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Accurate assessment of electrical transport for heavy polyvalent metals pause challenge due to com-

plex electronic band structure, where s-wave scattering theory due to Ziman is failed. Improving schemes 

like t-matrix resistivity and self-consistent approach are proposed. In the present study, we employ self-

consistent approach to compute electrical resistivity () in liquid Bi and Sb at different temperatures (T). 

Structural input is estimated through charged hard-sphere reference system. Electron-ion interaction is 

modelled by modified empty-core pseudopotential including electron exchange and correlation effects. 

Since only two parameters are independent, as the core radius RC ( 0.51 RaZ − 1⁄3) is a theoretical input, we 

have tuned, once and for all, the single parameter to find  at melting temperature. The same set of pa-

rameters is used to deduce high-T resistivity, thermal conductivity and thermo-electric power. Overall 

good agreement is observed for transport properties for both metals. The present fitting scheme and so de-

duced results are discussed in comparison with other findings.  
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1. INTRODUCTION 
 

The temperature-dependent transport properties of 

a liquid metal are very important as they are sensitive 

parameters to structural changes. As direct measure-

ment of transport properties such as electrical resistivi-

ty and electrical and thermal conductivity are very 

complicated, hence theoretical approach is equally 

important. The electrical transport properties of liquid 

metals are related to the scattering of electrons which 

are nearer to Fermi surface. Ziman [1] developed a 

formalism to describe transport properties of normal 

metals, which was further extended to transition met-

als and alloys by Dreirach et al [2]. However, Ziman’s 

formalism cannot be applied to d-state transition met-

als and polyvalent metals because either the Fermi 

surface is not perfectly sharp but blurred or due to the 

closeness of d-band to Fermi surface electrons are 

tightly bound. Further, the electron mean-free-path in 

liquid heavy polyvalent metals is larger than intera-

tomic distance, and weak-interaction approach due to 

Ziman is inappropriate. In this connection, self-

consistent approximation is frequently used. In the 

past, self-consistent approach is used by several au-

thors [3, 4] to determine electrical resistivity of liquid 

metals. 

We therefore study electrical transport properties of 

liquid Bi and Sb metals. Electrical resistivity of liquid 

antimony is determined by many authors with varying 

degree of success [5-10], and results for liquid bismuth 

are scanty. It is known that electrical resistivity de-

pends on electronic band-structure. Bi and Sb are non-

simple metals having characteristic that of between 

nearly-free-electron (NFE) system and transition met-

als. For Sb and Bi electron configuration is 

[Kr]4d105s25p3 and [Xe]4f145d106s26p3, respectively. 

They are heavy metals having d-band and f-band, re-

spectively; however deep inside a core. Presence of such 

d-bands and f-bands are important in structural and 

electronic properties. For instance, structure factor, 

electrical resistivity, conductivity and thermoelectric 

power depend on position of d-band and f-band relative 

to Fermi surface. Bismuth exists in a variety of differ-

ent structures due to its complex electronic band-

structure. Since, Ziman theory cannot be useful to 

explain transport properties of Bi at high temperature, 

and Sb for its small mean-free-path; hence self-

consistent approach is used to determine transport 

properties of these liquid metals using pair-wise local 

pseudopotential including exchange and correlation 

effect. It is to be noted that model pseudopotential to 

describe lattice mechanical properties of d- and f-shell 

metals is proposed by Baria and Jani [11, 12]. It is also 

used to determine electrical resistivity for simple and 

non-simple liquid metals. Recently, Patel et al [4] also 

have calculated electrical transport properties of liquid 

tetravalent tin metal using local pseudopotential.  

In the present paper, we have calculated tempera-

ture variation of electrical transport properties includ-

ing electrical resistivity, thermal conductivity and 

thermoelectric power for liquid Bi and Sb upto nearly 

twice their melting temperatures. 

 

2. COMPUTATIONAL METHOD 
 

2.1 Electrical Resistivity 
 

The Ziman [1, 13] approach of investigating electri-

cal resistivity of liquid metals assumes the model of a 

gas of conduction electrons that interacts and scattered 

by irregularly placed metal ions. Electrical resistivity 

for liquid metals within the Ziman theory in terms of 

local pseudopotential is given by, 
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where m is mass of an electron, e is electronic charge, 

kF is Fermi wave vector, 0  is the atomic volume ( 

reciprocal of number density), S(q) is the static struc-

ture factor, W(q) is screened pseudopotential, and unit 

step function (2kF  q) corresponds to Fermi surface, 

and it is defined as  
 

 (2kF  q)  0 for q  2kF; 

 (2kF  q)  1 for q ≤ 2kF. 
 

