
A Study on Kernel Memory Protection and
Application Traffic Monitoring

for Information Leakage Prevention

2020, March

Hiroki KUZUNO

Graduate School of Natural Science and Technology

(Doctor’s Course)

OKAYAMA UNIVERSITY

Contents

1 Introduction 1

1.1 Information Leakage . 1

1.2 Multi-layered defense as an information leakage countermeasure 3

1.3 Background of the Problems . 5

1.3.1 Threats to the Operating System . 6

1.3.2 Threats to Applications . 9

1.4 Research Problems . 11

1.4.1 Operating System Monitoring . 11

1.4.2 Application Traffic Monitoring . 14

1.5 Related Work . 15

1.5.1 Operating System Security . 16

1.5.2 Application Information Leads Leakage Detection 19

1.6 Research Strategies . 22

1.6.1 Detection of Kernel Memory Corruption 22

1.6.2 Detection of Information Leakage Network Traffic 23

1.6.3 Detection of Suspicious Application Library Leads Information Leakage . 24

1.7 Outline of the Dissertation . 25

2 Detecting and Identifying Kernel Memory Corruption 26

2.1 Introduction . 26

2.2 Background . 27

2.2.1 Virtual Memory Management . 27

2.2.2 Separation of Virtual Memory . 28

2.3 KMO Design . 29

2.3.1 Design Goal . 29
i

2.3.2 Switching Patterns and Detection Capability 30

2.3.3 Design Approach . 31

2.4 KMO Implementation . 32

2.4.1 Secret Virtual Memory Space Management 32

2.4.2 Switching of the Virtual Memory Space 33

2.4.3 Monitoring of Virtual Memory Space . 34

2.4.4 Direct Mapping Management . 35

2.4.5 Kernel Vulnerability Attacking Case . 36

2.5 Evaluation . 37

2.5.1 Evaluation Purpose and Environment . 37

2.5.2 Monitoring System Call Argument . 38

2.5.3 Detection of Linux Security Module Overwrite 38

2.5.4 Evaluation of Direct Mapping Access Validation 40

2.5.5 Measurement System Call Interaction Overhead 40

2.5.6 Measurement Application Overhead . 42

2.6 Discussion . 42

2.6.1 Performance Consideration . 42

2.6.2 KMO Detection Capability . 43

2.7 Conclusion . 44

3 Detection of Sensitive Information Leakage in Android Applications 45

3.1 Introduction . 45

3.2 Background . 46

3.2.1 Android Architecture . 46

3.2.2 Android Permissions . 47

3.3 Problem Description . 48

3.3.1 Application Request Permissions . 48

3.3.2 Application Traffic Analysis . 48

3.4 Approach . 50

3.4.1 Overview . 51

3.4.2 HTTP Packet Destination Distance . 52

3.4.3 HTTP Packet Content Distance . 53

3.4.4 Hierarchical Clustering . 54
ii

3.4.5 Signature Generation . 55

3.4.6 Signature Screening . 55

3.5 Evaluation . 55

3.5.1 Experimental Setup . 55

3.5.2 Experimental Results . 56

3.6 Discussion . 58

3.6.1 Approach Consideration . 58

3.6.2 Complexity Analysis . 58

3.7 Conclusion . 59

4 Detecting and Characterizing of Mobile Advertisement Network Traffic 62

4.1 Introduction . 62

4.2 Background . 63

4.2.1 Permission Framework . 63

4.2.2 Advertisement Modules . 64

4.3 Problem Description . 64

4.3.1 Advertisement Modules Behavior . 64

4.3.2 Advertisement Modules Traffic Analysis 65

4.4 Approach . 67

4.4.1 Graph Definition . 69

4.4.2 Graph of HTTP Sessions . 69

4.4.3 Graph Distance . 71

4.4.4 HTTP Session Distance . 71

4.4.5 Vertex and Edge Matching Rules . 72

4.5 Evaluation . 72

4.5.1 Experimental Setup . 72

4.5.2 Experimental Results . 73

4.5.3 Training Set Screening . 76

4.6 Discussion . 76

4.6.1 Detection Rate Consideration . 76

4.6.2 False Detection Rate Consideration . 80

4.6.3 Ad Module Network Traffic Consideration 80

4.6.4 Complexity Analysis . 81
iii

4.7 Conclusion . 81

5 Conclusions 84

5.1 Concluding remarks . 84

5.2 Future directions . 86

Acknowledgements 88

References 89

iv

List of Figures

1.1 Annual statistics of information leakage cases in Japan [1]. 2

1.2 Scenario of cyberattack, threat, and countermeasure [20, 21, 22]. 4

1.3 Overview of threats and multi-layered defenses. 5

1.4 Number of kernel vulnerabilities registered to CVE. 11

1.5 Operating system security comparison of related work. 17

1.6 Application traffic monitoring and modeling comparison of related work. 20

1.7 Approach of this study to the problems of multi-layer security. 23

2.1 Multiple page table converts virtual address into physical address. 27

2.2 Overview of monitoring on the secret virtual memory space. 28

2.3 Virtual memory switching patterns 1, 2, and 3 . 29

2.4 Overview of secret virtual memory space for Linux kernel. 32

2.5 Virtual memory space switching on Linux kernel. 33

2.6 Position and unmap region for the virtual memory space on Linux x86 64. 34

2.7 Monitoring attacker process using the secret virtual memory space on Linux. . . . 35

2.8 Monitoring result for Linux system call arguments. 38

2.9 Monitoring result for LSM function . 39

2.10 Preventing result for modification through direct mapping. 39

3.1 Overview of Android architecture . 46

3.2 Frequency Distribution of HTTP Host Destinations. Out of 1,188 applications

total, 81 (7%) have 1 destination, 885 (74%) have up to 10 destinations, and

average number of destinations was 7.9. 50

3.3 (a) The architecture of proposed clustering and signature generation system. (b)

The information flow control application that uses the signatures generated by (a). . 51

3.4 Detection Rate of Sensitive Information Leakage. 57
v

4.1 An overview of an ad modules’ network behavior. Application bundles include

ad modules, which connect to their suppliers’ servers to download ad images or

provide user statistics. 63

4.2 An overview of the organization and permissions of an application that includes

an ad module. The ad module can use the application’s permissions the access

sensitive information on the device and send it over the network. 65

4.3 An overview of proposed approach. First, the known ad module network traffic is

separated out. Next, ad graphs from the remaining network traffic is extracted by

