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Abstract 

We investigated pseudo-cubic Cu2-xTe nanosheets using electron diffraction tomography and high-

resolution HAADF-STEM imaging. The structure of this metastable nanomaterial, which has a strong 

localized surface plasmon resonance in the near-infrared region, was determined ab initio by 3D 

electron diffraction data recorded in low-dose nano-beam precession mode, using a new generation 

background-free single-electron detector. The presence of two different, crystallographically defined 

modulations creates a 3D connected vacancy channel system, which accounts for the strong 

plasmonic response of this material. Moreover, a pervasive rotational twinning is observed for 

nanosheets as thin as 40 nm, originating a tetragonal pseudo-symmetry. 

 

Introduction 

Over the past few years, vacancy-doped semiconducting nanocrystals (NCs), such as copper 

chalcogenides, have generated much interest on account of their tunable plasmonic properties1-3. In 

Cu2-xE (E = S, Se Te) NCs, copper vacancies lead to an increase in the charge carrier density (up to 

1021 cm-3), which results in a strong localized surface plasmon resonance (LSPR) in the near-infrared 

(NIR) region4-7. The possibility to modify the charge carrier density, and thus the LSPR, makes these 

materials interesting candidates for several applications in photocatalysis8-10, photothermal therapy11-

12 and biomedical sensing13-16. 

From a practical point of view, LSPR in Cu2-xE NCs can be tuned by chemically controlling the 

copper vacancy density, which, in turn, might result in phase modifications17-20. Indeed, Cu2−xS, Cu2-

xSe and Cu2-xTe materials appear in many different crystalline forms3, and a detailed characterization 



of the related structures is crucial in order to understand the associated plasmonic response. Both Cu2-

xS and Cu2-xSe systems have been thoroughly investigated, and a fine control over their phase 

transitions as well as their NC size and shape is now possible4,21-28. However, there have been far 

fewer reports on Cu2-xTe systems, which are characterized by an extremely complex phase diagram19-

20. Furthermore, the synthesis of Cu2-xTe NCs is particularly challenging due to the reduced number 

of available tellurium sources8,29-34.  

Among the reported Cu2-xTe materials, the NCs obtained by Li et al.8 are of particular interest because 

they are characterized by an intense LSPR in the NIR centered at ~900nm, which was exploited for 

either sensing or hyperthermia applications. Interestingly, such NCs were found to be heavily sub-

stoichiometric in copper, with a mean Cu:Te ratio of about 1.5, and they crystallized in a metastable 

pseudo-cubic phase, which had not been previously observed for bulk materials (in the following 

sections we will refer to this phase as ‘Cu1.5Te’, even if the formula is not intended to be properly 

stoichiometric). On the basis of the HRTEM analysis, Li et al.8 tentatively assigned a tetragonal cell 

to the Cu1.5Te phase, with the parameters a = b = 7.50(5) Å and c = 7.65(5) Å. The same authors also 

acknowledged that Cu1.5Te NCs display satellite reflections that are consistent with a superstructure 

with a periodicity of three unit cells (modulation-3), which they associated to an internal ordering of 

copper vacancies. 

Later, our group1 analyzed similar NCs, and we showed that the pseudo-cubic Cu1.5Te phase can be 

better described as an orthorhombic cell with the parameters a = 7.50 Å, b = 7.53 Å and c = 7.48 Å. 

In the same report, we also identified a more complex superstructure involving three modulations 3 

x 3 x 4 (two modulation-3 and one modulation-4), which arise along the three main orthorhombic 

directions. More recently, Willhammar et al.35 carried on the structural characterization of this 

material, combining aberration-corrected HAADF-STEM imaging and related 3D tomographic 

reconstructions with 3D electron diffraction. Based on electron diffraction data, they determined ab 

initio the structure of the non-modulated simplified cubic cell in the Pm-3n space group, therefore 

they did not consider any of the observed modulations or related satellite reflections, which, in turn, 

contain the crystallographic information about the vacancy ordering. The HAADF-STEM images 

clearly displayed the modulation-4, but they were not conclusive with regard to the modulations-3 

that had been previously reported by other authors1,8. Eventually, Willhammer et al.35 proposed a 

structural model which comprised only the modulation-4, in which vacancy positions could be only 

tentatively assigned on the basis of the 3D tomographic reconstruction. 

