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Abstract

We show that Cohen’s Kappa and Matthews Correlation Coefficient (MCC), both extended

and contrasted measures of performance in multi-class classification, are correlated in most

situations, albeit can differ in others. Indeed, although in the symmetric case both match, we

consider different unbalanced situations in which Kappa exhibits an undesired behaviour,

i.e. a worse classifier gets higher Kappa score, differing qualitatively from that of MCC. The

debate about the incoherence in the behaviour of Kappa revolves around the convenience,

or not, of using a relative metric, which makes the interpretation of its values difficult. We

extend these concerns by showing that its pitfalls can go even further. Through experimen-

tation, we present a novel approach to this topic. We carry on a comprehensive study

that identifies an scenario in which the contradictory behaviour among MCC and Kappa

emerges. Specifically, we find out that when there is a decrease to zero of the entropy of the

elements out of the diagonal of the confusion matrix associated to a classifier, the discrep-

ancy between Kappa and MCC rise, pointing to an anomalous performance of the former.

We believe that this finding disables Kappa to be used in general as a performance measure

to compare classifiers.

Introduction

Classification is one of the cornerstones of Supervised Machine Learning. In parallel to the

development of different methodologies that allow the construction of classifiers, the evalua-

tion process of the classifiers to compare them, and the choice of the best among those avail-

able, has caught the attention of researchers.

Introduction of an adequate performance measure for classifiers is a subject no yet closed

up to date (see [1]-[3]), and different metrics have been introduced. Some measures are natu-

rally introduced in the binary case, such as Accuracy, Sensitivity, Specificity and Area Under

the ROC Curve (AUC), among others, but not all of them can be well extended to the multi-

class setting.
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One of the ones that does is Accuracy (i.e. the fraction of well-predicted cases over the

total), which seems the most natural measure and has been used for decades. Notwithstanding,

Accuracy is not an effective measure since, among other things, it does not take into account

the distribution of the misclassification among classes nor the marginal distributions. Other

more subtle measures have been introduced in the multi-class setting to address this issue,

improving efficiency and class discrimination power.

We will focus our attention in Matthews Correlation Coefficient (MCC) and Cohen’s

Kappa. The former was introduced in the binary setting by Matthews ([4]), and generalized to

the multi-class case in [5], being commonly used as a reference performance measure, espe-

cially for unbalanced data sets, in different fields as, for example, bioinformatics (see [5]-[7]).

On the other hand, Kappa is a traditional measure originally designed as a measure of agree-

ment between two judges, based on the Accuracy but corrected for chance agreement. At pres-

ent, its use is not simply limited to medicine or psychology (see for instance, [8] and [9]), but

is a measure widely used in other fields as ecology ([10] and [11]), neuroscience ([12]) or

machine learning, where it is used to evaluate the agreement between the actual and the

assigned classes by a classifier. In the classification literature, the discussion on Kappa is most

focused on its suitability compared to other classifiers; for example, in [1] Kappa has been con-

sidered jointly with 17 other performance metrics in several scenarios.

It is not an overstatement to say that Kappa is one of the most widespread measures and of

use in several fields and disciplines. Nevertheless, some authors, including the introducer of

Kappa statistic himself, Jakob Cohen, alerted that Kappa could be inadequate in different cir-

cumstances, specifically when an imbalance distribution of classes is involved, i.e. the marginal

probability of one class is much more (or less) greater than the others (leaving aside the litera-

ture below, on which we will deal more closely, see also [13]-[17]). According to them, some

problems arise in such situations because it is not clear how the hypothetical probability of

chance agreement should be defined. In [18] and [19], the so-called Kappa paradox is

described. Roughly speaking, Kappa paradox arises since for a fixed agreement between

judges, the Kappa statistic penalizes judges with similar marginals compared with judges with

different ones. The authors show several examples where this happens.

This same obstacle is extensively studied in [20]-[22]. In the later, two separate causes of the

paradox are considered; (1) the prevalence paradox arises from the fact that when the hypothet-

ical probability of chance agreement among raters is high, even high values of the relative

observed agreement (which is identical to Accuracy) produce low values of Kappa, and (2) the

bias paradox, which is the consequence of the fact that imbalanced marginal distributions pro-

duce higher scores of Kappa. The authors claim that reporting a single agreement coefficient

makes interpretation and comparison difficult. Hence, they suggest a corrected version of

Kappa for bias and prevalence (PABAK), which should be used together with Kappa.

Similar conclusions emerge from [23], where the authors claim that Kappa is a relative mea-

sure of agreement, which is an inadequate characteristic for assessing in a clinical setting, spe-

cifically if a high agreement among experts leads to lower values of Kappa. Instead, they

suggest using the proportion of specific agreement ([24]), which divides the agreement into a

positive and a negative rate, allowing professionals to have an absolute measure and at the

same time, information about the marginal distributions. Regarding the effect on estimation

of the chance agreement, Albatine et al. ([25]) analysed 28 different similarity measures for

clustering purposes; they suggest adding a correction for chance, in a specific family of coeffi-

cients, which makes some of them equivalent, regardless of how expectations are calculated.

This work is extended by Warrens in [26], where more in-depth analysis is presented and sev-

eral indices are generalized: Cohen’s kappa ([27]), Scott’s pi ([28]), Mak’s rho([29]), Goodman

and Kruskal’s lambda ([30]), and Hamann’s eta ([31]).
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On the other hand, there are several authors that defend that Kappa is a useful measure

of agreement, when its limitations are taken into account. For example, in [32] the authors

defend the use of Kappa in a previous study, and warn that it is a useful measure if marginal

distributions are considered. A similar conclusion was reached in [33], where it is said that

although Kappa is not suitable in certain circumstances, it is better than the raw proportion. In

[34] the work of [22] expands and the Kappa pitfalls are explained for the agreement between

judgments, concluding that if it is used and interpreted properly, the Kappa coefficient pro-

vides a valuable information. As in previous works, they propose to use corrected versions

of the coefficient as well. In [16] the author argues that in the case of dichotomous variables,

Kappa is satisfactory (although it is not for other cases); as we show in the present work, even

in the binary case, Kappa can exhibit unexpected behaviour. Finally, there are some authors

([34]) who do not agree with the use of weighted versions of the statistics as PABAK, and sug-

gest select the marginal distributions to be similar.

In general, the use of Kappa is not only extended but accepted, and its pitfalls are overcome

by considering the marginal distributions and using weighted alternatives, as, for example the

one suggested by Cohen ([15]), PABAK or other alternatives ([35] and [36]).

Despite the vast amount of existing literature, in the field of medicine and psychology,

pointing out the threats of Kappa, when Classification Machine Learning methods experi-

mented their boom Cohen’s Kappa was introduced as a reliable performance metric. Actually

it is incorporated in the most extended software packages, such as SciKit Learn [37] for Python,

and Caret [38] for R. What is more, in recent studies such as [39]-[42] and [12], Kappa is still

used as if it were a reliable performance metric. In fact, the literature reviewed recognizes the

difficulty of clinical professionals in interpreting Kappa because it is a relative measure, that is,

Kappa itself is not enough to know if two professionals agree or disagree. This does not seem

to be a problem in machine learning classification because the ground-truth is always com-

pared with different methods in the same condition of marginal distributions. Therefore, it

can be argued that we are not interested in the value of Kappa itself (as are the clinicians), but

in the difference of the classifying pairs ground-truth, so Kappa is a reliable metric for this

task. However, the reality is that this is not always the case. As we show, there are scenarios in

which, given the same ground-truth, a better classifier can obtain a lower value of Kappa. It is

important to mention that some authors also highlight the problems associated with Kappa
when it is used as a performance metric in classification (see for instance [43]-[45]), although

they do not perform an exhaustive analysis like the one presented here.

Clearly, marginal distributions seem to play a key role in the problems surrounding Kappa.

However, there is a lack of a consistent and satisfactory description of the cases in which the

unwanted behaviour of Kappa appears, and how this affects its use as a performance metric for

classification.