comparing the candidate graph distance from ad graph. Finally, new ad graphs is

predicted. 67

4.4 Ad module HTTP session graphs. (a) Graph of doubleclick, consisting of 5 vertices

and 4 edges. One image vertex connects to both JavaScript and HTML vertices,

while the other image vertex connects only to the HTML vertex. (b) Graph of

mydas, consisting of 8 vertices and 7 edges. All 3 image vertices share the same

cookie, but connect to different HTML vertices. One HTML vertex connects to

another HTML vertex, as well as a JavaScript vertex. 70

4.5 Graph distance statistics using N known ad graphs to classify other known ad graphs. 77

4.6 Graphs distance statistics for candidate ad graphs using N known ad graphs. 77

4.7 Detection rate of other known ad graphs using N known ad graphs. 78

4.8 Detection rate of candidate ad graphs using N known ad graphs. 78

4.9 False positive rate of standard graphs using N known ad graphs. 79

4.10 Improved Detection rate of know ad graphs and other known ad graphs using N

known ad graphs except for only one vertex graphs. 79

vi

List of Tables

1.1 Information leakage cases by type. 3

1.2 Countermeasure guidelines and standards for information leakage. 3

1.3 Types of Vulnerabilities [28]. 6

1.4 Effects of kernel vulnerability attack [29]. 7

1.5 Types of kernel vulnerability implementations [29]. 7

1.6 Kernel exploit techniques [30]. 8

1.7 Types of application threat. 8

1.8 Effects of application-layer threats. 9

1.9 Combinations of excessive permissions (✓is permission request). 9

1.10 Methods of application analysis (✓is supported; △ is partially supported). 10

1.11 Six categories of the 130 memory corruption vulnerabilities (CVE registered) for

Linux kernel. 13

1.12 PoC available Linux memory corruption vulnerabilities list since 2016. Types are

referring to DoS: denial-of-service, Mem. Corr.: Memory Corruption, Priv: Gain

Privileges . 13

1.13 Operating system security. 16

1.14 Kernel monitoring feature comparison (✓is supported; △ is partially supported). . 18

1.15 Application traffic monitoring and modeling. 19

1.16 Application traffic monitoring feature comparison (✓is supported; △ is partially

supported). 21

1.17 Solving problems in multi-layer security in this dissertation. 22

2.1 Overhead of switching virtual memory space and monitoring (µs). 40

2.2 ApacheBench overhead of virtual memory switching and monitoring on the Linux

kernel (µs). 41
vii

2.3 ApacheBench overhead of virtual memory switching patterns 1 and 3 with

monitoring (µs). 41

3.1 Number of applications with dangerous permission combinations. Out of 1,188

applications total, 55% required both the INTERNET permission and at least one

permission for sensitive information. 47

3.2 HTTP packet destinations. This table shows the number of packets sent to each

HTTP host destination, and the number of applications that send packets to each

HTTP host destination. 60

3.3 Sensitive Information. This table shows for each type of information considered

sensitive, the number of packets containing the information, the number of

applications that send those packets, and the number of destinations to which those

packets go. 61

4.1 The number of HTTP GET requests for each type of with content. The most

commonly requested content types (in decreasing order) are image files, script

files, and document files. 66

4.2 Content types banner image sizes in HTTP GET responses. Banners of size

320x50 are most commonly downloaded by ad modules. Banners of size 300x48

are the next most common. 67

4.3 The number of applications that include ad modules, and the methods those ad

modules used to download images. The total number of applications exceeds the

number of analyzed applications, because some applications contain more than

one ad module. 68

4.4 The number of graphs associated with each known ad module, converted from

the dataset traffic. Ad modules’ traffic was selected using destination domain

matching. 74

4.5 The number of candidate ad graphs, associated with various ad modules. The

traffic to convert to graphs was selected using domain matching in the HTTP

headers and patterns of ad image downloading. 75

viii

Summary

Managing the information assets of public and private organizations is a rapidly growing and

important field. Information leakage is a significant problem for these organizations, forcing them

to develop information security and damage-mitigation methods. In Japan, an average of 1,231

incidents of information leakage occurred every year from 2005 to 2017. Electronic media have

had over half of the incidents than did paper media since 2016.

Cyberattack is a the principal cause of information leakage occurs. Such attacks may be either

internal or external. The adversary uses a vulnerability of the software, a missing implementation

of the hardware, or a weak user password to intrude on the internal network and its constituent

devices. The danger of cyberattacks has led to information leakage countermeasures, to the

adoption of international standards and sector guidelines, and to the requirement of certification

in incident protection for information systems and organization staffs. A coordinated response,

and cooperation between affected organizations, is essential. Incident response teams are now

commonly set up to prevent information leaks, to react rapidly to incidents when they occur, and

to handle disclosure.

One useful strategy is to employ multiple layers of defense for protection against cyberattack,

reduction of damage, and identification of perpetrators. Mutual complementation of multiple

layers suppresses risk to an information system. It ensures that another mitigating security

mechanism is already prepared when one has been compromised. Network, hardware, and

software, in this strategy, all have their own security mechanisms with appropriate policies and

run-time assurances. Additionally, penetration testing is constantly used to simulate cyberattacks

on the information system. Incident handling and digital forensics units, working together, identify

the effects of the incident on the information system.

In this dissertation, the focus is on defending the operating system (OS) and the applications.

These layers manage and handle information assets on information systems, then detect and

prevent information leakage. Moreover, in order to identify information leakage using appropriate

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

detection and prevention methods, it is difficult to monitor the actual behavior of OS, application

traffic contents, and identification of the application from inside the network. The combination

of OS monitoring, application traffic monitoring, and identification of suspicious libraries of

applications is necessary to achieve information security through multiple layers of defense:

• OS monitoring

To identify kernel memory corruption and illegally overwritten kernel code, and malevolent

data in the kernel virtual memory

• Application traffic monitoring

To identify information leakage and other traffic from applications requesting excessive

permissions

• Suspicious application library identification

To use network traffic modeling to identify applications requesting excessive permissions

Countermeasures against attacks targeting an OS kernel can be highly effective in preventing

security compromises caused by kernel vulnerabilities. An adversary uses such attacks to overwrite

credentials, thereby gaining the ability to overcome security features through arbitrary program

execution. To protect the OS, CPU features such as supervisor mode access prevention, supervisor

mode execution prevention, and the no-execute bit facilitate access-permission control and data

execution in the virtual memory. Linux further reduces the danger from kernel exploits by using

several other protective methods, such as kernel address space layout randomization, control flow

integrity, and kernel page table isolation. A combination of these methods can indeed mitigate

the attack, as kernel vulnerability relies on the interaction between the user and kernel modes;

nevertheless, kernel virtual memory corruption can still occur (e.g., the eBPF vulnerability allows

malicious memory overwriting in the kernel mode). The kernel memory observer (KMO), an

alternative design for virtual memory proposed in this dissertation, uses a secret observation

mechanism to monitor kernel virtual memory and detect illegal data manipulation/writing.

KMO determines whether kernel virtual memory corruption has occurred, inspects system-call

arguments, and forcibly unmaps the direct mapping area. An evaluation of KMO reveals that it can

detect kernel virtual memory corruption and quickly identifies the failing security feature through

actual kernel vulnerabilities. In addition, the results indicate that the system call overhead latency

ranges from 0.002 µs to 8.246 µs, and the web application benchmark from 39.70 µs to 390.52

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

µs for each HTTP access, whereas KMO reduces these overheads by using tag-based translation

lookaside buffers.

The applications layer also requires defense. Many applications that are “free” to the user

carry advertisements. While advertisement (ad) modules provide useful services, they also track

user behavior statistics for commercial or other purposes. Users generally accept this business

model, but, in most cases, the applications do not require a user’s permission to transmit sensitive

information. Therefore, such applications’ behavior potentially constitutes an invasion of privacy.

Analyzing the network traffic and permissions of 1,188 Android applications, it was found that

93% connected to multiple destinations when using the network, and 55% required a permission

combination that included both access to sensitive information and the use of networking services,

with obvious potential for leakage. Of the 107,859 HTTP packets from these applications, 23,309

(22%) contained sensitive information, as identified by string matching with a device identification

number and carrier name. To enable users to control the transmission of their private information,

the proposed system uses a novel clustering method based on the HTTP packet destination and

content distances to generate signatures and thereby detect the leakage of sensitive information

from Android applications. This system does not require that the Android framework be modified.

Thus, users can easily add the proposed system to their devices and manage the network behavior

of suspicious applications in a fine-grained manner. In tests, the system accurately detected 97%

of the sensitive information leakage from the applications evaluated, with only 3% false negative

results and 3% false positive results.

Another goal is to identify suspicious application libraries likely to leak information. In

analyzing the network traffic of 1,188 Android applications, the analyzing result indicates 797

applications that included previously known ad modules. It was noted that ad modules exhibit

characteristic network traffic patterns for acquiring repeatedly used content, specifically images.

