order, increased knowledge of the damage state. The application of finite element

model based approaches allows for the assessment of presence of damage, location

and quantification of its extent. Prognosis requires the damage mechanism to be

determined, which might be possible using hypothesis testing among candidate

mechanisms [2]. For more on damage prognosis, see reference [10].

The damage identification problem fits in the broader category known as

inverse problems. Due to the ill-posed character of inverse problems, they are

usually recast as optimization problems by which one aims to find an appropriate

estimate of the desired parameters that best fits the data, usually in a least squares

sense [2, 11–15]. The “data” stands for measurements of the selected features.

FRISWELL [2] presents a review of the inverse methods commonly used in

damage identification. For a general review of optimization techniques used in

inverse problems of parameter estimation and function estimation, as well as

regularization techniques, see the review by COLAÇO et al. [15].

Most works in literature are found in the framework of Finite Element Model

Updating (FEMU), which can use either parametric or direct methods [2]. Model

updating is the process by which one adjusts the parameters of some model. In direct

methods, the goal is to reproduce the measured data by controlled chances to the

stiffness matrix; while in parametric based methods a set of physically meaningful

parameters can be selected and then estimated. Such approaches are suited for

4



dealing with erroneous assumptions for model parameters, however other typical

modeling errors such that idealizations of the physical system and those caused by

numerical discretization cannot be addressed [16].

In contrast, there are techniques that do not necessarily require the use of

computational models, such as those based on the use of Neural Networks [6].

Although such techniques require vast amounts of data to be available for the

training of the Network, in order to allow it to recognize and distinguish between

damaged and undamaged states. In this dissertation, we consider the use of a

model based approach.

Most works in literature are based on the use of modal features, such as

resonance frequencies, mode shapes and/or their derivatives (mode shape

curvature), in particular see references [17–27]. Other methods include energy

based indexes (strain energy) and the use of Wavelet Transforms [6].

However, there are relatively few works concerning the use of temporal data

for damage identification, a fact that is recognized by some authors such as LINK

and WEILAND [28]. They point out that the use of data from impact testing

carries high-frequency information, which enhances the estimation of even localized

damage. FRISWELL [2] further elaborates that the problem with low frequency

data is relative size difference between the excited modes’s spatial wavelengths and

the extension of damage itself.

FU et al. [29], in their work concerning the use of time series as a feature

for the identification, studied the collocation of sensors, total time and time of

excitation. They found out that an increased number of measurement points and

longer measurement time improves the damage identification. Tests performed prior

to setting up the damage identification inverse problem presented in this dissertation

are in agreement with the findings of FU et al. [29]. In other words, this is the

optimal experiment setup [13, 14] that must be performed (feature selection and

data acquisition) in order to create conditions that allow for the identification of the

structure’s integrity state.

Other works where the use of time series data was considered are those by

PEREIRA et al. [30], CASTELLO et al. [31].

In [28, 29], sensitivity based techniques were used in order to drive an iterative

procedure to solve the inverse problem. In regards to regularization techniques, both

works used Tikhonov regularization.

GRIP et al. [27] used Total Variation (TV) regularization, which is an

edge-preserving method with many applications in image processing techniques.

They [27] compared the use of TV regularization with use of damage functions

proposed by TEUGHELS and ROECK [22], and presented formulas for a

second-order differentiable approximation of the TV regularization.

5



While TEUGHELS and ROECK [22] use a Gauss–Newton method with trust

region to solve the minimization problem, in fact this, in conjunction with the use

of the proposed damage functions, which effectively reduces the number of unknown

parameters, provides an alternative to classical regularization methods. They also

mention the possibility of using a two stage procedure to identify damage.

An analogous multi-stage procedure is presented by LEE and SHIN [26], who

proposed to iteratively remove undamaged areas from the identification process as

an alternative to regularization. Another interesting aspect of their investigations

was the use of an analytical model for the dynamics of the damaged plate. Such

mode is based on series expansion into an orthogonal functions and defines a damage

parameter dependent on the mode shapes.

The success of model updating techniques is strongly based on the quality

of the damage model used and its ability to describe the changes due to damage

[2, 25, 28], for this same reason, knowledge of the damage mechanism is specially

critical to prognosis. Thus a key aspect of the application of inverse methods is the

model used to described the damage.

A commonly used model is a damage state characterized by a reduction in

stiffness of the structure, such as in the works of CHOI et al. [17], MOAVENI and

BEHMANESH [24], LEE and SHIN [26], FU et al. [29], who directly relate this

to changes in the Young’s Modulus. In other works, such as those by CORRÊA

et al. [18], CASTELLO et al. [19], STUTZ et al. [20], PEREIRA et al. [30] and

CASTELLO et al. [31], a “global cohesion” variable, which affects the whole of

what can be classified as stiffness, is defined. For FE models this cohesion variable

quantifies the structural integrity by directly modifying the FE stiffness matrices.

To summarize, most of the found literature consists of works in the FEMU

framework, and among them most consider the use of modal features to identify the

damage state. In this dissertation, the selected procedure was to use time series data

in conjunction with a parametric based approach to estimate a continuous damage

field such as in references [18–22, 24, 29–31], even though in this work the damage

field is simplified (localized), thus allowing for a limited set of parameters to be used

in the identification problem.

As mentioned by FU et al. [29], the problem of damage identification in plates

is relatively new, with few works still found in literature. Between these, there

are those cited directly in [29], as well as references [17, 18, 25, 26] of this work.

For this reason, we also consider the inverse problem of damage identification with

uncertainties in plates.

6



1.3.2 Dealing with Uncertainties

BOLLER [32] mentions it is not necessary to localize and estimate damage

with a high level of accuracy (specially because such an accurate description would

require knowledge of the damage mechanism [2]), he states that a better approach

is to roughly locate the damage and with the help of traditional Non Destructive

Testing (NDT) techniques one may perform a closer analysis.

In practice, however, the reliance on models to predict the behavior of the

monitored system is one of the major drawbacks of model based approaches as

stated by FRISWELL [2] and DOEBLING et al. [8]. There are always errors related

to measurement data and physical/mathematical modeling of a system, and so it

happens that many times these modeling errors can cause changes to the predicted

features that are of an equal or greater order of magnitude than those changes caused

by damage, which in turn make the solution of the inverse problem more difficult

and can even render the estimated results useless, this statement is corroborated by

findings such as those in references [3, 24, 25] (see Section 1.1, for an example).

Modeling errors include (but are not limited to) environmental and other

non-stationary effects (such as temperature, humidity, etc), unmodeled nonlinear

behavior, incorrect material properties, discretization errors, geometry

approximation, etc. There is still the matter of the damage mechanism itself

[2, 25], for example composite materials can experience many different modes of

structural damage, such as delamination, fiber matrix debonding, fiber breakage,

fiber pull-out and matrix cracking, which further complicates the damage

identification problem when in conjunction with the structural response scatter

caused by uncertainties in material properties.

Different methods were considered in literature to deal with some of these

errors. SIMOEN et al. [3] wrote an extensive review paper showcasing the two most

common approaches to compensate for modeling errors in the FEMU framework: the

non-probabilistic fuzzy approach and the probabilistic one, based on the Bayesian

framework. The sources of modeling errors are discussed and examples are worked

out comparing both approaches to the traditional (deterministic) FEMU.

Most of the first works concerning the Bayesian approach for FEMU stems

from the works by BECK and KATAFYGIOTIS [23] and by VANIK et al. [33]

who showed that the Bayesian approach allows for updated probabilities of model

parameters and damage measures. To exemplify other methodologies for dealing

with model uncertainty, consider the following works by CHANDRASHEKHAR

and GANGULI [25], MOAVENI and BEHMANESH [24, 34], BEHMANESH et al.

[35], NANDAN and SINGH [36, 37] and LEE et al. [38].

7



MOAVENI and BEHMANESH [24] applied the concepts of SHM to the

Dowling Hall Footbridge, located at the Tufts University campus in Medford,

Massachusetts. Modal data was utilized to feed the FEMU algorithm, to deal with

data variability caused by fluctuating temperatures, a static polynomial model was

used to compensate the effects in the measured natural frequencies.

BEHMANESH et al. [35] presented the mathematical background for the

Hierarchical Bayesian Model Framework for dealing with modeling errors in

FEMU, and a simple example is considered: the approach is tested for uncertainty

quantification of model updating parameters and probabilistic damage

identification. This approach is similar to the one presented in this text, in the

sense that a large number of numerical simulations is necessary and a modified

likelihood metric is constructed.

BEHMANESH and MOAVENI [34] continued the work on the Dowling

Footbridge now considering both ambient temperature and excitation amplitude in

a Hierarchical Bayesian model framework.

In their two-part paper, NANDAN and SINGH [36, 37] performed a series of

numerical simulations concerning the Thermoelasticity problem to evaluate the

changes in modal features caused by seasonal temperature variations, solar

irradiance and wind speed (convection boundary condition), considering changes in

material property due to temperature and thermal gradients. These experiments

are based on environmental data recorded at a site in North Carolina, USA, with

strong seasonal and diurnal trends in temperature. They found out that these

variations caused significant changes to the observed modal features, therefore to

compensate the errors due to environment modeling they applied a filter to

capture the low-frequency seasonal trends and a subspace system identification

approach. Their main concern was to establish an approach to relate modal

frequency and bridge body temperature.

CHANDRASHEKHAR and GANGULI [25] performed a study of the

uncertainty effects on damage parameter (delamination) and selected feature, thus

observing their negative impact on damage assessment. In order to deal with it, a

fuzzy logic based methodology was applied to deal with the uncertainties in

material properties. Fuzzy approaches have the advantage of not needing to be

trained with vast amounts of data such as Neural Network approaches.

LEE et al. [38] used Neural Networks to compensate for modeling errors. A set

of modal variables with low sensitivity to modeling errors was selected to train the

algorithm and reduce the effects of errors in the baseline finite element model used

to generate the training patterns. An algorithm to compensate for measurement

errors was also considered. The method was tested in a lab environment with good

results, and then in a real life scenario with satisfactory results.
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1.3.3 The Approximation Error Approach

This work’s goal is to introduce to the SHM community a tool for dealing

with modeling errors in general: the Approximation Error Approach (AEA), which

was developed originally by KAIPIO and SOMERSALO [1] to handle model

reduction errors. Mostly used in clinical applications as tomography, where the use

of approximate models is desirable to reduce the computational burden necessary,

while a reliable and fast diagnosis is still required. Given the extent of this

author’s knowledge, thus far this approach has not been applied to SHM.

KOLEHMAINEN et al. [39] used this approach to rule out the influence of a

distributed parameter that appears in Diffuse Optical Tomography that is

uninteresting, even though it is of consequence when considering the inverse

problem. In this paper, a considerably reduced numerical model was also

considered.

NISSINEN et al. [40] adapted the AEA to compensate for the modeling errors

caused by unknown body shape in Electrical Impedance Tomography, that is the

error caused by having to map the thoracic cavity cross section to a reference domain,

without actually knowing the original cross section. While in [41], the AEA was

applied to compensate for unknown contact impedance of the utilized sensors.

MOZUMDER et al. [42] applied the same method for the Optical Tomography

problem, compensating for the modeling errors caused by considering a reference

cranial cross section, while KOULOURI et al. [43] used this approach to alleviate

the errors present in the solution for the source problem of the Poison Equation

when an approximate model for the domain is employed.

TARVAINEN et al. [44] used the AEA to compensate modeling errors

stemming from the use of a qualitatively incorrect physical model, while also using

a highly reduced forward model for the inverse problem.

Applications similar to that of reference [44] are found in the works by

COTTA [45], ORLANDE et al. [46] and LAMIEN and ORLANDE [47], all of

which considered the application of the AEA to the Markov Chain Monte Carlo

(MCMC) technique. For large scale problems, limitations are imposed to the

number of states of the Markov Chain in order to obtain results in a feasible time,

thus the need for surrogate or reduced models. In the aforementioned works, the

particularities of associating the AEA with MCMC technique.
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COTTA [45] was concerned with the use of waste heat to enhance the

production of biodiesel. In terms of the inverse problem, the estimation of the

kinetic constants of the biodiesiel synthesis reaction, which is modeled as a

reaction-convection-diffusion equation, was considered using 3D, 2D and 1D

models for the forward model. In addition to a considerable time reduction, the

AEA furnished better estimates of the parameters as well as better predictions

than simply using the reduced models.

ORLANDE et al. [46] considered the inverse problem of estimating the heat

flux at the boundaries of a plate. A reduced model consisting of a one-dimensional

approximation of the heat conduction problem with an improved lumped formulation

(that takes into account gradients across the thickness of the plate) and constant

properties is used instead of a complete three-dimensional one. The authors found

that the AEA outperformed the Delayed Acceptance Metropolis-Hastings (DAMH)

algorithm, which is one technique used to deal with reduced models in MCMC, in

terms of computational time required. However, an increase in time was observed

when compared to the case where only the reduced model was used. Also, the AEA

produced lower mean square error of the estimated field in comparison with the

DAMH, which does use the complete model at some point.

LAMIEN and ORLANDE [47] considered the inverse problem of estimating

thermal conductivity and volumetric heat capacity of a fluid using a standard probe

technique. The AEA was used to compensate for model errors caused by the use of

a purely conductive model for the fluid domain instead of a convective one.

This idea that some variability can be accounted for is of interest for scenarios

where practically the same problem needs to be solved many times, with slight

variations, such as in the medical field, with the Optical Tomography problem, or

in the context of mechanics with the inspection of pipe assemblies or trusses, where

every part is similar, except for variations in their fixations that could be substantial,

or with composite plates and the fluctuation of material properties therein.

The approximation error approach was shown to be a feasible way to

compensate for discretization errors, uncertain boundary data and geometry, as

well as physical modeling errors in a complex set of problems. Due to its

theoretical simplicity and computational cost reduction (when compared to other

approaches to compensate for modeling errors) we were motivated to apply it to

SHM.

10



1.4 Outline

This text is organized as follows:

In Chapter 2, the mathematical formulation of the Approximation Error

Approach is presented in parallel with the Bayesian framework for inverse

problems. Computational considerations for the implementation of the method are

also presented.

In Chapter 3, a case study consisting of estimating parametric damage field

is presented. The general concept of direct problem is briefly discussed, and the

particular directly problem of this chapter is presented. Next, the general concept

of inverse problem is briefly described, and the particular inverse problem of this

chapter is presented. At the end of the chapter, the details of how data is collected

for the inverse problem are discussed.

In Chapter 4, the First Order Shear Deformation Theory for plates is briefly

presented. The direct and inverse problems for damage identification in plate

structures are described. At the end of the chapter, the details of how data is

collected for the inverse problem are discussed.

In Chapter 5, the inverse problem is solved by both the “Traditional” least

squares parameter estimation approach (see [13]) and the AEA. This chapter

describes the general aspects of setting the parameters for the AEA and

calculating its statistics for the problems discussed in Chapters 3 and 4.

In Chapter 6, the Adjoint Formulation is applied to the damage identification

problem of a plate structure to efficiently calculate the gradient used in

gradient-based minimization techniques. However, due to the characteristics of the

of the AEA, we were unable at this time to construct an adjoint problem that

preserves the correlation structure between different measurements in the AEA,

thus only a benchmark problem without modeling errors is presented.

In Chapter 7, concluding remarks and ideas for further developments are

presented.

After, relevant appendices are included. These are as follows: A - The finite

element discretization for the FSDT; B - The improved reduced system model

reduction; C - The generation of random fields for distributed paramaters; D - The

Gaussian approximation for the posterior estimated probability distribution and; E

- The adjoint formulation and details on how to obtain the derivatives of the

forward model.
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Chapter 2

Approximation Error Approach

2.1 Basic Concepts

The Approximation Error Approach was introduced by KAIPIO and

SOMERSALO [1] originally to handle model reduction errors. This approach was

extended to nonstationary inverse problems by HUTTUNEN and KAIPIO [48],

although the problem is not formulated as such in this text.

The AEA is based on the Bayesian framework of inverse problems, in which

all unknowns are modeled as random variables (see [11, 12]). Let θ be a vector of

unknowns and ȳ a vector containing measurements of some feature related to the

system being identified. Once probabilistic models for θ and ȳ are constructed, the

Posterior probability distribution function (PDF) π(x|ȳ) can be assessed through

the use of Bayes’ Formula, eq. (2.1.1). The posterior PDF reflects the uncertainty of

the unknowns θ given the measurements ȳ, given any prior information available.

π(θ|ȳ) =
π(ȳ|θ)π(θ)

π(ȳ)
(2.1.1)

In eq.(2.1.1), π(ȳ|θ) is the Likelihood function of the measurements ȳ given the

unknown parameters θ. This function associates a probability to the occurrence of a

given measurement realization to a realization of the parameters. π(θ) is the Prior

PDF of the unknowns θ, this function allows for any current knowledge regarding the

possible values of θ to be taken into account. π(ȳ) is the PDF for the measurements,

and once a realization of ȳ is drawn, that is to say an experiment is made, the value

of π(ȳ) is simply a scaling constant.

The maximum a posteriori (MAP) of π(θ|ȳ) is a commonly used (point)

estimate for the unknowns:

θ′ = argmax
θ

π(θ|ȳ) (2.1.2)

This chapter starts with a brief review of the traditional Bayesian approach.
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2.2 Classical Bayesian Framework for Statistical

Inversion

Let Ac(θ) be a deterministic accurate forward model without any uncertainties

or other model errors, i.e., the map θ 7→ Ac(θ) provides accurate predictions whose

differences from measured data ȳ are basically due to the measurement noise e,

which is a vector of additive errors related to the measurement process [13, 14].