The difficulty in crystallographically addressing the pseudo-cubic Cu1.5Te phase arises as a result of 

the small NC size and the intrinsic complexity of the structure. Such difficulties are not specific of 

the Cu2-xTe system; indeed, they are rather common in functional nanomaterials, since the properties 

of interest may be triggered by unusual structural features. Due to the reduced crystal size, 

conventional X-ray single-crystal methods are not suitable. X-ray powder diffraction (XRPD) is often 

not sufficient for achieving an ab initio structure determination for two main reasons: the 

crystallographic information is projected in one dimension, with a systematic or random overlap of 

independent crystallographic reflections; the small size of NC results in a marked broadening of the 

peak profiles. XRPD interpretation then becomes problematic when more crystalline phases are 

present in the same experimental yield36. 



Accelerated electrons can instead be focused on single particles or volumes that are less than one 

micron in size. Indeed, high-resolution TEM imaging techniques, such as aberration-corrected 

HRTEM and HAADF-STEM, are extremely powerful for the characterization of fine local structural 

details, like surface asperities, grain boundaries, single defects and even single atom mobilization37. 

However, imaging techniques are usually not able to deliver ab initio the 3D crystal structure of a 

new material, especially when it is characterized by large cell parameters, low symmetry and a high 

sensitivity to the electron beam damage35.  

On the other hand, electron diffraction has experienced a fast growth over the last few years, which 

is mainly connected with the introduction of 3D strategies for data collection38-44, and this is generally 

referred to as electron diffraction tomography (EDT). EDT allows highly complete 3D structural data 

sets to be obtained from single sub-micrometric crystals, with a significant reduction in multi-

scattering (dynamical effects) compared with conventional in-zone electron diffraction patterns. The 

whole acquisition is performed with an extremely low electron dose rate and with a total exposure 

time of less than one minute, and therefore it is possible to collect full data sets on extremely beam-

sensitive materials. This method has been successfully exploited for the structure determination of 

many materials that can be synthesized only in the form of sub-micrometric crystals, ranging from 

complex minerals45 to porous materials for advanced applications46-47, highly beam-sensitive organics 

and hybrid compounds48-49 and macromolecules43,50. EDT has been used also for the structure 

determination of complex intermetallic, oxide or chalcogenide NCs, even when they have been 

embedded in multi-phasic systems and solid matrices51-55. 

In order to obtain NCs with an optimal size for EDT measurements, we devised a new colloidal 

synthesis of Cu2-xTe nanosheets (NSs) with a composition close to Cu1.5Te and a lateral size up to 

300 nm. NSs crystallize in the same Cu1.5Te metastable pseudo-cubic structure that had previously 

been reported for NCs1,8,35. Due to the relatively large lateral dimensions, EDT acquisitions could be 

performed with optimal settings on single NSs. EDT data were acquired in nano-beam precession-

assisted mode39,42 and recorded using a new generation MEDIPIX single-electron detector56, which 

allows for an extremely low dose illumination and a considerable reduction in beam damage and 

contamination during data collection. Such improved data eventually enabled an ab initio 

determination of the vacancy ordering in the modulated Cu2-xTe structure which is responsible for 

both modulation-4 and modulation-3. The NSs were also discovered to be systematically affected by 

a rotational twinning that is connected with the particle size, which simulates a pseudo-tetragonal 

symmetry and is responsible for the shading of modulation-3 in TEM imaging. 

 

Experimental Section 

Materials. Copper (II) acetylacetonate (Cu(acac)2, 97%), tri-n-octylphosphine (TOP, 97%), 1,2 

dichlorobenzene (DCB, 99%) and octylamine (Oct, 99,5%) were purchased from Sigma-Aldrich. 

Tellurium powder (99.999%) was purchased from Strem Chemicals. Ethanol (anhydrous, ≥99.8%), 

and chloroform (anhydrous, ≥99%) were purchased from Carlo Erba reagents. All chemicals were 

used as received without further purification and all reactions were carried out under nitrogen using 

standard air-free techniques. 



Synthesis of Cu2-xTe Nanosheets. In a typical experiment, 1 mmol of Cu(acac)2, 5 mL of Oct and 5 

mL of DCB were mixed together in a 25 mL three-necked flask. The flask was pumped to vacuum at 

room temperature for 30 min before being heated to 175 °C under N2 flow. At this point, 2.5 mL of 

a 0.4 M Te-TOP precursor solution (The TOP-Te solution was obtained by dissolving tellurium 

powder in TOP at 150 °C for two hours) was injected and the reaction was stopped after 30 min by 

removing the heating mantle. The NCs were isolated by centrifugation and washed twice by re-

dissolution in chloroform and precipitation with the addition of ethanol. Finally, the NCs were 

dispersed in chloroform and stored in a N2 filled glove-box. 

