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Abstract

The paper provides a new subdifferential characterization for Motzkin
decomposable (convex) functions. This characterization leads to diverse
stability properties for such a decomposability for operations like addition
and composition.
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1 Introduction

T. Motzkin proved in his 1936 paper [5] that any polyhedral convex set in R
n

can be written as the (Minkowski) sum of a polytope and a polyhedral convex
cone. Based on this result, subsets in R

n which can be decomposed as the sum
of a convex compact set and a closed convex cone have been studied in great
detail in [1], where the name of Motzkin decomposable have been coined for such
sets. Various characterizations and properties of Motzkin decomposable sets are
established in [1, 2, 3, 4]. In [1] Motzkin decomposable functions are introduced
as functions whose epigraphs are Motzkin decomposable sets, and this paper
puts in light many properties of such functions.

The aim of the present paper is to provide a new characterization of Motzkin
decomposable functions via their subdifferentials and to derive certain stability
results related to some operations. In Section 2 we recall diverse basic notions
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and features in Convex Analysis which are utilized through the paper. Section 3
is devoted to the subdifferential characterization of the Motzkin decomposability
for convex functions. In the last section we prove the results on the stability of
this property for functions, when operations like addition and composition are
concerned.

2 Preliminaries

Throughout 〈·, ·〉 will denote the usual Euclidean inner product on R
n and ‖ · ‖

the Euclidean associated norm, and B will stand for the closed unit ball centered
at the origin. If S is a subset of Rn, its closure (resp. convex hull) will be denoted
by clS (resp. coS).

Given an extended real-valued function f : Rn → R ∪ {−∞,+∞}, we recall
that its (effective) domain dom f and its epigraph epi f are the sets

dom f := {x ∈ R
n : f(x) < +∞} and epi f := {(x, α) ∈ R

n × R : f(x) ≤ α}.

The function f is said to be proper whenever it is finite at some point and
does not take the value −∞. The Legendre-Fenchel conjugate f∗ : R

n →
R ∪ {−∞,+∞} is defined by

f∗(x∗) := sup
x∈Rn

(
〈x, x∗〉 − f(x)

)
for all x∗ ∈ R

n,

and the supremum can be equivalently taken over x ∈ dom f . Clearly, f∗ is
a lower semicontinuous (lsc, for short) convex function. Further, when f is a
proper lsc convex function, it is well-known that so is f∗ and (f∗)∗ = f .

If the function f is convex, its subdifferential ∂f(x) at a point x where it is
finite is the set

∂f(x) := {x∗ ∈ R
n : 〈y − x, x∗〉 ≤ f(y)− f(x), ∀y ∈ R

n},

or otherwise stated

x∗ ∈ ∂f(x) ⇔ 〈x, x∗〉 = f(x) + f∗(x∗). (1)

So, when f is in addition proper and lsc, one sees that x∗ ∈ ∂f(x) ⇔ x ∈
∂f∗(x∗). It is also worth pointing out that ∂f(x) 6= ∅ whenever the convex
function f is finite at x and continuous at x (see, e.g., [6]).

Given two convex functions f, g : Rn → R∪{+∞}, their infimal convolution
f�g given by

(f�g)(x) := inf
y∈Rn

(
f(y) + g(x− y)

)
for all x ∈ R

n,

is a convex function, and clearly dom f�g = dom f + dom g. When in addition
one function is continuous at a point in dom f ∩ dom g, it is known (see, e.g.,
[6]) that f∗

�g∗ is a proper lsc convex function and

(f + g)∗ = f∗
�g∗ and ∂(f + g)(x) = ∂f(x) + ∂g(x), ∀x ∈ R

n. (2)
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Given a subset S ⊂ R
n, its indicator function δS : Rn → R∪{+∞} is defined

by
δS(x) = 0 if x ∈ S and δS(x) = +∞ if x ∈ R

n \ S.

Then, the conjugate δ∗S coincides with the support function of S since

δ∗S(x
∗) = sup

x∈S

〈x∗, x〉 for all x∗ ∈ R
n,

so δ∗S(·) ≤ δ∗S′(·) if and only if cl coS ⊂ cl coS′.
It is also worth noticing that, whenever S 6= ∅, the equality δ∗S(0) = 0 ensures

that δ∗S is a proper lsc convex function. Further, dom δ∗S is clearly a convex cone
containing zero.

