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A quinoline-based C3-symmetric fluorescent probe (1), N,N′,N′′-((2,4,6-trimethylbenzene-

1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has 

been developed which can selectively detect Zn2+ without the interference of 

Cd2+via significant enhancement in emission intensity (fluorescence “turn-ON”) 

associated with distinct fluorescence colour changes and very low detection limits (35.60 

× 10−9 M in acetonitrile and 29.45 × 10−8 M in 50% aqueous buffer (10 mM HEPES, pH = 

7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 

4–10). The sensing phenomenon has been duly studied through UV-vis, steady-state, 

and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric 

binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density 

functional theoretical (DFT) calculations provide the optimized molecular geometry and 

properties of the zinc complex, 1[Zn(ClO4)]3
3+, which is proposed to be formed in 

acetonitrile. The results are in line with the solution-state experimental findings. The 

single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex 
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showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting 

trinuclear Zn2+ complex has been utilized as a fluorescence “turn-OFF” sensor for the 

selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 

7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10−9 M). 

Introduction 

Zinc is the second most abundant transition metal occurring in the human body and 

plays diverse roles in several vital biological processes like cellular metabolism, 

neurotransmission, etc.1–11 In everyday life, zinc is found in various foods, automobiles, 

sunscreens, cosmetics and surgical tools etc. It exists mostly as Zn2+ in the body as well 

as in nature.12 However, misregulation of Zn2+ causes several diseases like Alzheimer's, 

epilepsy, infantile diarrhea, prostate cancer, etc.1–11,13–17 On the other hand, pyrophosphate 

(PPi), which is produced during ATP hydrolysis, is a crucial anion for normal cell 

functioning, e.g., it is involved in DNA polymerase catalyzed DNA replication and real 

time DNA sequencing.18–29 So, it is highly desirable to explore efficient methods to detect 

and monitor Zn2+ and PPi in environmental as well as in biological samples. For this 

purpose, fluorescence sensors have drawn a lot of attention from the chemistry 

community because of their various advantages like high sensitivity, simplicity, and 

versatile instrumentation.1–5,12,20–26 

Here, it has to be mentioned that, due to the almost similar electronic properties of 

Cd2+ and Zn2+, it is indeed difficult to develop a selective chemosensor for Zn2+ without the 

interference of Cd2+.30–34 Though an ample number of fluorescence sensors for Zn2+ have 

been reported based on di-2-picolylamine (DPA),9,10,15–17,35–40 quinoline,1,8,10,15,35,41–46 bipyridyl1,47etc. 

and their derivatives, involving photoinduced electron transfer (PET), intermolecular 

charge transfer (ICT) and chelation induced enhanced fluorescence (CHEF) 
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mechanisms,1–3,8,12,21,48 the number of sensors capable of selectively sensing Zn2+ in an 

aqueous buffer through a wide range of pH values is still limited.4–6,41,49–51 In this context, 

among different types of fluorescent zinc sensors, quinoline substituted ligands have 

been paid much attention due to their well-known chelating property towards soft metals 

as well as suitable spectral behavior.1,41,42–46 It has also been observed that, in some cases, 

an increase in the number of quinoline units in the binding arm improves the 

sensitivity.44 Thus, to achieve a highly selective and sensitive chemosensor for Zn2+ in an 

aqueous buffer medium, here we introduce a new quinoline-based fluorescence probe. 

Furthermore, we also demonstrate that the Zn2+ complex of the ligand can act as a 

selective pyrophosphate sensor in a 70% aqueous buffer (10 mM HEPES, pH = 7.4). 

 

Results and discussion 

Designing aspect of 1 

Being ions of similar sizes (radius of Zn2+ is only 21 pm shorter than that of Cd2+)30 it is 

quite difficult to discriminate Zn2+ and Cd2+ using some chelating fluorophoric systems. 

Thus the choice of the platform, chelating unit and the sensing system should be cleverly 

designed to obtain selectivity for a particular metal analyte over its common interferrants. 

In this context, C3-symmetric ligands,52a–c which have the potential to develop a suitable 

receptor to meet the required coordination environment of metal ions, are of real 

importance. Furthermore, there are plenty of reports in the literature showing Zn(II) 

sensing towards mononuclear or binuclear di-picolyl amine or quinolone-based 

ligands.1,52d Our group also reported a selective Zn(II) sensor where two quinoline units 

were used to chelate with Zn2+.45 Keeping this in mind, an easily synthesizable 

ligand, 1 (Chart 1), has been designed where six quinoline moieties have been 
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incorporated into an arene platform to enhance the aqueous solubility of the sensor 

molecule as well as to create a sterically crowded environment, expecting that it could 

provide better fitting toward Zn2+ than the closely related analyte Cd2+. Furthermore, the 

sensor with six flexible side arms is expected to have a non-luminescent nature due to 

better non-radiative decay. However, the coordination of multiple metal centres with the 

multiple side arms is expected to rigidify the overall system effectively, which might result 

in a drastic enhancement in the fluorescence output. On the other hand, the sensor with 

multiple Zn2+ sites would be a potential candidate for screening phosphates including its 

higher analogues.52–69 

 

 

 

 

Chart 1 Chemical structure of the ligand 1. 