X-Ray Diffraction (XRD) measurements. The XRD analysis was performed on a PANalytical 

Empyrean X-ray diffractometer equipped with a 1.8 kW CuKα ceramic X-ray tube, PIXcel3D 2x2 

area detector operating at 45 kV and 40 mA. Specimens for the XRD measurements were prepared 

in a glove box by dropping a concentrated NC solution onto a quartz zero-diffraction single crystal 

substrate. The diffraction patterns were collected under ambient conditions using a parallel beam 

geometry and symmetric reflection mode. XRD data analysis was carried out using the HighScore 

4.1 software from PANalytical.  

Elemental Analysis. This was carried out via Inductively Coupled Plasma Atomic Emission 

Spectroscopy (ICP-AES), using an iCAP 6500 Thermo spectrometer. Samples were dissolved in 

HCl/HNO3 3:1 (v/v). All chemical analyses performed by ICP-AES were affected by a systematic 

error of about 5%. 

Electron diffraction tomography (EDT). EDT measurements38,41 were performed at the Center for 

Nanotechnology Innovation@NEST by a Zeiss Libra TEM operating at 120 kV and equipped with a 

LaB6 source and a Bruker EDS detector XFlash6T-60. EDT acquisitions were done in STEM mode 

after defocusing the beam in order to have a pseudo-parallel illumination on the sample. A beam size 

of about 150 nm in diameter was obtained by inserting a 5 μm C2 condenser aperture. An extremely 

mild illumination was adopted in order to avoid any alteration or amorphization of the sample, or any 

accumulation of organic contaminant during the EDT experiments. 

EDT was performed with a processing beam39,42,57 obtained by a Nanomegas Digistar P1000 device. 

The precession semi-angle was kept at 1°. Independent data sets were recorded for 10 particles, with 

acquisition tilt ranges up to 130° and tilt step of 1°. Camera lengths of 180 and 230 mm were used in 

different experiments, with an actual resolution in reciprocal space ranging from 0.75 to 1.10 Å. EDT 

data were recorded by an ASI Timepix detector48,56, which was able to record the arrival of single 

electrons and deliver a pattern that is virtually background-free. These data were analyzed using 

ADT3D41 and in-home developed MATLAB routines. 

The ab initio structure solution was achieved using direct methods that are implemented in the 

software SIR201458. Fourier mapping and least-squares refinement was performed using the software 

SHELXL59 after imposing a soft SADI restraint on the Cu-Te and Cu-Cu distances as well as equal 

isotropic displacement parameters for the Te and Cu atoms, respectively. For both the ab initio 

structure determination and the structure refinement, data were treated with the kinematical 

approximation (Ihkl proportional to F2
hkl), using scattering factors for electrons that are present in the 

SIR2014 database60. Since the polynomial coefficients for tellurium (Z = 52) are not present in this 

database, values of neighboring antimony (Z = 53) were taken for structure refinement. 



HAADF-STEM images. High angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) images were acquired on a JEM-ARM300F (GRAND ARM) transmission electron 

microscope at the JEOL Electron Microscopy Application Department (JEOL Ltd., Tokyo, Japan). 

The GRAND ARM is equipped with a cold field emission gun operated at 300 kV and both probe 

and image correctors (STEM resolution < 70 pm). The STEM convergence half-angle was 

approximately 22 mrad and the inner collection half-angle of the detector was >45 mrad (HAADF). 

STEM image simulations were carried out in the linear approximation61 using the program 

STEM_CELL62. Energy dispersive X-ray spectroscopy (EDS) chemical maps at atomic resolution 

were acquired with a dual detectors system inserted in the large-gap objective pole piece. 

 

Results and Discussion 

To date, pseudo-cubic Cu1.5Te NCs have been reported in the form of nanocubes, nanoplateteles and 

nanorods that have a lateral dimension of about 20 nm1,8. In order to attain NCs with an optimal size 

for EDT measurements, we devised a new synthesis by which we could prepare NSs with a lateral 

dimension in the range of 50-300 nm and a thickness of less than 40 nm (Figure 1a,b). ICP and EDS 

analyses revealed both a Cu:Te ratio close to 1.40 (Table S1) and XRPD analysis confirmed that NSs 

crystallize in the metastable pseudo-cubic Cu1.5Te structure (Figure S1). 