These patterns are evident in network traffic graphs mapping the relationships among HTTP

session data (such as HTML or JavaScript). In order to accurately differentiate between the

ad modules’ network traffic and valid application network traffic, the proposed system adopts a

novel method based on the distance between session graphs and the graphs of known ad modules.

This distance describes the similarity between the sessions. For evaluation, 20,903 graphs of

applications were generated. The system separated the application graphs into those generated

by known ad modules (4,698 graphs), those manually identified as ad modules (2,000 graphs), and

standard application traffic (2,000 graphs). The system applied 1,000 graphs of known ad modules

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

to the other graph sets (the remaining 3,698 known ad graphs, the 2,000 manually classified ad

graphs, and 2,000 standard graphs) to see how accurately ad graphs could be distinguished. The

evaluation showed a 76% detection rate for known ad graphs, a 96% detection rate for manually

classified ad graphs, and an under 10% false positive rate for standard graphs.

In sum, this dissertation presents several elements of a multi-layer defense against information

leakage, concentrating on the OS and application layers. To guard the OS against cyberattack, the

KMO virtual memory system is proposed. To guard mobile device users against various forms of

information leakage, two new detection methods are developed. The efficacy of these approaches

is supported by the observed results. This work should prove valuable to future researchers in the

field of information security.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 1

Chapter 1

Introduction

1.1 Information Leakage

The information systems of public and private organizations possess large amounts of

information used for service development and financial management. The leakage of information

assets via unauthorized access has a significant impact on government, business, and individual

security. The rate of information leakage in Japan is shown in Figure 1.1. In 2018 alone, there

were 443 reported information leaks. On average, 1,231 incidents were reported every year

from 2005 to 2017. Since 2016, electronic media have proven more vulnerable to leakage than

paper media [1]. The largest cause of information leakage from electronic media is a cyberattack,

which may involve outside unauthorized access, insider misuse of valid accounts, or loss of media

devices [2, 3]. Outside attackers break through protective mechanisms by exploiting software or

hardware vulnerabilities or guessing a user’s weak password. Inside attackers use valid credentials

(whether their own or stolen from other users) to log in to a file server or database server. In either

case, adversaries reach information assets, then expose them to parties outside the organization.

Leakage of personally identifiable information has taken place in both the national public sector

[4, 5] and the private sector [6, 7, 8]. Additionally, specific cyberattacks sometimes directly target

an organization’s intellectual or financial property [9, 10, 11]. In this dissertation, information

assets are categorized into three types: personal information, intellectual property, and financial

property (see Figure 1.1). The International Organization for Standardization (ISO) / International

Electrotechnical Commission (IEC) 27000 series provides precise classification guidelines for

information assets using stored media, secrecy level, and category attribution [12].

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 2

Figure 1.1 Annual statistics of information leakage cases in Japan [1].

Information security relies on the use of national, international, and industry-wide standards

[2, 12, 13, 14, 15, 16]. These establish the combination of protective methods and organizational

policies necessary to ensure security. Certification also indicates that staff have the education,

psychology, and motivation that minimize the risk of internal illegality [17]. A computer security

incident response team (CSIRT) and product security incident response team (PSIRT) manage the

total security of the information system and products, and respond by handling any risks (e.g.,

vulnerability disclosure, patch management, and information leaking). Such handling requires a

systematic incident response with related organizations [18, 19].

An information leakage scenario containing the elements of attack strategy, threat, and

countermeasure is indicated in Figure 1.2. Lockheed Martin’s cyber kill chain is a representative

example of an advanced persistent threat (APT) attack; it defines seven stages of attack [20], from

reconnaissance through device compromise [21]. MITRE ATT&CK provides a knowledge base of

adversary activity, techniques, and incident details sufficient to identify attack paths and damage

to information system without difficulty [22].

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 3

Table 1.1 Information leakage cases by type.
Type Detail External attack Internal attack

Personal Information Personally Identifiable Information Ecuador [4] Yahoo US [6]

Japan Pension Service [5], Adobe [7] Benesse [8]

Intellectual Property Technical information, Software Shadowbroker [9] Trade Secret Disclosure

Management Information

Financial Property Legal Currency, Securities Bangladesh Bank [10] Embezzlement

Crypto asset Coincheck [11]

Table 1.2 Countermeasure guidelines and standards for information leakage.

Grade Countermeasure document

Standard NISC [2], NIST SP800 [13], ISO / IEC 27000 [12], and ISO 28000 [26]

Industry Standard FISC [14], PCI DSS [15], HIPAA [16], and P Mark [17]

Education Security Guideline of Targeted Email [21], Cloud [24], and IoT [25]

Multiple layers of defense are effective countermeasures against an attack and the subsequent

compromised-device stage [23]. They include preparing suitable security quality of inbound,

outbound , and internal of information asset control and management at the network and device

levels and training management staff to have and retain cybersecurity knowledge and to take quick

action in response to any incident.

1.2 Multi-layered defense as an information leakage countermeasure

Many computer devices connect through the network infrastructure; the constructing of recent

information systems used the complex software to that manages user credential information, and

information assets. This complexity means that multiple layers of defense are important for

preventing information leakage with certainty, for incident response, and for digital forensics and

damage reduction.

A multi-layered defense against several types of threats is summarized in Figure 1.3. The main

purpose of the multiple layers of security is the prevention and detection of information leakage.

Security mechanisms must assume a level of risk exists in each layer. It requires yet another layer

that the adversary must break, another layer for reducing the damage, and one for verification and

for tracing the attack sequence on the compromised information system.

Security mechanisms must adequately cover the entire information system: network, hardware,

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 4

Figure 1.2 Scenario of cyberattack, threat, and countermeasure [20, 21, 22].

and software. For example, a Root-of-Trust supports the integrity of the hardware and software,

while access control manages the relationship between an information asset and its potential users.

Any practical information system requires a penetration test in which a cyberattack is simulated,

incident-handling vulnerabilities are revealed to support patch management by the CSIRT / PSIRT,

and the forensics are analyzed. Information on the system should be logged for sharing with law

enforcement agencies. Such a combination of security mechanisms should support the gathering

of clues from the compromised information system about the adversary’s command and network

activity and help with quick detection of the damage of disclosure due to the specific incident.

Attack techniques evolve as information systems do. Thus, new security guidelines are required

for the Cloud [24], the Internet of Things (IoT) [25], and supply chain management [26]. With

both old and new technologies, it is important to ensure that systems are constructed to ensure

trust, the fundamental common component for the construction of system and service [27].

The operating system (OS) and the applications are necessary layers for storing and accessing an

information asset. To identify that an outside adversary is attempting to seize direct control of these

layers, appropriate monitoring is the most practical security mechanism. Combined monitoring of

OS and application traffic to detect information leakage at these levels has not been attempted in

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 5

Figure 1.3 Overview of threats and multi-layered defenses.

previous research works. It is difficult to identify suspicious activity on the inside of OS kernel

behavior, and it is also hard to supply the appropriate detection of information leakage, and then to

characterize the application traffic model to identify the suspicious component of an application.

In this dissertation, appropriate OS monitoring, application traffic monitoring, and the

identification of suspicious libraries of applications are used to solve the problems associated with

an information security mechanism based on multiple layers of defense:

• OS monitoring

To identify kernel memory corruption and illegally overwritten kernel code, data is kept in

the kernel virtual memory.

• Application traffic monitoring

To identify information leakage from excessive permission application.