Synthesis and characterization 

The sensor 1 is synthesized by refluxing 1,3,5-tris(aminomethyl)-2,4,6-trimethylbenzene 

and 2-(chloromethyl)quinoline hydrochloride in dry acetonitrile in the presence of 

K2CO3 and a catalytic amount of KI for 12 h (Scheme 1). 1 is fully characterized by 1D 

(1H, DEPT-135, and 13C) and 2D (1H–1H COSY, 1H-DEPT-135 HSQC and 1H–13C 

HMBC) NMR spectroscopy, electrospray ionization mass spectrometry (Fig. S1–S7, 

ESI†) and elemental analysis techniques. In the NMR spectrum of 1, all the protons and 

carbons resonate in their expected frequency ranges in CDCl3 (in 300 MHz) at room 
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temperature, which are properly assigned with the help of corresponding 1H–1H 

COSY, 1H-DEPT-135 HSQC and 1H–13C HMBC experiments. The peak for the 

molecular ion ([C72H63N9][H
+]) is observed in the ESI-MS of 1 at 1054.51 (calculated 

1054.33). The single crystal X-ray structural analysis shows that the ligand crystallizes in 

the monoclinic P21/c space group where three quinoline arms arrange themselves in the 

opposite direction with respect to the other three. The details of the structure are given in 

Fig. S8 and Table S1, ESI.† 

 

Scheme 1 Synthetic procedure for the ligand 1. 

 

Zn2+ sensing studies in acetonitrile 

A detailed study about the photophysical properties of 1 is conducted using absorbance 

(UV-visible), photoluminescence (PL), and time-resolved spectroscopic methods. A 

prominent signature of the quinoline unit is observed in the absorption spectrum 

of 1 which contains absorption bands at ∼210 (ε = 111 420 M−1 cm−1), ∼240 (ε = 116 552 

M−1 cm−1), ∼303 (ε = 26 854 M−1 cm−1) and ∼315 (ε = 23 287 M−1 cm−1) nm in acetonitrile 

at 25 °C (Fig. S9a, ESI†). Among these, the bands at 210 and 240 nm might originate 

from the intra-ligand (IL) π–π* electronic transitions while the bands at 303 and 315 nm 
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may arise from the n–π* transitions i.e. the electronic transitions from nonbonding 

orbitals on the nitrogen atoms (amine and quinoline) to ligand π* orbitals.70,71 Initially the 

ligand is very weakly emissive; illumination at the 315 nm wavelength results in a broad 

centered weak emission band at 430 nm resulting in a light green photoluminescence 

(Fig. S9a, ESI†). The weak emission may be the result of inner quenching of 

fluorescence due to the contribution of non-bonding electrons. In quinoline-based 

molecules like 1, the n–π* singlet and π–π* singlet transitions are energetically not very 

far. Hence, though the π–π* singlet transition occurred directly upon excitation, it might 

have a large propensity to transfer to the n–π* singlet. And once the π–π* singlet → n–

π* singlet transfer takes place, it is consequently followed by an inter-system crossing 

(ISC) from n–π* singlet → n–π* triplet with a considerable ease.70,71 Thus, the n–π* 

triplet state makes these molecules very weakly luminescent. To check whether the 

ligand is selective toward any metal ion, metal binding properties of 1 are explored in 

acetonitrile. The changes in its spectral behavior in the presence of different metal ions 

are studied using the acetonitrile solutions of their corresponding perchlorate salts. The 

addition of 10 equiv. of various metal ions except Zn2+ to 6.5 × 10−5 M solution of 1 in 

acetonitrile does not result in any remarkable changes in the absorption spectrum, 

whereas, in the presence of Zn2+, an increase in the absorbance values at 303 and 315 

nm is observed with the formation of a clear isosbestic point at 290 nm (Fig. S9b, ESI†). 

A huge change is noticed in the emission profile of the ligand (8.5 × 10−6 M in acetonitrile) 

upon the addition of 10 equiv. of Zn2+ (Fig. 1). The very weak broad centered emission 

band of the ligand is changed to a sharp peak with 63-fold enhancement in emission 

intensity. The emission maximum is blue-shifted to 400 nm associated with a 

fluorescence color change from light green to blue (Fig. 1). However, other metal ions 

(10 equiv.) do not result in any significant change in the emission spectrum. The increase 

https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#cit70
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#fn1
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#cit70
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#fn1
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#imgfig1
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#imgfig1


in fluorescence intensity in the presence of zinc may be the outcome of the reduced 

flexibility of the six quinoline arms upon chelation with Zn2+ which tends to increase the 

fluorescence quantum efficiency. Coordination with a metal, on the other hand, stabilizes 

the non-bonding electrons over nitrogens and as a result the level of the n–π* singlet 

state might have increased remarkably.70 This in turn could affect the π–π* singlet → n–

π* singlet transition (which occurs easily in the free ligand making the molecule very 

weakly emissive) to occur and thus the molecule could emit more easily from the π–π* 

singlet state (i.e. highly fluorescent). Besides changing the absorption and emission 

spectral behavior, the addition of Zn2+ also brings about an enhancement in the quantum 

yield value of 1. In the case of a free ligand, the value is calculated as 0.0041 considering 

anthracene as the standard,71 while it increases to 0.25 upon the addition of Zn2+ (Fig. 

S10, ESI†). The initial very small quantum yield value could easily be correlated with the 

flexible structure of the ligand which allows the non-radiative decay through rotational 

and vibrational pathways and hence lowers the emission quantum yield. Coordination 

with Zn2+via quinoline side arms, as mentioned previously, decreases this probability and 

thus might be responsible for a higher quantum yield in the adduct. 