The EDT analysis revealed that all the sampled NSs have a pseudo-cubic sub-cell with an a around 

7.5 Å. However, careful analysis revealed that the cell parameter that is orthogonal to the NS main 

facet (the slowest growth direction) is systematically shorter, with a value of about 7.4 Å. The smaller 

NSs, with a lateral size of 100-150 nm, usually have a more elongated rectangular shape and show 

satellite reflections that arise from two different modulations, which respectively triplicate 

(modulation-3) and quadruplicate (modulation-4) the cell parameters (Figure 1c). The modulation-4 

is always orthogonal to the main NS facet and is often associated with a pronounced diffuse scattering, 

indicating the presence of a stacking disorder along the short NS dimension. In contrast to what was 

reported by Willhammer et al.35, satellite reflections belonging to modulation-4 and modulation-3 

appear equally strong here, suggesting that both features must be taken into account for a proper 

crystal structure characterization. 



 

Figure 1. Cu1.5Te nanosheets (NS). (a) Low resolution TEM image of typical NSs lying on their large 

facet. Smaller NSs have generally a more elongated rectangular shape, while larger ones are more 

quadratic. (b) TEM image showing few Cu1.5Te NSs standing on side. The thickness of these NSs is 

around 30-40 nm. (c) Oriented [001] nano-beam diffraction pattern of a small rectangular NS, 

showing only one modulation-3 (crystallographic direction b*). (d) Oriented [001] nano-beam 

diffraction pattern of a larger quadratic NS, showing two modulations-3 due to the pseudo-tetragonal 

twinning. Scale bar in (a) and (b) is 200 nm. 

 

The larger NSs generally show a more squared morphology, and present three modulations: one 

modulation-4 which is orthogonal to the main facet and two modulation-3 along both the long 

horizontal sides (Figure 1d). In certain cases, the intensity of the satellite reflections that belong to 

the two modulations-3 appear fairly equal, giving the impression that it is tetragonally symmetric. In 

other cases, however, one modulation-3 is significantly stronger than the other. Having considered 

such intensity fluctuations and the fact that the second modulation-3 arises only in larger NSs, we 

infer that the Cu1.5Te NSs develop a pseudo-tetragonal rotational twinning along [001] above a certain 

critical dimension, which is responsible for the appearance of the second modulation-3. Since we 

observed the two modulations over the whole platelet area, it is more likely that the twin boundary is 

the {001} plane. 



 

Figure 2. 3D EDT reconstructed diffraction volume for a single Cu1.5Te nanoparticle. (a) View along 

a* showing both modulation-3 and modulation-4. (b) View along b* showing only modulation-4. (c) 

View along c* showing only modulation-3. Note that those are not conventional 2D oriented 

diffraction patterns, but projections of a 3D diffraction volume. 

 

The final model for a non-twinned particle, therefore, involves a complex supercell which is obtained 

by multiplying the pseudo-cubic sub-cell by 1 x 3 x 4 (Figure 2). The resulting orthorhombic cell has 

parameters a = 7.5(1) Å, b = 22.8(2) Å, c = 29.6(3) Å, and the c direction is always orthogonal to the 

NS main facet. No reflection extinction was detected in the EDT data sets. It must be noted, however, 



that the 00l reflections could not be sampled due to the NS’s morphology and related preferential 

orientation on the TEM grid. Thus, the presence of a screw axis along c could not be ruled out. 

The ab initio structure solution was eventually achieved in the acentric space group P2221 (number 

17). Experimental details are reported in Table S2. Twenty-six of the expected 27 independent Te 

atoms were correctly assigned using SIR2014 automatic procedures, while the last one was among 

the first Cu positions. Thirty-one additional maxima in the potential map were assigned to Cu atoms. 

As expected, all Cu atoms are tetrahedrally coordinated by four Te atoms. In total, the unit cell 

contains 96 Te and 124 Cu atoms, corresponding to a Cu:Te ratio of 1.29.  

 

Figure 3. Cu1.5Te structure determined and refined by electron diffraction tomography (EDT) data. 

(a) View along [100], with [100] channels highlighted in blue. (b) View along [010]. Projections of 

low-density regions responsible for the up-up-down-down pattern in [010] HAADF-STEM images 

are highlighted in blue. (c) View along [001]. 