If S is a nonempty closed convex set, its recession cone 0+S is defined by

0+S = {y ∈ R
n : S + λ y ⊂ S, ∀λ ≥ 0}.

The (negative) polar cone P o of a nonempty cone P ⊂ R
n is defined by

P o := {u ∈ R
n : 〈x, u〉 ≤ 0, ∀x ∈ P}.

Under the assumption that S is nonempty, closed and convex, it is known (cf,
e.g. [6, Corollary 14.2.1]) that

0+S = (dom δ∗S)
o, (3)

which can be also directly seen from the equality

S = {x ∈ R
n : 〈x, x∗〉 ≤ δ∗S(x

∗), ∀x∗ ∈ dom δ∗S}.

We recall now the concepts of Motzkin decomposable sets and functions.

Definition 1 A nonempty closed convex set S in R
n is said to be Motzkin

decomposable (M-decomposable, for short) provided that there are a compact
convex set K in R

n and a closed convex cone P in R
n such that S = K+P (the

sum being taken in Minkowski’s sense). Such an equality is called a Motzkin
representation (or decomposition) of S with compact and conic components K

and P , respectively.
A proper lsc convex function f : Rn → R ∪ {+∞} is then called Motzkin

decomposable (M-decomposable, for short) when its epigraph epi f is an M-
decomposable set in R

n+1.

The following theorem recalls in another equivalent form the result of Propo-
sition 16 in [1]; it will be crucial in the next section.

Theorem 2 A nonempty closed convex set S in R
n is M-decomposable if and

only if there exists a compact convex set K ⊂ S such that for each x∗ ∈ dom δ∗S
there exists some x ∈ K such that δ∗S(x

∗) = 〈x, x∗〉 (in other words, dom δ∗S =
∂δS (K)).

3



3 Subdifferential characterization of M-decomposable

functions

Theorem 3 A proper lsc convex function f : Rn → R∪{+∞} is M-decomposable
if and only if there exists a compact convex set K ⊂ dom f such that cl dom f =
K+0+ (cl dom f) (that is, K is a compact component of cl dom f), f is bounded
on K, and ∂f (K) = dom f∗.

Proof. Assume first that f is M-decomposable, i.e., that epi f is an M-decomposable
set. Then, by Theorem 2 there exists a compact set C ⊂ epi f such that for
every (x∗, α∗) ∈ dom δ∗epi f there exists (x, α) ∈ C satisfying

δ∗epi f (x
∗, α∗) = 〈x, x∗〉+ αα∗. (4)

Let Ĉ be the projection of C onto R
n, that is,

Ĉ := {x ∈ R
n : (x, α) ∈ C for some α ∈ R} .

Clearly, K := co Ĉ is a compact convex subset of dom f. We will now prove that
cl dom f = K + 0+ (cl dom f) . Let x∗ ∈ dom δ∗cl dom f . Since

δ∗epi f (x
∗, 0) = δ∗dom f (x

∗) = δ∗cl dom f (x
∗) ,

we have (x∗, 0) ∈ dom δ∗epi f ; hence there exists (x, α) ∈ C satisfying

〈x, x∗〉 = δ∗epi f (x
∗, 0) = δ∗cl dom f (x

∗) .

Since x ∈ Ĉ ⊂ K, we deduce that δ∗cl dom f (x
∗) ≤ δ∗K(x∗). This being true

for any x∗ ∈ dom δ∗cl dom f , it ensues by lower semicontinuity of δ∗cl dom f and by
continuity of δ∗K on R

n that δ∗cl dom f (x
∗) ≤ δ∗K(x∗) for all x∗ ∈ cl(dom δ∗cl dom f ),

which entails that cl(dom δ∗cl dom f ) ⊂ dom δ∗cl dom f . Then, dom δ∗cl dom f is closed
and

δ∗cl dom f (x
∗) ≤ δ∗K(x∗) ≤ δ∗K+0+(cl dom f)(x

∗).