Then the observation model is given by:

ȳ = Ac(θ) + e (2.2.1)

Let π(θ, ȳ, e) be the joint PDF of the unknowns θ, measurements ȳ and

measurement errors e. Then:

π(θ, ȳ, e) = π(ȳ|θ, e)π(e|θ)π(θ) (2.2.2)

= π(ȳ, e|θ)π(θ) (2.2.3)

Since eq.(2.2.1) is valid, π(ȳ|θ, e) can be expressed as:

π(ȳ|θ, e) = δ(ȳ − (Ac(θ) + e))

Therefore marginalizing with respect to the measurement additive errors e

yields the following Likelihood distribution:

π(ȳ|θ) =

∫
π(ȳ, e|θ)de

=

∫
π(ȳ|θ, e)π(e|θ)de

=

∫
δ(ȳ − (Ac(θ) + e))π(e|θ)de

= πe|θ(ȳ −Ac(θ)|θ)

where πe|θ(ȳ − Ac(θ)|θ) is the PDF of e given θ, π(e|θ), evaluated at the residue

e = ȳ −Ac(θ).

Applying Bayes’s Formula, eq.(2.1.1):

π(θ|ȳ) ∝ π(ȳ|θ)π(θ) = πe|θ(ȳ −Ac(θ)|θ)π(θ) (2.2.4)
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If e and θ are assumed to be mutually independent, we have πe|θ(e|θ) =

πe(e) ≡ π(e). Furthermore, if e and θ are both normally distributed, e ∼ N (e∗,Σe)

and θ ∼ N (θ∗,Σθ), the prior distribution of θ, we get:

π(θ|ȳ) ∝ exp

{
−1

2
(ȳ −Ac(θ)− e∗)

TΣ−1
e (ȳ −Ac(θ)− e∗)−

1

2
(θ − θ∗)TΣ−1

θ (θ − θ∗)
}

(2.2.5)

Therefore, a MAP estimate of θ is the solution of the following problem:

θ′ = argmin
θ

V (θ) (2.2.6a)

V (θ) = ‖Γe(ȳ −Ac(θ)− e∗)‖2 + ‖Γθ(θ − θ∗)‖2 (2.2.6b)

where ΓT
e Γe = Σ−1

e and ΓT
θΓθ = Σ−1

θ .

In the absence of prior information, an observation model with additive

Gaussian noise with mean e∗ and covariance Σe leads to the Traditional Least

Squares functional [13, 14].

V (θ) = ‖Γe(ȳ −Ac(θ)− e∗)‖2 (2.2.7)

where ΓT
e Γe = Σ−1

e .
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2.3 Approximation Error and Premarginalization

In order to obtain eq.(2.2.4), it is practically always necessary to marginalize

with respect to the unknown but uninteresting measurement related errors e, that

is to say “before” the estimation process. The problem here is that generally we

cannot perform premarginalization with all uninteresting unknowns as we did for e

because their effect on the response is not additive. Let these auxiliary but

uninteresting unknowns be denoted by the vector ξ. If premarginalization cannot

be performed, perhaps one solution could be to estimate both θ and ξ: for

example, if a Markov Chain Monte Carlo (MCMC) approach were used, the

marginalization over ξ can only be done after running the chain for parameters (as

described in [40, 42]). However this is computationally much more expensive than

estimating θ when ξ is known.

That is the key feature of the AEA: to perform premarginalization

approximately, in a computationally feasible way. To that end some assumptions

have to be made regarding some of the distributions that appear during the

development of this approach.

Let (θ̄, z, ξ, e) be our set of unknowns. Where e represents additive errors, ξ

represents auxiliary uncertainties such as unknown boundary data and/or geometry,

and (θ̄, z) are two parameters of which only θ̄ is of interest. Let an accurate forward

model be given by:

(θ̄, z, ξ) 7→ Ac(θ̄, z, ξ)

The unknowns (θ̄, z, ξ) are not necessarily mutually independent. However,

let e be mutually independent with (θ̄, z, ξ). Then the observation model can be

written as:

ȳ = Ac(θ̄, z, ξ) + e (2.3.1)

In the following, let θ be an approximation of the primary unknown θ̄, where

θ̄ and θ can be related by some sort of projection operator P, θ = Pθ̄1. This

distinction allows for different levels of discretization to be used, but also allows one

to set P = I, where I is the identity matrix. Such transformation is heavily featured

in references [40, 42], where mapping between two difference sets of domain was

necessary.

1 This projection can be the result of an averaging operation or some homogenization technique.
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Proceed by setting (z, ξ) → (z0, ξ0), and substituting the accurate forward

model by a much simpler one2.

θ 7→ A(θ, z0, ξ0)

Thus, we rewrite the observation model as:

ȳ = Ac(θ̄, z, ξ) + e

= A(θ, z0, ξ0) + [Ac(θ̄, z, ξ)− A(θ, z0, ξ0)] + e

= A(θ, z0, ξ0) + ε+ e

Where

ε = ε(θ̄, z, ξ) = Ac(θ̄, z, ξ)− A(θ, z0, ξ0) (2.3.2)

is defined to be the approximation error that arises when using a simplified model.

Once both A and Ac are fixed we have π(ε|θ̄, z, ξ) = δ(ε− ε(θ̄, z, ξ)), where δ(·) is

the Dirac’s Delta distribution.

In order to carry out the marginalization, the first approximation is to assume

that the model predictions and thus the approximation error are essentially the same

for θ̄ and θ [39]: ε(θ̄, z, ξ) ≈ ε(θ, z, ξ) and thus π(ε|θ̄, z, ξ) ≈ π(ε|θ, z, ξ).

Applying Baeys’ Formula:

π(ȳ,θ, z, ξ, e, ε) = π(ȳ|θ, z, ξ, e, ε) π(θ, z, ξ, e, ε)

= δ(ȳ − A(θ, z0, ξ0)− e− ε(θ, z, ξ))π(θ, z, ξ, e, ε)

= δ(ȳ − A(θ, z0, ξ0)− e− ε(θ, z, ξ))π(e, ε|ξ,θ, z)π(z, ξ|θ) π(θ)

= π(ȳ, z, ξ, e, ε|θ) π(θ)

Therefore

π(ȳ|θ) =

∫
Ω

π(ȳ, z, ξ, e, ε|θ)dΩ (2.3.3)

2 This simplicity may result from using a drastically reduced computational model or a simplified
physics model, see references [39, 44, 45, 47].
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Where Ω = Dz×Dξ×De×Dε, and D(·) denotes the vector space containing

the variable (·). Carrying out the integration:

π(ȳ|θ) =

∫
Ω

π(ȳ, z, ξ, e, ε|θ)dΩ

=

∫
De × Dε

δ(ȳ − A(θ, z0, ξ0)− ε− e)

 ∫
Dz × Dξ

π(ε, e|z, ξ,θ)π(ξ, z|θ)dzdξ

 dedε
=

∫
De × Dε

δ(ȳ − A(θ, z0, ξ0)− ε− e)π(ε, e|θ)dedε

=

∫
De × Dε

δ(ȳ − A(θ, z0, ξ0)− ε− e)π(ε|θ)π(e|ε,θ)︸ ︷︷ ︸
=π(e)

dedε

=

∫
Dε

πe(ȳ − A(θ, z0, ξ0)− ε)πε|θ(ε|θ)dε

Now let both πε|θ and πe be approximated by normal distributions and the

normal approximation for the joint PDF π(ε,θ) be written as:

π(ε,θ) ∝ exp

−1

2

(
ε− ε∗
θ − θ∗

)T (
Σεε Σεθ

Σθε Σθθ

)−1(
ε− ε∗
θ − θ∗

) (2.3.4)

This a key step: by making a Gaussian approximation for these PDFs one

wishes to gain in computational efficiency by simplifying the resulting expressions for

the optimization problem. Following this assumption, one can write from eq.(2.3.4)

the conditioned random variables:

e ∼ N (e∗,Σe), ε|θ ∼ N (ε∗|θ,Σε|θ)

Where

ε∗|θ = ε∗ + ΣεθΣ
−1
θθ (θ − θ∗)

Σε|θ = Σεε −ΣεθΣ
−1
θθΣθε

Now let us define the normal variable ν|θ as the sum of measurement and

model related errors:

ν|θ = e + ε|θ (2.3.6)

Therefore ν|θ ∼ N (ν∗|θ,Σν|θ). Where:

ν∗|θ = e∗ + ε∗ + ΣεθΣ
−1
θθ (θ − θ∗) (2.3.7a)

Σν|θ = Σe + Σεε −ΣεθΣ
−1
θθΣθε (2.3.7b)
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Thus eq.(2.3.3) leads to an approximate Gaussian distribution:

ȳ|θ ∼ N (ȳ − A(θ, z0, ξ0),Σν|θ)

Now assume that the prior model for θ is also Gaussian, θ ∼ N (θ∗,Σθθ).

Finally, we obtain an approximation for the posterior distribution:

π(θ|ȳ) ∝ exp

{
−1

2
(ȳ − A(θ, z0, ξ0)− ν∗|θ)TΣ−1

ν|θ(ȳ − A(θ, z0, ξ0)− ν∗|θ)+

−1

2
(θ − θ∗)TΣ−1

θ (θ − θ∗)
} (2.3.8)

Therefore a MAP estimate of θ is the solution of the following problem:

θ′ = argmin
θ

V (θ) (2.3.9a)

V (θ) = ‖Γν|θ(ȳ − A(θ, z0, ξ0)− ν∗|x)‖2 + ‖Γθ(θ − θ∗)‖2 (2.3.9b)

ν∗|θ = e∗ + ε∗ + ΣεθΣ
−1
θθ (θ − θ∗) (2.3.9c)

Σν|θ = Σe + Σεε −ΣεθΣ
−1
θθΣθε (2.3.9d)

Where Γν|θ and Γθ are the Cholesky factors of Σ−1
ν|θ and Σ−1

θ , respectively,

such that ΓT
ν|θΓν|θ = Σ−1

ν|θ and ΓT
θΓθ = Σ−1

θ .

Since the problem (2.3.9) is, in essence, a well defined modification of the

traditional least squares problem, eq.(2.2.7), it can be solved by traditional

algorithms [39, 42].

In addition, if one assumes that θ and ε are mutually independent, that is, if

Σεθ is neglected3, it is possible to construct the so called enhanced approximation

error model [1, 12, 39, 42, 46].

Therefore a MAP estimate of θ would consider the following equations

ν∗|θ = e∗ + ε∗ (2.3.10a)

Σν|θ = Σe + Σεε (2.3.10b)

instead of eq.(2.3.9c-2.3.9d).

3 In this work, it was observed that the entries of Σεθ were in average 10 orders of magnitude
smaller than those of Σεε. However we still considered the complete AE model.
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2.4 Computational Considerations

In Section 2.2 a quick reminder of Bayesian Framework of inverse problems was

given in order to justify the mathematical approach used in Section 2.3. Here it is

discussed how one goes about gathering the necessary statistics in order to perform

a MAP estimation using the Approxiation Error Approach.

Firstly, it is interesting to note that the prior model π(θ, z, ξ) does not have to

be jointly normal, and neither does the marginal prior model π(θ) [39]. In practice,

whatever the prior model π(θ, z, ξ) is, a set of samples (θ(l), z(l), ξ(l)) is to be drawn

and the approximation error computed:

ε(l) = Ac(θ̄
(l)
, z(l), ξ(l))− A(θ(l), z0, ξ0), l = 1, 2, ..., Nmc (2.4.1a)

ε(l) = A(θ(l), z(l), ξ(l))− A(θ(l), z0, ξ0), l = 1, 2, ..., Nmc (2.4.1b)

One should use eq.(2.4.1a) if discretization errors are to be considered, and

eq.(2.4.1b) if not. Notice that, when no discretization errors are accounted for, the

only distinction between models is how the distributed parameters are treated. The

same can be said about using models with different physics behind them.

Finally, define r(l) = [ε(l),θ(l)]T ∈ RNp+Nm , where Np is the dimension of the

parameter space and Nm is the total number of measurements. Then necessary

statistics can be computed from:

r∗ =

(
ε∗

θ∗

)
= E

[(
ε

θ

)]
≈ 1

Nmc

Nmc∑
l=1

r(l) (2.4.2)

Σ =

(
Σεε Σεθ

Σθε Σθθ

)
= E

[
(r− r∗)(r− r∗)

T
]
≈ 1

Nmc − 1

Nmc∑
l=1

(r(l) − r∗)(r
(l) − r∗)

T

(2.4.3)

where Nmc is the number of Monte Carlo simulations necessary to obtain

convergence4. For more details on Monte Carlo simulations, see reference [49].

Figure 2.1 depicts a flowchart for the general application of AEA. The upper

half of the flowchart, hereby denominated Training stage, consists of draws of the

random variables and computation of the corresponding statistics, eq.(2.4.2 - 2.4.3).

This stage is done prior to actual solution procedure and, given its nature, can take

advantage from parallel computation.

The Solution stage consists of constructing the Likelihood function, eq.(2.3.9),

and solving the optimization problem for θ′.

4 In order to guarantee a non singular sample covariance matrix: Nmc > Np +Nm.
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θ(l) ∼ π(θ)ξ0, z0
ξ(l) ∼ π(ξ)
z(l) ∼ π(z)

y
(l)
0 = Ak(θ

(l), ξ0, z0) y(l) = Ak(θ
(l), ξ(l), z(l))

r(l) =

(
y(l) − y

(l)
0

θ(l)

)

Eq.(2.4.2 - 2.4.3)

r∗, Σ

Eq.(2.3.9)Ak(θ, ξ0, z0)

y Optimization
procedure

θ′

TRAINING

SOLUTION

Figure 2.1: Application of the Approximation Error Approach.
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Chapter 3

Case Study 1: Beam

In this chapter, the Approximation Error Approach is applied to the damage

identification problem of a clamped-free beam. The inverse problem consists of

identifying the distributed damage given a set of scenarios with varying degrees of

stiffness of the clamped side. In this chapter, therefore, we describe some of the

necessary aspects concerning the estimation problem.

We primarily chose the system proposed by RITTO et al. [50] due to the

availability of experimental results concerning the stiffness of the clamped side. In

their paper, to represent the decreasing stiffness of the clamped side, an experimental

test rig was constructed where the interface between the beam and the support at the

clamped side was filled with several layers of rubber patches. While RITTO et al.

[50] did this to model deterioration of the boundary condition and subsequently

identify it, the goal of this section is to use one single (not necessarily the best)

forward model to identify damage given a set of unknown boundary conditions.

 

Figure 3.1: Physical model: Pinned-free beam with torsion spring.
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3.1 The System

The system is modeled as shown in Fig. 3.1: assuming that one cannot ensure

the clamped boundary condition in practice, the system is modeled as a beam pinned

at the left side, with a torsion spring attached to the pinned end in such a way that,

when taking the limit Kt → ∞, the system behaves like a clamped-free beam, Kt

being the torsional stiffness constant of the spring.

The beam properties and stiffness parameter, Kt, identified in [50] are given

in Table 3.1.

Table 3.1: Beam Properties and identified stiffness parameter.

L(m) b(mm) h(mm) E0(GPa) ρ(kg/m3) Kt,max(Nm/rad)

0.511 30.7 3.04 200 7850 3.8× 103

In Table 3.1, L is the beam’s length, b and h are the cross section’s dimensions,

E0 and ρ are the Young’s Modulus and specific mass of the material

The maximum angle of rotation caused by a bending moment MB at the end

of the beam is given by φmax = MBL/2EI [51], which results in the corresponding

torsional stiffness of the beam being

Kt,B =
2E0I

L
(3.1.1)

where I is the moment of inertia, which is orientation dependent.

For this system, Kt,B ≈ 56.3Nm/rad. Therefore the identified stiffness is

Kt,max ≈ 67.5Kt,B. This value is not that high, which may explain why, in the

next sections, both the approximation error and traditional approaches falter when

Kt,T rue is low – the structure should present a very low frequency first mode akin to

a rigid body motion.
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3.2 Direct Problem

Generally speaking, the Direct Problem consists of predicting system

response y (displacements, accelerations, modal data, etc), given a set of known

input variables u (prescribed displacement, external excitation, etc) and/or state

variables q and parameters/boundary conditions θ. This is accomplished through

the use of a forward model :

y = Ac(u,q,θ)

In our case, given system presented in Fig. 3.1, which is modeled as an

Euler-Bernoulli beam, with properties defined in Table 3.1, torsion spring with

constant Kt fixed at some value Kt,T rue or Kt,REF and damage field model given by

eq.(3.2.1), one wishes to predict its dynamic behavior y given an excitation u.

Damage is assumed to be the cause of a local reduction in stiffness, this is

modeled as a change in the elastic parameter E0, at some position x along the

length of the beam [17, 24, 26, 29]. It is further assumed that the damage state does

not evolve during the vibration tests, thus it can be modeled as a field independent

of time, as given by eq.(3.2.1). This is, in fact, an assumption about the damage

mechanism.

E(x) = (1− d(x))E0 (3.2.1)

where d(x) : [0, L] 7→ [0, 1] determines the intensity of the damage at the position

x, and E0, given in Table 3.1, is the undamaged value of the Young’s Modulus.
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In other words, one wishes to solve eq.(3.2.2) subjected to the boundary

conditions eq.(3.2.3) for the displacement field w(x, t) and/or its derivatives at

given positions along the beam [52]. In eq.(3.2.2), inertial effects concerning

rotation are not considered.