 
Fig. 1 Emission spectral changes of 1 (8.5 × 10−6 M) in the presence of various metal ions (10 

equiv.) as their perchlorate salts, in acetonitrile at room temperature (Inset: Fluorescence 

colors of (1) 1 and (2) its Zn2+ complex in acetonitrile). 
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To understand the Zn2+ binding properties of 1 better, absorption and emission titration 

experiments are carried out. Incremental addition of Zn2+ in 6.5 × 10−5 M solution of 1 in 

acetonitrile promotes an increase in the absorbance at 303 and 315 nm with the 

formation of a clear isosbestic point at 290 nm (Fig. 2a). In PL titration, the intensity of the 

emission band gradually increased in the presence of an increasing amount of Zn2+, 

whereas the broad emission band at 430 nm blue-shifts to give a sharp peak at 400 nm 

(Fig. 2b). In both the cases (UV-vis and PL titration), the spectral changes are ceased 

after the addition of 3 equiv. of Zn2+ indicating 1 : 3 stoichiometric binding between 1 and 

Zn2+. This binding stoichiometry is further confirmed by Job plot analysis which shows an 

inflection point at 0.33 (Fig. S11a, ESI†). The association constant for Zn2+ binding by 1 is 

calculated as KZn1 = 1.23 × 105, KZn2 = 9.19 × 104, and KZn3 = 6.46 × 104 M−1 according to 

the procedure reported in the literature (Fig. S11b, ESI†), whereas the lower limit of the 

detection of Zn2+ by 1 is found to be 35.60 × 10−9 M (Fig. 3a) using the calibration curve of 

change in emission intensity (I − I0) versus the concentration of Zn2+. Thus, the sensitivity 

of 1 appears to be better than that of many of the reported sensors as enlisted in Table 

S2, ESI.† To check whether the ligand is selective for Zn2+ a selectivity study is carried 

out. The addition of Zn2+ in the presence of an excess amount of other metal ions like 

Mn2+, Mg2+, Cr3+, Cu2+, Cd2+, Ag+, Hg2+, Al3+, Pb2+, Fe2+, Ni2+ and Co2+ (10 equiv. each) 

results in the same emission enhancement as observed in the case of only Zn2+ (Fig. 3b). 

Thus, the high association constant values of Zn2+ binding by 1 as well as its low limit of 

detection for Zn2+ makes 1 a selective luminescent sensor for Zn2+ even in the presence 

of a large excess of other competitive metal ions in acetonitrile. 
 

 

 
 

Fig. 2 (a) Absorption (6.5 × 10−5 M) and (b) emission (8.5 × 10−6 M) titration profiles 

of 1 with Zn2+ in acetonitrile at room temperature. (Inset: Corresponding equivalent plots). 
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Fig. 3 (a) The calibration curve for Zn2+ over the concentration range between 0 and 15 μM 

derived from the PL titration with 1 (8.5 × 10−6 M) in acetonitrile at room temperature and (b) 

selectivity graph of 1 with Zn2+ in the presence of other metal ions in acetonitrile (λem = 400 

nm). Green bars represent the fluorescence intensities of 1 in the presence of all metal ions 

(10 equiv.) and the light magenta bars correspond to the same in the presence of all metal 

ions and Zn2+. Codes used: (1) only 1, (2) Mn2+, (3) Mg2+, (4) Cu2+, (5) Cr2+, (6) Co2+, (7) Ni2+, 

(8) Ag+, (9) Fe2+, (10) Pb2+, (11) Al3+, (12) Hg2+, (13) Cd2+, and (14) Zn2+. 

 

Time-resolved spectroscopic study 

The inference drawn from steady-state spectroscopic experiments is further supported 

by the results of the fluorescence lifetime study. The lifetime (τ) is calculated for free 

ligand (1) and the ligand in presence of various metal ions using time-correlated single-

photon count (TCSPC) experiment (Table S3 and Fig. S12, ESI†). The decay pattern 

of 1 is shown in Fig. 5a where the lifetime (τ) is found to be 1.48 ns. The decay pattern as 

well as the lifetime remains unaffected in the presence of various metal ions except Zn2+. 

However, the addition of Zn2+ brings a noticeable change in the fluorescence decay 

pattern as demonstrated in Fig. 4a and b which is associated with an increase in the 

lifetime value to 3.24 ns. Such a small increase in the τ value could be justified from the 

change in the values of two parameters, the emissive rate of the fluorophore (Γ) and its 

rate of non-radiative decay to S0 (knr), which in this case are acting in opposite 

directions.72,73 The first one i.e. the radiative decay rate of 1 is increased upon 
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Zn2+ coordination as explained before and hence, leads to a lowering of the fluorescence 

lifetime. Chelation with Zn2+, on the other hand, suppresses non-radiative decay 

pathways by rigidifying the flexible side arms which in turn results in an increase in 

the τ value of the system. These two opposing factors try to compensate each other and 

as a result the τ value could not be changed too much. However, the net increase in the 

lifetime value indicates that the second factor is dominating over the first one in this case. 

The observed bi-exponential decay in the presence of Zn2+ might be the outcome of the 

co-existence of two different species: one is the free ligand (1) with a shorter lifetime and 

the other is the Zn2+ adduct of 1 with a comparatively longer lifetime. Upon incremental 

addition of Zn2+ the contribution from the latter is increased and as a result a gradual 

increase in the lifetime is observed which is stopped after the addition of 3 equiv. of 

Zn2+ (Fig. 4b). This again supports the 1 : 3 binding stoichiometry between the host and 

guest as concluded from the steady state photophysical studies. 