On the other hand, if x∗ 6∈ dom δ∗cl dom f , we have x∗ 6∈ (0+(cl dom f))
o
by (3),

and hence δ∗
K+0+(cl dom f)(x

∗) = +∞ (as easily seen), so the latter inequality

δ∗cl dom f (x
∗) ≤ δ∗K+0+(cl dom f)(x

∗)

still holds true. We derive that cl dom f ⊂ K + 0+(cl dom f), and the inclusion
is in fact an equality because

K + 0+(cl dom f) ⊂ cl dom f + 0+(cl dom f) = cl dom f.

This justifies the desired M-decomposability of cl dom f with K as compact
component.

We will next prove that f is bounded on K. Since f is lsc and K is compact,
we only have to prove boundedness from above. Clearly, f is bounded above on
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Ĉ by max {α ∈ R : (x, α) ∈ C for some x ∈ R
n} , and by the convexity of f the

same upper bound applies on K. Let us now prove that ∂f (K) = dom f∗. Since
the inclusion ⊂ obviously holds, we only need to prove the opposite inclusion.
Let x∗ ∈ dom f∗. We have δ∗epi f (x

∗,−1) = f∗ (x∗) ; hence (x∗,−1) ∈ dom δ∗epi f .

Therefore, by (4) there exists (x, α) ∈ C satisfying

〈x, x∗〉 − α = δ∗epi f (x
∗,−1) = f∗ (x∗) .

Using the fact that α ≥ f (x) it readily follows that x∗ ∈ ∂f (x) ⊂ ∂f (K) ,
which proves the required inclusion, and hence the equality. The implication ⇒
is then justified.

Conversely, let us now assume the existence of K as in the statement of the
theorem, and define

a := min {f (x) : x ∈ K} , b := sup {f (x) : x ∈ K} and C := K × [a, b] .

The set C is obviously convex and compact. Let (x∗, α∗) ∈ dom δ∗epi f . Then
α∗ ≤ 0. If α∗ = 0 then, as δ∗cl dom f (x

∗) = δ∗epi f (x
∗, 0) , we have x∗ ∈ dom δ∗cl dom f ⊂

dom δ∗K ; hence there exists x ∈ K such that

〈x, x∗〉 = δ∗K (x∗) = δ∗cl dom f (x
∗) = δ∗epi f (x

∗, 0) ,

where the second equality is due to the assumption cl dom f = K+0+ (cl dom f)
and to (3). We thus have

δ∗epi f (x
∗, 0) = 〈x, x∗〉+ a0,

and further (x, a) ∈ C by definition of C.
Suppose now that α∗ < 0. Then, since

f∗

(
x∗

−α∗

)
= δ∗epi f

(
x∗

−α∗
,−1

)
=

1

−α
δ∗epi f (x

∗, α∗) ,

we deduce that x∗

−α∗ ∈ dom f∗= ∂f(K), where the equality follows by assump-

tion. Consequently, there is some x ∈ K such that f∗
(

x∗

−α∗

)
=

〈
x, x∗

−α∗

〉
−f (x),

and equivalently

δ∗epi f (x
∗, α∗) = −α∗f∗

(
x∗

−α∗

)
= 〈x, x∗〉+ α∗f (x) ;

moreover, (x, f (x)) ∈ C according to the definition of C.
We can then apply Theorem 2 to conclude that epi f is M-decomposable,

which means that f is an M-decomposable function.

Remark 4 The ”if” statement does not require convexity of K; in fact, one can
easily check that if a compact set K satisfies the stated conditions so does the
compact convex set coK. A simple example where all the conditions in Theorem
3 are fulfilled with a nonconvex compact set K is furnished, as it is not difficult
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to verify, by the compact set K := {−1, 1} in R and the function f : R → R

defined by
f(x) = max{|x|, 1} for all x ∈ R.

Before stating a first corollary, let us establish the following lemma which
has its own interest even in the setting of general normed spaces.

Lemma 5 Let g : X → R ∪ {+∞} be a proper convex function on a normed
space X and C be a subset of X for which there exists a bounded set Q in the
topological dual space X∗ such that ∂g(x) ∩ Q 6= ∅ for all x ∈ C. Then, the
restriction of g to C is Lipschitz.