ρAẅ + (EIw′′)′′ = F (t)δ(x− xF ), ∀t > 0, x ∈ (0, L) (3.2.2)

w(0, t) = 0, −EIw′′(0, t) = −Ktw
′(0, t), ∀t > 0 (3.2.3a)

−EIw′′(L, t) = 0, −EIw′′′(L, t) = 0, ∀t > 0 (3.2.3b)

w(x, 0) = ẇ(x, 0) = 0, ∀x ∈ [0, L] (3.2.3c)

where (·)′ and ˙(·) represent respectively the spacial and time derivatives of a given

variable. The term δ(x− xF ) denotes that the force F (t) acts at x = xF . The force

excitation present in eq.(3.2.2) is a chirp given by:

F (t) = F0sin

(
2π

(
t

Tf
∆ω + ω0

)
t

)
(3.2.4)

where ω0 = 1500Hz, ∆ω = 500Hz, F0 = 1N and Tf = 0.025 s. With this linear

frequency sweep the 8th, 9th and 10th resonance frequencies and modes are excited.

Equations (3.2.2-3.2.3)are discretized using the Finite Element Method (see

[53, 54]). The resulting system of ordinary differential equations (ODEs) is

integrated in time using a Newmark-β Method (see reference [52]) with the

appropriate time step ∆t = 10−5 s. The algorithm is reproduced in Fig. 3.2.

The Rayleigh model was used to construct the damping matrix, that is

D = c1M + c2K (3.2.5)

where M and K are respectively the mass and stiffness matrices obtained from the

FE model and the proportionality constants are set as c1 = 10−4s−1 and c2 = 10−8s.

This sequence of operations defines the forward model A(·), and any

corresponding accurate ones, denoted by Ac(·).
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Initialization:
q0, q̇0,M,D,K, f0

S = M + Dγ∆t + Kβ∆t2

Acceleration at tn = t0:
q̈0 = M−1(f0 − Dq̇0 − Kq0)

tn+1 = tn + ∆t

Prediction:
q∗n+1 = qn + q̇n∆t− (β− 1/2)q̈n∆t2

q̇∗n+1 = q̇n+1 + (1 − γ)hq̈n

Accelerations:
q̈n+1 = S−1(fn+1 −Dq̇∗n+1 −Kq∗n+1)

Correction:
qn+1 = q∗n+1 + βq̈n+1∆t2

q̇n+1 = q̇∗n+1 + γq̈n+1∆t2

Figure 3.2: Flowchart: Newmark Integration Scheme for Linear Time Invariant
(LTI) System. For LTI systems integrated using constant time step ∆t, S is constant,
thus its inverse S−1 can be stored to save time. In particular, the method was
programmed considering the average acceleration (γ = 1/2 and β = 1/4) over the
time interval [tn, tn+1]. The method is based upon the solution of three coupled
equations for q̈n+1, q̇n+1 and qn+1, and for efficiency the algorithm is organized in
two steps, where the prediction step consists of an extrapolation of the solution at
tn when the acceleration at tn+1 is zero, q̈n+1 = 0 [52].
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3.3 Inverse Problem

As for the Inverse Problem, given a set of measurement data ȳ and input

variables u, one seeks information about unknown parameters and/or boundary

conditions θ. Given the ill-posedness of the inverse problem, one usually seeks to

find the set estimate θ′ that minimizes the discrepancy between the experimental

data and the predicted response.

In our case, the measurement set ȳ consists of acceleration data gathered with

an array of sensors distributed uniformly along the beam. Given this data, we seek

to estimate the damage field d(x) given by eq.(3.2.1) using a forward model that is

not necessarily correct in terms of its boundary conditions.

The field d(x) is a function defined along the length of the beam which can

assume a wide variety of shapes. In this text, however, a localized damage is

estimated and for such a specific parametrization is proposed, eq.(3.3.1), in order

to reduce the dimension of the parameter space. The proposed bell shaped curve is

a continuous unimodal damage field. We are well aware of the limitations imposed

by this parametrization in regard to damage estimation, however this dissertation’s

goal is to present the Approximation Error Approach in the SHM context. This

strategy was proved amenable for our applications.

d(x) = dam exp

{
−
(
xa − xc

2s

)2
}

; xa = x/L; (3.3.1)

The parameters to be estimated are

• xc is the dimensionless position at which the damage intensity is maximum

• dL = 6s, the support of the field such that d(xc ± 3s) ≈ 0.01 dam

• dam, maximum intensity of damage

where s is a dummy parameter that relates dL to the dispersion of the bell function.

Following these definitions, the parameter space is the subset of R3 given by

the cube ΩP = [0, 1]× [0, 1]× [0, 1]1. The inverse problem is then solved by finding

the set of parameters θ′ = (x′c, dL
′, dam′)T that is the solution of the minimization

problem:

θ′ = argmin
θ∈ΩP

V (θ) (3.3.2)

where V (θ) is some functional, given either by equations (2.2.7) or (2.3.9b-2.3.9d),

that is, Least Squares or AEA.

1 There is no practical advantage to search for dL ∈ R+, thus the search space for d` is such
that dL ∈ [0, 1]
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Chapter 4

Case Study 2: Plate

In this chapter, we aim to apply both the Traditional Least-Squares and

Approximation Error approaches to the problem of a simply supported aluminum

plate under various conditions. Therefore, we describe some of the necessary

aspects concerning the estimation problem.

4.1 The System

The computational model presented here mimics an experimental

assembly,found at the Laboratório de Análise Dinâmica e Processamento de

Imagens e Sinais (LADEPIS) located within the Laboratório de Estruturas e

Materiais Professor Lobo Carneiro (LABEST/COPPE) at the Universidade

Federal do Rio de Janeiro (UFRJ), in Rio de Janeiro, Brazil. The isotropic

aluminum plate has properties given in Table 4.1.

Table 4.1: Plate Properties.

LX(m) LY (m) h(mm) E0(GPa) ν G0(GPa) ρ0(kg/m3)

2.25 1.65 5.0 69 0.33 0.5E0/(1 + ν) 2725

In Table 4.1, LX and LY are the plate’s dimensions, h is its thickness, E0, G0,

ν are its material’s elastic parameters and ρ the specific mass.

This assembly was used by DA COSTA [55] in an investigation on passive

damping systems.

Given the slight differences between in pressure from one screw to the next,

it is possible for an effectively non-uniform distribution of stiffness to arise in this

assembly. Although the characterization of this field of distributed stiffness is not

of interest, knowledge of its structure is essential to the inverse problem when this

is solved by the traditional approach (to be seen in Section 5.3.3).
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4.2 First Order Shear Deformation Theory

The plate is modeled following the Mindlin–Reissner Plate Theory, also known

as First Order Shear Deformation Plate Theory (FSDT) (see [56]), which takes into

account shear deformations through the thickness of the plate.

According to this theory, the equations of motion of a plate subjected to a

load q, resting over an elastic bedding with elastic constant k, for all x ∈ Ω, are:

0 = Nxx,x +Nxy,y − I0ü0 − I1φ̈x (4.2.1a)

0 = Nxy,x +Nyy,y − I0v̈0 − I1φ̈y (4.2.1b)

0 = Qx,x +Qy,y − kw0 +N + q − I0ẅ0 (4.2.1c)

0 = Mxx,x +Mxy,y −Qx − I2φ̈x − I1ü0 (4.2.1d)

0 = Mxy,x +Myy,y −Qy − I2φ̈y − I1v̈0 (4.2.1e)

N = ∂x(Nxx∂xw0 +Nxy∂yw0) + ∂y(Nxy∂xw0 +Nyy∂yw0) (4.2.1f)

Whose Essential Boundary Conditions are, for all x ∈ Γu:

u0 − û0 = 0, v0 − v̂0 = 0, w0 − ŵ0 = 0, φx − φ̂x = 0, φy − φ̂y = 0 (4.2.2)

And the Natural Boundary Conditions are, for all x ∈ Γt:

Nnn − N̂nn = 0, Nns − N̂ns = 0, Qn − Q̂n = 0, Mnn − M̂nn = 0, Mns − M̂ns = 0

(4.2.3)

where Ω, Γu and Γt denote respectively the domains corresponding to the plate’s

middle plane (z = 0) and the different (non intersecting) boundaries of the plate at

which essential and natural boundary conditions are applied, ∂Ω = Γ, Γu ∪ Γt = Γ

and Γu ∩ Γt = {∅}.
In equations (4.2.1-4.2.3), u0, v0 and w0 denote the displacements in the x-,

y- and z- directions of a point at the middle plane, and φx = ∂zu and φy = ∂zv are

the rotations of a transverse normal about the y- and x- axes such that the shear

deformations are γαz = ∂αw0 + φα, see Fig. 4.1.
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Figure 4.1: Undeformed and deformed geometries of an edge under the assumptions
of the FSDT.

Figure 4.2: Thickness-integrated forces and moments.
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Mαβ, Nαβ and Qαβ are the thickness-integrated forces and moments, defined

in eq.(4.2.4), that result from internal stresses σ̄xx, σ̄yy, σ̄xz, σ̄yz and σ̄xy, see Fig.

4.2. Prescribed values of these quantities are denoted by (•̂).Nxx

Nyy

Nxy

 =

∫ h/2

−h/2

σ̄xxσ̄yy

σ̄xy

 dz (4.2.4a)

Mxx

Myy

Mxy

 =

∫ h/2

−h/2

σ̄xxσ̄yy

σ̄xy

 zdz (4.2.4b)

(
Qx

Qy

)
= Ks

∫ h/2

−h/2

(
σ̄xz

σ̄yz

)
dz (4.2.4c)

I0, I1 and I2 are thickness integrated inertia parameters. It follows, from

eq.(4.2.5), that for a symmetric distribution of ρ with respect to the x − y plane

I1 = 0, and thus the equations of motion for u0 and v0 are decoupled from those of

w0, φx and φy. (
I0, I1, I2

)
=

∫ h/2

−h/2

(
1, z, z2

)
ρ(x, y, z)dz (4.2.5)

The values in local and global coordinates are related through:

Qn = nxQx + nyQy + (N̂xx∂xw0 + N̂xy∂yw0)nx + (N̂xy∂xw0 + N̂yy∂yw0)ny (4.2.6a)

(
φx

φy

)
=

(
nx −ny
ny nx

)(
φn

φs

)
, (4.2.6b)

(
Nnn Mnn

Nns Mns

)
=

(
n2
x n2

y 2nxny

−nxny nxny n2
x − n2

y

)Nxx Mxx

Nyy Myy

Nxy Mxy

 (4.2.6c)

where nx and ny are the components of the outward unity normal n to the boundary

in the x- and y- positive directions, and n- and s- are local coordinates such that

the positive direction of n is n-, and s- is the tangential direction following the

right-hand rule.
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Mαβ, Nαβ and Qαβ are related to the displacements through the constitutive

equations (
Qx

Qy

)
= Ks

(
A55 0

0 A44

)(
w0,x + φx

w0,y + φy

)
(4.2.7a)Nx

Ny

Nxy

 =

A11 A12 0

A12 A22 0

0 0 A66


 u0,x + 1

2
(w0,x)

2

v0,y + 1
2
(w0,y)

2

u0,y + v0,x + w0,xw0,y

 (4.2.7b)

Mx

My

Mxy

 =

D11 D12 0

D12 D22 0

0 0 D66


 φx,x

φy,y

φx,y + φy,x

 (4.2.7c)

which are the constitutive equations for an orthotropic material with principal

materials axes (x1, x2, x3) coinciding with the plate coordinates (x, y, z).

For a plate made up of only one layer, we have:

A11 =
E1h

1− ν12ν21

, A22 =
E2h

1− ν12ν21

, A12 = A21 = ν12A22 (4.2.8a)

D11 = A11
h2

12
, D22 = A22

h2

12
, D12 = D21 = A12

h2

12
(4.2.8b)

A55 = G13h, A44 = G23h (4.2.8c)

A66 = G12h D66 = A66
h2

12
(4.2.8d)

where Ks is the shear correction factor used to corrected the strain energy predicted

from the FSDT. The value of Ks = 5/6 proposed by Reissner was chosen.
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4.3 Direct Problem

Given an isotropic aluminum plate with properties and dimensions defined

in Table 4.1, one wishes to find the acceleration response y given an excitation

u, which corresponds to the two consecutive impacts, and auxiliary parameters θ,

which correspond to the damage field d(x).

Damage is assumed to be the cause of a local reduction in stiffness, this is

modeled as a change in the elastic parameter, E0, at some position x over the area

of the plate [17, 24, 26, 29]. It is further assumed that the damage state does not

evolve during the vibration tests, thus it can be modeled as a field independent of

time, as given by eq.(4.3.1).

E(x) = (1− d(x))E0 (4.3.1)

The function d(x) : x ∈ Ω ⊆ R2 7→ [0, 1] determines the intensity of the

damage at the position x = (x, y) ∈ Ω, where Ω is the domain of the plate and E0,

given in Table 4.1, is the undamaged value of the Young’s Modulus.

The decoupled system of equations (4.2.1c-4.2.1e) is solved using the Finite

Element Method [53, 56], considering only linear terms and no axial loads (N =

0). The discretization used was a mesh composed of quadrilateral linear elements

with linear interpolation of geometry, each element with 4 nodes and 3 degrees of

freedom per node (see Appendix A for details about Neumann boundary conditions).

The resulting system of ODEs is integrated using a Newmark-β Method with the

appropriate time step ∆t = 10−5 s (see Fig. 3.2 and referece [52] for details).

The damping matrix is constructed in accordance to eq.(3.2.5), with

proportionality constants c1 = 10−3 s−1 and c2 = 10−6 s.

To sum up, the forward model is the solution of the computational model

correspondent to the finite element discretization of eq.(4.2.1), with constitutive

properties equations given by eq.(4.2.7-4.2.8) for an isotropic aluminum plate with

properties given in Table 4.1, subjected to boundary conditions given by

eq.(4.2.2-4.2.3) for a simply supported case1, given a particular excitation (input

data) of the correspondent physical system.

The selected feature is the acceleration response collected for T = 0.050 s, the

excitation being two consecutive impacts, similar to what is found in reference [29],

occurring at t = 0.0 s and t = 0.025 s2.

1 With the addition of torsional springs to simulate the boundary fixation.
2 There’s marginal improvement in comparison with results obtained using a single impact.

Most of the improvement in the inverse solution was due to an increased time interval.
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4.4 Inverse Problem

As for the Inverse Problem, given a set of acceleration measurements y and

input variables u, one seeks information about unknown parameters θ corresponding

to the structure’s damage field d(x) given by eq.(4.3.1) using the forward model

previously described.

The field d(x) is a function defined over the area of the plate which can

assume a wide variety of shapes. In this chapter, however, a localized damage is

estimated and for such the procedure given in Chapter 3 is followed, that is, the

field is parameterized in order to reduce the dimension of the parameter space.

The proposed bell shaped curve, given in eq.(4.4.1), is a continuous unimodal

damage field. We are well aware of the limitations imposed by this

parametrization in regard to damage estimation, however this strategy was proved

amenable for our applications.

a = cos(θ)2/(2σ2
x) + sin(θ)2/(2σ2

y) (4.4.1a)

b = sin(2θ)/(4σ2
y)− sin(2θ)/(4σ2

x) (4.4.1b)

c = sin(θ)2/(2σ2
x) + cos(θ)2/(2σ2

y) (4.4.1c)

d(x,θ) = D exp
{
−
[
a(x− x0)2 + 2b(x− x0)(y − y0) + c(y − y0)2

]}
(4.4.1d)

Where the parameters θ are

• D is the maximum intensity of damage

• x0 and y0 are the coordinates at which the damage intensity is maximum

• σx and σy are related to the support of the field

• θ is related to the correlation between x- and y- directions, measured from +y

Following these definitions, the parameter space is the set ΩP ⊂ R6, with

ΩP = {θ ∈ R6 |θ ∈ [0, 1]× [0, LX ]× [0, LY ]× [0, LX ]× [0, LY ]× [0, π/2]}3.

The inverse problem is then solved by finding the set of parameters

θ′ = (D′, x′0, y
′
0, σ

′
x, σ

′
y, θ
′)T that is the solution of a minimization problem similar

to (3.3.2), here repeated for convenience:

θ′ = argmin
θ∈ΩP

V (θ)

Where V (θ) is some functional relating the parameters to the measurement data.

3 There is no practical reason to set (σx, σy) ∈ R+ × R+, thus they are limited to (σx, σy) ∈
[0, LX ]× [0, LY ] instead.
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Chapter 5

Results

This chapter consists of a series of numerical experiments regarding the

application of the Approximation Error Approach in comparison with the

Traditional Least Squares. In all of these experiments, the approximation error is

calculated in accordance with eq.(2.4.1b) and the related statistics are calculated

as indicated in eq.(2.4.2-2.4.3).

All dimensional quantities are in their respective SI units.

5.1 Particularities of The Inverse Problem

The output of a forward model is collected at specific nodes and concatenated

in a column-stack fashion to construct y, the output vector. The output data

of the model at the nodes corresponding to positions xS from the Ns sensors are

concatenated vertically: y ∈ RNm×1, Nm =
∑Ns

i=1Ni.

y = (yT1 , · · · ,yTi , · · · ,yTNs
)T , yi = (yi,1, · · · , yi,j, · · · , yi,Ni

)T

where every sensor i provides a vector yi containing Ni measurements.