In our paper, we deepen the study of the pitfalls discussed above by analysing in detail the

unwanted behaviour of Kappa from a novel perspective. Our point of view is the identification

of situations in which discrepancies in its behaviour, with respect to that of MCC, become evi-

dent, going in the opposite direction. Indeed, we study varied scenarios of misclassification in

settings with different marginal probabilities of the categories, and how this scenarios affect

the statistics Kappa and MCC, by analysing both the asymmetry and the entropy of the confu-

sion matrix. Considering Kappa as a relative measure of agreement, we provide a mathemati-

cal framework to understand the associated problems with it when dealing with extreme

unbalanced marginal distributions, which is frequent in machine learning problems.

Our goal is to present a systematic study, both analytical and by means of empirical experi-

mentation, to compare the two performance measures. For that, we investigate the similarities

and differences in the behaviour of MCC and Kappa in different scenarios. In some of them,

Why Cohen’s Kappa should be avoided as performance measure in classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0222916 September 26, 2019 3 / 26

https://doi.org/10.1371/journal.pone.0222916


they are strongly correlated, and we show some mathematical relations and study some limit

cases. But in others, they exhibit very different behaviour, being that of Kappa contrary to

common sense, to the point that we join the detractors of its use for the assessment of classifi-

ers. This paper is an attempt to shed some light on the identification of the latter.

The paper is organized as follows: first, we introduce some definitions and state some nota-

tions. Next, we prove that if the confusion matrix, which allows visualization of the perfor-

mance of a classifier, is symmetric, then Kappa and MCC coincide. Each column in the

confusion matrix represents the cases in any predicted class, while each row represents the

cases in any actual class. In the sequel, we study in some detail the binary case, in which classes

are named “positive” and “negative” and the confusion matrix has a general form
a b
c d

� �

,

where a = true positive, b = false negative, c = false positive and d = true negative, splitting the

study according to whether c = 0, the scenario in which Kappa has a behaviour consistent with

that of MCC, and c> 0, in which the opposite happens. For each of these cases, we consider

particular sub-cases and we deepen in their study. We also consider a pathological multi-class

unbalanced situation, in which one of the classes is much more common than the others, and

it is mainly misclassified (family of confusion matrices ZA introduced in [2]). We also perform

empirical experimentation in dimension 3, considering some families of confusion matrices,

and finish with a few concluding words.

Definitions and notations

Given a generic matrix M, let MT denote its transpose, that is, the matrix obtained from M by

interchanging columns and rows. The same notation applies to vectors, which by default are

column vectors. We say that matrix Q is equivalent to M, and denote it by Q�M, if Q can be

obtained from M by multiplying it by a positive constant.

Classification

Classification consists of assigning a case to a class (category or label) on the basis of a known

set of features or characteristics. This is usually done by a classifier learned from a training

dataset. From the validation process of the classifier with a testing dataset, we obtain a confu-

sion matrix C, which takes into account actual and predicted classes of the cases in the

testing dataset. To fix ideas, assume that there are N different classes labeled {1, . . ., N}.

Then, C = (Cij)i,j=1,. . .,N is a N × N matrix defined by: Cij is the number of cases in the testing

dataset that belong to class i and have been assigned to class j by the classifier. Note that Cij�

0. Let S denote the sum of all the elements of C (the number of cases in the testing dataset),

that is, S ¼
XN

i;j¼1

Cij > 0. In the binary case N = 2, to abbreviate notation we preferably denote

C ¼ C11 C12

C21 C22

� �

by
a b
c d

� �

, as previously mentioned in the Introduction.

In the context of classification, Accuracy (Acc for brief) is the fraction of correctly classified

cases in the testing dataset, that is, Acc ¼
PN

i¼1
Cii=S. This performance measure is one of the

most intuitive, and it is naturally extended to multi-class from binary classification. Acc mainly

considers the diagonal of the confusion matrix, and does not take into account how the off-

diagonal elements, corresponding to misclassification, are distributed.

Other more subtle performance measures based on the confusion matrix have been intro-

duced to compare classifiers. We here compare two of the most commonly used. Note that

these measures are invariant for equivalent confusion matrices.
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Matthews correlation coefficient

The binary case. Matthews Correlation Coefficient MCC was first introduced in the binary

case by B.W. Matthews [4] to assess the performance of protein secondary structure predic-

tion, as the ϕ-coefficient, which is the measure of association obtained by discretization of

the Pearson’s correlation coefficient for two binary vectors. That is, in the binary case, MCC =

ϕ = ρ(x, y), where x = (x1, . . ., xS)T and y = (y1, . . ., yS)T are the S-dimensional binary vectors

defined in this way:

xi ¼

(
1 if case i belongs to class “positive”;

0 if it belongs to class “negative”;

yi ¼

(
1 if case i has been classified as belonging to class “positive”;

0 if it has been classified as belonging to class “negative”;

and ρ is Pearson’s correlation coefficient defined by

rðx; yÞ ¼
Covðx; yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Covðx; xÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Covðy; yÞ

p ¼

XS

i¼1

ðxi � �xÞ ðyi � �yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XS

i¼1

ðxi � �xÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XS

i¼1

ðyi � �yÞ2
s ð1Þ

where, as usual, �x ¼ 1

S

PS
i¼1

xi and �y ¼ 1

S

PS
i¼1

yi, and Cov(x, y) denotes the statistical covari-

ance of x and y, that is, Covðx; yÞ ¼ 1

S

PS
i¼1
ðxi � �xÞ ðyi � �yÞ, and when x = y, Cov(x, x) =

Var(x) is the statistical (uncorrected) variance of x. Note that the square of the ϕ-coefficient is

related to the chi-squared statistic for the 2 × 2 contingency table, χ2, by means of �
2
¼ w2

S .

Then, using some algebra and taking into account that, by definition of vectors x and y, the ele-

ments of the confusion matrix are

a ¼
XS

i¼1

xi yi; b ¼
XS

i¼1

xi ð1 � yiÞ; c ¼
XS

i¼1

ð1 � xiÞ yi and d ¼
XS

i¼1

ð1 � xiÞ ð1 � yiÞ;

we obtain that

a d � b c ¼ S
XS

i¼1

xi yi � ð
XS

j¼1

xjÞ ð
XS

k¼1

ykÞ;

aþ b ¼
XS

i¼1

xi; bþ d ¼ S �
XS

i¼1

yi; aþ c ¼
XS

i¼1

yi; cþ d ¼ S �
XS

i¼1

xi

and then using x2
i ¼ xi and y2

i ¼ yi for any i = 1, . . ., S, we can rewrite (1) as

MCC ¼
a d � b c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ ðbþ dÞ ðaþ cÞ ðcþ dÞ

p ðin the binary caseÞ: ð2Þ

The multi-class case. In [5] the problem of evaluation of prediction of RNA secondary

structure in cases where some predicted pairs go into the category of “unknown” due to lack of

reliability, is considered. By introducing an extended correlation coefficient that applies to any

number of categories, the author facilitates addressing the problem of predicting base pairs of

RNA secondary structure as a three-category problem instead of artificially force it to fall into

the binary case by fixing one of the categories, and then considering which cases belong and
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which do not belong to that category, leading to a loss of information and a suboptimal proce-

dure. Indeed, MCC is generalized in [5] to classification with N> 2 classes based on consider-

ing the expected covariance of all categories and constructing the following extension of

Pearson’s correlation coefficient ρ from a pair of binary vectors to a pair of binary matrices:

~rðX;YÞ ¼
gCovðX; YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gCovðX; XÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gCovðY; YÞ

q ; ð3Þ

where if X and Y are two matrices S × N, gCovðX; YÞ is defined as the average of the N covari-

ances between the different pairs of S-dimensional binary vectors given by the same column

in matrices X and Y, that is, gCovðX; YÞ ¼ 1

N

PN
k¼1

Covðxk; ykÞ, where xk = (X1k, . . ., XSk)
T and

yk = (Y1k, . . ., YSk)
T are the columns k of matrices X and Y, respectively. Therefore, by defining