 

 

 

 
 

 

Fig. 4 Time-resolved luminescence decays of 1 (22.5 × 10−6 M; λex = 340 nm and λem = 410 

nm) (a) in the presence of various metal ions as their perchlorate salts and (b) upon the 

addition of an increasing amount of Zn2+ in acetonitrile at room temperature. 
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Fig. 5 Frontier molecular orbitals of 1 and 1[Zn(ClO4)]3

3+ with their corresponding energy 

gaps as calculated from DFT B3LYP/6-31G(d) and the LanL2DZ mixed basis set. The 6-

31G(d) basis set is used for H, C, N, O, and Cl atoms; Zn is treated with the LanL2DZ 

computational level using the IEFPCM model for acetonitrile [isovalue = 0.02]. 

 

1H nuclear magnetic resonance spectroscopy and electrospray ionization mass 

spectrometry 

From the previous section it is obvious that ligand 1 selectively binds the Zn2+ ion with 1 :

3 host–guest stoichiometry but the mode of interaction remains unrevealed. To know 

about this, a 1H NMR titration experiment is carried out for 1 with Zn2+ in CD3CN (Fig. 

S13, ESI†). Incremental addition of Zn2+ into 1 results in a gradual downfield shift of 

almost all quinoline protons as well as Hb and Hc, which are adjacent to the secondary N 

while the peak position corresponding to methyl protons (1.5 ppm) in the central arene 

ring (Ha) remains unaltered. However, the overall changes stopped after the addition of 3 

equiv. of Zn2+. This leads us to conclude that the quinoline nitrogens as well as the linker 

N simultaneously act as the donor site for chelation with the Zn2+ ion. Besides this, in the 

ESI-MS of the isolated Zn2+ complex of 1, a peak is observed at 517.07 m/z which could 

be assigned for 1[Zn(ClO4)]3
3+ with m/z 517.06 (Fig. S14, ESI†). The distribution patterns 
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of the species matches well with the corresponding theoretically calculated distribution 

patterns. Based on these, a possible structure of the zinc complex is outlined where 

three zinc ions are bound with the ligand and each of them coordinates with three 

nitrogens and one ClO4
−. This approximated structure which is based on the 1H NMR 

and ESI-MS studies agrees with all the solution state experimental outcomes as well as 

the previous reports.74 According to this, a plausible mechanism is demonstrated 

in Scheme 2. Density functional theoretical (DFT) studies are performed to establish the 

proposed structure of the Zn2+ complex. 

 

Scheme 2 Proposed binding mechanism of 1 with Zn2+ in acetonitrile. 

 

Theoretical calculations for 1 and its Zn2+ complex 

To investigate the stability and the structure–property relationship of the proposed zinc 

complex, DFT study is carried out on ground (S0) and excited states (S1) of 

both 1 and 1[Zn(ClO4)]3
3+. The hybrid B3LYP functional75 is used in all cases as 

integrated in the Gaussian 09 package,76 mixing the exact Hartree–Fock-type exchange 

with the Becke's exchange functional77 and that proposed by Lee–Yang–Parr for the 

correlation contribution.78 The 6-31G(d)79 basis set is used for C, N and H atoms and Zn 

is treated with LanL2DZ. The integral equation formalism variant of a polarizable 

continuum model (IEF-PCM)80 is used to address the effect of acetonitrile (Fig. 5, Fig. 
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S15–S17 and Tables S4–S7, ESI†). The results reveal that, in acetonitrile the three side 

arms of the ligand are arranged in a propeller-like shape where three quinoline units are 

present on one side of the central arene ring while the other three are on the opposite 

side. As depicted in Fig. 5, upon the addition of Zn2+ the two quinoline rings in the same 

arm come closer to coordinate with Zn2+ resulting in a distorted tetrahedral geometry 

around it. Every Zn2+ ion is surrounded by two quinoline nitrogens, one secondary N and 

the O in a perchlorate anion. The corresponding bond lengths and bond angles are listed 

in Table S4, ESI.† From the energy level diagram shown in Fig. 5, it is obvious that the 

chelation of the ligand with Zn2+ does not induce a huge change in the value of energy 

difference between the HOMO and LUMO, instead a slight decrease in the same is 

observed. This agrees with the solution state photo-physical experimental finding 

indicating that the addition of Zn2+ does not lead to a remarkable shift in the absorption 

spectrum and only an increase in absorbance is observed in the presence of Zn2+. The 

theoretically determined UV-vis spectra of the ligand as well as the proposed zinc 

complex match nicely with their corresponding absorption spectra which are observed in 

acetonitrile (Fig. S17 and Table S5, ESI†). 

Zn2+ sensing by 1 in an aqueous medium 

To check whether the ligand is capable to detect Zn2+ in an aqueous environment 

absorption and emission spectroscopic studies of 1 are carried out in an aqueous buffer 

(10 mM HEPES, pH 7.4)/CH3CN (1 : 1 v/v) solvent mixture with various metal ions (e.g., 

Mn2+, Mg2+, Cr3+, Cu2+, Cd2+, Ag+, Hg2+, Al3+, Pb2+, Fe2+, Ni2+, Co2+ and Zn2+). Two sharp 

absorption bands are observed at 303 nm (ε = 8580 M−1 cm−1) and 315 nm (ε = 8411 

M−1 cm−1) in the UV-vis spectrum of the ligand, while the excitation at 315 nm results in 

an emission band at 430 nm with a small peak at 410 nm (Fig. 6a). Interestingly, the 

https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#fn1
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#imgfig5
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#fn1
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#imgfig5
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#fn1
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#imgfig6


emission intensity of 1 in aqueous buffer (10 mM HEPES, pH = 7.4) media is greater 

than the value observed in pure acetonitrile. The reason might be the hydrogen bonding 

interaction between quinoline nitrogens and water which decreases the electron density 

from nitrogens and consequently reduces the effect of the n–π* transition which was 

responsible for weakening the emission intensity in acetonitrile.70,71 

 

 

 

Fig. 6 (a) Absorption and emission profiles of 1 and (b) Emission spectrum of 1 in the 

presence of 10 equiv. various metal ions in an aqueous buffer (10 mM HEPES, pH 

7.4)/acetonitrile (1 : 1 v/v). 