Concerning the synthetic measurement data, ȳ is generated by adding

uncorrelated Gaussian noise with zero mean to an ideal response yideal, which is

obtained integrating the resulting system ODEs of a reference structure, with a

given damage profile, specified by different scenarios within Sections 5.2 and 5.3.

For each sensor i an ideal response yideali is polluted as follows:

ȳi = yideali + ei, ei ∼ N (0, σ2
i INi×Ni

), σi = 0.05 max(yideali ).

The measurement covariance matrix is

We = diag(s);

where s is constructed in accordance to y:

σi = 0.05 max
j

((yideali )j)→ si = σ2
i (1, · · · , 1)︸ ︷︷ ︸

1×Ni

→ s = (s1, · · · , sNs)︸ ︷︷ ︸
1×Nm vectors

.
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5.1.1 Beam Structure

Eight acceleration sensors are placed over the beam, each sensor collecting

Ni = 251 measurements at a sampling frequency fs = 104 Hz, resulting in a total

of Nm = 2008 measurements. Sensors are placed at the following positions:

xS = (0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1) L.

Figure 5.1 presents both a typical set of synthetic measurements corresponding

to the sensor at xS = L and ideal responses of the correspondent damaged and

undamaged structures for a beam with a free end and Kt,T rue = Kt,max being excited

by a chirp at xF = 0.95L. For the damaged structure the parameters used to build

the damage field, eq.(3.2.1), are xc = 0.5, dL = 0.1 and dam = 0.2.

The measurements are compared to the true response of the damaged structure

and to the response of an undamaged structure. Notice how, for (relatively) low

frequencies (t < 0.005 s), there is little to no difference between the acceleration

responses of both structures, this is consistent with what is found in literature

regarding the effects of damage being only truly important at high frequencies.
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Figure 5.1: Ideal excitation response at xS = L of damaged and undamaged
structures and synthetic measurements corresponding to the damaged case.
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5.1.2 Plate Structure

Four acceleration sensors are placed at uniformly spaced locations over the

plate, Fig. 5.2. Where every sensor provides a vector containing Ni = 501

measurements over a period of T = 0.050 s, which is consistent with the sampling

frequency fs = 104 Hz, resulting in a total of Nm = 2004 measurements. The

system of ODEs resulting from the FE discretization is integrated using a time

step ∆t = 10−5s.

For convenience, define a variable `min which is the minimum length of the

plate: `min ≡ min(LX , LY ).

The optimization problems using a Particle Swarm Optimization algorithm

(see [15, 57–59]). Results are obtained from an ad hoc strategy, in order to improve

the estimation process of the parameters with lower sensitivity, (σx, σy, θ), which are

related to the support of the damage field. The estimation process consists of firstly

identifying the damage’s central position, then correcting intensity and support,

while allowing small variations on the position. The strategy is divided in two steps

as follows:

1 Identify location – search for θ′1 = (D′, x′0,1, y
′
0,1) with θ2 = (σx, σy, θ) fixed at

θ′2 = (0.05`min, 0.05`min, 0).

2 Reinitialize – search for θ′ while limiting the parameter space for (x0, y0):

(x′0, y
′
0) ∈ [x′0,1 − 0.05`min, x

′
0,1 + 0.05`min]× [y′0,1 − 0.05`min, y

′
0,1 + 0.05`min]

In doing this, we are able to establish a baseline with which to compare the

performance of the AEA.

Also, in order to obtain results in a timely manner, model reduction was

implemented. The Improved Reduced System (IRS) method1 was used in all of the

inverse analyses presented in the next section. See reference [60] or Appendix B for

details. Figure 5.2 shows a mesh of 20× 20 elements, this mesh contains a total of

1323 degrees of freedom, while the reduced one has 558, a reduction of almost 60%.

1 This technique was chosen due to the fact that it produces better results when compared to
Static Condensation, with the advantage of not being an iterative procedure.
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Figure 5.2: Mesh (20 × 20): nodes for model reduction and sensors. Sensors are
presented in yellow. Primary nodes are colored green. Number of degrees of freedom:
1323 without model reduction, 558 with model reduction.

5.1.3 Concerning the Solution of the Inverse Problem

The optimization problems are solved by means of Particle Swarm

Optimization [15, 57–59], which is a global search heuristic algorithm. In the

definition of this algorithm, there are parameters related to the total number of

global iterations, the number of generations, and the number of evaluations of the

objective function per iteration, the number of particles. At each generation, the

parameter space is surveyed by the particles, and the best one is chosen, which

carries a weight that influences the behavior of the others.

The classic implementation of the PSO allows one to specify the parameter

space by defining lower and upper boundaries for parameter values, thus the

parameter constraints defined in Sections 3.3 and 4.4 can be easily introduced in

the optimization algorithm.

The implemented scheme of PSO is based upon the one described by

NAPOLES et al. [58], whose proposed algorithm uses techniques to detect and

deal with premature convergence. In regards to the specifics of the execution, a

maximum of 80 generations was set. Each generation used a total of 47 particles2.

2 Value found by means of meta-optimization of the PSO algorithm by PEDERSEN [59].
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5.2 Results 1: Beam Structure

Within this section, different scenarios are specified by the believed quality of

the fixation on the clamped side, determined by the value of the spring’s stiffness

coefficient Kt = Kt,T rue. For each of these scenarios, synthetic measurement data is

generated from an ideal structure with given Kt = Kt,T rue and the inverse problem

is solved for the identification of the damage field using both the AEA and the

Traditional Least Squares.

5.2.1 Benchmark Problem

Figure 5.3 shows a rectangular damage field (with dimensions dL × dam,

centered at xc) and estimated fields using both approaches without any sort of

modeling errors associated. This rectangular field was chosen in order to avoid an

inverse crime, and, while the proposed parametrization is unable to to recover the

actual field, notice that both approaches give similarly satisfactory results, in the

absence of modeling errors.

Figure 5.3: Damage field estimated both the AEA and least-squares approach when
no sources of error are included, that is Kt,T rue = Kt,REF and xF,True = xF,REF .
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5.2.2 Parameters for the AEA

Going forward, we associate the parameters xc, dL, dam to their respective

random variables Xc, dL, D.

In order to apply the AEA, the necessary statistics of the approximation

error have to be computed. To that end, consider Nmc = 104 samples of

θ(l) = (X
(l)
c , dL(l),D(l))T drawn from the following distributions:

• Xc ∼ U [0.1, 0.9]

• dL ∼ U [0.1, 0.25]

• With 20% probability: generate an undamaged structure, D = 0. Otherwise

D 6= 0, drawn D from D ∼ U [0.05, 0.4].

where U [a, b] denotes the uniform distribution with non-zero support in [a, b].

This value of 20% was completely arbitrary. No further investigations about

how different ratios of undamaged to damage training data can affect the AEA.

Statistics concerning the parameter ξ(l) to be premarginalized, whether it

represents either the torsional constant K
(l)
t or the position of applied excitation

X
(l)
F or both, must also be computed.

In Section 5.2.3 we consider the effects of errors due only to incorrect

modeling of Kt, in Section 5.2.4 only errors due to the position of applied

excitation are considered, and finally in Section 5.2.5 both errors are considered.

Reference values for Kt and xF are Kt,REF = 3800Nm/rad = 67.5Kt,B and

xF,REF = 0.95L, respectively. Samples of the corresponding random variables are

drawn from:

• Kt ∼ N (µK = Kt,REF , σ
2
K)× 1R+ [Nm/rad]

• XF ∼ N (µF = xF,REF , σ
2
F )× 1[0,L][m]

where 1Ω indicates the distribution’s non-zero probability support is the domain Ω.

Where σK = 0.0834µK is such that P (0.75µK < Kt < 1.25µK) > 99%3.

Figure 5.4 shows the proposed gaussian PDF for Kt as well as the tested values of

Kt presented in Section 5.2.3.

Analogously, P (|XF − µF | < 3σF ) > 99%4. That is, there is an envelope of

6σF ≈ 5.2mm in length (≈ 1%L) in which the chirp, eq.(3.2.4), can be applied.

Equivalently, σF = 0.0017L = 0.87mm.

3 The value of σK was chosen based on a Gaussian distribution with support R.
4 The value of σF was chosen based on a Gaussian distribution with support R.
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The term ‖Γθ(θ−θ∗)‖2 in eq.(2.3.9b) is related to the prior distribution of the

parameters, acting as a regularization term for the solution of the inverse problem.

If this term is large compared to ‖Γν|θ(y − A(θ, z0, ξ0) − ν∗|θ)‖2, the solution to

the minimization problem will seek to satisfy θ′ → θ∗, which is the effect of prior

information on the parameters. Therefore, in the following sections, the parameters

related to the definition of the prior in the AEA are fixed to

θ∗ = (0.5, 0.5, 0.5)T , Σθθ = 0.75 I3×3

in order to reproduce a non informative prior (see [11, 12]). In doing this, we hope

to not give any unfair advantages to the AEA in comparison with the Traditional

least squares, which does not benefit from prior information.

Although one could include in the present analysis variations from the reference

values of the Young’s modulus E0, the specific mass ρ, the dimensions of the beam

L, h, b, etc., in this section, there are no parameters corresponding to z(l) or z0
5,

eq.(2.3.2). In Section 5.3.4 we consider such application.

It should be noted that, while using the simplified model A(·) in conjunction

with the AEA for the inversion process may at times be advantageous, this model

is still an erroneous one. The AEA is expected to correct model predictions for the

situations considered in the training stage, however outside such conditions it should

have no effect over the predictions of A(·).

Figure 5.4: Proposed PDF for marginalization of Kt. The values of Kt,T rue tested
in Section 5.2.3 are indicated by arrows.

5 Alternatively speaking, setting a reference value z0 is equivalent to sample z(l) ∼ δ(z− z0).
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5.2.3 Uncertain Torsional Stiffness

This section presents results concerning the solution of the inverse problem,

that is, the estimated damage field, in a scenario with unknown boundary

conditions corresponding to the quality of “clamped” side – simulated by different

values of Kt,T rue. The modeling error arises from an erroneous assumption on a

model parameter, in this case such parameter could have been introduced in the

estimation process as well, in order to be updated in conjunction with the damage

field. We do not consider such application, instead the proposed scenario is one in

which accurate knowledge of such parameter is not of interest.

Figure 5.5 shows the estimated damage field with increasing values of Kt,T rue

compared to Kt,REF . There is a series of results in the range Kt,T rue ∈ [0.9, 1.1] ×
Kt,REF considering a fine discretization in values of Kt,T rue, however the results are

not shown due to great similarity with Fig. 5.3.

(a) Kt,True = 0.5Kt,REF (b) Kt,True = 0.8Kt,REF

(c) Kt,True = 1.2Kt,REF (d) Kt,True = 1.5Kt,REF

Figure 5.5: Damage field estimated for different values of Kt,T rue using the same
forward model with Kt = Kt,REF for both the AEA and least-squares approach. All
cases consider xF = xF,REF .
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5.2.4 Uncertain Excitation Point

This section presents results concerning the solution of the inverse problem,

that is, the estimated damage field, in a scenario with unknown parameters

corresponding to the position at which the excitation is applied to the structure.

As in the previous section, the modeling error arises from an erroneous assumption

on a model parameter, which could have been considered in the estimation

process.

A particularity of this analysis was the use of a finer mesh over the 99%

probability support of XF . The effective sampling procedure consists of choosing

node points over this support following the PDF of XF .

As observed from Fig. 5.6, the AEA was able to produce more consistent

results in comparison with the Traditional approach. Results contained within this

range are not shown due to the similarity to Fig. 5.6. However, it should be noted

that the Traditional Approach produced consistent results for the range xF,True ≥
xF,True.

It is interesting to take this opportunity to compare the predicted time

responses of both estimates. Figure 5.7 shows the predicted responses compared to

synthetic data used in the inversion generated for xF,True = 0.955xF,REF , data is

presented for the sensor placed at x = L.

It should be noted that, while both approaches produced good estimates of the

position, the slight overestimation of the intensity in the case using only a traditional

least squares lead to a time prediction that “escapes” the ±3σ boundaries of the

modeling error. In contrast, note that such boundaries enclosure the measured data

and the predicted response using the Approximation Error model A(·) (AEM, model

that uses prediction from the AEA results).
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(a) xF,True = 0.945L (b) xF,True = 0.955L

Figure 5.6: Damage field estimated for different values of xF,True using the same
forward model with xF = xF,REF for both the Approximation error and least-squares
approaches. All cases consider Kt,T rue = Kt,REF .
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Figure 5.7: Comparison of time responses with measurements. Predicted responses
for damage fields estimated with Approximation Error and Traditional Least
Squares, for xF,True = 0.955xF,REF and Kt,T rue = Kt,REF .

43



5.2.5 Uncertainties in both Force Application and Fixation

This section presents results concerning the solution of the inverse problem,

that is, the estimated damage field, in a scenario with unknown boundary conditions

corresponding to the position at which the excitation is applied to the structure as

well as the quality of the clamp – simulated by different values of Kt,T rue.

As observed from Fig. 5.8, for values of Kt,T rue at the lower range, none of the

approaches was able to produce adequate and consistent results in the presence of

the two types of uncertainty combined.

(a) Kt,True = 0.5Kt,REF , xF,True = 0.945L (b) Kt,True = 0.5Kt,REF , xF,True = 0.955L

(c) Kt,True = 0.8Kt,REF , xF,True = 0.945L (d) Kt,True = 0.8Kt,REF , xF,True = 0.955L

Figure 5.8: Damage field estimated for different combinations of xF,True and Kt,T rue

using the same forward model for both the AEA and least-squares approach.
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As observed from Fig. 5.9, for values of Kt,T rue at the upper range, the AEA

was able to produce more consistent results in the presence of the two types of

uncertainty combined.

(a) Kt,True = 1.2Kt,REF , xF,True = 0.945L (b) Kt,True = 1.2Kt,REF , xF,True = 0.955L

(c) Kt,True = 1.5Kt,REF , xF,True = 0.945L (d) Kt,True = 1.5Kt,REF , xF,True = 0.955L

Figure 5.9: Damage field estimated for different combinations of xF,True and Kt,T rue

using the same forward model for both the AEA and least-squares approach.
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5.3 Results 2: Plate Structure

Within this section, different scenarios are specified by the different sources

of modeling errors. For each of these scenarios, synthetic measurement data is

generated from an ideal structure, whose specificities are disregarded at some point

by the simplified model, such as the variation of the distributed stiffness at the

boundaries, in Section 5.3.3. The inverse problem is solved for the identification of

the damage field using both the AEA and the Traditional Least Squares.

5.3.1 Benchmark Problem

First and foremost, we present the results of the estimated damage field for

a simply supported plate configuration, without any uncertainties associated using

the procedure described at Section 5.1.2.

The chosen values to generate synthetic data were θ = (D, x0, y0, σx, σy, θ) =

(0.2, 0.5LX , 0.75LY , 0.06LX , 0.12LY , π/3).

Figure 5.11 presents the evolution of the objective function corresponding to

the Traditional Least-Squares, eq.(2.2.7), through the different generations of the

PSO algorithm (here counted cumulatively). The onset of the 2nd step of the

proposed two-steps procedure is characterized by an entirely new swarm, and thus

a possible increase in the objective function.

As it can be seen by analyzing Fig. 5.12, there is good agreement between

the predicted response and the actual ideal response used to generate the synthetic

data.

Given the relatively good agreement between all predicted time response and

their respective measurements, even when the traditional approach faltered, in the

next sections we refrain from showing comparisons of in the time domain, instead

using modal response for comparison between both approaches.
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Figure 5.10: True damage field and estimated damage field.
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Figure 5.11: Evolution of the Least-Squares Objective Function through generations.
Note that due to the way eq.(2.2.7) is stated, the objective function has a
nondimensional output.
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Figure 5.12: Measurement (YMED) vs Predicted (YEST ) vs Actual (YTRUE) data, for
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5.3.2 Parameters for the AEA

Going forward, we associate the parameters D, x0, y0, σx, σy and θ to their

respective random variables counterparts: D, X0, Y0, σX , σY and Θ.

In order to apply the AEA, the necessary statistics of the approximation error

have to be computed. To that end, consider Nmc = 104 realizations of θ(l) =

(D(l), X
(l)
0 , Y

(l)
0 , σ

(l)
X , σ

(l)
Y ,Θ

(l))T sampled as follows:

• X0 ∼ U [0, LX ]

• Y0 ∼ U [0, LY ]

• σX ∼ U [0.05, 0.25]× LX

• σY ∼ U [0.05, 0.25]× LY

• Θ ∼ U [0, π/4]

• With 20% probability: generate an undamaged structure, D = 0. Otherwise

D 6= 0, drawn D from D ∼ U [0.05, 0.60].

where X0, Y0, σX and σY are in meters, Θ is in radians and D is nondimensional.

In this Section, random fields (RF) are used in the training stage of the AEA to

generate distributed parameters ξ(l) and z(l) to be premarginalized. Concerning the

generation of RF, there are two important parameters: correlation length LC , which

measures the degree of correlation between field values at different points in space,

and the standard-deviation σ, which defines the deviation of different realizations of

the RF at a point in space. For more on this subject, we refer to appendix Appendix

C and references therein.