Proof. By assumption there exist a real γ ≥ 0 with Q ⊂ γBX∗ along with a
mapping ζ : C → X∗ such that ζ(x) ∈ ∂g(x) ∩ Q for all x ∈ C. Then, for any
x, y ∈ C we have by definition of subdifferential of a convex function

g(y) ≥ g(x) + 〈y − x, ζ(x)〉 ≥ g(x)− γ‖y − x‖,

or equivalently g(x) − g(y) ≤ γ‖x − y‖, which confirms the Lipschitz property
of g on C.

Corollary 6 If a proper lsc convex function f : R
n → R ∪ {+∞} is M-

decomposable, then f∗ is Lipschitz on its domain.

Proof. Let K be the compact set in R
n given by Theorem 3. By this theorem

and by (1) it easily follows that ∂f∗ (x∗) ∩K 6= ∅ for every x∗ ∈ dom f∗. Since
K is bounded, this condition implies by the above lemma that f∗ is Lipschitz
on dom f∗.

Remark 7 Consider the function f := ‖·‖+δ{1}×R on R
2. For any (u, v) ∈ R

2

we have by calculus rule for the Legendre-Fenchel conjugate of the sum of two
convex functions one of which is continuous (see (2)),

f∗(u, v) = inf
(x,y)∈Rn

(
δ{1}×R(x, y) + ‖(u, v)− (x, y)‖

)

= inf
(x,y)∈{1}×R

‖(u, v)− (x, y)‖ = |u− 1|.

On the other hand, ∂f(1, y) = (1,y)
‖(1,y)‖ + R × {0} for any y ∈ R (see the second

equality in (2)), so there is no compact set K such that ∂f(K) = R
2. Since

dom f∗ = R
2, Theorem 3 ensures that f is not M-decomposable, while f∗ is

Lipschitz on its domain. This tells us that the converse of Corollary 6 fails.

Despite the above counterexample, the situation is different when f is finite-
valued on R

n.

Corollary 8 Let f : R
n → R be a finite-valued convex function. Then the

following statements are equivalent:
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(a) f is M-decomposable.

(b) There exists a compact convex set K ⊂ R
n such that ∂f (K) = dom f∗.

(c) There exists a bounded set Q ⊂ R
n such that ∂f (Q) = dom f∗.

(d) f∗ is Lipschitz on its domain.

Proof. The equivalence between (a) and (b) is an immediate consequence of
Theorem 3. Implication (b) =⇒ (c) is trivial, and (c) implies (b) by taking
K := cl coQ since by (1) and (c) we have

dom f∗ = ∂f(Q) ⊂ ∂f(K) ⊂ ∂f(Rn) ⊂ dom f∗.

Implication (a) =⇒ (d) follows from Corollary 6.
It remains to prove that (d) implies (b). Assume that f∗ is Lipschitz on

its domain with some constant γ ≥ 0. Put K := γ B and note that ∂f(K) ⊂
dom f∗, since ∂f(Rn) ⊂ dom f∗ by (1). On the other hand, it is known (and not
difficult to see) that the convex function ϕ := f∗

�(γ ‖ · ‖) is finite-valued and
γ-Lipschitz on R

n and it coincides with f∗ on dom f∗. Fix any x∗ ∈ dom f∗.
By continuity of ϕ we may choose some x ∈ ∂ϕ(x∗), and by the γ-Lipschitz
property of ϕ we have ‖x‖ ≤ γ (as known and easily verified). Since ϕ ≤ f∗

with ϕ(x∗) = f∗(x∗), the definition of subdifferential implies ∂ϕ(x∗) ⊂ ∂f∗(x∗),
so x ∈ ∂f∗(x∗), or equivalently x∗ ∈ ∂f(x) according to (1). This ensures that
dom f∗ ⊂ ∂f(K), hence the equality ∂f(K) = dom f∗ is shown, which finishes
the proof of the corollary.

4 Sum and composition

Consider on R
2 the functions g := ‖ · ‖ and h := δ{1}×R. Corollary 8(d) tells

us that g is M-decomposable since g∗ = δB is Lipschitz on its domain, and the
function h is also M-decomposable because its epigraph

epih = {1} × R× [0,+∞[= {(1, 0, 0)}+ {0} × R× [0,+∞[

is an M-decomposable set. Nevertheless, the sum g + h is not M-decomposable
according to Remark 7.