• Suspicious application library identification

To identify a suspicious application that gains excessive permission application, by network

traffic modeling

1.3 Background of the Problems
OS and applications are the basic software for constructing information systems. Threats to

one or the other include kernel vulnerabilities, application malware, application vulnerabilities,

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 6

Table 1.3 Types of Vulnerabilities [28].

Exploit Content

DoS Forcing shutdown of software

Code Execution Arbitrary program execution

Overflow Breaking of stack or heap memory space

Memory Corruption Illegal overwriting in software memory space

SQL Injection Arbitrary SQL insertion and execution

XSS Arbitrary HTML or JavaScript code in Web application

Directory Traversal Reading arbitrary directory

HTTP Response Splitting Poisoning of cache by illegal HTTP response

Bypass Something Evading of access limitations

Gain Information Information gaining through illegal control

Privilege Escalation Getting of administrator privilege

CSRF Illegal HTTP request is accepted by Web application

File Inclusion Forced reading of malicious file reading

and excessive permissions. The appropriate definition of these threats will provide a better

understanding of the security approach detailed in section 1.4.

1.3.1 Threats to the Operating System

The main threat to the OS is an attack through kernel vulnerabilities, that is, software mis

implementations in the kernel, which manages hardware devices and application execution. As

seen in Table 1.3, the common vulnerabilities and exposures (CVE) classification system states that

software has 13 types of vulnerabilities [28]. Kernel attack is involved in four of them, as indicated

in 1.4: kernel memory corruption, policy violation, Denial of Service, and OS information leakage.

Table 1.5 shows that Linux kernel implementations address 10 types of vulnerabilities [29]. Table

1.6 lists 16 exploitation techniques based on kernel vulnerabilities [30].

Suppose that the adversary finally achieves control of the information asset, then sends it to

the outside environment. An attacking threat to the OS has two routes: remote attack through

a network, and local attack through a user account after logging in to the device. Either requires

appropriate permission from the OS that manages the information asset, whether on local storage or

a remote file server. The adversary might also use privilege escalation to acquire an administrator

account with the highest privilege level, able to read files and use network features.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 7

Table 1.4 Effects of kernel vulnerability attack [29].

Effect Content

Memory corruption Overwriting or reading of kernel code / data on virtual memory

Policy violation Miss implementation of access control decision

Denial of Service Forcing kernel to stop running

OS information leakage Information leakage from uninitialized data variables

Table 1.5 Types of kernel vulnerability implementations [29].

Type Content

Missing pointer check Lack of pointer variable verification

Missing permission check Lack of permission verification

Buffer overflow Overwriting of stack or heap space

Uninitialized data Lack of initialization at variable creation

Null deference Access to Null variable

Divide by zero Zero dividing calculation

Infinite loop Occurrence of infinite loop process

Data race / deadlock Occurrence of race condition or deadlock

Memory mismanagement Inconsistent allocation of memory allocation and free

Miscellaneous Other wrong implementations

User account information is controlled on virtual memory by the kernel. Virtual memory is the

mechanism by which the OS uses flexible memory space rather than physical memory space. The

kernel prepares a virtual memory containing two types of page tables: user page-tables for each

running user process, and kernel page-tables for the running kernel itself. The reading and writing

of process, kernel code, and data require translation from a virtual address to a physical address,

i.e., directory traversal of the page tables.

Privilege escalation means overwriting from a user account to an administrator account with the

highest level of privilege (e.g., a root account on UNIX). A user account is usually managed by

a virtual address on the kernel page tables that are protected by the kernel feature. The adversary

may use a kernel vulnerability such as a memory corruption exploit that allows modification of

kernel page tables, and, in this way, can insert any program code to the kernel. This can turn a

user account into an administrator account, because kernel privilege allows the modification of

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 8

Table 1.6 Kernel exploit techniques [30].

Technique Content

Metadata Corruption Illegal modification of meta data on the file system

Control-Flow Hijack Arbitrary control function call chain

Allocator Data Corruption Overwriting of stack

Heap Layout Control Control heap allocation mechanism

Userspace Data Access Access to user data from kernel code

Finding Kernel Objects Identification of kernel code or data virtual address

JIT Abuse Illegal use of JIT feature (e.g., eBPF)

WˆX Area Abuse Malicious modification of writing or execution exclusive space

Changing Kernel Image Malicious modification of kernel image

Bad Module Loading Installation of malicious kernel module (e.g., Rootkit)

Unbalanced set fs() Misconfiguration of kernel and user address borderline

Table 1.7 Types of application threat.

Threat Description

Malware Malicious software leads to damage to information system or user device

Application Vulnerability Mis implementation of software is used on attack

Excessive Permission Suspicious software acquires multiple privileges

any virtual address on the kernel page tables.

An adversary who achieves privilege escalation, then obtains an administrator account, controls

access to information assets, and can transfer them to the outside environment, or attack other

computer systems through the compromised OS of the device. This dissertation proposes to

circumvent this kernel-layer threat by supporting the appropriate detection of kernel page-table

modification after privilege escalation.

• OS monitoring

To support the appropriate detection of kernel page table modification after the privilege

escalation through kernel vulnerability attack at the kernel layer.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 9

Table 1.8 Effects of application-layer threats.

Threat Effect

Ransom demanded for information asset Loss of access to information asset

Sending information asset to outside Information leakage and breach

Infection of other computer devices Risk and damage to internal and external systems

Table 1.9 Combinations of excessive permissions (✓is permission request).
Permission Effect

Information Application Network

asset access interaction

Combination 1 ✓ ✓ Sending information asset to outside

Combination 2 ✓ ✓ Sharing information asset with other applications

Combination 3 ✓ ✓ ✓ Sending information asset to outside

Sharing information asset with other applications

1.3.2 Threats to Applications

The threats to applications listed in Table 1.7 include malware, application vulnerability, and

excessive permission. These exploits are summarized in Table 1.15.

Malware is explicitly malicious software, of which there are several types. Worms infect other

computer devices via a network; ransomware demands a ransom to decrypt files; and bots send

spam mail, causing a denial of service and information leakage from the command and control

server. Malware infection typically spreads through the downloading and execution of malicious

files attached to an email message or placed on a compromised web site, although remote attacks

through kernel or application vulnerabilities can also involve malware.

Application vulnerabilities, like kernel vulnerabilities, are software mis implementations. Their

effects are shown in Table 1.3. After an attack’s success, an adversary could use application

privileges to cause damaging effects, just as with malware.

Excessive permissions allow access to the information asset and use of the network feature of

the device at the same time. Excessive permission combinations are summarized in Table 1.9. The

application contains the main component; third party libraries require different permission to run

on the device. As a result, application requests to the user involve a combination of privileges.

This leads to the risk of information leakage, as pointed out in previous research work [31].

The granularity of privileges is an important principle. The UNIX access control allows users

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 10

Table 1.10 Methods of application analysis (✓is supported; △ is partially supported).
Techniques Malware Application Excessive Content

vulnerability permission

Static analysis ✓ △ △ Disassemble and analyze application code and binaries

Dynamic analysis △ ✓ ✓ Analyze application internal behavior and network traffic

and groups to have the read, write, and execute permissions. Mandatory access control (MAC)

is stricter, designating category and level for users and files. Additionally, the capability and

permission allow or disallow the right to using of computer device resources (e.g., network, store,

and information asset). Several combinations of privileges may be required by the application; this

potentially increases the risk of damage from malware.

Methods for identifying application risk may be either static or dynamic (see Table 1.10). The

static analysis method disassembles an application’s execution file into source code or assembly

language, then analyzes the program structures and components. The dynamic analysis method

directly monitors API calls, system call invocation, memory usage, and network traffic content,

then analyzes this historical information while the application is running.