S × N matrices X = (Xij)i,j and Y = (Yij)i,j in the following way:

Xij ¼

(
1 if case i belongs to class j;

0 if it belongs to other class;

Yij ¼

(
1 if case i has been classified as belonging to class j;

0 if it has been classified as belonging to other class;

for i = 1, . . ., S and j = 1, . . ., N, we finally introduce the multi-class extension by

MCC ¼ ~rðX; YÞ, and by using some algebra and that by definition of matrices X and Y,

Cij ¼
PS

‘¼1
X‘i Y‘j, we obtain the known expression

MCC ¼

XN

k;‘;m¼1

ðCkk C‘m � Cmk Ck‘Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k¼1

�
ð
XN

‘¼1

Ck‘Þð
XN

u;v¼1; u6¼k

CuvÞ
�

v
u
u
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k¼1

�
ð
XN

‘¼1

C‘kÞð
XN

u;v¼1; u6¼k

CvuÞ
�

v
u
u
t

ð4Þ

We give below a sketch of the proof of the equivalence between (3) and (4). Indeed, the

numerator of (3) can be developed as follows:

gCovðX; YÞ ¼
1

N

XN

k¼1

1

S

XS

r¼1

Xrk �
�xk

� �
Yrk �

�yk
� �

 !

¼
1

N S

XN

k¼1

XS

r¼1

Xrk Yrk � S �xk �yk

 !

¼
1

N S2

XN

k;‘;m¼1

Ckk C‘m � Ck‘ Cmkð Þ

using that S �xk �yk ¼ 1

S

PN
‘;m¼1

Ck‘ Cmk, which is a consequence of the fact that by definition,

�xk ¼ 1

S

PS
r¼1

Xrk ¼
1

S

PN
‘¼1

Ck‘ since

XN

‘¼1

Ck‘ ¼
XN

‘¼1

ð
XS

r¼1

Xrk Yr‘Þ ¼
XS

r¼1

Xrk ð
XN

‘¼1

Yr‘Þ ¼
XS

r¼1

Xrk

(note that by definition of Y,
PN

‘¼1
Yr‘ ¼ 1), and analogously with �yk ¼ 1

S

PS
r¼1

Yrk ¼
1

S

PN
m¼1

Cmk.
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We also used that
PS

r¼1
Xrk Yrk ¼ Ckk, and that S ¼

PN
‘;m¼1

C‘m. Now we develop the term in

the denominator of (3) corresponding to X (analogous development would be obtained for Y):

gCovðX; XÞ ¼
1

N

XN

k¼1

ð
1

S

XS

r¼1

Xrk �
�xkÞ

2
� �

¼
1

N S

XN

k¼1

XS

r¼1

X2

rk � S ð �xkÞ
2

 !

¼
1

N S

XN

k¼1

ð
XN

‘¼1

Ck‘ �
1

S

XN

v¼1

CkvÞ
2

 !

where we use that X2

rk ¼ Xrk

¼
1

N S2

XN

k¼1

XN

‘¼1

Ck‘

 !

S �
XN

v¼1

Ckv

 ! !

¼
1

N S2

XN

k¼1

XN

‘¼1

Ck‘

 !
XN

u;v¼1;u6¼k

Cuv

 ! !

using that S ¼
XN

u;v¼1

Cuv:

Note that in the binary case, expression (4) matches (2). Indeed, when N = 2, numerator of

(4) can be written as 2(C11 C22 − C21 C12) = 2(ad − bc), while the first term in the denominator

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ðaþ bÞ ðcþ dÞ

p
, and the second one coincides with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ðaþ cÞ ðbþ dÞ

p
.

Software provided by the author of [5] allowing to perform the calculations easily is avail-

able at http://rk.kvl.dk/.

Cohen’s Kappa
Cohen’s Kappa statistic, or simply Kappa (henceforth, also denoted by K), was originally intro-

duced by J. A. Cohen [27] in the field of psychology as a measure of agreement between two

judge, and later it has been used in the literature as a performance measure in classification, as

for example in [46]. More concretely, Kappa is used in classification as a measure of agreement

between observed and predicted or inferred classes for cases in a testing dataset. Its definition

is:

K ¼
Acc � Pe

1 � Pe
; ð5Þ

where Pe is the hypothetical probability of chance agreement, using the values of the confusion

matrix to estimate the probabilities of randomly choose each class, that is, Pe ¼
PN

i¼1

Ci ��C� i
S2 ,

where as usual, we use the notations Ci � ¼
PN

j¼1
Cij (the sum of row i), and C� j ¼

PN
‘¼1

C‘j (the

sum of column j).
Both MCC and Kappa assume their theoretical maximum value of +1 when classification is

perfect, the larger the metric value, the better the classifier performance. MCC ranges between

−1 and +1 while Kappa does not in general, although it does in the cases considered in this

work. Moreover, it is straightforward to see that they are symmetric, that is, KðCTÞ ¼ KðCÞ
and MCC(CT) = MCC(C).

The symmetric case

In the case of a symmetric confusion matrix, it is known that Kappa statistic is equivalent to

Scott’s pi ([28], [47]), which is a special case of Krippendorff’s alpha ([48]). Scott’s pi is a statistic

with the same structure as Kappa but that differs from it in the definition of Pe. Hereunder, we

will show that if C is a symmetric matrix, Kappa and MCC not only are consistent with each

other but they coincide exactly. Although this result seems to be known, we could not find a

reference for it and therefore, we provide its proof here.
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Proposition 1 Let C = (Cij)i,j=1,. . .,N be a symmetric confusion matrix in the general multi-
class setting. That is, C = CT. Then, KðCÞ ¼ MCCðCÞ.

Proof. By (4) and taking into account that Cij = Cji by symmetry, we can write

MCCðCÞ ¼

XN

k;‘;m¼1

ðCkkC‘m � CmkCk‘Þ

XN

k¼1

ðð
XN

‘¼1

Ck‘Þð
XN

u;v¼1;u6¼k

CuvÞÞ

¼

XN

k¼1

Ckkð
XN

‘;m¼1

C‘mÞ �
XN

k;‘;m¼1

CkmCk‘

XN

k¼1

ðð
XN

‘¼1

Ck‘ÞðS �
XN

v¼1

CkvÞÞ

¼

S
XN

k¼1

Ckk �
XN

k¼1

ð
XN

‘¼1

Ck‘Þ
2

S
XN

k;‘¼1

Ck‘ �
XN

k¼1

ð
XN

‘¼1

Ck‘Þ
2

¼

S
XN

k¼1

Ckk �
XN

k¼1

ð
XN

‘¼1

Ck‘Þ
2

S2 �
XN

k¼1

ð
XN

‘¼1

Ck‘Þ
2

:

ð6Þ

On the other hand, by symmetry we can write Pe ¼
PN

k¼1
C2

k �=S
2, and therefore,

KðCÞ ¼

XN

k¼1

Ckk

S �

XN

k¼1

ð
XN

‘¼1

Ck‘Þ
2

S2

1 �

XN

k¼1

ð
XN

‘¼1

Ck‘Þ
2

S2

¼

S
XN

k¼1

Ckk �
XN

k¼1

ð
XN

‘¼1

Ck‘Þ
2

S2 �
XN

k¼1

ð
XN

‘¼1

Ck‘Þ
2

;

which coincides with MCC(C) by (6).

The binary case

Let C be a generic confusion matrix in dimension 2, C ¼
a b

c d

 !