Samples of the random variables corresponding to the parameters to be

premarginalized are drawn from:

• ξ(l) ∼ N (µK = Kt,REF × 1,CK)× 1R+ [Nm/rad/m], in Section 5.3.3.

• z(l) ∼ N (µρ = ρF,REF × 1,Cρ)× 1R+ [kg/m3], in Section 5.3.4.

where 1Ω indicates the distribution’s non-zero probability support is the domain Ω

and 1 indicates the vector of ones, 1 = (1, · · · , 1)T , with the appropriate

dimensions. Covariance matrices CK and Cρ are functions of the correlation length

and standard-deviation, as defined in Appendix C.
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The correlation length LC is defined in terms of the minimum length of the

plate `min. Its value was chosen such that the effects of the unknown distributed

parameters on the measured features would mask those of the damage at the

considered frequency range, thus hindering the estimation process, in both cases

this value was set to LC = 0.4 `min.

For the study presented in Section 5.3.3, samples for the torsional stiffness

distribution at each side of the plate are generated using a Gaussian RF with mean

Kt,REF = 12.8×103Nm/rad/m and standard-deviation σ = 0.10Kt,REF . One such

field used to generate the synthetic measurements is shown in Fig. 5.13, where sides

are named following a counter-clockwise spiral: left, bottom, right and top edges are

respectively labeled L1, L2, L3 and L4. The reference value assumed is ξ0 = Kt,REF .

For the study presented in Section 5.3.4, samples for the distribution of mass

are generated using a Gaussian RF with mean ρREF = ρ0 and standard-deviation

σ = 0.01 ρREF . Section 5.3.4 presents a study that is consistent with the problem

of a field z that is absolutely necessary for the formulation but not of interest as a

solution of the inverse problem, thus assuming a reference value z0, more specifically

z0 = ρ0 = 2725kg/m3.

The parameters related to the definition of the priors in all the AEA cases are

fixed to

θ∗ = E[θ(l)], Σθθ = diag([1, LX , LY , LX/2, LY /2, π/4])

in order to reproduce a non informative prior (see [11, 12]).

We consider the Frequency Response Function (FRF) of the accelerations

collected at sensor 4 (unless stated otherwise) in order to compare the results from

the Approximation Error and Traditional approaches.
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Figure 5.13: Random field of torsional stiffness used in Section 5.3.3 to generate
the measurements. The values of the field are shown along the nondimensional
length of each side of the plate. This field has correlation length LC = 0.4 `min

and standard-deviation σ = 0.10Kt,med, with mean value Kt,med = 12.8 ×
103Nm/rad/m.
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5.3.3 Uncertain Stiffness Distribution

In this Section we consider the damage identification problem with uncertain

stiffness distribution at the edges of the plate. The modeling error comes from the

incorrect assumption that this distribution of stiffness is constant in all edges.

Figure 5.14 shows two realizations of the stiffness distribution field used to

generate the synthetic measurements considered for the inverse problem.
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(b) Kt field 2

Figure 5.14: Two field realizations of the stiffness distribution used to generate the
synthetic measurements.

Figure 5.15 shows the resulting estimated fields using both approaches.

Given the nature of the two step algorithm present in Section 5.1.2, the position

can be identified with a good level of agreement, the (absolute) error in both cases

not being greater than 2% of the true value with the AEA. The Traditional Approach

resulted in erroneous estimation of the intensity (in as much as ≈ +100%).

The support of the field presented greater variation, the AEA resulted in a

better estimation of the support’s parameters corresponding to its extension

(within an absolute error of ≈ 11%), however the AEA was unable to correct for

the orientation of the damage field.
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(a) Without AEA (b) Without AEA

(c) With AEA (d) With AEA

Figure 5.15: Comparison of estimated fields with uncertain Kt distribution using
the Traditional (1st row) and AE (2nd row) approaches.
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From Fig. 5.16, it can be seen that for very low frequencies, there is

reasonable agreement between the predicted and true FRFs, this is due in part to

the low sensitivity to damage at these frequencies and in part to low sensitivity to

the distribution of Kt. However, at higher frequencies, the discrepancies become

accentuated, leading to the conclusion that model response would be different from

that of the actual system.
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(a) FRF for Kt field 1

0 50 100 150 200 250
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Freqs(Hz)

M
ag

(A
bs

)

Comparison of FRF, Sensor 4

 

 

True
Trad
AEM

(b) FRF for Kt field 2

Figure 5.16: Comparison of predicted FRFs for Kt fields, at sensor 4.
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5.3.4 Uncertain Mass Distribution

In this Section we consider the damage identification problem with uncertain

mass distribution. The modeling error comes from the incorrect assumption that

the specific mass is constant in the structure.

Figure 5.17 shows two realizations of the mass distribution field used to

generate the synthetic measurements considered for the inverse problem.
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Figure 5.17: Two field realizations of mass distribution used to generate the synthetic
measurements.

Figure 5.18 shows the estimated damage fields using both approaches. It can be

observed that the traditional least squares fails to consistently identify the damage

field. Although results with the AEA showed variation in the support, similarly to

what is observed in the previous section, it was still able to satisfactorily identify

intensity and location of the field in a consistent manner.
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(a) Without AEA (b) Without AEA

(c) With AEA (d) With AEA

Figure 5.18: Comparison of estimated fields with uncertain ρ distribution using the
Traditional (1st row) and AEA (2nd row) approaches.

Figure 5.19 shows a comparison between FRFs at sensor 4 for ρ fields 1 and 2.

As with the results from the previous section, for low frequencies both approaches

reproduced the system’s response. Note that while the use of a model with constant

ρ for damage identification alone may be successful when applying the AEA, this is

not the case for model predictions. The AEA was introduced in order to avoid the

estimation of undesired fields.
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(a) ρ field 1
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Figure 5.19: Comparison of predicted FRFs for ρ fields, at sensor 4.
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Chapter 6

Numerical Experiment:

Distributed Field

In this chapter we consider the damage identification problem of a non localized

damage field. In this case, the proposed approach is to estimate the damage field at

each point in the space defined by the structure. Also, in this Chapter, we do not

consider any form of modeling errors.

The field to be estimated is presented in Fig. 6.1.
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Figure 6.1: Non-localized damage field to be estimated.
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6.1 Direct problem

This direct problem is similar to the one presented in Section 4.3: given an

isotropic aluminum plate with properties and dimensions defined in Table 4.1, one

wishes to find the acceleration response y at key locations over the plate, given

an excitation u, which corresponds to the two consecutive impacts, and auxiliary

parameters θ, which correspond to the damage field d(x).

Damage is assumed to be the cause of a local reduction in stiffness, this is

modeled as a change in the elastic parameter, E0, at some position x over the area

of the plate [17, 24, 26, 29], as given by eq.(4.3.1).

6.2 Inverse problem

This inverse problem is similar to the one presented in Section 4.4. That

is, given a set of acceleration measurements y and input variables u, one seeks

information about unknown parameters θ corresponding to the structure’s damage

field d(X ) given by eq.(4.3.1) using the forward model previously described.

The proposed approach is to estimate a parameter αi associated with the

variation of a property P ∗i :

Pi = P ∗i (1 + αi)

where i is associated with each parameter in the parameter space. This could be,

for example, the value of the damage functions proposed by TEUGHELS et al. [21]

at each node of a mesh defined for these functions. In the case of [21, 22], these

parameters are not linked to any particular discretization of the domain Ω in which

eq.(4.2.1) is defined.

In this dissertation, the parameter to be estimated is a vector of damage values

per element θ = (d1, · · · , dNe)T , where Ne is the number of elements in the FE

discretization, such that:

Ee = E0(1− de) (6.2.1)

is the value of the Young’s modulus in each element e. Thus, the parameter space

is linked to the discretization used, and in the case of the 20× 20 mesh used in this

section, there are Np = Ne = 400 parameters to be identified.
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The inverse problem is solved by finding the set of parameters θ′ that is the

solution of a minimization problem similar to (3.3.2), here repeated for convenience:

θ′ = argmin
θ∈ΩP

S(θ) (6.2.2)

where S(θ) is some functional relating the parameters to the measurement data.

The parameter space is the hypercube of unitary side ΩP = [0, 1]Np ⊂ RNp .

Consider the Continuous Least Squares functional [13, 30]

S(θ) =

∫
T

[ȳ(t)− y(t,θ)]TW [ȳ(t)− y(t,θ)] dt (6.2.3)

where y(t,θ) = Caq̈(t,θ) is the model response and ȳ(t) are the measured

accelerations. q̈(t,θ) is obtained from the forward problem g(q,θ) = 0, eq.(6.2.4).

M(θ)q̈(t,θ) + D(θ)q̇(t,θ) + K(θ)q(t,θ) = f(t,θ), T = (t0, tf ] (6.2.4a)

q(t0,θ) = q0(θ), q̇(t0,θ) = q̇0(θ) (6.2.4b)

In eq.(6.2.3), model response y and measured data ȳ are not concatenated,

they are instead regarded as functions of time. Thus y, ȳ ∈ RNs , and W ∈ RNs×Ns

is the inverse of the covariance matrix of measurements errors, Σe. Alternatively

W can be set as the identity matrix W = I, thus results from difference sensors

have the same weights, and [S] = [m2/s3]. For a richer spatial information content,

we consider the use of Ns = 16 uniformly spaced acceleration sensors placed over

the plate.

In this chapter, we do not consider the application of any regularization

technique. Instead, we consider a two step approach, restarting the optimization

procedure maintaining only parameters that presented a variation that surpassed

the threshold value of dT = 0.01.
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6.3 Adjoint Formulation

Generally speaking, the number of particles present in the search space

increases with the increase of the dimensionality of said space [59, 61], thus the use

of small populations sizes is desirable to reduce the computational cost of the

algorithm (since, for each particle, an evaluation of the objective function must be

made). However, the use of small population sizes restricts the PSO’s ability to

search a high dimensional space.

To counteract this problem present in population-based (global) optimization

techniques, one may wish to make use of “traditional” gradient-based techniques,

even though with such techniques one risks getting stuck in any of the possibly many

local minima.

In addition, the use of such algorithms is faced with the same problem of

global techniques for a large parameter space: the number of evaluations of the

object function. In the general situation where the derivatives of the objective

function cannot be analytically obtained, they must be computed numerically by

finite differences or any other scheme, the problem with this approach being that

if the number of parameter increases the number of functions evaluations is also

increased. It also increases with increasing degree of precision.

An alternative to the use of finite differences is the Adjoint Formulation [14,

62–64]. Authors who applied the adjoint formulation to the damage identification

problem include PEREIRA et al. [30], CASTELLO et al. [31]. For more details on

the Adjoint Formulation, see Appendix D of this dissertation.
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6.4 Conjugate Gradient with Adjoint Method

Problem (6.2.2-6.2.3) can be solved by means of the Conjugate Gradient (CG)

Method [14, 15, 65]:

dk = ∇Sk + γk dk−1 (6.4.1a)

θk+1 = θk − βk dk (6.4.1b)

where θk is the vector of parameters θ = (p1, · · · , pi, · · · , pNp)T at iteration k, βk

is the step size in the search direction dk and γk is the conjugation coefficient.

Depending on the choice of γk, different versions of the algorithm can be obtained

[15, 65]. The Polak-Ribière’s version of the algorithm considers

γk =
(∇Sk)T (∇Sk −∇Sk−1)

‖∇Sk−1‖2
, k = 1, 2, ... (6.4.2)

with γ0 = 0, that is, the CG starts with the steepest descent direction.

The gradient ∇S is efficiently calculated at each iteration k using the Adjoint

Method, eq.(6.4.3) (see Appendix E.4).

(∇S)i = αT
∂ϕ

∂pi
+

∫
T

λT
[
∂M

∂pi
q̈ +

∂D

∂pi
q̇ +

∂K

∂pi
q− ∂f

∂pi

]
dt (6.4.3)

The adjoint variable λ is obtained from the Adjoint Problem for acceleration

measurements, eq.(6.4.4).

λ̈
T
M− λ̇TD + λTK = +2(ȳ − y)TWCa

λ̇(tf ) = λ(tf ) = 0
(6.4.4)

The optimum step-size βk is obtained from the 1D minimization problem in

the search direction. This can be done efficiently by solving the Sensitivity Problem,

eq.(6.4.5), for the variation δyk, using δpi = (dk)i, at each global iteration k of the

optimization algorithm (see Appendix E.3).

Mδq̈ + Dδq̇ + Kδq =
N∑
i=1

(
∂f

∂pi
− ∂M

∂pi
q̈− ∂D

∂pi
q̇− ∂K

∂pi
q

)
δpi (6.4.5)

Thus

βk ≈
1

2

(
αTδϕk + 2

∫
T

[yk − ȳ]TW [δyk]dt∫
T

[δyk]TW [δyk] dt

)
(6.4.6)

where δyk is the variation of the measured accelerations δy = Caδq̈ calculated at

iteration k and yk = y(t,θk).
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For the damage identification problem, iterations are started from an

undamaged state, that is, θ0 = 0.

The stopping criteria are the limit number of iterations, the discrepancy

principle and evolution of objective function. If the discrepancy principle is used to

stop the iterative procedure, the CG may gain a well-posed character [14, 15]. The

principle states that iterations must be terminated when S(θ) ≈ ε, where:

• ε =
∑M

m

∑I
i σ

2
im, for M sensors with I measurements each.

• ε = ∆T
∑M

m σ2
m, for continuous measurements of M sensors over time ∆T .

where σm and σim are the standard-deviations of uncorrelated measurements per

sensor m. For the problem considered in this section, we set W = I, thus ε =

3.57× 10−3m2/s3.

However, the use of the discrepancy principle implies knowledge of the

standard-deviation of measurement errors. In the case of almost errorless

measurements, ε can be chosen sufficiently small, since the expected value of the

functional is zero. However if this is not the case and σ is not known, a second

stopping criterion based upon a separate measurement can be used [14].

This separate measurement criterion is similar to accompanying the evolution

of the functional itself, that is, both criteria are based upon the divergence of the

accompanied quantity. If the iterative procedure is stopped at the iteration whose

value for either quantity is minimum, sufficiently stable solutions can be obtained

for the inverse problem.

6.5 Benchmark Problem

In this section, the estimated damage field corresponding to the solution of

minimization problem (6.2.2-6.2.3) is presented.

The two stage procedure used resulted in a correct estimation of the damage’s

geometric support, which is consistent with results found in literature [31, 64, 66]. It

should be noted however that the intensity is not correctly identified everywhere, and

that there is significant variation among close elements. The use of a regularization

technique could positively impact the later.

In Fig. 6.3, the predicted responses in time and frequency of the estimated

field (end of the second stage) are compared to the ones of the actual field in Fig.

6.1. Also, for comparison, the responses for an undamaged structure are shown. Due

to the extension of the damage considered in this section, there is a much clearer

difference between damaged and undamaged states.
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Figure 6.2: Non-localized estimated damage field obtained from the two stage
procedure. Estimated field is shown for the final iterations of both stages.
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Figure 6.3: Predicted responses of estimated field at final stage. (a) Time series
comparison between predicted and measurements. (b) FRF comparison between
predict and the actual FRF of the system. The actual responses of an undamaged
structure is also show for comparison in both cases.
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Chapter 7

Conclusions

The examples presented in Chapter 5 consider scenarios where the simplified

models could be corrected if the variables corresponding to the uninteresting

parameters where also updated, thus leading to models that would be capable of

making predictions on the system’s response outside the training scenarios.

However, as its previous applications suggest, the AEA is better applied when

knowledge of such uninteresting parameters is not required, or would introduce

unnecessary complications to the solution of the inverse problem in the form of

more sophisticated or simply completer models [39–44].

Results from both Sections 5.2 and 5.3 exemplify this idea: the simplified

models are essentially wrong, but do still have purpose. In both chapters, within each

section the same simplified model was used to solve the inverse problem of damage

identification in different scenarios, where information that once was essential to

the problem (with varying degrees of influence, given the sensitivity of the system’s

response) can now be “marginalized” thanks to the AEA.

This is one of the main advantages of the AEA, in comparison to traditional

identification procedures that do not take into account modeling errors: the capacity

of using simplified (or incomplete) models for the solution of the inverse problem,

thus leading to the applicability of the AEA to essentially different, but “similar”,

inverse problems – similarity in this context means “within training scenarios”.

Particularly, the AEA is well suited to be applied in conjunction with standardized

procedures, and its use implies the need for a single simplified model that can be

used for all “similar” systems to which the inverse analysis is performed, in contrast

to one complete model to each system.

The AEA results in a straightforward modification in the final statement of the

inverse problem, the objective function of the minimization problem, thus lending

itself to be readily applied in conjunction with available optimization techniques,

without additional computational cost at this stage other than some additional

matrix multiplications, which can be circumvented with the use of the enhanced

error model (Section 2.3).
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However, while the AEA allows for some variation between different

experiments in scenarios where a certain procedure is to be followed, due to the

way it is formulated, the AEA is not expected to succeed if one changes the

excitation too much in comparison with the training scenarios (position, intensity

or functional form – in the case where time domain data is considered), neither if

the type of measured data is changed.

In hindsight, the use of modal data (such as mode shapes and resonance

frequencies) gathered from output only procedures could be of great value in

combination with the AEA, since model response could be obtained without the

need to consider input variables.

With respect to an efficient implementation of the AEA for a large number

of parameters, we were unable to construct an adjoint problem that maintained

the autocorrelation structure of the measurements present in the AEA, since the

covariance matrices for modeling error do not have, necessarily, off-diagonal entries

that can be neglected.