 

 

The addition of an aqueous buffer solution of Zn2+ (10 equiv.) to the ligand leads to a 

luminescence color change from green to blue while the emission intensity increases up 

to 4.76 fold (Fig. 6b). The emission maximum shifts to a comparatively higher energy 

region to give two new peaks at 384 nm and 405 nm. The increase in the emission 

intensity in the presence of Zn2+ may be attributed to the rigidification of the side arms 

which leads an increase in the quantum efficiency. The presence of metal ions other than 

Zn2+ does not affect the emission profile significantly. For better understanding the zinc 

binding properties of 1 in aqueous buffer (10 mM HEPES, pH = 7.4) media, absorption 

and emission titration experiments are performed by the gradual addition of Zn2+ into an 

aqueous buffer (10 mM HEPES, pH 7.4)/acetonitrile (1 : 1 v/v) solution of 1. Upon the 

addition of an increasing amount of Zn2+, a gradual increase in the absorbance of the 
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bands at 303 nm and 315 nm is observed with the appearance of a single isosbestic 

point at 280 nm (Fig. S18, ESI†). In an emission titration experiment, the addition of 

Zn2+ results in a blue shift of the emission bands from 430 and 410 nm to 384 and 405 

nm, respectively, with a steady increase in the emission intensity. The saturation point is 

reached at 3 equiv. Zn2+ concentration which along with the corresponding Job plot 

analysis reveals 1 : 3 stoichiometric binding between 1 and Zn2+ (Fig. 7a and b). The 

binding constant between 1 and Zn2+ is found to be KZn1 = 1.27 × 104, KZn2 = 9.55 × 

103 and KZn3 = 6.89 × 103 M−1 (Fig. 7c) and the calibration curve of change in emission 

intensity (I − I0) versus the concentration of Zn2+ results in the detection limit 29.45 × 

10−8 M (Fig. S19a, ESI†). The selectivity of the ligand toward Zn2+ is also studied by 

monitoring the change in the emission spectrum of 1 upon the addition of 3 equiv. Zn2+ in 

the presence of various metal ions (10 equiv. each) in an aqueous buffer (10 mM 

HEPES, pH 7.4)/acetonitrile (1 : 1 v/v) solution. The result shows almost the same 

emission spectral changes in each case as observed with only Zn2+ in the absence of 

other metal ions (Fig. S19b, ESI†). However, no remarkable change is observed in the 

fluorescence decay profile of 1 upon the addition of an incremental concentration of 

Zn2+ in its aqueous buffer (10 mM HEPES, pH 7.4)/acetonitrile (1 : 1 v/v) solution (Fig. 

S20, ESI†). This indirectly suggests that the extent of the increase in the lifetime by 

reducing the probability of non-radiative decay via rigidification of the flexible ligand upon 

zinc coordination might be just comparable to the effect of lowering the τ value due to the 

increase in the emissive rate of the fluorophore as explained before. Thus the two 

opposite factors completely compensate each other resulting in no change in the lifetime 

value. 
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Fig. 7 (a) Emission titration profile of 1 (10 × 10−6 M) with Zn2+ (Inset: Corresponding 

equivalent plot) and (b) PL Job plot experiment of 1 (15 × 10−6 M) with Zn2+ (15 × 10−6 M) in 

an aqueous buffer (10 mM HEPES, pH 7.4)/acetonitrile (1 : 1 v/v); (c) non-linear 1 : 3 fitting 

of the PL titration data to calculate an association constant of 1 with Zn2+ in an aqueous buffer 

(10 mM HEPES, pH 7.4)/acetonitrile (1 : 1 v/v) at room temperature. (d) Emission intensity 

of 1 and 1 in the presence Zn2+ at a different pH. 
 
 
 
 

Effect of pH on Zn2+ sensing by 1.  

 

Since pH is one of the major factors governing the practical application of a sensor in the 

sensing of environmental as well as biological samples, the effect of pH upon the 

Zn2+ sensing properties of 1 is duly investigated. For all the above mentioned sensing 

studies in an aqueous buffer (10 mM HEPES, pH = 7.4) solvent, the pH of the solution 

remains the same before and after the addition of Zn2+. This justifies the fact that the 

changes observed in the spectral properties of 1 upon the addition of Zn2+ are exclusively 
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due to its coordination with Zn2+ but not for the effect of pH. Changing the pH from 4 to 

10 does not lead to any significant change in the emission intensity value of the free 

ligand while the extent of emission enhancement in the presence of 3 equiv. Zn2+ is 

reduced at a highly acidic or basic pH i.e. it stops beyond pH 4 on acidic side and pH 10 

on basic side (Fig. 7d). The decrease in the sensing efficiency of 1 at highly acidic pH 

might be the result of protonation on quinoline nitrogens, which traps the nonbonding 

electron pairs on N, through which it could coordinate with the metal. Though the PET 

from nitrogen centers is stopped the occurrence of non-radiative decay is not inhibited 

because of the flexibility in the side arm in the absence of Zn2+. On the other hand, at a 

highly basic pH, a competition starts between the ligand and OH− ion for binding with 

Zn2+ which lowers the sensitivity of 1 toward Zn2+.18 Thus, it can be concluded from the 

overall experimental results that 1 can be used as a selective fluorescent sensor for 

Zn2+ in acetonitrile as well as in 50% aqueous buffer (10 mM HEPES, pH = 7.4) 

acetonitrile system. 