. By (2) and (5), we have

that

MCCðCÞ ¼
ad � bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ ðbþ dÞ ðaþ cÞ ðcþ dÞ

p and

KðCÞ ¼
2 ðad � bcÞ

ðaþ bÞ ðbþ dÞ þ ðaþ cÞ ðcþ dÞ

and it turns out that KðCÞ is the harmonic mean of α and β, while MCC(C) is their geometric

mean, being

a ¼
ad � bc

ðaþ bÞ ðbþ dÞ
and b ¼

ad � bc
ðaþ cÞ ðcþ dÞ

:

That is, KðCÞ ¼ 2
1
aþ

1
b

and MCCðCÞ ¼
ffiffiffiffiffiffi
a b
p

. As a direct consequence of the known relationship

between these two means, we have that in the binary case:

min ða; bÞ � KðCÞ; MCCðCÞ � max ða; bÞ and

If ad > bc; 0 < KðCÞ � MCCðCÞ;

If ad < bc; MCCðCÞ � KðCÞ < 0;

If ad ¼ bc; MCCðCÞ ¼ KðCÞ ¼ 0:

8
>>><

>>>:

ð7Þ
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Now we delve a little deeper into the relationship between the two performance measures.

By the property of invariance for equivalent confusion matrices, we can split the study of the

binary case into two different scenarios: c = 0 and c = 1 (the latter corresponding to c> 0).

These two cases cover all the possibilities, determining a partition of the set of binary confusion

matrices into two subsets with clearly differentiated behaviour. As we will see next, when c = 0

there is an agreement between MCC and Kappa. What is more, MCC and Kappa are linked by

means of a functional relationship (see Proposition 2 below) that easily shows the relationship

of monotony between them, which implies that when one of them grows or decreases, the

other also does the same, that is, they have a consistent behaviour. On the contrary, when c = 1

an important disagreement between the two measures highlights in different particular scenar-

ios (see Corollaries 4, 5 and 6). Indeed, in all of them it is shown that while MCC monotoni-

cally decreases as the task done by the classifier is getting worse, Kappa does not.

Moreover, as the row sums are the actual number of cases in the testing dataset belonging

to each class, we assume that they are both strictly positive, that is, a + b> 0 and c + d> 0. We

also must ensure that MCC can be calculated, i.e, that we do not divide by zero. For that, the

sum of the columns must also be strictly positive, that is, we additionally assume that a + c> 0

and b + d> 0.

The c = 0 case: Agreement between MCC and Kappa
This case corresponds to perfect classification of the negative class, since there are no cases of

the negative class in the testing dataset that have been classified as belonging to the positive

class. Then, we assume a> 0 and d> 0. Moreover, we assume b> 0 since b = 0 corresponds

to the symmetric case already studied in the previous section, in which K ¼ MCC ¼ 1. We

use notation C0 ¼
a b
0 d

� �

:We have, then,

MCCðC0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a d

ðaþ bÞðbþ dÞ

s

and KðC0Þ ¼
2 a d

a d þ ðaþ bÞ ðbþ dÞ
:

We will show that in this case there is agreement between the behaviour of the two mea-

sures. Indeed, they are linked by means of a functional relationship, as can be seen in the next

proposition.

Proposition 2

KðC0Þ ¼
2 ðMCCðC0ÞÞ

2

1þ ðMCCðC0ÞÞ
2
;

and the following properties hold:

1. Since MCC(C0)> 0, KðC0Þ is a monotonically increasing function of MCC(C0), so they are
consistent performance measures.

2. 0 < ad
ðaþbÞ ðbþdÞ < KðC0Þ < MCCðC0Þ < 1.

3. The maximum distance between them is achieved when MCC(C0)� 0.3, and is� 0.13.

Moreover,

• Fixed a, d,

lim
b!þ1

MCCðC0Þ ¼ lim
b!þ1

KðC0Þ ¼ 0 ;
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which corresponds to an scenario in which the negative class is underrepresented and cases

actually in the positive class are mainly misclassified. On the other hand,

lim
b!0

MCCðC0Þ ¼ lim
b!0

KðC0Þ ¼ 1 ;

corresponding to perfect classification (see Fig 1(a)).

• Fixed b, d,

0 < lim
a!þ1

KðC0Þ ¼
2 d

2 d þ b
< lim

a!þ1
MCCðC0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
d

bþ d

r

< 1 ;

which corresponds to an scenario in which the negative class is underrepresented but cases

actually in the positive class are mainly well classified. Note that as b! 0, both

lima!þ1KðC0Þ and lima!+1MCC(C0), tend to be 1.

On the other hand,

lim
a!0

MCCðC0Þ ¼ lim
a!0

KðC0Þ ¼ 0 ;

corresponding to complete misclassification of the positive class (see Fig 1(b)).

• The case with a, b fixed, considering MCC(C0) and KðC0Þ as function of d, is symmetric to

the previous one, and then omitted.

Fig 1. Agreement between MCC and Kappa for C0. Unbalanced case with underrepresentation of the negative class,

which is perfectly classified. (a) With a = d = 1, as function of b: positive class mainly misclassified. (b) With b = d = 1

as function of a: positive class mainly well classified.

https://doi.org/10.1371/journal.pone.0222916.g001
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The c = 1 case: Disagreement between MCC and Kappa
This case corresponds to not-completely perfect classification of the negative class, since there

is at least one case in the testing dataset belonging to this class that has been classified as being

in the positive class. We assume b> 0 since if b = 0 we are in the previous situation, by symme-

try of MCC and Kappa. Although b = 1 corresponds to a symmetric confusion matrix already

studied, we include it in this section for the sake of completeness. We use the notation

C1 ¼
a b

1 d

 !

: Then,

MCCðC1Þ ¼
a d � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þ ðaþ bÞ ðd þ 1Þ ðd þ bÞ

p ;

KðC1Þ ¼
2 ða d � bÞ

ðaþ 1Þ ðd þ 1Þ þ ðaþ bÞ ðd þ bÞ

Proposition 3 If a ¼ d ¼ 0; b 6¼ 1; � 1 ¼ MCCðC1Þ < KðC1Þ ¼
� 2 b
1þb2 < 0 .

If a ¼ d ¼ 0; b ¼ 1; MCCðC1Þ ¼ KðC1Þ ¼ � 1 .

Otherwise,

if ad ¼ b; MCCðC1Þ ¼ KðC1Þ ¼ 0 ;

if ad > b;

if b > 1; 0 < ad� b
ðaþbÞðdþbÞ < KðC1Þ < MCCðC1Þ <

ad� b
ðaþ1Þðdþ1Þ

< 1;

if b ¼ 1; 0 < KðC1Þ ¼ MCCðC1Þ ¼
ad� 1

ðaþ1Þðdþ1Þ
< 1;

if b < 1; 0 < ad� b
ðaþ1Þðdþ1Þ

< KðC1Þ < MCCðC1Þ <
ad� b

ðaþbÞðdþbÞ < 1;

8
>>>>>><

>>>>>>:

if ad < b;

if b > 1; max � 1; ad� b
ðaþ1Þðdþ1Þ

� �
< MCCðC1Þ < KðC1Þ <

ad� b
ðaþbÞðdþbÞ < 0;

if b ¼ 1; � 1 < MCCðC1Þ ¼ KðC1Þ ¼
ad� 1

ðaþ1Þðdþ1Þ
< 0;

if b < 1; max � 1; ad� b
ðaþbÞðdþbÞ

� �
< MCCðC1Þ < KðC1Þ <

ad� b
ðaþ1Þðdþ1Þ

< 0:

8
>>>>>>><

>>>>>>>:

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

Next we consider some particular scenarios of this case that should be explored.

1. a = d> 0.

We use notation Ca;b
1;a ¼

a b
1 a

� �

. Fixed a> 0, if b> 1, the negative class is underrepre-

sented, and the positive class is mainly misclassified, while if b< 1, say b = 1/h with h> 1,

Ca;b
1;a �

h a 1

h h a

� �

, which is a confusion matrix that corresponds to underrepresentation

of the positive class while it is mainly well classified (if b! 0, which is equivalent to h!
+1). Then,

MCCðCa;b
1;aÞ ¼

a2 � b
ðaþ 1Þ ðaþ bÞ

and KðCa;b
1;aÞ ¼

2 ða2 � bÞ
ðaþ 1Þ

2
þ ðaþ bÞ2

:

From these expressions and Proposition 3, we obtain:

Corollary 4 If a ¼ d ¼ 0; b 6¼ 1; � 1 ¼ MCCðC1Þ < KðC1Þ ¼
� 2 b
1þb2 < 0 .