Hence, for limit q  0 to 2kF, Eq.(2.1) becomes  
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Eq.(2.2) assumes infinitely long mean-free-path for 

conduction electrons. Further, the Fermi surface is not 

perfectly sharp as implied by the Eq.(2.2) but it is 

blurred in actual. In order to discuss how the resistivi-

ty changes with temperature, the density and the aver-

age number of electrons per atom Z must be known, 

which determines the upper limit of resistivity integral. 

Ferraz and March [14] have modified above equation to 

include the finiteness of mean-free-path as, 
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where Γ(q, kF, l) is a function defined by Laakkonen 

and Nieminen [15], and Khajil and Tomak [16] which 

takes care of finite mean-free-path. The function Γ(q, 

kF, l)  is given as 
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Mean-free-path (l) can be determined by Drude's for-

mula during each iteration, 
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W(q) in Eq.(2.1) is a local pseudopotential due to Ha-

segawa et al [17], which in q-space is given by 
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Potential parameters a and b are fitted for the core 

radius RC  0.51·RaZ − 1⁄3, as explained by Hasegawa et 

al [17]. Patel et al [18] have also used Hasegawa poten-

tial to determine transport properties of liquid Rb. 

Here. Ra is an atomic radius, Z is valency (we have 

taken Z  5 for both Bi and Sb), and S(q) is a structure 

factor. This theoretical input is computed using 

charged hard sphere (CHS) reference system [19]. 

 

2.2 Thermal Conductivity 
 

Thermal conductivity can be given by Weidmann-

Franz law [20]. 
 

 






2 2

2
.

3

B
th

sc

k T

e
 (2.9) 

 

Here, sc is resistivity calculated by self-consistent 

method, Eq.(2.3). Weidmann-Franz law states that the 

ratio of electronic thermal conductivity over electrical 

conductivity is constant at high temperatures. At fi-

nite-T small q- scattering values are possible and elec-

tron can be transported without transporting the ther-

mal excitation. At high temperatures phonon contribu-

tion to thermal transport remains same and hence the 

Lorentz number remains constant. 
 

Table 1  Pseudopotential parameters 
 

  Hasegawa et al [17] Fitted parameters 

Metal Z a b a b 

Bi 5 10 2.6 7 2.14 

Sb 5 9.5 2.5 5.3 2.07 

 

2.3 Thermoelectric Power 
 

The calculations of the resistivity and thermoelec-

tric power were carried out essentially as described by 

Evans [21]. Thermoelectric power can be given as 
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where EF  ħ2kF
2/2m is the Fermi energy, m is an 

effective mass and kF is the Fermi wavevector. In the 

past, m was calculated from the electron band struc-

ture from the ordered crystalline state. However, since 

we have not done any band structure calculation (per-

taining to solid-phase), we take m  m  1/2 (in a.u.). 

Here, m is nominal mass of electron. S(q) and W(q) 

appearing in above equation corresponds to q  2kF. 

 

3. RESULTS AND DISCUSSIONS 
 

We have calculated electrical resistivity for liquid 

bismuth and liquid antimony in terms of self-consistent 

approach. And thereby we have determined thermal 

conductivity and thermoelectric power as a function of 

temperature by taking experimental atomic volume 
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(Ω0) at different temperatures [22, 23]. The tempera-

ture dependence of resistivity can be explained in con-

nection with the change in the density fluctuation with 

temperature due to the thermal motion of ions. Next, 

the calculated values of electrical resistivity and ther-

mal conductivity are compared with other available 

data. 

We have used the modified empty-core potential 

due to Hasegawa et al [17], and the potential parame-

ters are chosen to yield the good agreement with the 

experimental electrical resistivity at normal melting 

temperatures. However, we get good results upto very 

high temperatures. Calculated values are close to the 

experimental findings and other results. 

Table 1 shows the pseudopotential parameters due 

to Hasegawa et al [17] and the one which we obtain in 

present study. It is to be recalled that based on the 

NFE character of mono- and di-valent alkali and alka-

line metals and polyvalent ones, authors in Ref. [17] 

have classified metals into two categories: simple one 

and non-simple metals. We choose parameters from the 

latter categories using the available experimental val-

ues of atomic volume (0) for different temperatures, 

and thereby core radii were estimated. 

Temperature variation of electrical resistivity using 

the self-consistent approach is plotted in Fig. 1 and 

Fig. 2 for Bi and Sb, respectively. Present results are 

compared with experimental and other such theoretical 

findings. At higher temperatures atoms in liquid met-

als move with larger amplitude and results in disor-

dered structure and hence the peak of S(q) broadens, 

whereas the position remains almost unaltered. 