Single crystal X-ray structural analysis of the Zn2+ complex 

To get the solid state structural evidence of Zn2+ binding with 1, X-ray structural analysis 

is performed with the single crystals of the resulting zinc complex obtained from the slow 

evaporation of its DMF/methanol/water (3 : 1 : 1) solution. The complex crystallizes in 

the P21 space group where the asymmetric unit contains the ligand, three Zn2+ ions, 

three ClO4
−, three NO3

− groups and the solvent molecules (Table S8, ESI†). 

Interestingly, the 1 : 3 ligand–metal stoichiometry which has already been observed in 

detailed solution state studies is further assisted by the single crystal X-ray structure. As 

depicted in Fig. S21,† every Zn2+ ion is chelated with 1via two quinoline nitrogens and 

one secondary nitrogen atom. One nitrate bridges two Zn2+ centers leading to a different 
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coordination number and geometry around them i.e. one is pentacoordinated while the 

other one is tetracoordinated. The remaining zinc centre binds with two oxygen atoms 

from the solvent molecules to adopt a pentacoordinated geometry. 

Anion sensing by the trinuclear Zn2+ complex. High aqueous solubility of the 

trinuclear Zn2+ complex and presence of NO3
− in the coordination sphere insists us to 

check whether it can be replaced by other anions. To see this, the change in the 

emission spectral behavior of the complex is monitored in the presence of various anions 

as their sodium salts in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile 

solution. The addition of an excess amount (20 equiv.) of different anions like F−, Cl−, Br−, 

HCOO−, CH3COO−, ClO4
−, SO4

2−, H2PO4
−, AMP and ADP does not cause any 

appreciable change in the emission spectrum of the complex while in the presence of 5 

equiv. of PPi the emission intensity is decreased drastically (Fig. 8). Excess ATP (20 

equiv.) also reduces the intensity but to a small extent. However, the quenching of 

emission intensity in the presence of PPi is not perturbed even in the presence of excess 

ATP in the medium. Careful analysis of the single crystal X-ray structure of the 

Zn2+ complex, described above, reveals that two Zn2+ centres are separated by 4.639 Å 

which matches very well with that of the length of a PPi anion. This analogy suggests the 

probable reason behind the selectivity toward PPi, which is, the best fitting of the guest 

between two Zn2+ centres. For other structurally similar phosphate analogues this fitting 

does not occur efficiently resulting in a silent behavior of the trinuclear Zn2+ complex 

towards these anions. 
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Fig. 8 Emission spectral changes of the trinuclear Zn2+ complex (8.5 × 10−6 M) in the 

presence of various anions (5 equiv. PPi and 20 equiv. other anions) as their sodium salts, in 

70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile at room temperature. 

 

 

To know the PPi binding better, the emission titration experiment of the trinuclear 

Zn2+ complex with PPi is carried out. It shows a gradual decrease in emission intensity 

upon incremental addition of PPi (Fig. 9a) where the changes are ceased beyond the 

addition of 2 equiv. of the anion (Fig. 9b). The results along with the PL Job plot (Fig. 

S22a, ESI†) suggest 1 : 2 host–guest stoichiometry while the detection limit is calculated 

to be 45.37 × 10−9 M (Fig. 9c) and the related association constants are determined by a 

nonlinear curve fitting method as 5.03 × 105 and 1.84 × 105 M−1 (Fig. S22b, ESI†). The 

values suggest a very high sensitivity as well as a significant binding efficiency of the 

trinuclear Zn2+ complex toward PPi which is good enough when compared with those of 

previously reported PPi sensors (Table S10, ESI†). The selectivity study shows that the 

quenching of the fluorescence upon the addition of a PPi anion remains unperturbed 

even in the presence of other competitive anions (Fig. 9d). Based on the experimental 

outcomes, pieces of spectroscopic evidence (Fig. S23, ESI†), and previous literature 

reports,19,24 a probable binding mode is demonstrated in Scheme S1, ESI,† where two PPi 

anions form an adduct with the trinuclear Zn2+ complex. The NO3
− anion which was 

bridged between two Zn2+ ions is replaced by one PPi while the other PPi coordinates 
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with the third Zn2+. Thus, as depicted in Scheme S1, ESI,† every Zn2+ ion adopts five-

coordination mode. The quenching of the emission intensity of the trinuclear 

Zn2+ complex in the presence of PPi could be attributed to the weakening of the N → Zn 

bond upon the coordination of the Zn2+ ions with a PPi anion.19,24 This effectively increases 

the density of the non-bonding electrons over quinoline nitrogens, which, as discussed in 

the previous section, favors the ISC process from n–π* singlet → n–π* triplet and as a 

result the luminescence of the system is quenched. Thus, the decrease of the emission 

intensity upon the addition of a very small amount (only 2 equiv.) of PPi makes the 

trinuclear Zn2+ complex a suitable “turn-OFF” fluorescence sensor for PPi in 70% 

aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media. 