Static analysis is appropriate for extracting details about the application source code, such

as whether it contains a known vulnerability or grants excessive permissions. Moreover, static

analysis takes less time to analyze the entire application than does dynamic analysis. On the

other hand, it has difficulty identifying the actual use being made of the application’s features and

privileges. Static analysis cannot support file, memory, and network usage that is determined at

the running time. Additionally, obfuscation, packing techniques, hardening of an application using

complex modification and encryption are countermeasures by which an adversary can thwart a

static analysis.

Dynamic analysis is available to identify whether an application has a specific vulnerability to

attack, and information assets are contained on file reading, writing, and transferring via a network.

The weak points of dynamic analysis are that, if it cannot cover entirety of a running application

because of time limitations, it does not collect the pertinent information when the application

camouflages its behavior or does not connect to a suspicious server.

An effective countermeasure for the threat to applications requires the combination of static

analysis and dynamic analysis to cover the entire application and its actual behavior to analyze the

risk posed by the threat. Specifically, as dynamic analysis is an effective approach to identifying

information leakage, this dissertation focuses on the following approaches:

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 11

Figure 1.4 Number of kernel vulnerabilities registered to CVE.

• Application traffic monitoring

application traffic monitoring on a suitable monitoring system to detect and reduce the risk

of information leakage that is caused by excessive permissions;

• Suspicious application library identification

suspicious application library identification through the analysis and modeling of application

network traffic.

1.4 Research Problems

In this section, the research problems addressed in the dissertation are enumerated. The first

concerns information leakage owing to the privilege escalation through kernel vulnerability attacks

on OS security. The second concerns information leakage due to excessive permission application.

The third concerns third party library of application.

1.4.1 Operating System Monitoring

The concerning of information leakage from the information system. OS has responsible

for access control between a user account and an information asset. Adversaries can exploit

the OS kernel through such vulnerabilities. Preventive countermeasures must be developed to

mitigate their attacks. The adversary uses kernel vulnerabilities to modify the credentials in the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 12

kernel virtual memory; such privilege escalation can force the OS to grant root privilege to a

non-privileged user account. It allows adversaries access information assets and network features

for achieving to information leakage using root privilege.

Kernel vulnerabilities in OS have become a significant security risk [29, 32]. There are 2,240

kernel vulnerabilities in the Linux that were listed on the CVE database in 2019 (Figure1.4) [28].

Full privilege is restricted by two OS features, namely the capability [33] and MAC (e.g., SELinux

[34]) mechanisms.

The kernel has several countermeasures to prevent kernel vulnerability and data misuse. Kernel

address space layout randomization (KASLR) distributes the kernel functions and data positions

in the kernel virtual memory to conceal the virtual addresses of vulnerable functions [35]

Additionally, control flow integrity (CFI) enforces kernel function flow validation between call and

return relationships to prevent the injection of malicious code [36]. Return address monitoring of

the stack is one method to detect kernel memory corruption to prevent malicious code initialization

[37].

The CPU also has virtual memory access and an execution permission mechanism. The NX bit

(No eXecute bit) is the execution permission flag for a virtual address in a page table entry [38].

Supervisor mode access prevention (SMAP) and supervisor mode execution prevention (SMEP)

are in the CR4 register. SMAP prevents access to the user memory region, whereas SMEP prevents

code execution in the user memory region of the virtual memory at the supervisor [39]. Meltdown

vulnerability uses a side channel approach to expose directory kernel functions and data virtual

addresses. Therefore, kernel page table isolation (KPTI) has been proposed as a means of isolating

the virtual address space between the user and kernel modes in Linux [40].

Privilege restriction methods separate root privilege features to minimize the damage to the OS

environment in the event of a successful attack. Kernel and CPU countermeasures complicate

(from the attacker’s point of view) the availability of kernel vulnerabilities based on the interaction

between the user and kernel modes. However, these methods cannot prevent attacks that exploit

kernel vulnerabilities in the kernel mode alone [41, 42, 43, 44]. The adversary can avoid many

security countermeasures by executing a kernel exploit code in the kernel mode to override the

security feature functions in the kernel virtual memory (e.g., some kernel exploits disable SELinux

via memory corruption [49, 50]).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 13

Table 1.11 Six categories of the 130 memory corruption vulnerabilities (CVE registered) for

Linux kernel.

DoS Code Execution Overflow Bypass Feature Gain Information Gain Privileges

114 6 73 1 4 25

Table 1.12 PoC available Linux memory corruption vulnerabilities list since 2016. Types are

referring to DoS: denial-of-service, Mem. Corr.: Memory Corruption, Priv: Gain Privileges
CVE ID Types PoC Publish Date Description

CVE-2017-16995 [44] DoS, Overflow, Mem. Corr. ✓ 2017-12-27 A boundary check error in kernel/bpf/verifier.c

CVE-2017-1000112 [45] Mem. Corr. ✓ 2017-10-04 A race condition in net/ipv4/ip output.c

CVE-2017-7533 [46] DoS, Priv, Mem. Corr. ✓ 2017-08-05 A race condition in the fsnotify implementation

CVE-2016-9793 [47] DoS, Overflow, Mem. Corr. ✓ 2016-12-28 A boundary check error in net/core/sock.c

CVE-2016-4997 [48] DoS, Priv, Mem. Corr. ✓ 2016-07-03 A boundary check error in setsockopt implementation

Problem 1: Kernel Memory Corruption

Kernel vulnerabilities are implemented in several ways. Privilege escalation uses malicious

programs to overwrite the credential variable in the kernel virtual memory and gain root privilege.

The OS utilizes privilege level management to protect the kernel code or data in the kernel

virtual memory from the user mode, while KASLR / CFI reduces the success of kernel exploitation

attacks, and SMAP / SMEP restricts the kernel mode execution of malicious code in the user virtual

memory. Nevertheless, 128 memory corruption vulnerabilities were reported for the Linux kernel

in the first half of 2019 (Table 1.11) [28]. Memory corruption vulnerabilities (e.g., the eBPF

vulnerability and others in Table 1.12) are still available whereby the directory allocates malicious

code to the kernel virtual memory through a kernel vulnerability, and continue to pose a problem.

In the postulated threat model, an adversary exploits kernel vulnerability only in the kernel

mode, aiming to compromise the OS and become capable of running any program (e.g., shell

command) without security restrictions. The attacker first attempts to avoid the security features

and gain full administrator capability, changing the Linux security modules (LSM) hook function

pointer variable to disable MAC in Linux.

The assumption of the threat model of a memory corruption kernel vulnerability involving

overwriting of the kernel virtual memory space is that this occurs only in the kernel vulnerability

target memory region that includes the security feature functions pointer, kernel module

management data, and a direct mapping region. In addition, it is assumed that the BIOS, MMU,

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 14

TLB, and other hardware are safe.

1.4.2 Application Traffic Monitoring

With the increasing popularity of smartphones and tablets, development of mobile device

operating systems (particularly for Apple’s iOS and Google’s Android, which are the most popular

choices) has drastically increased, as has the development of applications for online marketplaces

such as the AppStore and Google Play. Google’s Android is currently the most popular operating

system for smartphones, tablet devices, and application marketplaces. In February 2014, Google

Play had over 1,100,000 applications [51]. Applications available in such marketplaces are

categorized as either free or paid. This dissertation will primarily address free applications, which

often come with advertisement modules.

A smartphone retains various kinds of personal information, such as location tracking data,

the contents of the user’s address book, and the device’s unique identifier. Android provides

a framework that requires applications to have specific permissions for accessing restricted

resources. However, the Android permission framework does not completely protect the

user’s sensitive information. Applications or advertisement modules with certain permission

combinations can send the user’s sensitive information to outside servers using the network

[31, 52, 53, 54, 55, 56]. There remain some problems:

• Excessive Permission Application

In order to decouple the features of permission granularity (e.g., network access, camera,

sensitive information), and thus maintain security.