If a ¼ d ¼ 0; b ¼ 1; MCCðC1Þ ¼ KðC1Þ ¼ � 1 .
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Otherwise,

if a2 ¼ b; MCCðC1Þ ¼ KðC1Þ ¼ 0 ;

if a2 > b;

if b > 1; 0 < a2 � b
ðaþbÞ2

< KðC1Þ < MCCðC1Þ <
a2 � b
ðaþ1Þ2

< 1;

if b ¼ 1; 0 < KðC1Þ ¼ MCCðC1Þ ¼
a� 1

ðaþ1Þ
< 1;

if b < 1; 0 < a2 � b
ðaþ1Þ2

< KðC1Þ < MCCðC1Þ <
a2� b
ðaþbÞ2

< 1;

8
>>>>>><

>>>>>>:

if a2 < b;

if 1 < b < ðaþ 1Þ
2
þ a2;

� 1 < a2� b
ðaþ1Þ2

< MCCðC1Þ < KðC1Þ <
a2 � b
ðaþbÞ2

< 0;

if ðaþ 1Þ
2
þ a2 � b; � 1 < MCCðC1Þ < KðC1Þ <

a2 � b
ðaþbÞ2

< 0;

if b ¼ 1; � 1 < MCCðC1Þ ¼ KðC1Þ ¼
a� 1

ðaþ1Þ
< 0;

if b ¼ 1 �
ffiffi
2
p

2
and a ¼

ffiffi
2
p
� 1

2

� �
or b 2 fb1; b2g and 0 < a <

ffiffi
2
p
� 1

2

� �
;

� 1 ¼ a2 � b
ðaþbÞ2

< MCCðC1Þ < KðC1Þ <
a2 � b
ðaþ1Þ2

< 0;

if b1 < b < b2 and 0 < a <
ffiffi
2
p
� 1

2
;

� 1 < MCCðC1Þ < KðC1Þ <
a2 � b
ðaþ1Þ2

< 0;

Otherwise;

� 1 < a2 � b
ðaþbÞ2

< MCCðC1Þ < KðC1Þ <
a2 � b
ðaþ1Þ2

< 0;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where

0 < b1 ¼
ð1� 2 aÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2 aÞ2 � 8 a2
p

2
< b2 ¼

ð1� 2 aÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2 aÞ2 � 8 a2
p

2
< 1 :

Fixed a> 0, � 1 < lim
b!þ1

MCCðCa;b
1;aÞ ¼ �

1

aþ 1
< lim

b!þ1
KðCa;b

1;aÞ ¼ 0 , while

0 < a2

ðaþ1Þ2
< lim

b!0
KðCa;b

1;aÞ ¼
2 a2

ðaþ 1Þ
2
þ a2

< lim
b!0

MCCðCa;b
1;aÞ ¼

a
aþ 1

< 1

andMCCðCa;b
1;aÞ, as a function of b, is monotonically decreasing when b increases, which

agrees with the intuition, since when b monotonically increases, the task done by the classifier
is clearly getting worse, while KðCa;b

1;aÞ is not. Indeed, fixed a> 0, KðCa;b
1;aÞ has a global mini-

mum at b = b0 with

b0 ¼ a2 þ ðaþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

> a2 :
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See Fig 2 to observe the behaviour of MCC and Kappa fixed a = 0.2, as function of b.

Remark 1 Corollary 4 explains the behaviour of MCC and Kappa for a confusion matrix

equivalent to Ca;b
1;a ¼

a b

1 a

 !

, according to the values of a = “true positive” = “true nega-

tive”, and b = “false negative”/“false positive”. In particular, fixed “true positive” = “true
negative” and “false positive”, we observe a contradictory behaviour between these two
performance measures as b increases. Indeed, as “false negative”/“false positive” is increasing
(implying that the negative class is underrepresented, and the positive class is mainly misclas-
sified), MCC monotonically decreases, what is reasonable, but Kappa does not. In fact,
Kappa decreases for low values of b (b< b0) but increases otherwise. This unreasonable
behaviour of Kappa goes in the direction of the thesis defended in this work. Fig 2 graphically
shows this fact for the particular case a = 0.2, corresponding to a confusion matrix equivalent

to
1 5 b

5 1

 !

.

Case b> 1, with a = 1, corresponds to matrix ZA with A = b and dimension N = 2, which is

a pathological situation that will be studied in the next section.

2. a> 0, d = 0.

We use notation Ca;b
1;0 ¼

a b

1 0

 !

. In this case,

MCCðCa;b
1;0
Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

ðaþ 1Þ ðaþ bÞ

s

and KðCa;b
1;0
Þ ¼ �

2 b
ðaþ 1Þ þ b ðaþ bÞ

:

and application of Proposition 3 allows obtaining the following result:

Corollary 5

if 1 < b < aþ 1; � 1 < � b
aþ1

< MCCðC1Þ < KðC1Þ <
� 1

aþb < 0;

if aþ 1 � b; � 1 < MCCðC1Þ < KðC1Þ <
� 1

aþb < 0;

if b ¼ 1 � 1 < MCCðC1Þ ¼ KðC1Þ ¼
� 1

aþ1
< 0;

if b < 1 < aþ b; � 1 < � 1

aþb < MCCðC1Þ < KðC1Þ <
� b
aþ1

< 0;

if aþ b � 1; � 1 < MCCðC1Þ < KðC1Þ <
� b
aþ1

< 0:

8
>>>>>>>>>>><

>>>>>>>>>>>:

Although fixed a> 0, MCCðCa;b
1;0Þ is a monotonically decreasing function of b, coinciding

with intuition, KðCa;b
1;0Þ is not, achieving its global minimum when b ¼

ffiffiffiffiffiffiffiffiffiffiffi
aþ 1
p

. Moreover,
fixed a> 0,

� 1 < lim
b!þ1

MCCðCa;b
1;0
Þ ¼ �

1
ffiffiffiffiffiffiffiffiffiffiffi
aþ 1
p < lim

b!þ1
KðCa;b

1;0
Þ ¼ 0 ;

lim
b!0

MCCðCa;b
1;0
Þ ¼ lim

b!0
KðCa;b

1;0
Þ ¼ 0 :

See Fig 3 to observe the behaviour of MCC and Kappa, fixed a = 1, as function of b.
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Remark 2 In Corollary 5 we can observe the behaviour of MCC and Kappa for a confusion

matrix equivalent to Ca;b
1;0 ¼

a b

1 0

 !

, corresponding to a scenario in which the negative class

is underrepresented and the classifier systematically misclassifies this class, and generally also
misclassifies the positive class if b = “false negative”/“false positive” is big. In particular, fixed
“true positive” and “false positive”, we observe a contradictory behaviour between MCC and
Kappa as b increases: while MCC monotonically decreases, what is expected, Kappa decreases
for b <

ffiffiffiffiffiffiffiffiffiffiffi
aþ 1
p

but increases otherwise. Again, we observe here an unreasonable behaviour
of Kappa, which is graphically showed in Fig 3 for the particular case a = 1, corresponding to

a confusion matrix equivalent to
1 b

1 0

 !

.

3. d = 1, a� 0.

We use notation Ca;b
1;1 ¼

a b

1 1

 !