Soft-restrained least squares refinement resulted in a model that is very similar to the one that was 

derived ab initio (Figure 3). No further significant residuals were located in the difference Fourier 

map, but the presence of other Cu positions with a low occupancy has to be assumed in order to reach 

the expected Cu:Te ratio that was measured by EDS and ICP. Such positions, which are randomly 

distributed in the vacant tetrahedral sites of the Te-framework, could not be addressed with the 

available EDT data. The structure was eventually validated by the Rietveld method against XRPD 

data. Only the experimental parameters and cell parameters were refined, thus obtaining a reasonable 

fit (Figure S1). 

The so-determined Cu1.5Te structure consists of a pseudo-cubic arrangement of Te atoms, which in 

projection, gives the impression of 3x3 centered cages. This is in agreement with the model proposed 

by Willhammar et al.35. However, less than half of the Cu positions predicted by the simplified cubic 

model are present. The ab initio model which was obtained having taken into account the satellite 



reflections shows that Cu vacancies are crystallographically ordered, shaping elliptical channels that 

stretch along [100]. Such channels have a dimension of about 3 x 7 Å, and they are arranged in an 

alternating fashion along the {001} layers (Figure 3a). Further low-density areas develop parallel to 

the (100) plane, putting the former channels in communication and creating an effective 3D network 

of vacancies (Figure 3b and Figure S2). 

Cu-Te atomic distances have an average value of 2.70(10) Å, which is in agreement with other natural 

and synthetic Cu2-xTe compounds63-67. Cu-Cu distances have quite scattered values, with an average 

of 2.58(25) Å and a minimum value of 2.03 Å. This unfeasible distance may be explained only 

assuming an alternated occupancy of neighboring Cu positions. However, distances down to 2.28 Å, 

i.e. shorter than Cu-Cu distances in metallic copper, have already been observed in the modulated 

mineral weissite (Cu2-xTe, x ≈ 0.21)67 and in its synthetic analogous Cu2-xTe phase βIII 64, where they 

were associated with the mobility of copper ions that may appear in different valence states, i.e. either 

Cu+ or Cu2+. 

In order to further validate the ab inito EDT model, we acquired probe-corrected HAADF-STEM 

images and compared them with the corresponding simulated images (Figure 4). Figure 4a, taken 

along the [001] direction, shows the pseudo-cubic arrangement that has already been observed by 

Willhammar et al.35. The lower inset further displays an atomic EDS color map with the Te atoms in 

green and the Cu atoms in red (the individual Te-L and Cu-K maps are presented in Figure S3). Te 

and Cu sublattices are well resolved in the maps, without the need of averaging on more unit cells.  

Figure 4b,c, which correspond respectively to the projections [100] and [010], show the different 

order of Cu vacancies, and they are consistent with the model derived by EDT. In both images, 

modulation-4 is immediately evident. Along [100], this modulation produces the characteristic left-

right dark regions that are associated with the vacancy channels. However, along [010], modulation-

4 produces a typical up-up-down-down periodicity of dark regions which has never been spotted 

before and which is in good agreement with the EDT derived structure. 



 

Figure 4. Experimental and simulated HAADF-STEM images of NSs. (a) Experimental image taken 

along [001]. The upper inset shows the corresponding FFT, where the modulation-3 is more evident. 

The lower inset shows the EDS chemical map at atomic resolution, where the Te sublattice (green) 

and the Cu sublattice (red) are straightforwardly addressed. (b) Experimental image taken along 

[100]. The typical left-null-right-null Cu vacancy pattern along c is emphasized by red labels (L and 

R). (c) Experimental image taken along [010]. The down-up-up-down Cu vacancy pattern along c is 

emphasized by red labels (D and U). (d) Simulated image along [001]. (e) Simulated image along 

[100]. (f) Simulated image along [010]. Unit cell is sketched in yellow. 

 

Modulation-3 is expected to appear in both the [100] and [001] projections, but it can barely be 

identified in STEM images. Still, it clearly appears in conventional electron diffraction patterns 

(Figure 1c,d) and on the Fourier transforms of the experimental STEM images (upper inset in Figure 

4a). This modulation is also less apparent in the simulated counterparts (Figure 4d,f). The presence 

of not low-occupied Cu sites that have not been determined and the occurrence of {001} twinned 

layers in the NSs may further weaken the contrast from modulation-3 and make it almost invisible in 

the projected potentials of the STEM images. Twinning can, in fact, already appear for very small 

particles, as was observed by Tu et al.1 on nanocubes of about 20 nm. 