 

 

Fig. 9 (a) Emission titration profile of the trinuclear Zn2+ complex (10 μM) with PPi, (b) 

corresponding equivalent plot, (c) the corresponding calibration curve and (d) selectivity 

graph of the trinuclear Zn2+ complex with PPi in the presence of other metal ions in a 70% 

aqueous buffer (10 mM HEPES, pH 7.4)/acetonitrile media at room temperature (λem = 385 

nm). Green bars represent the fluorescence intensities in the presence of other anions (10 

equiv.) and the red bars correspond to the same in the presence of all anions and PPi. Codes 

used: (1) trinuclear Zn2+ complex, (2) F−, (3) Cl−, (4) Br−, (5) HCOO−, (6) CH3COO−, (7) 

HCO3
−, (8) ClO4

−, (9) SO4
2−, (10) H2PO4

−, (11) AMP, (12) ADP, (13) ATP, and (14) PPi. 
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Conclusions 

In summary, an efficient quinoline based highly sensitive C3-symmetric fluorescent 

sensor is developed that can discriminate Zn2+ among various competitive metal ions 

including Cd2+ even in a 50% aqueous buffer medium. The solution state experimental 

results and DFT calculations suggest the formation of a trinuclear Zn2+ complex which is 

further confirmed by the ingle crystal X-ray diffraction study. The solid state structure 

shows that a NO3
− group is bridged between two Zn2+ centers in the complex which in 

turn, shows selective fluorescence “turn-OFF” sensing of PPi in a 70% aqueous buffer 

(10 mM HEPES, pH = 7.4) acetonitrile medium. 

Experimental 

Materials 

All the reaction and workup procedures were carried out under ambient conditions. 2-

(Chloromethyl)quinoline hydrochloride, potassium iodide, and the perchlorate salts of 

Zn2+, Cd2+, Hg2+, Pb2+, Fe2+, Ni2+, Co2+, Al3+, Cr3+, Cu2+, Mg2+, Ag+ and Mn2+ and sodium 

salts of the anions were purchased from Sigma-Aldrich and used as received. Potassium 

carbonate and the nitrate salt of Zn2+ were bought from Merck chemicals. Ethanol and 

acetonitrile solvents were purchased from Spectrochem Pvt. Ltd, India. All of them were 

used as received except acetonitrile which was further dried and distilled using CaH2. 

HPLC-grade solvents and doubly distilled water were used in photophysical 

measurements. NMR solvents were purchased from Sigma-Aldrich. 

Methods 



Fourier transform infrared (FTIR) spectra were recorded on a Shimadzu FTIR-8400S 

infrared spectrophotometer with KBr pellets. High-resolution mass spectrometry (HRMS) 

analyses were carried out using a QTOF–Micro YA 263 mass spectrometer in positive 

ESI mode. 1H, 13C, 1H–1H COSY, 1H-DEPT-135 HSQC and 1H–13C HMBC NMR 

experiments were carried out on a FT-NMR Bruker DPX 300/400/500 MHz NMR 

spectrometer, and the chemical shift values for 1H and 13C NMR were reported in parts 

per million (ppm), calibrated to the residual solvent peak set. Absorption spectra were 

recorded on a PerkinElmer Lambda 900 UV/vis/NIR spectrometer using a quartz cuvette 

of 1 cm path length whereas the emission spectra were recorded in a FluoroMax-3 

spectrophotometer, from Horiba Jobin Yvon. Elemental analysis was performed on a 

PerkinElmer 2500 series II elemental analyzer, PerkinElmer, USA. A picosecond diode 

laser (IBH Nanoled-07) was used to excite the samples in an IBH Fluorocube apparatus 

for TCSPC measurements. The luminescence decays were recorded on a Hamamatsu 

MCP photomultiplier (R3809), and the analysis of the data was done using the IBH 

DAS6 software. All geometry optimizations were performed with the Gaussian 

0976 program package using DFT. The B3LYP75 functional was used with the 6-31G(d) 

basis set79 for C, N, H and LanL2DZ for Zn atoms. An integral equation formalism variant 

of the Polarizable continuum model (IEF-PCM)80 was employed to include the solvent 

(acetonitrile) effect. Time-dependent DFT calculations were done to characterize the 

peaks in the excitation spectrum. Gaussview 5.0 was used for visualizations of the 

optimized structures and the MOs. Caution: Metal perchlorate salts are explosive in the 

presence of open flames, heat or sparks. Zinc perchlorate hexahydrate and zinc nitrate 

hexahydrate can cause skin and eye damage. All due precautions should be taken while 

handling these. 
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Calculation of association constants. The 1 : 3 association constants were 

determined using a nonlinear least-squares analysis of I versus cM using the deduced 

equation:81a 

 

where β21 = K11K21, β31 = K11K21K31, and [M] ≈ cM are the concentrations of 

Zn2+ ions, I0 or I is integrated emission in the absence or presence of Zn2+. Φ1 is 

approximately 0.09, the quantum yield of the 1 : 1 1-Zn2+ complex; Φ2 is approximately 

0.185, the quantum yield of the 1 : 2 1-Zn2+ complex. 

The 1 : 2 association constants between the trinuclear Zn2+ complex and PPi are 

determined by using the equation:81b 

 

where [G] ≈ the concentration of the trinuclear Zn2+ complex Φ1 is approximately 0.185, 

the quantum yield of the 1 : 1 Zn2+ complex-PPi species; Φ2 is approximately 0.09, the 

quantum yield of the 1 : 2 Zn2+ complex-PPi species. 