The next proposition provides a case when the sum is M-decomposable. It
has been previously established in [3, Theorem 25]. Our proof below is very
simple.

Proposition 9 Let f : Rn → R∪{+∞} be a proper lsc convex function, α ∈ R

and ℓ : Rn → R be a linear function. If f is M-decomposable, then f + ℓ+ α is
also M-decomposable.

Proof. The convex function ϕ := f+ℓ+α is clearly lsc and proper with domϕ =
dom f . By Theorem 3 there exists a compact convex set K ⊂ R

n over which f

is bounded and such that cl dom f = K + 0+(cl dom f) and ∂f(K) = dom f∗.
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Obviously ϕ is also bounded on K and cl domϕ = K + 0+(cl domϕ). Further,
as easily seen ϕ∗(x∗) = f∗(x∗ − y∗) − α, with y∗ ∈ R

n such that l = 〈·, y∗〉 ,
so domϕ∗ = y∗ + dom f∗. From this and the above equality ∂f(K) = dom f∗

(using the second equality in (2)) we see that ∂ϕ(K) = domϕ∗. Altogether we
obtain by Theorem 3 again that ϕ is M-decomposable.

The case of the sum of two functions with separate variables is also of interest.

Proposition 10 Let f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} be two
proper lsc convex functions which are M-decomposable. Then, the function ϕ :
R

n × R
m → R ∪ {+∞} defined by

ϕ(x, y) := f(x) + g(y) for all (x, y) ∈ R
n × R

m,

is M-decomposable.

Proof. Suppose first that f and g are M-decomposable. By Theorem 3 there
is a compact convex set Kf (resp. Kg) in R

n (resp. Rm) over which f (resp. g)
is bounded and such that cl dom f = Kf + 0+(cl dom f) (resp. cl dom g = K +
0+(cl dom g)) and ∂f(Kf ) = dom f∗ (resp. ∂g(Kg) = dom g∗). The function ϕ

is obviously proper, lcs and convex, and it is bounded on Kf × Kg. It is also
easily checked from the equality domϕ = dom f × dom g that

cl domϕ = Kf ×Kg + 0+(cl domϕ).

Note also that ϕ∗(x∗, y∗) = f∗(x∗) + g∗(y∗), so domϕ∗ = (dom f∗)× (dom g∗).
Then, since ∂ϕ(x, y) = ∂f(x)× ∂g(y) (as readily verified), we have

∂ϕ(Kf ×Kg) = ∂f(Kf )× ∂g(Kg) = (dom f∗)× (dom g∗) = domϕ∗.

Applying Theorem 3 again, we obtain that the function ϕ is M-decomposable.

Concerning Cartesian products of sets we have the following result.

Proposition 11 Let S and S′ be two nonempty closed convex sets in R
n and

R
m respectively. Then S × S′ is M-decomposable in R

n × R
m if and only if S

and S′ are M-decomposable in R
n and R

m respectively.

Proof. The implication ⇐ is obvious. Suppose that S × S′ is M-decomposable
in R

n ×R
m and choose by definition a compact convex set K in R

n ×R
m such

that
S × S′ = K + 0+(S × S′).

Denote by C (resp. C ′) the projection of K on R
n (resp. Rm). The set C×C ′ is

convex and compact in R
n×R

m, and clearly C×C ′ ⊂ S×S′ since K ⊂ S×S′.
This and the obvious inclusion K ⊂ C × C ′ entail that

S×S′ = K+0+(S×S′) ⊂ C×C ′+0+(S×S′) ⊂ S×S′+0+(S×S′) = S×S′,
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which combined with the (readily seen) equality 0+(S × S′) = (0+S) × (0+S′)
yields

S × S′ = C × C ′ + (0+S)× (0+S′) = (C + 0+S)× (C ′ + 0+S′).

This gives S = C + 0+S and S′ = C ′ + 0+S′, so S and S′ are M-decomposable
in R

n and R
m respectively as desired.

Let us now turn to composition with linear mappings.

Proposition 12 Let A : R
n → R

m be a linear mapping, S ⊂ A (Rn) be a
nonempty closed convex set and f : Rm → R ∪ {+∞} be a proper lsc convex
function such that dom f ⊂ A (Rn) . The following hold:
(a) If the set S is M-decomposable, then A−1(S) is M-decomposable.
(b) If the function f is M-decomposable, then f ◦A is also M-decomposable.