• Suspicious Application Library

While the user’s sensitive information is generally used for targeted advertising, it can also

be discovered and used by malicious parties without the original user’s awareness.

Problem 2: Excessive Permission Application

The users can use a number of free applications that have network and sensitive information

permissions. It is highly risky for users to run applications that have the possibility of sensitive

information leakage. However, the users cannot determine if sensitive information is present or

absent in their network traffic.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 15

Therefore, Android provides the notification page of required permission details for the users

when the application is installed. This is effective information that helps the users. Although they

can understand what kinds of resources are accessed by the runtime of the application, the users

cannot realize for what purpose the application obtains this information. Thus, they decide whether

to install an application or not on the basis of the permission list.

In addition, Android’s current model, an application requests permissions only once, on

installation. After the application is installed, all its transmissions are opaque to the users, who

have no way of determining if sensitive information is present in their network traffic. Users

would ideally prefer that they could use an application without interruption when it is only

transmitting benign data but be prompted for confirmation when the application shes to send

sensitive information over the network.

Problem 3: Suspicious Applications Library

Some free applications include an advertisement (ad) module, which provides a targeted ad to the

user and collects statistics about user behavior. Since the ad module providers pay the application

developers to include these ads in their modules, these applications are offered at no cost to the

user. This business model is widely accepted in the mobile market for “free” applications [57].

Android provides a permission framework for privilege management. To access restricted

resources, an application needs specific permissions. Generally, ad modules are offered as a

software development kit (SDK) library that an application includes in its distribution. Thus, an

application bundle combines the original application permissions with the permissions of the ad

module, and the user cannot determine which permission applies to which. Privilege separation

methods have been proposed to address this problem [58, 59], but they require modifying the

Android permission framework and presenting an accurate representation of the permissions to the

users.

1.5 Related Work

In this section, works related to the above two threat models and three problems are reviewed.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 16

Table 1.13 Operating system security.

Category Security measures

CPU feature NX-bit [38], SMAP / SMEP [39], MPK [63], TCB [92]

Access control Capability [33], SELinux [34]

Kernel protection CFI [36], Dataflow integrity [69]

Stack checking [37], Variable checking [72]

Kernel image protection kRˆX [74]

Kernel memory protection KASLR [35], KPTI [40], PT-Rand [73], Reliability [80]

Memory monitoring (hardware) GRIM [91]

Memory monitoring (virtualization) SecVisor [87], TrustVisor [90]

Memory monitoring (in-kernel) SIM (requires hardware support) [93]

ED-Monitor (focuses a hypervisor kernel) [94]

1.5.1 Operating System Security

Operating system security. The OS provides several security mechanisms that mainly focus on

access management of the relation between a subject and an object, and whether a policy exhibits

granularity of privilege range or type. Moreover, isolation architectures and models that control

separation combine in multiple layers from hardware to software [60, 61].

Access control. Linux also has security mechanism implementations such as SELinux [34, 62]

and a capability [33] to restrict privileges.

CPU feature. The CPU already possesses the NX-bit [38] for execution management, and

SMAP / SMEP [39] for access and the execution of joint control by a supervisor and a user of

the virtual memory space. The CPU feature MPK supports virtual memory protection [63, 64],

page-based separation instructions [65, 66], and physical memory isolation for each process [67].

Kernel protection. Prior studies have presented kernel security methods such as CFI [36] for

code flow integrity checking, and Code Pointer Integrity for the verification of a function’s return

address [68]. In addition, running kernel protection methods focus on invalid overwriting of kernel

code and data, including control flow or data flow tracing [36, 69, 70], monitoring of stack status

[37, 71], and verifying of the privilege variable [72].

Kernel image protection. Kernel protection methods often involve randomized page table

positions in the physical memory [73]. kRˆX restricts the permission of the kernel memory layout

[74]. KMO has different merits: switching of the virtual memory space has no effect for attacks via

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 17

Figure 1.5 Operating system security comparison of related work.

kernel vulnerabilities, and it causes no interruption when running the kernel code. This suggests

that several existing kernel security mechanisms ought to be used in coordination.

Kernel memory protection. KASLR [35] for virtual memory randomization, and KPTI or

another method that separates the virtual memory space between the user and the kernel, can

reduce the effects of attacks on the kernel memory [40, 75]. Moreover, virtual memory protection

methods separate the memory space by the domain and granularity of memory access control

[76, 77, 78, 79]. Additionally, the separation of the device driver code from the kernel provides

granularity monitoring points [80, 81].

Kernel attack. Several attack concepts target the kernel virtual memory [40, 82, 83] to evade the

above security mechanisms by the side channel attack. The kernel attack method uses both return

oriented programming and anti-CFI [84], whereas the direct mapping space method can execute

the attack code only in the kernel mode [32, 85]. The device driver has a directory threat surface

[86]. Kernel virtual memory monitoring is essential to mitigating these attacks in kernel mode.

Memory monitoring (vitalization). Memory monitoring mechanisms are run under the kernel

layer and are unaffected by kernel vulnerability. Kernel monitoring mechanisms have a hypervisor,

and a secure mode has been proposed [61, 87, 88, 89]. In particular, SecVisor [87] and TrustVisor

[90] ensure that only the verified kernel code is running.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 18

Table 1.14 Kernel monitoring feature comparison (✓is supported; △ is partially supported).

Feature SecVisor [87] SIM [93] ED-Monitor [94] KMO

Memory Corruption Detection ✓ ✓ ✓

Memory Corruption Protection △ △
System Call Argument Inspection ✓ ✓

In Kernel Interception ✓ △ ✓

Kernel Integrity ✓ ✓ △
Cloud Environment Deployment △ △ ✓

Memory monitoring (hardware). GRIM also has a verified kernel code at the GPU layer [91],

and Trusted Computing Base [92] verifies the integrity of the kernel code at the boot sequence.

Memory monitoring (in-kernel). Monitoring of the same layer as the OS or hypervisor has a

low overhead when hardware assistance is available [93, 94, 95].

The summarized of comparison between related works and KMO’s monitoring feature that

resides in the kernel (Figure 1.5). KMO requires relatively small overhead with the existing

hypervisor methods. These methods target invalid overwriting of the kernel code or privilege

variable in the kernel virtual memory with hardware assistance. These are effective methods

to reduce or trigger kernel monitoring, as needed. Additionally, the evaluation of the KMO

mechanism’s capability to protect existing kernel vulnerabilities and maintain stable operation

on the system, and the co-operation with other security mechanisms (e.g., SELinux, KASLR, and

SMAP / SMEP) should be undertaken.

Comparison with Related Work

The security features of KMO have been compared with those of three existing

kernel-monitoring methods (Table 1.14) [87, 93, 94]. KMO satisfies almost all the identified

requirements for the running kernel and the cloud environment.

SecVisor [87], which completely monitors the kernel from the hypervisor layer, intercepts device

access to maintain kernel integrity; however, the inspection granularity has the limitation of being

dependent on hardware assistance. Secure in VM (SIM) [93] directly inserts an alternative address

space into the guest kernel from the hypervisor to monitor the kernel. The event driven (ED)

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 19

Table 1.15 Application traffic monitoring and modeling.