: Classification of negative class is entirely done by ran-

dom, that is, with the same probability a case actually in the negative class is classified as

belonging to any of the two classes. If a, b> 1, negative class is underrepresented. We have

that

MCCðCa;b
1;1Þ ¼

a� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ðaþ1Þ ðbþ1Þ ðaþbÞ
p ; KðCa;b

1;aÞ ¼
2 ða� bÞ

2 ðaþ1Þþðbþ1Þ ðaþbÞ

and application of Proposition 3 gives:

Fig 2. Disagreement between MCC and Kappa for Ca;b
1;a with a = 0.2, as function of b� 0. If b> 1, the negative class

is underrepresented and quite misclassified, and the positive class is mainly misclassified. (a) A zoom of the detail for

b� 2. (b) For b� 30.

https://doi.org/10.1371/journal.pone.0222916.g002
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Corollary 6

if a ¼ b; MCCðCa;b
1;1Þ ¼ KðCa;b

1;1Þ ¼ 0 ;

if a > b;

if b > 1; 0 < a� b
ðaþbÞðbþ1Þ

< KðCa;b
1;1Þ < MCCðCa;b

1;1Þ <
a� b

2ðaþ1Þ
< 1;

if b ¼ 1; 0 < KðCa;b
1;1Þ ¼ MCCðCa;b

1;1Þ ¼
a� 1

2ðaþ1Þ
< 1;

if b < 1; 0 < a� b
2ðaþ1Þ

< KðCa;b
1;1Þ < MCCðCa;b

1;1Þ <
a� b

ðaþbÞðbþ1Þ
< 1;

8
>>>>><

>>>>>:

if a < b;

if 1 < b < 3aþ 2;

� 1 < a� b
2ðaþ1Þ

< MCCðCa;b
1;1Þ < KðCa;b

1;1Þ <
a� b

ðaþbÞðbþ1Þ
< 0;

if 3aþ 2 � b;

� 1 < MCCðCa;b
1;1Þ < KðCa;b

1;1Þ <
a� b

ðaþbÞðbþ1Þ
< 0;

if b ¼ 1;

� 1 < MCCðCa;b
1;1Þ ¼ KðCa;b

1;1Þ ¼
a� 1

2ðaþ1Þ
< 0;

if b < 1;

� 1 < a� b
ðaþbÞðbþ1Þ

< MCCðCa;b
1;1Þ < KðCa;b

1;1Þ <
a� b

2ðaþ1Þ
< 0:

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Fig 3. Disagreement between MCC and Kappa for Ca;b
1;0 with a = 1, as function of b� 0. If b> 1, the negative class is

underrepresented and systematically misclassified, and the positive class is also mainly misclassified. (a) A zoom of the

detail for b� 2. (b) For b� 30.

https://doi.org/10.1371/journal.pone.0222916.g003
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As in the previous cases with c = 1, although if we fix a> 0, thenMCCðCa;b
1;1Þ is a monotoni-

cally decreasing function of b, coinciding with intuition, we can see that KðCa;b
1;1Þ is not, achiev-

ing its global minimum when b ¼ aþ
ffiffiffi
2
p
ðaþ 1Þ. Moreover, fixed a> 0,

� 1 < lim
b!þ1

MCCðCa;b
1;1
Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffi

2 ðaþ1Þ
p < lim

b!þ1
KðCa;b

1;1
Þ ¼ 0 ;

0 < a
2 ðaþ1Þ

< lim
b!0

KðCa;b
1;1
Þ ¼ 2 a

3 aþ2
< lim

b!0
MCCðCa;b

1;1
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2 ðaþ 1Þ

r

< 1 :

In Fig 4 we can observe the behaviour of MCC and Kappa, fixed a = 0.2, as function of b.

Remark 3 Finally, Corollary 6 is dedicated to confusion matrices equivalent to

Ca;b
1;1 ¼

a b

1 1

 !

, which correspond to an unbalanced database set if a, b> 1, with minority

class the negative one, which is randomly classified, that is, each class is imputed with the
same probability to a case actually in the negative class. In addition, if fixed a = “true posi-
tive”/“true negative”, when b = “false negative”/“false positive” increases the positive class is
mainly misclassified. While MCC in this situation behaves as expected and monotonically
decreases, Kappa does not, increasing for b > aþ

ffiffiffi
2
p
ðaþ 1Þ. As in the previous corollaries,

an unreasonable behaviour of Kappa is observed, which is shown in Fig 4 for the particular

case a = 0.2, that is, for a confusion matrix equivalent to
1 5 b

5 5

 !

.

Fig 4. Disagreement between MCC and Kappa for Ca;b
1;1 with a = 0.2, as function of b� 0. The negative class is

classified at random. If b> 1 the positive class is mainly misclassified, and the negative class is underrepresented. (a) A

zoom of the detail for b� 2. (b) For b� 30.

https://doi.org/10.1371/journal.pone.0222916.g004
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The ZA family

Finally, we consider another situation that highlights the incoherent behaviour of Kappa.

{ZA, A� 0} has been introduced in [2] as a family of confusion matrices useful to analyse per-

formance measures in unbalanced situations. The definition of ZA is as follows:

ZA ¼

1 1 . . . A

1 1 . . . 1

..

. ..
. . .

. ..
.

1 1 . . . 1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

. We denote by MCC(A) and KðAÞ, respectively, the MCC and

Kappa values of matrix ZA. Note that when N = 2, this family is a particular case of iii) with

a = 1 and b = A. Then, we obtain from Corollary 6 the following result:

Corollary 7 If N = 2,

MCCðAÞ ¼
1 � A

2 ð1þ AÞ
and KðAÞ ¼

2 ð1 � AÞ
4þ ð1þ AÞ2

:

We have that

If A ¼ 1; KðAÞ ¼ MCCðAÞ ¼ 0 ;

If A < 1; 0 < 1� A
4
< KðAÞ < MCCðAÞ < 1� A

ð1þAÞ2
< 1 ;

If 1 < A < 5; � 1 < 1� A
4
< MCCðAÞ < KðAÞ < 1� A

ð1þAÞ2
< 0 ;

If 5 � A; � 1 < MCCðAÞ < KðAÞ < 1� A
ð1þAÞ2

< 0 :

8
>>>>>>>><

>>>>>>>>:

Although MCC(A) is a monotonically decreasing function of A, coinciding with intuition, KðAÞ
is not, achieving its global minimum when A ¼ 1þ 2

ffiffiffi
2
p

> 1. Moreover,

� 1 < lim
A!þ1

MCCðAÞ ¼ � 1

2
< lim

A!þ1
KðAÞ ¼ 0 ;

0 < 1

4
< lim

A!0
KðAÞ ¼ 2

5
< lim

A!0
MCCðAÞ ¼

1

2
< 1 :

We generalize the previous result to any N� 2 in the following proposition:

Proposition 8

MCCðAÞ ¼ 1� A
ðN� 1Þ ðN2� 2ð1� AÞÞ ;

KðAÞ ¼ N 1� A
ð1� AÞ2 � 2 N ðN� 1Þ ð1� AÞþN3 ðN� 1Þ

;

and the following properties hold:

1. MCCð1Þ ¼ Kð1Þ ¼ 0,

2. 1

MCCðAÞ �
1

KðAÞ ¼
A� 1

N and then,

( If A < 1; 0 < KðAÞ < MCCðAÞ < 1 ;

If 1 < A; � 1 < MCCðAÞ < KðAÞ < 0 ;

3. � 1 < limA!1MCCðAÞ ¼ � 1

2 ðN� 1Þ
< limA!1KðAÞ ¼ 0 ,

4. 0 < limA!0KðAÞ ¼ N
1þN ðN� 1Þ ðN2 � 2Þ

< limA!0MCCðAÞ ¼ 1

ðN� 1Þ ðN2 � 2Þ
< 1 ,
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5. MCC(A) is monotonically decreasing, while KðAÞ is not. Indeed, KðAÞ is a convex function of
A, achieving the global minimum, which is a negative value, when A ¼ 1þ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þ

p
.