Proof. (a) Let K be a compact convex set in R
m and P be a closed convex

cone in R
m such that S = K +P . We claim that A−1(S) = A−1(K) +A−1(P ).

First, we note that, for any u ∈ A−1(K) and v ∈ A−1(P ), we have

A(u+ v) = Au+Av ∈ K + P = S,

that is, u+ v ∈ A−1(S); this means that A−1(K) +A−1(P ) ⊂ A−1(S). For the
converse inclusion, fix any x ∈ A−1(S). Then, Ax = y+z with y ∈ K and z ∈ P .
By the inclusion S ⊂ A (Rn) we have K ⊂ A (Rn) and P ⊂ S −K ⊂ A (Rn) ,
so there are u, v ∈ R

n such that y = Au and z = Av, hence Ax = Au + Av =
A(u+v) with u ∈ A−1(K) and v ∈ A−1(P ). We thus have A (x− u) = Av ∈ P,

which shows that x− u ∈ A−1(P ), so A−1(S) ⊂ A−1(K) +A−1(P ). The claim
is then justified.

Let us now prove that A−1(K) =
(
A−1(K)

)
∩ (KerA)⊥ + KerA. For any

u ∈
(
A−1(K)

)
∩ (KerA)⊥ and v ∈ KerA, we have A(u + v) = Au ∈ K, thus

u + v ∈ A−1(K). Conversely, let any x ∈ A−1(K). Writing x = xA + x⊥

with xA ∈ KerA and x⊥ ∈ (KerA)
⊥

, we obtain K ∋ Ax = A(x⊥), hence
x⊥ ∈

(
A−1(K)

)
∩ (KerA)⊥. This gives x ∈

(
A−1(K)

)
∩ (KerA)⊥ + KerA, so

the equality
A−1(K) =

(
A−1(K)

)
∩ (KerA)⊥ +KerA (5)

holds true. Further, since 0+
(
A−1(K)

)
⊂ KerA, the convex set

(
A−1(K)

)
∩

(KerA)⊥ is compact. To conclude that A−1(S) is M-decomposable it suffices
to note that A−1(P ) is a closed convex cone and to write, by (5) and by the
equality established above for A−1(S), that

A−1(S) =
(
A−1(K)

)
∩ (KerA)⊥ +

(
KerA+A−1(P )

)

=
(
A−1(K)

)
∩ (KerA)⊥ +A−1(P ),

since KerA+A−1(P ) = A−1(P ) by the inclusion KerA ⊂ A−1(P ).
(b) Considering the linear mapping T : Rn×R → R

m×R defined by T (x, r) :=
(Ax, r), we see that epi (f ◦A) = T−1(epi f). Therefore, (a) says that epi (f ◦A)
is M-decomposable, or equivalently the function f ◦A is M-decomposable.

9



Remark 13 Without the assumption S ⊂ A (Rn) , the assertion (a) above may
fail. Let f : R2 → R and A : R3 → R

3 be defined for all (x, y, z) ∈ R
3 by

f(x, y) :=
√

(x− 1)2 + y2 = ‖(x, y)− (1, 0)‖ and A(x, y, z) := (0, y, z),

and let S := epi f. Considering the finite-valued convex function h : R → R

defined by h(y) :=
√

1 + y2 for all y ∈ R, by easy computation (or see [6, p.

106]) one has h∗(y∗) = −
√

1− (y∗)2 if |y∗| ≤ 1 and h∗(y∗) = +∞ otherwise,
so h∗ is not Lipschitz on its domain. Corollary 8(d) tells us that h is not M-
decomposable, i.e., the set epih is not M-decomposable in R

2. Since A−1(S) =
R × epih, invoking Proposition 11 it follows that the set A−1(S) is not M-
decomposable. Similarly, without the assumption dom f ⊂ A (Rn), the assertion
(b) above may fail. Let f be the function we have just considered and T : R2 →
R

2 be the linear mapping defined for all (x, y) ∈ R
2 by

T (x, y) := (0, y).

Noting that f ◦ T coincides with the function h considered above, we see that
f ◦ T is not M-decomposable while f is.
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