Category Method

Network traffic monitoring Attack detection [96, 97, 98, 99, 100, 101, 102]

Signature generation [103, 104]

Network traffic modeling Malware detection [108, 109, 110, 111]

Information leakage (host) Framework modification [115, 116]

Permission separation [55, 58, 59, 123]

Policy enhancement [117, 118, 119, 120, 121, 122]

Suspicious library (static analysis) Application analyzing [31, 54, 127, 128, 129, 130]

Network traffic investigation [56]

Monitor [94] ensures hypervisor integrity as the same layer focuses on memory protection by

having the kernel module insert a hooking placement.

Although this privilege layer monitoring approach is similar to the KMO architecture, KMO

provides finer inspection points for memory protection and detection through system calls or the

insertion of a kernel function flow. Finally, although KMO may struggle to set a suitable inspection

point on a kernel, users can monitor kernels effectively by using a combination of existing methods.

KMO helps protect device drivers or other potentially vulnerable regions by reducing the attack

surface of the system.

1.5.2 Application Information Leads Leakage Detection

Network traffic monitoring. Previous work on signature generation using clustering focused

on the similarity of network traffic or on the characteristics of applications, specifically targeting

malware and malicious network traffic [96, 97, 98, 99, 100, 101, 102]. Other studies proposed

clustering network destination and traffic separately to comprehend some aspect of an application’s

behavior [103], or to generate signatures for computing HTTP packet statistics to improve

detection rates [104]. Other researchers proposed that probabilistic signatures might improve the

detection of information leakage on Android applications [105, 106, 107].

Network traffic modeling. Analysis of applications’ behavior has been used to target malware

or detect bot traffic [108, 109, 110, 111]. Some papers use models of network protocol to

automatically detect bot behavior or protocol vulnerabilities [112] or generate an application’s

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 20

Figure 1.6 Application traffic monitoring and modeling comparison of related work.

information flow and system call sequence graphs to distinguish malware behavior on computers

[113]. Modeling a sequence of ad links on malicious web sites has also been suggested [114]; this

has some similarities to the present proposal.

Information leakage (host). Taint tracking can also accurately detect leakage of sensitive

information and control the information flow of applications [115]. Observation of intent can

be applied to finding malicious activity in applications’ communication [116]. These approaches

have shown that dynamic analysis of the traced details of applications’ behavior on the Android

framework can ameliorate the problem, and it has the advantage of having low overhead with very

few false positives.

Application capability. To address information leakage in applications, fine-grained access

control techniques have been proposed [117, 118]. These projects implement enhancements to

the Android permission policy. Studies have suggested enhancements to the Android permission

framework, and new policies that which would limit applications’ behavior [119, 120, 121, 122].

Separating ad modules from applications can reduce the privacy risk [58, 59, 123] and alert users

to details regarding permissions usage [124]. If permissions are not granted to the advertisement

module, the user can be sure that the advertisement module does not access sensitive information

on the device and send it over the network. These approaches are practical countermeasures against

information leakage, but they all require Android framework modifications or application support.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 21

Table 1.16 Application traffic monitoring feature comparison (✓is supported; △ is partially

supported).

Feature TaintDroid [115] AdSplit [59] AdRisk [55] Proposed mechanisms

Excessive permission application ✓ ✓ ✓ ✓

Host information leakage ✓

Network information leakage ✓

Host suspicious library ✓ ✓ ✓

Network suspicious library △ ✓

Privacy preserving. Privacy preserving advertisement approaches [125, 126], in which users’

behavioral information is not collected from devices for targeted advertising, have also been

proposed. Although these proposals reduce users’ privacy risks, they are not in practical use.

Suspicious library (static analysis). Several studies have analyzed the security and privacy

concerns of potentially sensitive information leakage from Android and iOS applications from

suspicious ad module behavior [31, 54, 127, 128, 129]. Some work has focused on ad modules’

access to device identification number and location information, and their ability to send raw

or hashed sensitive information over the network [56]. Such studies have included tracking the

device identification number when it appears in network traffic by analyzing over 100 ad modules

in applications (AdRisk) [55] and observing the number of permissions that are required by ad

modules [130].

The summarized of comparison between related works and the proposed mechanisms from

analyzing method and points of information leakage detection (Figure 1.6). The proposed

mechanisms generating signatures and graph of ad module traffic that can identify sensitive packets

and actual ad module traffic with a small percentage of false positives, does not require any

modifications to the Android framework, or any escalation of user privilege on the Android device,

making the system simple and immediately applicable. It can also be used in conjunction with

other methods should the proposed modifications be implemented, or with anti-virus applications

designed to detect malware.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 22

Table 1.17 Solving problems in multi-layer security in this dissertation.

Problem Number

Detection of kernel memory corruption Problem 1

Detection of information leakage network traffic Problem 2

Detection of suspicious application library leads information leakage Problem 3

Comparison with Related Work

Table 1.16 compares the security features of the proposed mechanisms to those of three existing

mechanisms [55, 59, 115].

The TaintDroid [115] and AdSplit [55] approaches require Android framework modifications.

AdRisk [59] attempts to identify ad modules within applications. These methods disassemble

the application, or track information flow on the device. The proposed mechanisms use only

the network traffic relationships to detect ad modules’ activity and is thus applicable even in

environments that do not allow static analysis (e.g., the large quantities of data in corporate or

WiFi networks). Additionally, while there are a small number of major ad service providers, many

smaller providers are unlikely to be detected by static analysis. However, the experiments indicate

that manually identified ad graphs are similar to known ad graphs, and thus previously unknown

modules could be detected by the proposed mechanisms using only a few known ad graphs.

1.6 Research Strategies
This section presents the research strategy in the dissertation. Target problems are summarized

in Table 1.17 and Figure 1.7. It mentioned in section 1.4.1, 1.4.2, and approaches in the research.

1.6.1 Detection of Kernel Memory Corruption

This dissertation describes the design of a novel security mechanism called the “kernel memory

observer” (KMO). The proposed mechanism can identify illegal data manipulation in the kernel

virtual memory, which could result in the security features being defeated. KMO provides a secret

observation mechanism that equips an alternative kernel virtual memory as a secret monitor of the

original kernel virtual memory. Although the kernel has one kernel virtual memory at the KPTI

implementation, the design of KMO is such that the kernel virtual memory is completely separated

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 23

Figure 1.7 Approach of this study to the problems of multi-layer security.

to maintain its secrecy, and it is responsible for kernel monitoring, code execution, and valid data

storage.

More specifically, KMO controls a virtual memory switching function that changes the kernel

virtual memory space to the secret virtual memory space at various times during monitoring. KMO

aims to prevent two scenarios: (i) malicious parameters at system call arguments that induce the

injection of suspicious code targeting kernel vulnerabilities; (ii) a kernel vulnerability attack that

overwrites the kernel virtual memory, leading to a modification of KMO monitoring code and valid

data. KMO can successfully identify kernel virtual memory corruption.

1.6.2 Detection of Information Leakage Network Traffic

Various methods employing tracking-information flow and privilege separation have been used

to address the problem of detecting information leakage network traffic [58, 59, 115, 120, 131].

While these approaches all successfully expose leaks of sensitive information, they all require

extensive modifications to the Android framework. It should be sufficient to force applications to

notify users of information usage details, thus enabling them to control the handling of sensitive

information dynamically. One goal of the present work is to find a practical method, requiring

no modification of the Android framework, which can identify when applications leak sensitive

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 24

information. Another is to create a system where users can easily manage the transmission of

sensitive information by applications, thus reducing possible violations of their privacy.

More specifically, a novel method of clustering is presented, which uses selected HTTP packets

to generate signatures that can accurately identify new packets containing sensitive information.

The primary concern is not malware, but free applications that risk leaking sensitive information.

Additionally, a system that can protect against information leakage (without Android modification)

by generating signatures from applications’ network traffic has also been proposed in a second

research strategy.