6. The divergence between MCC(A) and KðAÞ increases monotonically as A!1.

Fig 5 shows the behaviour of MCC and Kappa as functions of A, in cases N = 2 (both for

A� 5 and for A� 100), and for N = 5 and N = 10. A desirable property of any measure of per-

formance is its internal coherence, which implies that if the classifier moves gradually towards

a worsening of the classification process, as is the case when A increases for the family ZA, the

measure must reflect this fact with the consequent monotonous decrease (or increase, depend-

ing on the interpretation of the measure). Fig 5 highlights the incoherent behaviour of Kappa,

since as we monotonically increase A, it does not exhibits a monotonic decreasing (as MCC

does), and this anomaly not only happens in the binary case (N = 2), but continues to occur

when we increase N above 2, although at a different scale. Therefore, we have seen that MCC

shows internal coherence, unlike Kappa, which after decreasing in accordance with the wors-

ening of the classification by increasing A, shows a monotonic growth that goes just in the

opposite direction by continuing to increase A, which is clearly inconsistent.

Experimental results

If we recapitulate, we have seen that both in the binary case with c = 1, and with the multidi-

mensional ZA family, as the asymmetry of the confusion matrix increased (b! +1 and A!
+1, respectively), while its diagonal stays constant, the behaviour of Kappa and MCC differed

more and more. This would be in line with the proven fact that if there is perfect symmetry,

therefore these measures match (Proposition 1). It seems natural to ask if it is only the asym-

metry that plays a determining role in the discrepancy observed in their linked behaviour (it

seems that it should not be like that, since asymmetry of matrix C0 also increases as b! +1,

and yet the behaviour of Kappa and MCC agree). Or, on the contrary, there is any other char-

acteristic of the matrix that drives in this circumstance. To try to shed some light on this issue,

we have carried out some empirical experimentation in dimension N = 3.

Fig 5. Disagreement between MCC and Kappa for ZA, for different values of N. (a) N = 2, a zoom of the detail for

A� 5. (b) N = 2, A� 100. (c) N = 5, A� 500. (d) N = 10, A� 1000.

https://doi.org/10.1371/journal.pone.0222916.g005
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We start by introducing a measure of the asymmetry of a matrix M ¼ ðMijÞ
N
i;j¼1

, say Asy(M),

by means of the Frobenius norm of the difference between the matrix and its transpose. That

is to say, we define

AsyðMÞ ¼ jjM � MTjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i;j¼1

ðMij � MjiÞ
2

v
u
u
t :

Example (a) Let us consider matrix M1ðAÞ ¼

1 2A A

A 1 2A

A A 1

0

B
@

1

C
A, with A� 1. Obviously,

M1(A) is not symmetric, with Asy(M1(A)) = 2A, which increases with A, achieving the mini-

mum = 2 when A = 1. We can make a graph showing the evolution of Kappa and MCC when

increasing A, as shows Fig 6, where it can be observed that the behaviour of Kappa is very simi-

lar to that of MCC. Then, asymmetry has not been enough to generate a different behaviour of

them. What, then?

Think about the entropy generated by the values of the matrix that are outside the main

diagonal. In general, given a set of non-negative numbers, say {n1, . . ., nr}, the Shannon’s

entropy generated by the set can be defined by Ent ¼
Pr

i¼1
� pi logðpiÞ, with pi ¼

ni
n if

n ¼
Pr

i¼1
ni, where log usually denotes logarithm in base 2. With this definition, Ent(M1(A)) =

Ent({2A, A, A, 2A, A, A}) = 2.5, which is independent of A, so for the family of matrices M1(A),

entropy can not play any role since it remains constant when A varies. The same happens with

matrix C0, for which asymmetry increases as b! +1 but entropy remains constant. In other

words: increasing asymmetry but constant entropy does not produce the phenomenon of

inappropriate behaviour of Kappa in which we are interested.

Example (b) Consider now matrix M2ðAÞ ¼

1 A 1

1 1 A2

1 1 1

0

B
@

1

C
A with A> 1. Then

AsyðM2ðAÞÞ ¼
ffiffiffi
2
p
ðA � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðAþ 1Þ
2

q

, which increases with A, and

EntðM2ðAÞÞ ¼ EntðfA; 1; 1; A2; 1; 1gÞ ¼ logðA ðAþ 1Þ þ 4Þ �
A ð2 Aþ1Þ

A ðAþ1Þþ4
logðAÞ

Fig 6. Experimental agreement between MCC and Kappa for M1(A). Increasing asymmetry but constant entropy.

https://doi.org/10.1371/journal.pone.0222916.g006
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decreases, converging to 0 as A! +1. The corresponding plots of Kappa, MCC and the dif-

ference, with respect to A are shown in Fig 7.

MCC(M2(A)) is a decreasing function of A but KðM2ðAÞÞ is increasing for A� 4. Then,

we can observe a contradictory behaviour of the two measures. Let us see this with numerical

examples in Table 1: as A increases (and then, asymmetry increases while entropy decreases to

zero), MCC decreases but Kappa increases.

Remark 4 Note that for matrix M2(A), MCC and Kappa diverge as A increases, as it happens

with the family of matrices ZA and with the confusion matrix C1 ¼
a b

1 d

 !

considered in

Proposition 3 (binary case with c = 1 in which the behaviour of Kappa appears as contrary to
common sense when b increases). In the three scenarios, entropy decreases to zero and the asym-
metry of the confusion matrix grows to +1. Indeed, for matrices ZA (as A! +1) and C1 (as
b! +1) we have that

AsyðZAÞ ¼
ffiffiffi
2
p
ðA � 1Þ % þ1 ;

EntðZAÞ ¼ logðN2 � 1þ AÞ �
A

N2 � 1þ A
logðAÞ & 0 ;

AsyðC1Þ ¼
ffiffiffi
2
p
jb � 1j % þ1 ;

EntðC1Þ ¼ Entðf1; bgÞ ¼
� b

bþ 1
logðbÞ þ logðbþ 1Þ & 0 :

In general, entropy of the elements outside the main diagonal and asymmetry are related in

the sense given by the following lemma.

Fig 7. Experimental disagreement between MCC and Kappa for M2(A). Decreasing to zero entropy, which implies

increasing asymmetry.

https://doi.org/10.1371/journal.pone.0222916.g007

Table 1. Comparing MCC, Kappa, Asy and Ent for M2(A). A = 10, 25, 50, 75, 100.

M2(A) A = 10 A = 25 A = 50 A = 75 A = 100

MCC -0.3879 -0.4478 -0.4722 -0.4810 -0.4856

Kappa -0.1002 -0.0410 -0.0203 -0.0135 -0.0101

Asy 140.5845 883.1217 3534.7990 7954.2260 14141.4100

Ent 0.7135 0.2998 0.1590 0.1108 0.0859

https://doi.org/10.1371/journal.pone.0222916.t001
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Lemma 9 Let C(A) = (Cij(A))i,j=1,. . .,N be a matrix of non-negative integers depending on a
parameter A 2 N, and such that Ent(C(A))> 0 for any A. Therefore, if the entropy of C(A)

decreases to zero, asymmetry must grow to infinity, that is,

lim
A!þ1

EntðCðAÞÞ ¼ 0 ) lim
A!þ1

AsyðCðAÞÞ ¼ þ1 :

Proof: By definition of Shannon’s entropy, if Ent(C(A)) converges to zero, then in the limit

there is no uncertainty outside the main diagonal, that is, there must exist a pair (i, j), with

i 6¼ j, such that

lim
A!þ1

CijðAÞ ¼ þ1 and 8ðr; sÞ 6¼ ði; jÞ; lim
A!þ1

CrsðAÞ
CijðAÞ

¼ 0 :

Then, with (r, s) = (j, i), we can write

lim
A!þ1

ðCijðAÞ � CjiðAÞÞ
2
¼ lim

A!þ1
ð1 �

CjiðAÞ
CijðAÞ

Þ
2 C2

ijðAÞ ¼ þ1

since limA!þ1ð1 �
CjiðAÞ
CijðAÞ
Þ

2
¼ ð1 � 0Þ

2
¼ 1 and limA!þ1C2

ijðAÞ ¼ þ1.

Finally, from the fact that Asy(C(A))� |Cij(A) − Cji(A)|! +1 we finish the proof.

