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Most of the presently used plastics for food packaging application are non-biodegradable and causes 

environmental problems. Many biopolymers can become a great alternative solution to prepare to bio-

degradable food packaging. Among the all available biopolymer polylactic acid (PLA) is most preferable 

due to its biodegradability and possesses great potential for food packaging application. However, poor me-

chanical and rheological properties limit their application, which is to be improved by adding some filers, 

to replace the conventional plastic. Biodegradable PLA based nanocomposite film was prepared by incorpo-

rating calcium phosphate (CaP) nanoparticle by melt mixing method. The size of the CaP nanoparticle was 

analyzed by Zetasizer Nano ZS90. The morphology of nanocomposites has been studied with the scanning 

electron microscopy (SEM). The SEM result shows the smooth distribution of CaP nanoparticle inside the 

PLA matrix. Tensile strength and viscosity of nanocomposite film increase with incorporation of calcium 

phosphate nanoparticle. 
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1. INTRODUCTION 
 

In recent time most of the commercially available 

polymer causes pollution of the environment, because 

they are prepared from petroleum-based fuel sources. 

Production of these polymers releases several green-

house gases especially CO2. Hence, the researcher has 

made great attention toward the production of justifia-

ble, eco-friendly polymers which can minimize the 

above-mentioned issues [1]. Among all the biopolymers 

PLA has great possibilities for the replacement of con-

ventional plastics due to its inherent physical and me-

chanical properties, biocompatibility and biodegrada-

bility [2].  

The increase of attention in the direction of thermo-

plastic materials is due to its many useful properties, 

mainly its melt processability, good elastic and optical 

properties. Also, the cost of getting the desired product 

is low as compare to thermosetting. Concerning all this 

reason the market of the PLA increased, particularly for 

the disposable and packaging applications. Various 

packaging material such as bottles, cups, films and oth-

er food containers can be prepared from the PLA [3]. 

However, due to its low mechanical and thermal stabil-

ity during processing, poor barrier properties and brit-

tleness limits their applications in various sectors. Due 

to above mentioned features, the use of PLA is deficient 

in the utilization of food packaging application [4]. 

The preparation of nanocomposites can become a 

possible alternative to overcome the above limitations 

by incorporating some nanofillers. The ratio of the sur-

face area to volume of the fillers greatly affects the 

properties of the nanocomposites [3]. There are many 

nanoparticles which have been used as filler. Among 

them, carbon compounds [5] and inorganic materials [6] 

greatly influence the desired properties. CaP is gaining 

more attention toward the preparation of biodegradable 

and biocompatible composites. CaP has extensively 

been used in the biomedical field due to its exceptional 

physical, mechanical and chemical properties. Also, 

copolymerization, blending with plasticizers has been 

adopted for the preparation of PLA based packaging 

materials by the researchers. But calcium phosphate as 

a filler material is not much elaborated. CaP can be 

great filler for enhancement of mechanical and physical 

properties. The improvement in the properties may con-

sist of enhanced tensile strength, improved modulus 

and thermal stability and reduction in the gas permea-

bility. 

The objective of this study is to incorporate the calci-

um phosphate as a fully inorganic nanofillers to prepare 

high-performance biodegradable nanocomposites film. In 

this study, the PLA nanocomposite films were prepared 

by melt mixing of CaP nanoparticle into the PLA matrix. 

The morphology, tensile strength and rheological proper-

ties of the films were then examined to check the impact 

of CaP nanofillers filler on the PLA film. 

 

2. EXPERIMENTAL 
 

DL lactic acid, and stannous octoate catalyst, were 

procured from the standard supplier and Calcium 

phosphate 98 % extra pure nanopowder was also ac-

quired from the standard supplier. 

The synthesis of PLA was carried out in three necks 

round bottom flask from Lactic acid monomers accord-

ing to the previous work [7, 8]. 

The PLA and CaP nanoparticle were dried at 60 C 

under vacuum to avoid hydrolytic degradation during 

the melt mixing. CaP nanoparticle according to the 

formulation (given in Table 1) were then mixed with 

previously prepared PLA at 180 C. followed by casting 

into the desired shape mould (prepared according to 

the ASTM standard for the tensile test and rheological 

analysis) and placed under vacuum for curing. 
 

Table 1 – Formulation of PLA/CaP nanocomposites film 
 

PLA 100 100 100 100 100 

CaP wt.% 0 5 10 15 20 
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3. CHARACTERIZATIONS 
 

The size and distribution of the CaP nanoparticles 

were determined by Zetasizer (Nano ZS, Malvern In-

struments). 

The scanning electron microscopy (SEM) with 15 kV 

accelerating voltage was used to study the surface 

morphology of the nanocomposite film. Prior to SEM 

analysis the sample was coated with a very thin layer 

of gold. 

The tensile test of the nanocomposite film was per-

formed at room temperature by universal testing ma-

chine (INSTRON dark series 7200). The crosshead 

speed was fixed to 5mm/min during the tensile test. 

Five test samples were examined for each composition 

and the average value of tensile strength were plotted. 

The melt rheology of the PLA nanocomposite films 

was examined by the rotational rheometer MCR 102. 

The measurement was performed using 25 mm diame-

ter parallel plate geometry in the dynamic frequency 

sweep mode. The experiment was conducted in the ni-

trogen atmosphere at 180 C. The frequency test was 

conducted in the 1-500 rad/sec angular frequency range 

at constant (within 5 %) strain rate. 

 

4. RESULTS AND DISCUSSIONS 
 

The hydrodynamic diameters and size distributions 

of the nanocarriers determined by dynamic light scat-

tering (DLS) is depicted in Fig. 1. From the figure, it is 

clear that the size of the CaP particle ranges  

80-125 nm with a very narrow distribution. 
 