 

Calculation of detection limit. Detection limits (DL) were calculated using the following 

equation: 

DL = (3 × SD)/slope 

where SD corresponds to the standard deviation of the blank sample, measured using 

15 consecutive scans of the blank sample. The slope is obtained from the linear fit plot of 

PL intensity changes versus the concentration of Zn2+ added. The SD values of 

ligand 1 were 1000.46 in acetonitrile and 995.59 in an aqueous buffer (10 mM HEPES, 

pH 7.4)/acetonitrile (1 : 1 v/v). In the case of a trinuclear Zn2+ complex the value was 

930.99. 
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Calculation of excited-state lifetimes. The following equation was used to analyze the 

time-resolved emission decays: 

 

where P(t) is decay, i is the number of discrete emissive species, B is the baseline 

correction, αi is the pre-exponential factor, and τi is the excited state lifetime associated 

with the ith component. In the case of multi-exponential decays the following equation 

was used to calculate an average lifetime: 

 

where ai is the contribution of the ith decay component, and ai = αi/Σαi. 

X-ray crystallographic refinement details for 1 and Zn2+ complex. In each case, a 

diffractable size crystal was collected from the mother liquor, dipped in paratone oil, and 

then it was cemented on the tip of a glass fiber using an epoxy resin. The intensity data 

of the crystals were collected using Mo Kα (λ = 0.7107 Å) radiation on a Bruker SMART 

APEX diffractometer, equipped with a CCD area detector at 100 K and 106 K for 1 and 

its tri-nuclear Zn2+ complex, respectively. Data integration and reduction were processed 

by the SAINT82a software. Empirical absorption correction to the collected reflections was 

done by applying SADABS.82b The structures were solved using SHELXTL83 and was 

refined on F2 by the full-matrix least-squares technique using the SHELXL-9784 program 

package. PLATON-9785 and MERCURY 3.886 were used to generate graphics. Some of 

the carbon and nitrogen atoms of one quinoline ring in 1 and the trinuclear Zn2+ complex 

are highly disordered. Some other disordered solvent molecules are removed using the 

PLATON/SQUEEZE program. The occupancy factors of the disordered atoms are 

refined using the FVAR command of the SHELXTL program and are isotropically refined. 

Though good crystals have been selected and the data have been collected at 150 K, 
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the crystals did not show diffraction beyond the theta max 20.39 and 20.81 for 1 and 

trinuclear Zn2+ complex, respectively, even after several data collections. 

CCDC 1583646 and 1583647† contain the supplementary crystallographic data for this 

paper. 

Synthesis 

1,3,5-Tris (aminomethyl)-2,4,6-trimethylbenzene was prepared as per the modified 

literature procedure where 1,3,5-tris(bromomethyl)-2,4,6-trimethyl benzene is used 

instead of 1,3,5-tris(bromomethyl)-2,4,6-triethyl benzene.44 

Synthesis of N,N′,N′′-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-

(quinolin-2-yl)-N-(quinolin-2 ylmethyl)methanamine) (1). A mixture of 2-

(chloromethyl)quinoline hydrochloride (6.634 g, 31 mmol) and K2CO3 (9.674 g, 70 mmol) 

in 15 mL acetonitrile was stirred at room temperature for 5 minutes. Then 1,3,5-

tris(aminomethyl)-2,4,6-trimethylbenzene44 (1.035 g, 5 mmol) and a pinch amount of KI 

were added to it. The reaction mixture was refluxed and stirred for 12 h. After that the 

remaining acetonitrile was evaporated and the resulting residue was extracted in 

dichloromethane (DCM). The DCM part was evaporated to get an ash-colored crude 

product which was further purified by column chromatography with silica gel of a 60–120 

mesh size using chloroform/methanol as an eluent. The pale yellow-brown colored 

desired product was obtained with 70% yield (3.68 g) at 10% methanol concentration. 

Elemental analysis: calcd (%) for C72H63N9: C, 82.02; H, 6.02; N, 11.96. Found: C, 81.96; 

H, 6.14; N, 11.76. FTIR in a KBr disc (ν/cm−1): 3404, 3057, 2922, 2873, 1599, 1564, 

1502, 1425, 1381, 1367, 1309, 1223, 1117, 978, 949, 829, 764, 671, 619. ESI-MS 

[C72H63N9][H
+] calcd: m/z 1054.33. Found: m/z 1054.51. 1H NMR (300 MHz, CDCl3, 

Si(CH3)4): δ 7.977 (d, J = 8.4 Hz, 6H, Hi), 7.813 (d, J = 8.4 Hz, 6H, He), 7.627 (t, J = 8.4 

http://xlink.rsc.org/?ccdc=1583646&msid=c8dt00611c
http://xlink.rsc.org/?ccdc=1583647&msid=c8dt00611c
http://xlink.rsc.org/?ccdc=1583647&msid=c8dt00611c
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#cit44
https://pubs.rsc.org/en/content/articlehtml/2018/dt/c8dt00611c#cit44


Hz, 6H, Hh), 7.575 (d, J = 8.4 Hz, 6H, Hf), 7.412 (t, J = 8.4 Hz, 6H, Hg), 7.310 (d, J = 8.4 

Hz, 6H, Hd), 3.882 (s, 12H, Hc), 3.748 (s, 6H, Hb), 2.267 (s, 9H, Ha). 
13C NMR (125 MHz, 

CDCl3, Si(CH3)4): δ 160.33 (6C, Cm), 147.41 (6C, Cl), 138.28 (6C, Cj), 136.16 (6C, Ce), 

133.19 (6C, Cn), 129.50 (6C, Ch), 129.05 (6C, Ci), 127.44 (12C, Cf,k), 61.34 (12C, Cc), 

53.50 (6C, Cb), 17.06 (9C, Ca). 
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