Lemma 9 confirms that what we have observed in different examples (confusion matrices

C1 as function of b, ZA and M2(A)), in which entropy tended to zero and asymmetry grew

towards infinity, is not a coincidence but the rule.

It is still necessary to ask whether the role of asymmetry in observing the phenomenon

of the discrepancy between the behaviours of Kappa and MCC is canceled out by entropy.

That is, if the phenomenon still can be observed if the asymmetry remains constant while the

entropy does not decrease to zero. The negative answer is given by the following example, in

which asymmetry is constant and entropy decreases to a positive limit but the phenomenon of

discrepancy between MCC and Kappa is no longer observed.

Example (c) Be matrix M3ðAÞ ¼

1 B B

Bþ 100 1 B

Bþ 100 Bþ 100 1

0

B
@

1

C
A with B = 1000 − A, A = 0,. . .,

999. The corresponding plot of MCC, Kappa and the difference in absolute value is shown in

Fig 8. In this setting, as with Example (a), there is an agreement in the behaviour of MCC and

Kappa. However, in this case there is no decrease of entropy to zero as in Example (b). Indeed,

EntðM3ðAÞÞ ¼ logð6Bþ 300Þ � 1

6 Bþ300
3B log Bð Þ þ 3 Bþ 100ð Þ log Bþ 100ð Þð Þ with B = 1000

− A, is a monotonically decreasing function of A that converges to log(300) − log(100) > 0 as

A! 1000, while AsyðM3ðAÞÞ ¼ 100
ffiffiffi
6
p

remains constant.

Previous examples, in which the diagonal stays constant, show that it is not enough that the

asymmetry grows to infinity, or that the entropy is constant or simply decreasing, for the phe-

nomenon of discrepancy between Kappa and MCC to occur, but heuristically it seems that

entropy must decrease to zero, which implies that at the same time asymmetry grows to infin-

ity by Lemma 9. At least it is what experimentation has shown in the cases already commented.

To finish, two more examples in the same vein, the first corresponding to the situation of dis-

crepancy, and the latter to the similarity, in the behaviours of MCC and Kappa.
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Example (d) Let be the confusion matrix M4ðAÞ ¼

1 A 1

A2 1 B

1 B2 1

0

B
@

1

C
A, with B = 100 − A and

A = 50,. . ., 100. In this case, as function of A 2 [50, 100],

AsyðM4ðAÞÞ ¼
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 ðA � 1Þ
2
þ ð100 � AÞ2 ð99 � AÞ2

q

monotonically increases with A, and

EntðM4ðAÞÞ ¼ log ðgðAÞÞ �
Að2Aþ 1Þ log ðAÞ þ ð100 � AÞð201 � 2AÞ log ð100 � AÞ

gðAÞ
;

with g(A) = A(A + 1) + (100 − A)(101 − A) + 2, monotonically decreases (to zero if we increase

the parameter 100). We can observe in Fig 9 that in this case the appearance of the described

phenomenon of behaviour against the common sense of Kappa is confirmed: for A> 50,

MCC decreases and Kappa increases as A increases. By symmetry, for A< 50 we observe just

the same when A decreases.

Fig 8. Experimental agreement between MCC and Kappa for M3(A). Decreasing entropy to a positive limit and

constant asymmetry.

https://doi.org/10.1371/journal.pone.0222916.g008

Fig 9. Experimental disagreement between MCC and Kappa for M4(A). Entropy decreases to zero, which implies

that asymmetry increases, for A increasing from 50 to 100, and from A decreasing from 50 to 0, by symmetry.

https://doi.org/10.1371/journal.pone.0222916.g009
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Table 2 illustrates this example numerically through a particular case in which we compare

different values of A. We observe that when entropy decreases and asymmetry increases

(A> 50) MCC decreases and Kappa increases, while a completely symmetrical behaviour is

observed for A< 50, according to Fig 9.

Example (e) Let be the confusion matrix M5ðAÞ ¼

1 2A A

A 1 Aþ 100

A A 1

0

B
@

1

C
A. As function of

A� 1, AsyðM5ðAÞÞ ¼
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ 1002
p

% þ1 and is increasing, while

EntðM5ðAÞÞ ¼ logð7Aþ 100Þ �
8A logðAÞ þ ðAþ 100Þ logðAþ 100Þ

7Aþ 100

decreases to log(7) − 2/7> 0 when A! +1. In this case, MCC and Kappa agree in behaviour

as A increases.

Conclusion

Accuracy is one of the most intuitive and widely used performance metrics for classification

although it is not appropriate when considering unbalanced cases. MCC and Kappa seem to

correct this bias: the former was initially designed to deal with very unbalanced data, while the

latter, which was not created to be a classification performance metric but that, however, is

widely used for this, takes into account the probability of getting the classification by pure

chance. These two measures have a similar behaviour in some situations. In fact, we show that

they coincide precisely when the confusion matrix is perfectly symmetric. In other situations,

however, their behaviour can diverge to the point that Kappa should be avoided as a measure

of behaviour to compare classifiers in favor of more robust measures as MCC.

In the present work, similarities and differences among MCC and Kappa have been dis-

cussed and illustrated with synthetic confusion matrices, both in the binary and in the multi-

class setting. Our mathematical analysis and heuristic study show that in situations in which

the diagonal of the confusion matrix stays constant and at the same time there is a decrease

to zero of the entropy of the elements outside the diagonal, which implies an increase in the

asymmetry of the confusion matrix, the phenomenon of qualitative differentiation in the

behaviour of Kappa and MCC appears clearly. Notwithstanding, neither increasing nor con-

stant asymmetry when entropy is not decreasing to zero, does not seem to be enough to pro-

duce this phenomenon. As far as we know, this kind of conclusions have not been reached

before, so they represent a novelty in the study of Kappa.

From a clinical perspective, the fact that Kappa is a relative measure of agreement is prob-

lematic since it is hard to set a threshold for a good agreement. This does not seem to be a

problem when it is used as a performance metric, because Kappa values are compared for each

classifier given a unique ground-truth, being the relative difference and not the value itself,

which determines the best classifier. Notwithstanding, we have shown that if marginal

Table 2. Comparing MCC, Kappa, Asy and Ent for M4(A). A = 50, 60, 70, 80, 90, 100.

M4(A) A = 50 A = 60 A = 70 A = 80 A = 90 A = 100

MCC -0.5081 -0.5114 -0.5249 -0.5653 -0.7032 -0.9659

Kappa -0.3500 -0.2900 -0.1735 -0.0817 -0.0341 -0.0200

Asy 4900.0000 5470.868 6940.576 8953.971 11328.5700 14000.7100

Ent 1.1442 1.0319 0.7554 0.4418 0.1970 0.0830

https://doi.org/10.1371/journal.pone.0222916.t002
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probabilities are really small, the distribution of the misclassification also affects the value of

Kappa, to the extent that worse classification results can obtain, however, higher values of the

statistic. This is especially dramatic when the entropy of the elements outside the main diago-

nal of the confusion matrix decreases to zero.

A summary of the examples that have been considered in this work according to the agree-

ment/disagreement between the behaviour of MCC and Kappa, can be found in the Table 3.

The standard problems associated with Kappa are mainly related to unbalanced datasets

(see for instance [36] and [17]). We show that an unbalanced situation can make Kappa not

comparable between different situations, but to achieve counter-intuitive results, it is also nec-

essary that the entropy of the elements outside the main diagonal to decrease to zero.

Nowadays, in the field of machine learning such situations, in which the number of obser-

vations of one of the classes far exceed the quantity of the others, or when the marginal distri-

butions are small, are very common. Machine learning algorithms automatically scrutinize

huge amount of data, classifying it into hundreds of categories or look for an unlikely relevant

event. In that framework, the finding of a dependable performance measure to be robust and

reliable becomes of the utmost importance. Hence, we believe that it has been sufficiently justi-

fied that, unfortunately, Cohen’s Kappa can no longer play this role, especially considering the

existence of solid alternatives.
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