For future work, consider the following:

• An investigation on how different sampling strategies affect the AEA.

• The application of the AEA to the inverse problem of damage identification

considering modal data.

• The application of the AEA to real experimental data.

• The construction of an adjoint problem based for structural dynamics whose

driving term accounts for the autocorrelation structure of the AEA.
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A Finite Element Model for FSDT

This appendix describes the finite element from REDDY [56] for plate bending.

The element is a four node bilinear quadrilateral one, with 3 degrees of freedom per

node, isoparametric with linear interpolation of geometry and material properties

constant over the element.

The corresponding code was verified against analytical and numerical solutions

presented in reference [56].

A.1 The Finite Element

In local element coordinates, the shape functions of a bilinear quadrilateral

element are:
ψ1

ψ2

ψ3

ψ4

 =
1

4


(1− r)(1− s)
(1− r)(1 + s)

(1 + r)(1 + s)

(1 + r)(1− s)

 , (r, s) ∈ [−1, 1]× [−1, 1] (A.1.1)

The following interpolation of degrees of freedom:

w0(x, y, t) =
N∑
j=1

wj(t)ψj(x, y) = Nvv, Nv =
(
ψ1 · · · ψN

)
1×N

(A.1.2a)

(
φx(x, x, t)

φy(x, x, t)

)
=

N∑
j=1

(
Sxj (t)

Syj (t)

)
ψj(x, y) = Nss, Ns =

(
ψ1 0 · · · ψN 0

0 ψ1 · · · 0 ψN

)
(A.1.2b)

leads to equations of motion of the form:(
M vv 0

0 M ss

)(
v̈

s̈

)
+

(
Kvv Kvs

KT
vs Kss

)(
v

s

)
=

(
F v

F s

)
(A.1.3)

where v = (w1, w2, · · · , wN)T are the displacements at each node of the element and

s = (Sx1 , S
y
1 , · · · , SxN , S

y
N)T are the rotations.
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Letting

m =

(
Tx

Ty

)
, A =

(
A55Ks 0

0 A44Ks

)
, D =

D11 D12 0

D12 D22 0

0 0 D66

 (A.1.4a)

Tx = Mnnnx −Mnsny = Mxxnx +Mxyny (A.1.4b)

Ty = Mnsnx +Mnnny = Mxynx +Myyny (A.1.4c)

The matrices A and D are defined in the constitutive equations (4.2.7-4.2.8).

Define the differential operators

D1 =

(
∂x

∂y

)
, D2 =

∂x 0

0 ∂y

∂y ∂x

 (A.1.5)

Thus the derivatives of the shape functions can be calculate as:

D1Nv = Bv =

(
ψ1,x ψ2,x · · · ψN,x

ψ1,y ψ2,y · · · ψN,y

)
(A.1.6a)

D2(Ns)i = (Bs)i =

ψi,x 0

0 ψi,y

ψi,y ψi,x

⇒ Bs =

ψ1,x 0 · · · ψN,x 0

0 ψ1,y · · · 0 ψN,y

ψ1,y ψ1,x · · · ψN,y ψN,x

 (A.1.6b)

Therefore the hole finite element model can be constructed by calculating:

Mvv =

∫
Ωe

Nv
T I0NvdΩe, Mss =

∫
Ωe

Ns
T I2NsdΩe (A.1.7a)

Kvv,1 =

∫
Ωe

Bv
TABvdΩe, Kvv,2 =

∫
Ωe

Nv
TkNvdΩe (A.1.7b)

Kss,1 =

∫
Ωe

Ns
TANsdΩe, Kss,2 =

∫
Ωe

Bs
TDBsdΩe (A.1.7c)

Kvv =
∑
i

Kvv,i, Kss =
∑
j

Kss,j, Kvs =

∫
Ωe

Bv
TANsdΩe (A.1.7d)

Fv =

∫
Ωe

Nv
T qdΩe +

∫
Γ∩Γe

Nv
TQndS, Fs =

∫
Γ∩Γe

Ns
Tm dS (A.1.7e)

Where k is the stiffness coefficient of a possible elastic bedding and q is a

distributed load.
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NOTE: The contour integrals
∫

Γ
(·)dS of adjacent elements are canceled out,

thus only elements in the boundary actually contribute, leading to the notation∫
Γ∩Γe(·)dS, which can be further restricted to

∫
Γt∩Γe(·)dS.

A.2 Shear Locking and Numerical Integration

Lower-order (quadratic or less) interpolations are plagued with shear locking,

that is, when lower order equal interpolations of the transverse deflection and

rotations are used, the elements become excessively stiff in the thin plate limit,

yielding displacements that are too small compared to the true solution.

A commonly used technique is to under-integrate the transverse shear stiffness

terms (i.e., coefficients in Kij that contain A44 and A55).

For a 4 node bilinear quadrilateral element with gauss rule 2×2, the terms of A

should be evaluated with a 1×1 rule [53]. This is the quadrature rule implemented.

As an example, consider the evaluation of the integral:

Kvs =

∫
Ωe

Bv
TANsdΩe

Two steps are required: first, the necessary change of variables from Ωe to a

standard domain D.

Kvs =

∫
D

Bv
T (r, s) A(r, s) Ns(r, s)det(Je(r, s)) dD

Followed by the quadrature in both directions for a quadrilateral element:

Kvs ≈
Ni∑
i=1

Nj∑
j=1

wiwj Bv
T (gi, gj) A(gi, gj) Ns(gi, gj) det(Je(gi, gj))

Where wi are the weights of the quadrature procedure, and gi the Gauss points in

which to evaluate the function.
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A.3 Elastic Boundaries

In order to add effects of elastic boundaries (Neumann boundary condition),

consider the presence of torsion springs distributed over a region Γt:

(
Tx

Ty

)
= R

(
Mnn

Mns

)
,

(
Mnn

Mns

)
= −k

(
φn

φs

)
,

(
φn

φs

)
= R

−1

(
φx

φy

)
(A.3.1)

Where

k =

(
kn 0

0 ks

)
, R =

(
nx −ny
ny nx

)
, ‖n‖ = 1 (A.3.2)

k being the stiffness matrix related to rotation, with kn the distributed torsional

constant in the normal direction and ks the distributed torsional constant in the

tangent direction, andR a rotation between physical and element coordinate frames.

Define a new stiffness matrix Kss,3 as:

Fs =

∫
Γt∩Γe

Ns
Tm dS = −

∫
Γt∩Γe

Ns
T
RkR−1Ns dS ≡ −Kss,3 (A.3.3)

To proceed with a systematical numerical evaluation of this integral, consider

a geometry interpolation given by n points, x = (x, y)T =
∑n

j=1 xejφj(r, s). The

Jacobian matrix of the map T : Ωe(x) 7→ D(ξ) is given by:

Jij =
∂xi
∂ξj
⇔ Je(r, s) =

(
x,r y,r

x,s y,s

)
=

(
∂rφ1 · · · ∂rφn

∂sφ1 · · · ∂sφn

)
xe1 ye1
...

...

xen yen

 (A.3.4)

where xej = (xej , y
e
j ) and φj are the element’s node coordinates and shape functions

at these nodes, respectively.

Therefore

A(x, y) = A(x(r, s), y(r, s)) ≡ A(r, s), etc...

and with respect to the shape functions:

ψ(x, y) = ψ(x(r, s), y(r, s)) ≡ ψ(r, s)(
ψi,x(x, y)

ψi,y(x, y)

)
= J−1

e

(
ψi,r(r, s)

ψi,s(r, s)

)
With isoparametric elements, ψi = φi.
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For boundary integrals, consider the following:

dS =
√
dx2 + dy2 (A.3.5a)

dx = x,rdr + x,sds = J11dr + J21ds (A.3.5b)

dy = y,rdr + y,sds = J12dr + J22ds (A.3.5c)

The Jacobian takes care of the change of variables to the standard element.

The tangent coordinate t
′

is related to t in local coordinates through the same

change of variables. Thus a line connecting (x0, y0) = T (r0, s0) to (x, y) = T (r, s) in

physical coordinates can be written in local coordinates as (because T is linear):

r = r0 + ∆r · t, t ∈ [0, 1] (A.3.6a)

s = s0 + ∆s · t, t ∈ [0, 1] (A.3.6b)

Therefore

dr = ∆rdt, ds = ∆sdt (A.3.7a)

dx(r, s) = (J11(r, s)∆r + J21(r, s)∆s)dt (A.3.7b)

dy(r, s) = (J12(r, s)∆r + J22(r, s)∆s)dt (A.3.7c)

Figure A.1: Tangent coordinate t
′

in physical coordinates and change of variables.
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And thus any line integral can be calculated as:∫
Γ

f(x)dS =

∫ t

0

f(r(t), s(t))
√

(J11∆r + J21∆s)2 + (J12∆r + J22∆s)2dt

=

∫ 1

−1

f(r(ξ), s(ξ)) dΓ(ξ)
1

2
dξ, t =

ξ + 1

2

≈
Ni∑
i=1

1

2
wif(r(ξi), s(ξi))dΓ(ξi)

Where

dΓ(ξ)2 = [J11(r(ξ), s(ξ))∆r + J21(r(ξ), s(ξ))∆s]2+

+ [J12(r(ξ), s(ξ))∆r + J22(r(ξ), s(ξ))∆s]2

As a concrete example, consider the addition of torsion sprigs distributed along

the boundaries 1 (x = 0,y) and 3 (x = LX ,y). For boundary 1: nx = −1, ny = 0.

For boundary 3: nx = +1, ny = 0.

The linear Hooke Law for the torsion springs and chance of coordinates between

the local and global frames are given by equations (A.3.1-A.3.2). Thus

Kss,3 =

∫
Γt∩Γe

Ns
T
RkR−1Ns dS

=

∫
Γt∩Γe

Ns
T

(
nx −ny
ny nx

)(
kn 0

0 ks

)(
nx ny

−ny nx

)
Ns dS

=

∫ 1

0

Ns
T

(
knn

2
x + ksn

2
y knnxny − ksnxny

knnxny − ksnxny ksn
2
x + knn

2
y

)
Ns

∥∥∥∥∥J T
e

(
∆r

∆s

)∥∥∥∥∥
2

dt

(A.3.8)

Where kα = kα,1(1− t) + kα,2, kα,1 is the value at the local node with t = 0. In

this work, the stiffness constants of the distributed springs are given at the nodes and

linearly interpolated at the faces of the corresponding elements. However ks = 0,

always.
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B Improved Reduce System

O’CALLAHAN [60] improved on the Static Reduction by Guyan (see [52]) by

introducing the technique known as the Improved Reduced System (IRS) method.

The IRS method perturbs the Static Reduction by including the inertia terms as

pseudo-static forces. Obviously, it is impossible to emulate the behavior of a full

system with a reduced model and every reduction transformation sacrifices accuracy

for speed in some way. The IRS results in a reduced system which matches the low

frequency resonances of the full system better than static reduction.

Consider the system of ODEs without damping of a system subjected to

sinusoidal damping. This system is rearranged in such as in eq.(B.1).(
Mpp Mps

Msp Mss

)(
q̈p

q̈s

)
+

(
Kpp Kps

Ksp Kss

)(
qp

qs

)
=

(
fp

0

)
(B.1)

Or

M?q̈? + K?q? = (fp,0)T

where (·)p denotes the primary degrees of freedom (the ones that remain after

reduction) and (·)s denotes the secondary degrees of freedom (the ones

“enslaved”). The secondary degrees of freedom (dof) are chosen to have fs = 0,

they are rewritten in terms of the primary degrees of freedom:

qs = −(Kss − ω2Mss)
−1(Ksp − ω2Msp)qp (B.2)

= −K−1
ss

[
Ksp + ω2(MssK

−1
ss Ksp −Msp) +O(ω4)

]
qp (B.3)

The reduced model based on Static Condensation satisfies:

ω2MR = KRqp (B.4)

Where (·)R are the reduced matrices obtained from static reduction, ω and qp are

the natural frequency and correspondent (reduced) eigenvector. Substituting this

relation and ignoring higher order terms:

qs ≈
[
−K−1

ss Ksp −K−1
ss (MssK

−1
ss Ksp −Msp)MRKR

]
qp (B.5)
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Although only strictly correct when the coordinate vector is a mode shape,

equation (B.5) may be applied as a general transformation, TI :

TI = Tg + SMTg(MR)−1KR, S =

(
0 0

0 −K−1
ss

)
(B.6)

The transformation can be rewritten as:

TI =

(
1

−K−1
ss Ksp +K−1

ss SM−1
R KR

)
, S = Msp −MssK

−1
ss Ksp (B.7)

Where Tg is the Static Condensation Transformation matrix.

Tg =

(
1

−K−1
ss Ksp

)
(B.8)

Therefore the reduced matrices can be obtained from eq.(B.6) and eq.(B.9):

K = TTI K?TI , M = TTI M?TI , q? = TI qp, etc. (B.9)

Since IRS method is constructed upon the Static Condensation, its algorithm

is presented in conjunction with that of IRS in Fig.B.1. Both algorithms are is based

upon a rearrangement of the dof such as the one in eq.(B.1).

The same recommendations that apply to the Static Condensation also apply

to the IRS:

• Use dof qi ∈ qs such that the ratio Kii/Mii is elevated.

• Better results can be obtained if the primary dof are uniformly distributed

over the physical domain: consider uniformly distributed nodes

• Consider nodes with both displacement and rotation degrees of freedom

associated with them.

Given how the primary and secondary dof were chosen, fp = TT f? is

automatically satisfied for both transformations.
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Initialization:
q0, q̇0,M,D,K, f0

Mq̈ + Dq̇ + Kq = f
q0, q̇0

Reorder: q? = (qp,qs)
T

M?q̈? + D?q̇? + K?q? = (fp,0)T

q0
?, q̇0

?

Static Condensation:
q? = Tqp

Tg =

(
1

−K−1
ss Ksp

) IRS:
S = Msp − MssK

−1
ss Ksp

TI =
(
1,−K−1

ss Ksp +K−1
ss SM−1

R KR

)T
AR = TTg A?Tg

Choose Transformation:
T = Tg or T = TI

Apply Transformation:
K = TTK?T, D = TTD?T
M = TTM?T, f = TT f?

Mq̈p + Dq̇p + Kqp = fp
q0,p, ˙q0,p

Figure B.1: Static Condensation algorithm and how it relates to the and Improved
Reduced System to construct a reduced model.
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C Random Fields

In order to generate the statics of the AEA, as describe in Section 2.4, one must

consider the problem of generating random numbers, in particular, the generation

of random correlated fields is of importance if one wishes to study the effects of

uncertain distributed quantities, such as material properties.

The generation of random fields is not the main subject of this dissertation,

however. Thus this chapter presents only the basic concepts necessary for the

understanding of the situations presented in Chapter 5.3, as well as two relatively

simple methods for the generation of random fields. Detailed information about

this subject may be found in the reference books [49, 67].

C.1 Gaussian Random Fields

Let u(x) : x ∈ D ⊂ Rn 7→ R be a random field. A gaussian random field u(x)

is a field such that U = (u(x1), · · · , u(xN))T follows the N-dimensional multivariate

gaussian distribution, U ∼ N (µ,C), with expected value µ = E[U] and covariance

matrix Cij = c(xi,xj) = E[(u(xi)− µ(xi))(u(xj)− µ(xj))], where xi,xj ∈ D [67].

The function c(x,y) defines the basic characteristics of the field. Random

fields are said to be isotropic if they are invariant to rotation

c(x,y) = c(‖x− y‖) (C.1.1)

and stationary if they are invariant to translation

c(x,y) = c(x− y) (C.1.2)

In both cases, the mean is independent of position, that is, E[u(x)] = µ.

Equation (C.1.3) is a Gaussian covariance function, where A is a symmetric

positive-definite n × n matrix, σ is the standard-deviation and `c > 0 is the

correlation length1.

c(x,y) = σ2 exp

{
−(x− y)TA(x− y)

`2
c

}
(C.1.3)

1 A and `2c are multiplied, thus there are infinitely many combinations of A and `2c that produce
the same correlation function.
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where `c is a parameter that indicates the degree of correlation between the

values of a random field u at two different locations, that is, if x and y are two

points in space, their respective field values u(x) and u(y) are highly correlated if

‖y − x‖ � `c and effectively uncorrelated if ‖y − x‖ � `c. While σ is simply a

measure of the deviation between different realizations of the field u(x) at the same

location x0, that is, σ2 = Var[u(x0)]. This can be seen in one dimension, as shown

in Fig. C.1, which also shows the intervals corresponding to µ ± σ, µ ± 2σ and

µ± 3σ.

Figure C.2 shows that the effect of `c in isotropic two dimensional fields is

analogous of that in one dimensional fields.

Whenever A is not proportional to the identity matrix of the Rn space, the

field is anisotropic. Figure C.3 shows realizations of a random field with µ = 0 and

different “signature” matrices A, with `c = 0.1 and σ = 1.

