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The role of phonons is important in accounting various properties of materials. Crystal potential being 

an anharmonic function of volume, variations are seen in phonon derived properties with a change in vol-

ume. In the present work, we employ an approximate technique of expanding phonon frequencies using 

Taylor series expansion upto second-order in volume to calculate the volume dependent phonon frequen-

cies of CaO in B1 and B2 phases. Equilibrium properties are obtained by fitting Murnaghan EoS to first 

principles DFT based results, however. The mode Grüneisen parameter and concavity parameter are com-

puted with the help of present ab initio phonon frequencies for both the phases. Their volume dependence 

are estimated analytically using the proposed scheme. We find that phonon frequencies increase by de-

creasing volume. Analytically calculated volume dependent phonon frequencies are compared in reasona-

ble agreement with the frequencies obtained directly using DFT for B1-phase. Thus, the present r–space 

computational scheme of deriving volume dependent phonon frequency proves to be an alternative to over-

come lengthy phonon calculations. 
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1. INTRODUCTION 
 

Ample studies have been done at ambient conditions 

as well as at high pressure on CaO. Calcium oxide and 

other alkaline earth oxides have been studied largely in 

geophysical research. CaO is an important material for 

various technological applications, such as in refractory 

systems, as a reaction facilitator [1] and in plasma dis-

plays [2]. It is one of the abundant material of Earth’s 

lower mantle. Experimentally, B1 to B2 phase transition 

for CaO was investigated by shock wave [3, 4] and dia-

mond anvil cell compression [5, 4]. Theoretical works 

include calculations of cohesive energy and structural 

properties by Cortonay et al [6] by ab initio calculations 

and Kalpana et al [7] by Linear-muffin-tin-orbitals 

(LMTO) method. Vibrational, thermodynamic and lattice 

dynamical properties were determined by Schütt et al [8] 

using density-functional perturbation theory within local 

density approximation at zero pressure. Louail et al [9] 

and Deng et al [10] have studied the effects of pressure 

on the elastic constants. Method based on an electron-

gas approximation has been used to study high-pressure 

structure and phase stability of CaO [11].  

Information about structural instabilities and phase 

transformations can be obtained by studying the pres-

sure dependence of lattice vibrations. CaO being a sig-

nificant component in the lower mantle [12], its ther-

moelasticity is essential for our understanding the 

processes including brittle failure, flexure, and the 

propagation of elastic waves [13, 14]. Information of 

phonon is very useful for accounting variety of proper-

ties and behaviour of crystalline materials, such as 

thermal properties, mechanical properties, phase tran-

sition, and superconductivity, whereas electronic con-

tribution is less significant in such insulation oxides. It 

is vital to study the behaviour of phonons as it is also 

useful in finding whether the material is dynamically 

stable or not. In the present work, we represent the 

phonon dispersion curve, mode Grüneisen parameter 

() and concavity parameter () for CaO. Grüneisen 

parameter is a dimensionless parameter that changes 

gradually as a function of pressure and temperature. 

The microscopic definition of Grüneisen parameter is 

related to the frequency of vibration of atoms in a solid 

while the macroscopic definition is related to properties 

such as thermal expansion and heat capacity. Experi-

mental determination of   is difficult while theoretical-

ly it can be determined using phonon dispersion of 

solid. 

Ab initio calculations of lattice dynamics for CaO 

are important as it is responsible for phase transitions 

under pressure. DFT allows accurate computation of 

phonon dispersion on a fine grid of wave vectors cover-

ing complete Brillouin zone which is comparable with 

the data obtained from neutron diffraction.  

 

2. THEORY 
 

Change is observed in phonon properties with 

change in volume since the crystal potential is anhar-

monic function of volume. A simple framework is pro-

vided by quasi-harmonic approximation, allowing calcu-

lation by introducing an explicit dependence on volume 

of phonon frequencies [15]. The term “quasi-harmonic 

approximation (QHA)” refers to volume dependence of 

phonon properties, harmonic approximation being ap-

plied at each volume. The phonon frequencies at ambi-

ent condition were obtained using density functional 

theory, which were then expanded using Taylor series 

upto second-order in volume as shown in Eq.(1) to ana-

lytically calculate the volume dependent phonon fre-

quencies:
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where,     0 0, , ,  n q n q  and  0 ,n q  are respectively 

the phonon frequency, Grüneisen parameter and con-

cavity parameter at equilibrium associated with vibra-

tional mode  ,n q  where n is the branch index and q  

is the wave vector. Eq.(1) permits us to calculate the pho-

non frequencies at any volume provided that the phonon 

frequencies at equilibrium condition is known [16]. 

Phonon frequencies increase by decreasing volume 

and the slope of each phonon mode is nearly constant in 

the wide volume range [17]. Grüneisen parameter 

which is the normalized slope, is related to the bond 

strength and vibration mode of phonon, is defined as 

follows: 
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Studies of the Gruneisen parameter yield the in-

formation about lattice anharmonicity needed for a 

fundamental understanding of phonons. It describes 

how each phonon mode change with the volume of sys-

tem. The description of the thermoelastic behaviour of 

materials at high temperature and pressure involves 

Gruneisen parameter.  