 

Conclusions 

Cu1.5Te is an example of a complex crystal structure which arises only in nanocrystalline form. It 

exhibits a double superstructure along two crystallographic directions of an average pseudo-cubic 



cell. A conventional X-ray structural study is hampered by the sub-micrometric size of the available 

single crystals. Conversely, electron diffraction tomography (EDT) can provide 3D structural data on 

NCs of such dimensions. This technique had already been applied to Cu1.5Te in order to elucidate its 

pseudo-cubic average structure35. That model was partially completed by high-resolution HAADF-

STEM tomographic imaging, which allowed a tentative location of vacancies, and was obtained 

having only considered one of the two observed modulations and without ensuing a complete atomic 

structure. In this paper, the structural model for the pseudo-cubic Cu1.5Te phase was obtained ab initio 

by 3D precession-assisted EDT data, quantitatively taking into account all observed modulations and 

related satellite reflection intensities. The model clearly shows an ordered crystalline arrangement of 

vacancies, which is consistent with the features that were observed in HAADF-STEM imaging. EDT 

data also evidence the presence of a rotation twinning which simulates a pseudo-tetragonal symmetry 

and which may already be present in very small particles, like the 20 nm nanocubes reported by Tu 

et al.1 or the 40 nm thick NSs described in this paper. 

The structure determination of the Cu1.5Te phase from single-crystal diffraction data confirms once 

more the effectiveness of EDT at characterizing the complex atomic structures that are often 

associated with nanomaterials. EDT can be easily combined with high-resolution imaging and nano-

resolved chemical analysis inside the same TEM for a comprehensive structural description, enabling 

nanomaterials’ astonishing properties to be quantitively understood. 

 

Data availability. Details regarding the presented crystal structure are available in CIF format in the 

Supplementary Information. 
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Figure 1. Cu1.5Te nanosheets (NS). (a) Low resolution TEM image of typical NSs lying on their large 

facet. Smaller NSs have generally a more elongated rectangular shape, while larger ones are more 

quadratic. (b) TEM image showing few Cu1.5Te NSs standing on side. The thickness of these NSs is 

around 30-40 nm. (c) Oriented [001] nano-beam diffraction pattern of a small rectangular NS, 

showing only one modulation-3 (crystallographic direction b*). (d) Oriented [001] nano-beam 

diffraction pattern of a larger quadratic NS, showing two modulations-3 due to the pseudo-tetragonal 

twinning. Scale bar in (a) and (b) is 200 nm. 

Figure 2. 3D EDT reconstructed diffraction volume for a single Cu1.5Te nanoparticle. (a) View along 

a* showing both modulation-3 and modulation-4. (b) View along b* showing only modulation-4. (c) 

View along c* showing only modulation-3. Note that those are not conventional 2D oriented 

diffraction patterns, but projections of a 3D diffraction volume. 

Figure 3. Cu1.5Te structure determined and refined by electron diffraction tomography (EDT) data. 

(a) View along [100], with [100] channels highlighted in blue. (b) View along [010]. Projections of 

low-density regions responsible for the up-up-down-down pattern in [010] HAADF-STEM images 

are highlighted in blue. (c) View along [001]. 

Figure 4. Experimental and simulated HAADF-STEM images of NSs. (a) Experimental image taken 

along [001]. The upper inset shows the corresponding FFT, where the modulation-3 is more evident. 

The lower inset shows the EDS chemical map at atomic resolution, where the Te sublattice (green) 

and the Cu sublattice (red) are straightforwardly addressed. (b) Experimental image taken along 

[100]. The typical left-null-right-null Cu vacancy pattern along c is emphasized by red labels (L and 

R). (c) Experimental image taken along [010]. The down-up-up-down Cu vacancy pattern along c is 

emphasized by red labels (D and U). (d) Simulated image along [001]. (e) Simulated image along 

[100]. (f) Simulated image along [010]. Unit cell is sketched in yellow. 

 

 

 

 

  



Table of Contents Synopsis 

We investigated pseudo-cubic Cu2-xTe nanosheets using electron diffraction tomography and high-

resolution HAADF-STEM imaging. The structure of this metastable nanomaterial was determined ab 

initio by 3D electron diffraction data recorded by a new generation background-free single-electron 

detector. The presence of two different, crystallographically defined modulations creates a 3D 

connected vacancy channel system, which accounts for the strong localized surface plasmon 

resonance in the near-infrared region of this material. 
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