(a) `c = 0.10, σ = 1 (b) `c = 0.05, σ = 1

Figure C.1: Realizations of a Gaussian correlated 1D random field.
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(a) `c = 0.10, σ = 1
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(b) `c = 0.05, σ = 1

Figure C.2: Realizations of a Gaussian correlated Isotropic 2D random fields, A = I.
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(a) A = (+4.0, 0.0, 0.0, +1.0)
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(b) A = (+1.0, 0.0, 0.0, +4.0)
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(c) A = (+1.0, −1.0, −1.0, +1.0)
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(d) A = (+1.0, −1.0, −1.0, +4.0)
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(e) A = (+1.0, 0.5, 0.5, +1.0)
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(f) A = (+1.0, −0.5, −0.5,+ 1.0)

Figure C.3: Gaussian correlated anisotropic 2D random fields with `c = 0.1 and
σ = 1: different realizations of correlated fields are obtained when modifying the
correlation structure A = (A11, A12, A21, A22).
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For one dimension, eq.(C.1.3) reduces to

c(x1, x2) = σ2 exp

{
−‖(x1 − x2)‖2

2

`2
c

}
(C.1.4)

In order to generate a realization U of the random field u(x), we use the

discrete Karhunen–Loève expansion:

U = µ+
N∑
j=1

√
λjvjξj (C.1.5)

where λj and vj are respectively the eigenvalues and eigenvectors of C, and ξj ∼
N (0, 1) are independent and identically distributed (iid) realizations of a gaussian

random variable. N is the dimension of the vector space corresponding to the

discretization.

Eq.(C.1.5) can be rewritten in vector form as

U = µ+ VΛ1/2ξ, ξ ∼ N (0,1N×N) (C.1.6)

In equations (C.1.5) and (C.1.6), µ is the expected value of the field such

that µi = E[u(xi)] and Λ and V are respectively the diagonal matrix of eigenvalues

and correspondent matrix of eigenvectors of C. Λ and V are such that LT =

VΛ1/2, C = LTL. The covariance matrix C is calculated using a function c(x,y)

such that Cij = c(xi,xj) gives the covariance structure between points xi and xj,

that is, eq.(C.1.3) or eq.(C.1.4) [67].

In Chapter 5.3, the fields were generated considering the centroid of the mesh’s

elements as the points xi and xj at which to calculate the covariance.
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C.2 Non-gaussian Random Fields

Algorithms to generate non-gaussian correlated random fields are of practical

interest, and while algorithms for generation of gaussian processes are well

established, this cannot be said about non-gaussian ones [68]. For more on this

subject, see the works by KIM and SHIELDS [68], VIO et al. [69, 70] and

TRANDAFIR and DEMETRIU [71] and references therein.

This is not, however, the focus of this work, thus we consider the application

of the change of variables method [11, 49] to generate a field Z with PDF f(Z) and

marginal FZ(Z) from a Gaussian correlated random field U. We accomplish this by

applying the transformation g = F−1
Z ◦ FU :

Z = g(U) = F−1
Z (FU(U)) (C.2.1)

where FU is the marginal cumulative function of the Gaussian distribution.

In this work, we require realizations of a random field d ∈ [0, 1]. For the

purpose of generating samples of this field, we consider a Beta distributed random

variable w ∼ B(α, β), whose support is the interval [0, 1]. If we define a variable

z ∈ [zmin, zmax] it is possible to construct z ∼ B(α, β) with support [zmin, zmax] [71]:

z = zmin + (zmax − zmin)w ≡ zmin + ∆z w (C.2.2)

Thus z has PDF given by

f(z, α, β) =


1

B(α, β)

(z − zmin)α−1(zmax − z)2

(zmax − zmin)α+β+1
, zmin ≤ z ≤ zmax

0, otherwise

(C.2.3)

where B(α, β) is the beta function. Whose marginal is

FZ(z) =
Bu(α, β)

B(α, β)
=

1

B(α, β)

∫ u

0

tα−1(1− t)β−1dt, u =
z − zmin

zmax − zmin
(C.2.4)

where Bu(α, β) is the incomplete beta function. Since FZ is monotonically

increasing, it has an inverse.

The mean and variance of z are related to those of w by

E[z] = zmin + (∆z)E[w] = zmin + (∆z)
α

α + β
(C.2.5)

Var[z] = Var[zmin + (∆z)w] = (∆z)2 Var[w] =
αβ(∆z)2

(α + β)2(α + β + 1)
(C.2.6)
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Figure C.4 shows a parametric study of the beta distribution. In order to

simulate the damage field, we chose α = 0.2, and further analysis lead us to choose

β = 5, which produces less severe damage spikes.

Figure C.5 shows one-dimensional beta fields obtained for β = 2 and β = 5,

the produced effect is an increase in the field. Also, a realization of a gaussian

random field is shown and by its side the correspondent beta field obtained from

change of variables (C.2.1).
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Figure C.4: Parametric Study of the Beta and composite functions. (a) and (c)
various pdf of beta distributed variables with their respective expected values. (b)
and (d) show the result of the composition F−1

Z ◦ FU , it can be seen that for all
proposed parameters, there is a vast linear region.
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Figure C.5: Generation of Beta correlated random fields. (a) and (b) show the
effects of the shape parameter β on a 1D field. (c) realization of a 2D gaussian
correlated random field (d) correspondent 2D beta field obtained from change of
variables.
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D Approximation of the Posterior

The optimization problem for the traditional least squares is:

θ′ = argmin
θ
‖Γe(y − A(θ))‖2 (D.1)

where ΓT
e Γe = Σ−1

ee and e∗ = 0.

Assuming π(θ|y) is gaussian, it is possible to rewrite it around the estimated

value θ′ leads to the following approximation:

θ ∼ N (θ′,ΣN ) (D.2a)

ΣN =
(
JTΣ−1

ee J
)−1

, J =
∂A

∂θ

∣∣∣∣
θ′

(D.2b)

as described by TARANTOLA [11].

The optimization problem with Approximation Error is

θ′ = argmin
θ

V (θ) (D.3a)

V (θ) = ‖Γν|θ(y − A(θ, z0, ξ0)− ν∗|θ)‖2 + ‖Γθ(θ − θ∗)‖2 (D.3b)

ν∗|θ = e∗ + ε∗ + ΣεθΣ
−1
θθ (θ − θ∗) (D.3c)

Σν|θ = Σe + Σεε −ΣεθΣ
−1
θθΣθε (D.3d)

Therefore if one assumes π(θ|y) to be gaussian, it is possible to rewrite the

posterior around the estimated value θ′:

θ ∼ N (µ,ΣN ) (D.4a)

µ = θ′ + ΣNJTΣ−1
ν|θ(y − f(θ′)) (D.4b)

ΣN =
(
JTΣ−1

ν|θJ + Σ−1
θθ

)−1

, J =
∂f

∂θ

∣∣∣∣
θ′

(D.4c)

Σν|θ = Σe + Σεε −ΣεθΣ
−1
θθΣθε (D.4d)

f(θ) = A(θ, z0, ξ0) + e∗ + ε∗ + ΣεθΣ
−1
θθ (θ − θ∗) (D.4e)

Equations (D.2) and eq.(D.4) are used in Chapter 5.2 to construct the 98%

confidence envelope of the estimates. This is not, however, used in Chapter 5.3 in

order to maintain the figures comprehensible.
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E Adjoint Formulation

E.1 Adjoint Formulation: Introduction

Consider the inverse problem of identifying the parameters p written as a

minimization problem of a continuous functional

min
p

J(p) (E.1.1a)

J(p) =

∫
T

[ȳ(t)− y(t,p)]T W [ȳ(t)− y(t,p)] dt+αTϕ(p) (E.1.1b)

where ȳ(t) ∈ RNs is a vector containing the measurements collected at times t and

y(t,p) ∈ RNs is a vector of model responses, which is some function of the forward

problem’s solution. The forward problem being represented by an equation of the

form g(t,x,p) = 0. p ∈ RN is the vector of model parameters. The term αTϕ(p)

is related to a regularization technique, with regularization parameter α.

Alternatively, the condition that the forward problem must be satisfied can be

incorporated to construct a constrained minimization problem:

min
p

J(p)

subject to g(p) = 0.
(E.1.2)

If the calculations corresponding to the direct problem y(t,p) are

computationally expansive, calculating the gradient of the functional for a large

number of parameters p using finite differences becomes prohibitive. Furthermore,

the use of heuristic methods for solving the minimization problem would very

quickly become prohibitive for the same reason.

To counteract these problems, one can make use of a technique known as

Adjoint Varibles Formulation [14, 62–64]. This technique basically uses an

extension of the functional, called the Lagrangian, to construct an auxiliary

problem for the Lagrangian multipliers. Using these multipliers, it is possible to

obtain the gradient of the original functional without calculating the derivatives

through (at least) N + 1 finite differences of the forward problem, instead using

one auxiliary problem.

To solve either problem (E.1.1) or (E.1.2), consider the Lagrangian:

L(p,λ) = αTϕ(p) +

∫
T

[ȳ(t)− y(t,p)]T W [ȳ(t)− y(t,p)] dt+

∫
Ω

λTg(t,x,p)dΩ

(E.1.3)
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Where λ are the Lagrange multipliers and g(t,x,p) = 0 is the governing

equation of the direct problem2 with parameters p and variables x ∈ Ω.

Using this functional, we can construct an Adjoint Problem in Ω, with

boundary conditions and/or initial conditions, for λ. For instance, if g(t,x,p) = 0

is the strong formulation of a problem defined in Ω = [Ti, Tf ]×Rn, the problem for

λ is defined in this domain.

In the case of spatially discretized linear model, one gets a linear time invariant

system of ODEs

M(p)q̈(t,p) + D(p)q̇(t,p) + K(p)q(t,p) = f(t,p), T = (t0, tf ] (E.1.4a)

q(t0,p) = q0(p), q̇(t0,p) = q̇0(p) (E.1.4b)

Therefore the Lagrangian (written in a concise manner) is:

L(p,λ) = αTϕ+

∫
T

eTWe dt+

∫
T

λT (Mq̈ + Dq̇ + Kq− f) dt (E.1.5)

where e = ȳ(t)− y(t,p).

E.2 Conjugate Gradient Method

Consider the objective function defined by:

S(p) =

∫
T

[ȳ(t)− y(t,p)]TW [ȳ(t)− y(t,p)] dt+αTϕ(p) (E.2.1)

Using the Conjugate Gradient (CG) Method [14, 15, 65]

dk = ∇Sk + γk dk−1

pk+1 = pk − βk dk
(E.2.2)

Where βk is the step size in the search direction dk and γk is the conjugation

coefficient. Depending on the choice of γk, different versions of the algorithm can

be obtained [15, 65]. In this text we consider the Polak-Ribière version, eq.(E.2.3),

due to reasons explained in [14].

γk =
(∇Sk)T (∇Sk −∇Sk−1)

‖∇Sk−1‖2
, k = 1, 2, ... (E.2.3)

with γ0 = 0, that is, the CG starts with the steepest descent direction.

2 The parallel with constrained optimization should be clear.
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The gradient is calculated using the Adjoint Method, eq.(E.4.19):

(∇S)i = αT
∂ϕ

∂pi
+

∫
T

λT
[
∂M

∂pi
q̈ +

∂D

∂pi
q̇ +

∂K

∂pi
q− ∂f

∂pi

]
dt︸ ︷︷ ︸

≡
∫
T f(t) dt≈ 1

2

∑
n(tn+1−tn)[f(tn)+f(tn+1)]

with a trapezoidal rule approximation for the integral term. Where λ is obtained

from the Adjoint Problem.

The objective function evaluated at pk+1 is

S(pk+1) =

∫
T

[ȳ(t)− y(t,pk+1)]TW [ȳ(t)− y(t,pk+1)] dt+αTϕ(pk+1)

=

∫
T

[ȳ(t)− y(t,pk − βkdk)]TW [ȳ(t)− y(t,pk − βkdk)] dt+αTϕ(pk − βkdk)

→ Sk+1 ≡
∫
T

[ȳ − yk+1]TW [ȳ − yk+1] dt+αTϕk+1

Thus the optimum step-size βk can be obtained from the 1D minimization

problem of Sk+1.

βk = argminS(pk+1) (E.2.4)

However, traditional optimization algorithms would required additional

evaluations of the objective function, and that can be costly due to the forward

problem3. One alternative to exactly solving the minimization problem is to allow

for an approximation, this leads us to the Sensitivity Problem.

E.3 Sensitivity Problem

If we allow for an approximation, it is possible to construct the so called

Sensitivity Problem [14, 15, 30, 62]. Starting by a Taylor expansion in the search

direction:

yk+1 = y(t,pk − βkdk) ≡ yk(pk + ∆pk)

≈ yk(pk) +
∂yk

∂pk

∣∣∣∣
pk

∆pk

= yk − βk
∂yk

∂pk

∣∣∣∣
pk

dk = yk − βkδyk

(E.3.1)

3 In this case, it isn’t. The use of a reduced model allows for an exact linear search to be
conducted in appropriate time, however, for consistency, we use the sensitivity problem.
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Where

δyk =
N∑
i=1

∂yk

∂pki

∣∣∣∣
pk

(dk)i (E.3.2)

For a continuous functional, the proposed approximation leads to

Sk+1 ≡
∫
T

[ȳ − yk+1]TW [ȳ − yk+1] dt+αTϕk+1

≈
∫
T

[ȳ − (yk − βkδyk)]TW [ȳ − (yk − βkδyk)] dt+αT (ϕk − βkδϕk)

=

∫
T

[ȳ − yk]TW [ȳ − yk] + β2
k [δy

k]TW [δyk] dt+αT (ϕk − βkδϕk)

+

∫
T

βk[ȳ − yk]TW [δyk] + βk[δy
k]TW [ȳ − yk]︸ ︷︷ ︸

=2βk[ȳ−yk]TW δyk, since W=W T

dt

(E.3.3)

Taking the derivative with respect to βk in order to search for extreme points:

∂Sk+1

∂βk
≈
∫
T

2[ȳ − yk]TW [δyk] + 2βk[δy
k]TW [δyk] dt−αTδϕk (E.3.4)

∂Sk+1

∂βk
= 0⇒ βk =

1

2

(
αTδϕk + 2

∫
T

[yk − ȳ]TW [δyk]dt∫
T

[δyk]TW [δyk] dt

)
(E.3.5)

which, in the absence of regularization, reduces to what is found in reference [14].
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The variation δyk is obtained from the solution of the Sensitivity Problem,

eq.(E.3.6), at each global iteration k of the optimization algorithm.

The sensitivity problem is constructed from the governing equations of the

direct problem. In this case:

Mq̈ + Dq̇ + Kq = f(t)

Introducing a variation δpi to each parameter leads to

Mδq̈ + Dδq̇ + Kδq = δf − (δMq̈ + δDq̇ + δKq)

=
N∑
i=1

(
∂f

∂pi
− ∂M

∂pi
q̈− ∂D

∂pi
q̇− ∂K

∂pi
q

)
δpi

≡ F(t)

(E.3.6)

Therefore, using δpi = (dk)i for each iteration k, and solving eq.(E.3.6), it is

possible to calculate the approximate ideal step-size βk [14].

Given that acceleration measurements are considered, it follows that:

δy = Caδq̈ (E.3.7)
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E.4 Adjoint Problem

A more abstract approach to the construction of the adjoint problem is

presented by FICHTNER et al. [63], in this section, however, we consider a more

explicit approach to the derivation of the adjoint problem for damage identification

such as presented by PEREIRA et al. [30].