The concavity parameter which is equivalent to se-

cond order derivative of phonon frequencies is defined as 
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Grüneisen and concavity parameter are calculated 

numerically by energy minimization and phonon calcu-

lation at equilibrium V0, and also at four supplemen-

tary volumes in the vicinity of V0. 

 

3. COMPUTATIONAL DETAIL 
 

The computations were done using density func-

tional theory within generalized gradient approxima-

tion (GGA) in the form of Perdew-Burke-Ernzerhof 

(PBE) as applied in Quantum Espresso package. To 

represent the electron-ion interactions, a scalar relativ-

istic Vanderbilt-type ultrasoft pseudopotentials were 

used along with nonlinear core correction (NLCC). The 

convergence of total energy with cutoff energy and k-

points was performed for CaO in B1 and B2 phase. 

Energy cutoff of 100 Ry and an 11×11×11 Monkhorst-

Pack k-point grid was used for both the phases. Dy-

namical matrices were calculated on a 4×4×4 grid in q-

space. The set of dynamical matrices obtained in these 

calculations were used to construct the force constant 

matrix via Fourier transformation. 

 

4. RESULTS AND DISCUSSION 
 

The total energy of CaO was calculated at equilibri-

um volume V0 for B1 and B2 phases using GGA approx-

imation to decide the equilibrium structural parame-

ters such as equilibrium lattice constant (a), bulk mod-

ulus (B) and first pressure derivative (B). 
 

Table 1 – Equilibrium structural parameters of CaO 
 

Phase Results a (Å) B (GPa) B 

B1 

Present 

Other[18] 

Exp. [19] 

4.8331 

4.836 

4.8105 

104.3 

102.3 

115 

4.28 

4.17 

4.10 

B2 

Present 

Other[18] 

Exp. [20] 

2.9357 

2.938 

2.907 

105.7 

104.6 

130 

4.23 

3.98 

3.5 

 

It can be seen from the above table that present re-

sults are in good agreement with other theoretical and 

experimental results. Obtained lattice constant for B1 

phase differs from theoretical and experimental data by 

0.06% and 0.46% respectively; for B2 phase the variation 

is about 0.07% and 0.98% respectively. The excellent 

agreement favours the choice of pseudopotentials and 

the GGA approximation for this study. The equilibrium 

structure of crystal is determined by minimization of 

total energy of system as a function of lattice parameter. 

Fig. 1 shows the phonon dispersion curve at equilib-

rium volume. The continuous line represents the DFT 

calculation, which is compared with the experimental 

data obtained by Weinstein et al. from neutron data 

[21] and it is seen that most of the data are well repro-

duced by our calculations. The phonon frequencies 

calculated analytically match well with the frequencies 

obtained from DFT upto 0.8V0. 
 

 
 

Fig. 1 – Phonon dispersion curve of CaO at equilibrium V0. 
DFT (continuous line) and experimental [21] results (square) 

 

Fig. 2 shows the phonon dispersion curve at 0.64V0. 

Phase transition is expected around 0.64V0, hence this 

particular volume is chosen for comparison. It is seen 

from the figure that analytically calculated volume 

dependent phonon frequencies are in reasonable 

agreement with the frequencies obtained directly from 

DFT. With decreasing volume, the optical phonon 

modes shift to higher frequencies, while the acoustic 

phonon modes at the zone boundary of X point decrease 

in frequency. Further decrease in volume may show 

imaginary frequency, resulting in structural instability. 
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Fig. 2 – Phonon dispersion curve of CaO at 0.64V0. Dashed 

line (present results) and DFT (continuous line) 
 

 
 

Fig. 3 – Grüneisen parameter of CaO. Dashed line (present 

results) and experimental [22] (continuous line) 
 

 
 

Fig. 4 – Concavity parameter of CaO 
 

Fig. 3 shows the Grüneisen parameter of CaO in 

two high symmetry directions. Dashed line shows the 

present result while continuous line shows the experi-

mental result [22] calculated from a pressure depend-

ent shell model. The magnitude of our Grüneisen 

parameter differ from experimental result, however the 

trend is similar. The Grüneisen parameter are positive 

throughout the Brillouin zone for all branches indicat-

ing that there’s no softening of any mode with compres-

sion and particular phase of CaO is dynamically stable. 

Fig. 4 shows the concavity parameter of CaO. The 

concavity parameter show discontinuity at Γ point. As 

seen from the figure,  remains negative throughout 

the Brillouin zone. From Γ to X point, the value of con-

cavity parameter remains almost the same. To our 

knowledge, no comparison for concavity parameter of 

CaO is available.  
 

 
 

Fig.5 – Volume dependence of  
 

Fig. 5 shows the volume dependence of average 

Grüneisen parameter. As seen from the graph, the 

average value decreases with the decrease in volume. 

This behaviour agrees with the fact that for crystalline 

phases,  always decreases with compression [23]. 
 

5. CONCLUSION 
 

Present technique provides a substitute to long 

phonon calculations. Phonon frequency at any volume 

can be computed without lengthy phonon calculation, 

provided the frequency at ambient condition are 

known. Volume dependent Grüneisen and concavity 

parameter can be computed with the help of equilibri-

um quantities and volume dependent phonon frequen-

cies. Increase in phonon frequency is observed with the 

decreasing of cell volume, because there is increase in 

the force constants between atomic pairs in the crystal 

structure due to the volume compression. Thus,  re-

mains positive. 
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