This results into reduction in co-ordination number, 

and hence the free-volume available to the charge car-

riers increases. This explains the increase in resistivity 

with temperature in Figs. 1 and 2. 

It is important to note that the results for electrical 

resistivity obtained using original set of parameters 

due to Hasegawa et al [17] differ by 23% and 29% high 

compared to the other values for Bi and Sb, respective-

ly. It is thus observed from the present results that the 

self-consistent approach is a better choice for the elec-

trical resistivity and thermoelectric power calculations 

of non-simple liquid metals using local pseudopotential, 

when parameters are judicially fitted. 
 

 
 

Fig. 1  (colour on-line) Temperature variation of electrical 

resistivity of Bi: Solid line-Present work, ♦ – [9], ▼ – [22],  

■ – [24], ▲ – [25] 

 
 

Fig. 2  (colour on-line) Temperature variation of electrical 

resistivity of Sb: Solid line-Present work, ◄ – [5], ▼ – [26],  

■ – [7], ▲ – [27] 
 

Fig. 3 and Fig. 4 show temperature variation of 

thermal conductivity of Bi and Sb, respectively. At high 

temperatures, T-dependence of electrical resistivity and 

thermal conductivity is largely due to lattice vibrations. 

As Eq. (2.9) is valid (above Debye temperature) when the 

scattering of electrons is elastic and relaxation time is 

independent of energy. Since, we found good agreement  
 

 
 

Fig. 3  (colour on-line) Temperature variation of thermal 

conductivity of Bi: Solid line-Present work, ◄ – [28], ► – [29], 

♦ – [30], ■ – [20] 

 

 
 

Fig. 4  (colour -on-line) Temperature variation of thermal 

conductivity of Sb: Solid line-Present work, ► – [5], ▼ – [26], 

■ – [7] and ◄ – [27]. (See text for more details.) 
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Fig. 5  Temperature variation of thermoelectric power for Bi 
 

 
 

Fig. 6  Temperature variation of thermoelectric power for Sb 
 

with experimental results and other findings for both 

the metals upto very high temperatures; this justifies 

the use of Weidmann-Franz law. It also suggests that 

the scattering is predominantly elastic and does not 

include thermal transport significantly. 

We obtain nonlinear increase in thermal conductivi-

ty vs temperature curve for Sb as shown in Fig. 4. In 

lieu of other data for thermal conductivity to us for Sb, 

we have used Eq. (2.5) to compute the same using re-

spective electrical resistivity data. For instance, in 

Fig.4; we have also shown thermal conductivity results 

so calculated from resistivity data of Ref. [5, 7, 26, 27]. 

We find good agreement with experimental results and 

other findings for both the metals. 

Fig. 5 and Fig. 6 show thermoelectric power for Bi 

and Sb as a function of temperature. It is negative over 

the entire range of temperature and linearly decreasing 

with a slope dQ/dT  0.01122 V/K2 and 

 0.01039 V/K2 for Bi and Sb, respectively. Due to 

unavailability of the experimental data to us, we could 

not compare the thermoelectric power with other re-

sults. 

 

4. CONCLUSION 
 

Calculated electrical resistivity and thermal con-

ductivity results are compared with experimental and 

other findings. Calculated values of electrical resistivi-

ty and thermal conductivity using original parameters 

of Hasegawa's potential differ by 23% in resistivity for 

Bi and about 29% that of the Sb. Esposito et al [31] 

proposed that the Ziman’s formulation explains the 

electrical transport properties properly for simple liq-

uid metals while self-consistent approach results over 

estimate, if mean-free-paths are smaller than intera-

tomic distances. This is observed in the d-shell metals. 

In the past, electrical resistivity and hence thermal 

conductivity were calculated by t-matrix approxima-

tion. We have fitted potential parameters to obtain 

more accurate results. At high temperature our results 

overestimate the reported data with a difference of 

about 5%. However, overall agreement is satisfactory. 

Temperature coefficient of resistivity dρ/dT for Sb is 

found to be 0.041 cm/K, which is as high as 27% 

compared to results in [8]. But for Bi, we obtain good 

correlation with other all findings, and are better in 

some cases. Calculated values of electrical resistivity 

for both Sb and Bi are in good agreement with experi-

mental findings and other results. Due to small elec-

tronic mean-free-path and good results for electrical 

resistivity and thermal conductivity for liquid polyva-

lent antimony and also for bismuth suggest that they 

should be treated as d-band-like (non-simple) metals 

while evaluating their electrical transport properties. 

This justifies the use of self-consistent approach (which 

includes the blurring effect of Fermi surface at high-T) 

in conjunction with an effective single-parameter local 

pseudopotential.    
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