 
 

Fig. 1 – Particle size distribution of the CaP nanoparticle  
 

Fig. 2 shows the scanning electron microphotograph 

of the PLA nanocomposites film sample. The result 

shows uniform dispersion of the CaP nanoparticle in-

side the PLA matrix. The surface texture of the nano-

composite film is also smooth and uniform. There is a 

smooth distribution of the nanoparticle throughout the 

matrix without aggregation up to 10 % of the filler 

loading. Aggregation of the particles takes place with a 

further increase in the filler loading as shown in the 

case of 15 % and 20 % of filler loading. The way of dis-

persion of the particle inside the matrix greatly affects 

the mechanical properties of the composites [9, 10]. 

Generally, the aggregation or higher size particle 

shows a higher viscosity than the uniformly distributed 

one. 

 
 

Fig. 2 – SEM microphotograph of the PLA/CaP nanocompo-

sites film 
 

The tensile strength of the PLA/CaP nanocomposite 

film is shown in the Fig. 3. 
 

 
 

Fig. 3 – Tensile strength of the PLA/CaP nanocomposite film 

with filler loading 
 

The tensile strength of the PLA nanocomposites film 

increases with the incorporation of CaP nanoparticle. 

The tensile strength of nanocomposite film increases due 

to the presence of load-carrying particle inside the ma-

trix. The applied load is transferred from polymer to 

filler. The increase in tensile strength is achieved by the 

formation of the large interfacial area between the PLA 

matrix and the filler with reinforcement of CaP nano-

particle for effective load transfer [11]. 

Rheological property shows the response of compo-

sites material under the action of external load wheth-

er it deforms or flow. Rheology of composites is im-

portant for numerous operations such as; wet mixing 

and milling, casting, extrusion, spraying and printing 

etc. for preparation of desired products.  

The complex viscosity of the nanocomposite film as 

a function of the filler content with different angular 

frequency was shown in the Fig. 4. This graph is plot-

ted to study the individual impact of filler loading and 

frequency on the complex viscosity of the nanocompo-

sites film. 
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Fig. 4 – Variation of Complex Viscosity of PLA/CaP nanocom-

posites with filler loading at a various angular frequency 
 

From the figure, it is clear that the complex viscosi-

ty of the nanocomposite films increases with filler con-

centration and decreases with increasing angular fre-

quency. The enhancement in the viscosity with the fill-

er concentration was more pronounced when the fre-

quency is sufficiently low for the particle to restrain 

mobility of the polymer melt. The effect of filer concen-

tration was dominated at higher frequency domain.  

The melt flow of particulate composites is affected by 

the size and concentration of the addition of inorganic 

fillers [12]. Commonly, the complex viscosity of the com-

posites increases with increasing filler concentration 

which depends on the hydrodynamic force exerted by the 

surface of the particle or agglomerates [13]. 

Along with the complex viscosity, the storage modu-

lus (Gʹ) and loss modulus (Gʹʹ) of the nanocomposites 

were also measured. The storage and loss modulus of 

the PLA/CaP nanocomposites with angular frequency 

are shown in the Fig. 5 and Fig. 6 respectively. 
 

 
 

Fig. 5 – Storage modulus of PLA/CaP nanocomposite film 

with angular frequency 
 

The storage and loss modulus of the PLA/CaP nano-

composite films are higher than that of the pure PLA 

because the addition of CaP resists the movement of 

PLA chains and increases the friction of PLA chains. 

 
 

Fig. 6 – Loss modulus of PLA/CaP nanocomposite film with 

angular frequency 
 

This indicates that PLA/CaP nanocomposites show the 

solid-like behavior as both the moduli monotonically in-

creases with the incorporation CaP nanoparticle content. 

Incorporation of CaP nanoparticle greatly affects 

the Gʹ and Gʹʹ of the nanocomposite film at a lower fre-

quency only and separates from each other. At higher 

frequency, the values of both moduli are converging 

and separation reduces. This behavior is results of hav-

ing sufficient time for the PLA to respond against 

stress developed in the PLA melt. Incorporation of the 

CaP nanoparticle to the PLA changes the relaxation 

time spectrum which turns into the change in the vis-

coelastic properties of the composite film. Formation of 

PLA and filler network is the main reason for increas-

ing loss and storage modulus of the composites film. 

 

5. CONCLUSIONS 
 

Biodegradable PLA/CaP nanocomposite films were 

prepared by melt mixing method. Result of SEM analy-

sis describes the uniform distribution of the CaP nano-

particle throughout the PLA matrix. At lower filler con-

centration agglomeration of nanoparticle was absent. 

Further increase in filler concentration the particle to 

particle contact increases, which forms aggregation. The 

tensile strength of the nanocomposite film was increased 

with CaP concentration. The increase in tensile strength 

is caused by the formation of stress transferring inter-

face between PLA matrix and the CaP nanoparticle. The 

increase in tensile strength also confirms the compatibil-

ity of the matrix and reinforcement. 

The rheological studies conclude that pure PLA 

shows the Newtonian behaviour in the observed fre-

quency range. The PLA/CaP nanocomposite shows 

strong shear thinning behaviour. This also concludes 

that melt behaviour of the PLA increases with the rein-

forcement of the CaP nanoparticle. It is also concluded 

that the storage and loss modulus of the composites 

greatly depends on filler content at a lower frequency 

only. The increase in tensile strength and complex vis-

cosity conclude the good interfacial adhesion between 

the PLA matrix and CaP nanoparticle. 
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