Starting from the extended functional eq.(E.1.5)

L(p,λ) = αTϕ(p) +

∫
T

eTWe dt+

∫
T

λT (Mq̈ + Dq̇ + Kq− f) dt

Introducing a variation δp on the parameters, which in turn produces

variations of the predict response, model and observation:

p→ p + δp⇒ L(p,λ)→ L(p + δp,λ) (E.4.1)

Thus

L(p + δp,λ) = αT (ϕ+ δϕ) +

∫
T

(e + δe)TW(e + δe) dt+

+

∫
T

λT [(M + ∆M)(q̈ + δq̈) + (D + ∆D)(q̇ + δq̇)+

+ (K + ∆K)(q + δq)− (f + δf)] dt

Expanding and dropping out second order terms:

L(p + δp,λ) = αT (ϕ+ δϕ) +

∫
T

δeTWδe︸ ︷︷ ︸
≈ 0

+ eTWδe + δeTWe︸ ︷︷ ︸
=2eTWδe

+ eTWe dt+

+

∫
T

λT {[Mq̈ + Dq̇ + Kq− f ] + [Mδq̈ + Dδq̇ + Kδq− δf ]} dt+

+

∫
T

λT

∆Mq̈ + ∆Dq̇ + ∆Kq + ∆Mδq̈︸ ︷︷ ︸
≈ 0

+ ∆Dδq̇︸ ︷︷ ︸
≈ 0

+ ∆Kδq︸ ︷︷ ︸
≈ 0

 dt
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Define δL ≡ L(p + δp,λ)− L(p,λ), thus

δL(p,λ) = αT δϕ+

∫
T

2eTWδe dt+

+

∫
T

λT {[∆Mq̈ + ∆Dq̇ + ∆Kq− δf ] + [Mδq̈ + Dδq̇ + Kδq]} dt

(E.4.2)

Consider measurements y(t,p) linear combinations of the responses in

acceleration, velocity and displacement of the system such as:

y(t,p) = Caq̈(t,p) + Cvq̇(t,p) + Cdq(t,p) (E.4.3)

It follows directly that:

δe = δ (ȳ(t)− y(t,p)) = −δy(t,p) = −[Caδq̈(t,p) + Cvδq̇(t,p) + Cdδq(t,p)]

(E.4.4)

Introducing the following decomposition for λ [30]:

λ = λ̈a + λ̇v + λd (E.4.5)

We arrive at

δL(p,λ) = αT δϕ−
∫
T

2eTW(Caδq̈ + Cvδq̇ + Cdδq) dt+

+

∫
T

λTd {[∆Mq̈ + ∆Dq̇ + ∆Kq− δf ] + [Mδq̈ + Dδq̇ + Kδq]} dt

+

∫
T

λ̇v
T {[∆Mq̈ + ∆Dq̇ + ∆Kq− δf ] + [Mδq̈ + Dδq̇ + Kδq]} dt

+

∫
T

λ̈a
T {[∆Mq̈ + ∆Dq̇ + ∆Kq− δf ] + [Mδq̈ + Dδq̇ + Kδq]} dt

(E.4.6)
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Integrating by parts the terms associated with displacements:∫
T

λTd︸︷︷︸
u

D δq̇︸︷︷︸
dv

dt = λTdDδq
∣∣∣
T
−
∫
T

λ̇d
T︸︷︷︸

du

D δq︸︷︷︸
v

dt

∫
T

λTdMq̈ dt = λTdMδq̇
∣∣∣
T
−
∫
T

λ̇d
T
Mδq̇ dt

= λTdMδq̇
∣∣∣
T
− λ̇d

T
Mδq

∣∣∣
T

+

∫
T

λ̈d
T
Mδq dt

Integrating by parts the terms associated with velocities:∫
T

λ̇v
T
Mδq̈ dt = λ̇v

T
Mδq̇

∣∣∣
T
−
∫
T

λ̈v
T
Mδq̇ dt∫

T

λ̇v
T
Kδq dt = λTv Kδq

∣∣∣
T
−
∫
T

λTv Kδq̇ dt

Integrating by parts the terms associated with accelerations:∫
T

λ̈a
T
Dδq̇ dt = λ̇a

T
Dδq̇

∣∣∣
T
−
∫
T

λ̇a
T
Dδq̈ dt∫

T

λ̈a
T
Kδq dt = λ̇a

T
Kδq

∣∣∣
T
−
∫
T

λ̇a
T
Kδq̇ dt

= λ̇a
T
Kδq

∣∣∣
T
− λTaKδq̇

∣∣∣
T

+

∫
T

λTaKδq̈ dt

Since the variations must respect the boundary conditions δq0 = δq̇0 = 0:

δL =
[
λTdMδq̇− λ̇d

T
Mδq + λTdDδq

]∣∣∣
tf

+

∫
T

(λ̈d
T
M− λ̇d

T
D + λTdK− 2eTWCd)δq dt

+
[
λTv Kδq + λ̇v

T
Mδq̇

]∣∣∣
tf

+

∫
T

(−λ̈v
T
M + λ̇v

T
D− λTv K− 2eTWCv)δq̇ dt

+
[
λ̇a

T
Dδq̇ + λ̇a

T
Kδq− λTaKδq̇

]∣∣∣
tf

+

∫
T

(λ̈a
T
M− λ̇a

T
D + λTaK− 2eTWCa)δq̈ dt

+αTϕ+

∫
T

λT (∆Mq̈ + ∆Dq̇ + ∆Kq) dt

(E.4.7)

100



In order to eliminate the contributions of δq and δq(tf ):

λ̈d
T
M− λ̇d

T
D + λTdK = +2eTWCd (E.4.8a)

λTd (tf )D− λ̇d(tf )TM = 0 (E.4.8b)

λTd (tf )M = 0 (E.4.8c)

In order to eliminate the contributions of δq̇ and δq̇(tf ):

λ̈v
T
M− λ̇v

T
D + λTv K = −2eTWCv (E.4.9a)

λTv (tf )K = 0 (E.4.9b)

λ̇v
T

(tf )M = 0 (E.4.9c)

In order to eliminate the contributions of δq̈ and δq̈(tf ):

λ̈a
T
M− λ̇a

T
D + λTaK = +2eTWCa (E.4.10a)

λ̇a
T

(tf )D− λTa (tf )K = 0 (E.4.10b)

λ̇a
T

(tf )K = 0 (E.4.10c)

Problems E.4.8, E.4.9 and E.4.10 are the Adjoint Problems, in their natural

final value problem form.

They can be rewritten in a transposed manner, with zero boundary conditions.

For example:

MT λ̈a −DT λ̇a + KTλa = +2CT
a WTe (E.4.11a)

DT λ̇a(tf )−KTλa(tf ) = 0 (E.4.11b)

KT λ̇a(tf ) = 0 (E.4.11c)

Since W is the covariance matrix, W = WT . And since the system is not

singular, the matrices M, D and K have inverses, and these inverses have their

respective transposes M−T , D−T and K−T . Therefore it follows that

λ̇a(tf ) = λa(tf ) = 0 (E.4.12)

In order to solve these equations, we rewrite them as Initial Value Problems

– this way, the same algorithms that were applied to the system’s ODEs can be

applied to the adjoint equations.
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Define the new time coordinate τ such that t = tf−τ . For convenience, t0 = 0.

t = tf − τ →
d

dτ
= − d

dt
(E.4.13)

Therefore problem E.4.11 can be cast as an initial value problem (IVP).

MT λ̈a + DT λ̇a + KTλa = +2CT
a WTe(tf − τ), τ > 0

λ̇a(τ = 0) = λa(τ = 0) = 0

Where e(tf − τ) is the error vector evaluated backwards in time.

In practical terms, one reverses the order of e and uses it to drive the pertinent

FVP rewritten as a IVP. Once the adjoint variables λ are calculated, these are

reversed in order to be in accordance with the governing equations of the problem,

which are, in the case of structural dynamics, the equations of motion.

Finally, we rewrite the Adjoint Problems as:

MT λ̈d + DT λ̇d + KTλd = +2CT
d WTe(tf − τ), λ̇d(0) = λd(0) = 0 (E.4.14)

MT λ̈v + DT λ̇v + KTλv = −2CT
v WTe(tf − τ), λ̇v(0) = λv(0) = 0 (E.4.15)

MT λ̈a + DT λ̇a + KTλa = +2CT
a WTe(tf − τ), λ̇a(0) = λa(0) = 0 (E.4.16)

It is blatantly obvious that if one does not measure a particular quantity, for

instance displacement, it follows that the corresponding C is the zero matrix and

therefore λ = 0.
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The Lagrangian L and the original functional J are equal by construction,

and thus have the same gradient. If λ satisfies the adjoint problem, however, the

gradient can be calculated through the variation of L

δL(p,λ) = αT δϕ+

∫
T

λT [∆Mq̈ + ∆Dq̇ + ∆Kq− δf ] dt = δJ (E.4.17)

Using the definition of first variation of a function:

δL(p,λ) =
N∑
i=1

∂L
∂pi

δpi

=
N∑
i=1

[
αT

∂ϕ

∂pi
δpi +

∫
T

λT
(
∂M

∂pi
δpiq̈ +

∂D

∂pi
δpiq̇ +

∂K

∂pi
δpiq−

∂f

∂pi
δpi

)
dt

]

=
N∑
i=1

[
αT

∂ϕ

∂pi
+

∫
T

λT
(
∂M

∂pi
q̈ +

∂D

∂pi
q̇ +

∂K

∂pi
q− ∂f

∂pi

)
dt

]
δpi

≡
N∑
i=1

(∇L)i δpi

(E.4.18)

The response of the system – q̈, q̇,q – was previously obtained. Thus to

calculate the gradient, it is only necessary to perform the pertinent matrix

multiplications and integration over the domain T.

To summarize

(∇L)i =

[
αT

∂ϕ

∂pi
+

∫
T

λT
(
∂M

∂pi
q̈ +

∂D

∂pi
q̇ +

∂K

∂pi
q− ∂f

∂pi

)
dt

]
= (∇J)i (E.4.19)

where λ is obtained from eq.(E.4.5) and one or all of the problems E.4.14, E.4.15

and E.4.16.

The derivatives of M,D and K are obtained as described in the Section E.6.
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E.5 Derivatives of the Constitutive Equations

In this section, a example of how to obtain the derivatives of the finite element

model is shown.

We start by taking the derivatives of the constitutive matrices.

A11 =
E1h

1− ν12ν21

, A22 =
E2h

1− ν12ν21

, A12 = A21 = ν12A22 (E.5.1)

D11 = A11
h2

12
, D22 = A22

h2

12
, D12 = D21 = A12

h2

12
(E.5.2)

A66 = G12h, A55 = G13h, A44 = G23h, D66 = A66
h2

12
(E.5.3)

D =

D11 D12 0

D12 D22 0

0 0 D66

 A =

A11 A12 0

A12 A22 0

0 0 A66

 (E.5.4)

∂

∂pi
D =


∂D11

∂pi

∂D12

∂pi
0

∂D12

∂pi

∂D22

∂pi
0

0 0
∂D66

∂pi


∂

∂pi
A =


∂A11

∂pi

∂A12

∂pi
0

∂A12

∂pi

∂A22

∂pi
0

0 0
∂A66

∂pi

 (E.5.5)

Given the following properties for an isotropic plate:

• E0 = E1,0 = E2,0 = E3,0 = 69GPa

• ν = ν12 = ν21 = 0.33

• G = G12 = G23 = G13 =
E

2(1 + ν)

• ρ = 2725 kg/m3

• Lx = 2.25m, Ly = 1.6m,h = 5mm

The derivative of an entry of D with respect to some parameter pi is

∂D11

∂pi
=

∂

∂pi

(
Eh3

1− ν12ν21

)
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If pi = E, then

∂D11

∂pi

∣∣∣∣
E=69GPa

=
h3

1− ν12ν21

∣∣∣∣
E=69GPa

= 1.168967194104665× 10−8

If pi = h, then

∂D11

∂pi

∣∣∣∣
h=0.005m

=
3Eh2

1− ν12ν21

∣∣∣∣
h=0.005m

= 4.839524183593312× 105

From isotropy considerations, the derivatives of D with respect to E and h

are:

∂D

∂E

∣∣∣∣
E=69GPa

=

0.116897× 10−7 0.038576× 10−7 0

0.038576× 10−7 0.116897× 10−7 0

0 0 0.039160× 10−7



∂D

∂h

∣∣∣∣
h=0.005m

=

4.83952× 105 1.59704× 105 0

1.59704× 105 4.83952× 105 0

0 0 1.62124× 105


For an anisotropic material, consider the derivative with respect to E1 at E1 =

69GPa:

∂D

∂E1

∣∣∣∣
E=69GPa

=

0.116897× 10−7 0 0

0 0 0

0 0 0


And the derivative with respect to h at h = 0.005m is unchanged:

∂D

∂h

∣∣∣∣
h=0.005m

=

4.83952× 105 1.59704× 105 0

1.59704× 105 4.83952× 105 0

0 0 1.62124× 105


Notice the great disparity in orders of magnitude between both cases.
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Consider now that the parameter pi is a deviation αi from a reference value

P ∗i for a given property Pi:

Pi = P ∗i (1 + αi) (E.5.6)

Therefore
∂D11

∂αi
=

∂

∂Pi

(
Eh3

1− ν12ν21

)
∂Pi
∂αi

(E.5.7)

To calculate these same derivatives, let Pi = E, with E∗i = 69GPa, then

∂D11

∂αi

∣∣∣∣
α=0

=
h3

1− ν12ν21

E∗i = 1.16896× 10−8 × 69× 109 = 8.06587× 102

and Pi = h, with h∗i = 0.005m, then

∂D11

∂αi

∣∣∣∣
α=0

=
3E[hi(αi)]

2

1− ν12ν21

h∗i = 4.83952× 105 × 0.005 = 2.41976× 103

Where hi(αi) = h∗i (1 + αi).

And from isotropy considerations, we have:

∂D

∂αE

∣∣∣∣
α=0

=

8.06587× 102 2.66174× 102 0

2.66174× 102 8.06587× 102 0

0 0 2.70207× 102



∂D

∂αh

∣∣∣∣
α=0

=

2.41976× 103 0.79852× 103 0

0.79852× 103 2.41976× 103 0

0 0 0.81062× 103


For an anisotropic material, the extension is direct.

These derivatives were obtained using complex step differentiation [72] using

a forward difference scheme, eq.(E.5.8). The truncation error is of order O(h2), h

being the step-size.

∂f

∂x

∣∣∣∣
X

= Im
[
f(X + ih)

h

]
+O(h2) (E.5.8)

There is good agreement with analytic results up to machine precision when

an appropriate step-size is used. General aspects of this technique’s implementation

can be found in the work by LAI e CRASSIDIS [72].
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E.6 Derivatives of the FE Matrices

Consider the Finite Element Model (here repeated for convenience)(
M vv 0

0 M ss

)(
v̈

s̈

)
+

(
Kvv Kvs

KT
vs Kss

)(
v

s

)
=

(
F v

F s

)
(E.6.1)

where the mass matrix Me and stiffness matrix Ke are obtained from

Mvv =

∫
Ωe

Nv
T I0NvdΩe, Mss =

∫
Ωe

Ns
T I2NsdΩe (E.6.2)

Kvv,1 =

∫
Ωe

Bv
TABvdΩe, Kvv,2 =

∫
Ωe

Nv
TkNvdΩe (E.6.3)

Kss,1 =

∫
Ωe

Ns
TANsdΩe, Kss,2 =

∫
Ωe

Bs
TDBsdΩe (E.6.4)

Kvv =
∑
i

Kvv,i, Kss =
∑
j

Kss,j, Kvs =

∫
Ωe

Bv
TANsdΩe (E.6.5)

Differentiation of matrices is done term by term, for example consider the

element stiffness matrix:

Ke =

(
Kvv Kvs

KT
vs Kss

)
→ ∂Ke

∂pi
=


∂Kvv

∂pi

∂Kvs

∂pi(
∂Kvs

∂pi

)T
∂Kss

∂pi


Further consider the derivative of Kvv,1

Kvv,1 =

∫
Ωe

Bv
TABvdΩe → ∂Kvv,1

∂pi
=

∂

∂pi

∫
Ωe

Bv
TABvdΩe

Since the interpolation functions do not dependent on the parameters, one

obtains

∂

∂pi

∫
Ωe

Bv
TABvdΩe =

∫
Ωe

∂

∂pi

(
Bv

TABv

)
dΩe

=

∫
Ωe

∂Bv
T

∂pi
ABv + Bv

T ∂A

∂pi
Bv + Bv

TA
∂Bv

∂pi
dΩe

=

∫
Ωe

Bv
T ∂A

∂pi
BvdΩe
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Repeating this procedure to all elemental matrices leads to:

∂Kvv,1

∂pi
=

∫
Ωe

Bv
T ∂A

∂pi
BvdΩe,

∂Kvv,2

∂pi
=

∫
Ωe

Nv
T ∂k

∂pi
NvdΩe (E.6.6)

∂Kss,1

∂pi
=

∫
Ωe

Ns
T ∂A

∂pi
NsdΩe,

∂Kss,2

∂pi
=

∫
Ωe

Bs
T ∂D

∂pi
BsdΩe (E.6.7)

∂Kvv

∂pi
=
∑
k

∂Kvv,k

∂pi
,

∂Kss

∂pi
=
∑
j

∂Kss,j

∂pi
,

∂Kvs

∂pi
=

∫
Ωe

Bv
T ∂A

∂pi
NsdΩe (E.6.8)

∂Mvv

∂pi
=

∫
Ωe

Nv
T ∂I0

∂pi
NvdΩe,

∂Mss

∂pi
=

∫
Ωe

Ns
T ∂I2

∂pi
NsdΩe (E.6.9)

The derivatives of the global matrices K and M are the result of the

assembly of the derivatives of the elemental matrices, followed by the pertinent

transformations (application of boundary conditions and model reduction with

transformation matrix T given by the original system transformation

matrix). Let A be a matrix standing for either K, D or M. Then:

[Ae]
Assemble−−−−−→
elements

[AG]
Apply−−−−−−−−−−−−→

Boundary Conditions
[A]

Model Reduction−−−−−−−−−→
T=f(M,K)

[Ā] = TTAT

Therefore[
∂Ae

∂pi

]
Assemble−−−−−−−−−→

correct elements

[
∂AG

∂pi

]
Boundary−−−−−−→
Conditions

[
∂A

∂pi

]
Model−−−−−→

Reduction

[ ¯∂A

∂pi

]
≈ TT

∂A

∂pi
T

Here, an approximation was considered in regards to the reduced model

obtained from IRS. When considering the inversion with the use of a complete or

reduced model, no substantial difference between models was noted, other than the

amount of computational time. Therefore, for this case, this approximation seems

acceptable.

Regardless of this, it should be noted that, if the parameters are somehow

related to a spatial distribution of properties, the derivatives of the FE global

matrices usually require assembly over a much smaller number of elements than

the original matrices. In the case of this thesis, each element is associate with a

parameter αi, thus leading to derivatives of global matrices with all zero entries

except for the entries associated with the derivatives of such elements.
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Since, in this case, D = aK + bM, it follows directly that:

∂D

∂pi
= a

∂K

∂pi
+ b

∂M

∂pi
(E.6.10)

The dynamics of the system studied in this thesis is linear, given that the

applied forces do not depend on the current configuration, they do not depend,

therefore, on the parameters pi. Generally speaking

f(t,p) = f(t)→ ∂f

∂pi
= 0 (E.6.11)

The field estimated is that of the Young Modulus E, defined element-wise. For

the isotropic case, isotropy is enforced by setting Ge of an element e as:

Ge =
Ee

2(1 + ν)
(E.6.12)
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