1.6.3 Detection of Suspicious Application Library Leads Information

Leakage

Ad modules are developed worldwide and have a variety of implementations. In order to

determine what kind of ad module is included in an application, the proposed approach must

be founded on an accurate comprehension of the behavior of ad modules. Static analysis of

applications is the most efficient approach to this and has been widely used in ad module detection

[55]. Dynamic analysis, which targets real-time behavior of the application’s API calls and

network traffic, is also important. With access to all the data from a corporate or WiFi network,

analyzing only the network traffic should be possible in practice.

More specifically, a novel method is presented for detecting ad module network traffic

intermixed with other application network traffic. The proposed approach is effective in the

practical situation where only network traffic (e.g., from a corporate or WiFi network) can be

monitored. In the proposed approach, a graph of ad module network traffic, extracted from

identifying patterns for each HTTP session, is generated first. For example, ad modules often

download an ad image using a particular sequence of HTML or JavaScript requests. This

representative ad module graph can be compared, using graph distance, to the current network

traffic. Graph distance measures the similarity between any two graphs, so the proposed approach

can use the distance between the current and ad module graphs to determine whether network

traffic is generated by the ad module or not.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 1 Introduction 25

1.7 Outline of the Dissertation
This dissertation is organized as follows:

Chapter 2 proposes a security architecture that provides a secret virtual memory to monitor

the kernel virtual memory. The details of the design, its implementation, and the results of the

evaluation are shown.

Chapter 3 proposes a clustering-based signature generation method, which uses selected HTTP

packets to identify new HTTP packets containing sensitive information. The results of the

evaluation are shown.

Chapter 4 proposes a detection method for ad module network traffic intermixed with application

network traffic. This can be used to determine whether or not network traffic is generated by the

ad module. The results of the evaluation are shown.

Chapter 5 presents the conclusions of this research, and it indicates the direction of future

problems and research in this field.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 26

Chapter 2

Detecting and Identifying Kernel Memory
Corruption

2.1 Introduction
Kernel Memory Observer (KMO) prevents the modification of the secret virtual memory and

monitors valid data in the direct mapping region, which contains physical memory for effective

allocation or collection. KMO forces the unmapping of the virtual memory region and relates

KMO information from the direct mapping onto the kernel virtual memory.

In the evaluation, KMO was able to detect the eBPF kernel vulnerability [44], the prototype

of illegal kernel modules that corrupt the kernel virtual memory to bypass the SELinux security

feature. In addition, KMO has a low overhead for each system call round time and for application

running cost.

The main contributions of this study is summarized below:

• Designing a cutting edge security architecture, KMO, that provides a secret virtual memory

to monitor the kernel virtual memory. KMO has a secret observation mechanism that

provides three switching patterns between the secret virtual memory and the kernel

virtual memory, whereas the unmapping method provides protection from direct mapping.

Although kernel protection is being examined in multiple studies, no study has addressed

the monitoring of kernel virtual memory at the kernel level. KMO provides the advantage

of enhanced safety for the kernel, thereby combining the features of existing security

mechanisms without virtualization. Moreover, it can be applied to the OS on a bare machine

and to a guest OS on a cloud environment.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 27

Figure 2.1 Multiple page table converts virtual address into physical address.

• Implement of KMO on the latest Linux kernel with KPTI. For the evaluation, examined

KMO detection capability with regard to eBPF kernel vulnerability [44] and the prototype of

illegal kernel modules that corrupt the kernel virtual memory to bypass the SELinux security

feature. Additionally, KMO protects monitoring code and information from invalid access

via the direct mapping region. The evaluation results for KMO revealed that its overhead is

from 0.002 µs to 8.246 µs for each system call round time, whereas the application overhead

is from 39.70 µs to 390.52 µs for each switching pattern for 100,000 HTTP accesses.

KMO adopts the PCID of tag-based Translation Lookaside Buffers (TLBs) to mitigate these

overheads and improve performance.

2.2 Background

2.2.1 Virtual Memory Management

Virtual memory is an illusion that provides domestic memory and memory isolation to running

processes. It provides massive memory space on the kernel as compared to the physical memory

space. Figure 2.1 shows that Linux x86 64 allows each process to have its own virtual memory

space. A multiple page table converts virtual addresses into physical addresses on the virtual

memory space. CR3 has a physical address of the page table of the current process, which refers to

a traversal of the page table on the Memory Management Unit (MMU) and cache hit on the TLB.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 28

Figure 2.2 Overview of monitoring on the secret virtual memory space.

The virtual memory space layout and virtual address length differ for each CPU architecture.

Linux x86 64 has a 48-bit virtual address length, which implies that the virtual address space has

a size of 256 TB. The user space is 128 TB, and the kernel space is 128 TB, which contains the

kernel function, data, module, direct mapping, and memory allocation address space (vmalloc,

etc.).

2.2.2 Separation of Virtual Memory

Kernel and user processes share virtual memory to enable high-speed management. Virtual

memory access control relies on the protection of the privilege level in the kernel and the CPU,

which restricts cross access between the user and kernel modes. A meltdown attack overcomes

this protection, and a user process can then easily access the kernel virtual memory through a

combination of out-of-order, exception, and cache latency on side channel attacks.

One meltdown attack countermeasure involves the separation of the virtual memory used for the

kernel and user modes. Here, a process has two virtual memory spaces. The OS automatically

changes the virtual memory during any privilege level transition from user mode to kernel mode.

The user mode virtual memory only contains a small amount of kernel code that switches to the

virtual memory to minimize the access range of any meltdown attack. KPTI [40] is the separation

method for Linux, and the other OSs are equipped with similar mechanisms [132].

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 29

Figure 2.3 Virtual memory switching patterns 1, 2, and 3

2.3 KMO Design

Figure 2.2 shows that designed “Kernel Memory Observer” (KMO) that creates a secret virtual

memory in the kernel mode. This supports the execution of monitor code in the kernel virtual

memory. It is established at a different location of the kernel virtual memory management from

the latest kernel (e.g., Linux with KPTI). In the KMO’s kernel, it has two kernel virtual memories

(i.e., original and secret).

2.3.1 Design Goal

The goal of KMO is to protect the kernel security feature code, data, and kernel module on the

kernel virtual memory; then, KMO monitors these memory regions to detect invalid overwriting.

The kernel virtual memory permits reading, writing, and execution in the kernel mode, but not

in the user mode. latest kernel (e.g., Linux with KPTI), which enables the isolation of virtual

memories, involves the user and the kernel virtual memory for a process. Whenever a process

invokes a system call processing, the kernel automatically switches both virtual memories during

privilege transitions between the user mode and kernel modes. All processes share the kernel

virtual memory; therefore, the kernel still provides one virtual memory space that is available for

the various features at the kernel layer. Kernel memory corruption vulnerability can potentially

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 30

lead to invalid overwriting of specific kernel virtual memory region occurs only when the kernel

code is running in kernel mode.

KMO creates a secret virtual memory space isolated from the original kernel virtual memory.

This separation ensures that access violation is impossible between the secret and the original

kernel virtual memory. KMO places the valid monitoring data and the monitoring code on the

secret virtual memory, which is unaffected by the memory corruption on the kernel virtual memory.

KMO generates the valid monitoring data from an original benign kernel code and data at the kernel

boot. KMO then executes the monitoring code on the secret virtual memory. It verifies the kernel

code and data for modification by comparing them with the valid monitoring data.

2.3.2 Switching Patterns and Detection Capability

Figure 2.3 denotes that KMO is a monitoring mechanism that adopts three virtual memory

switching patterns depending on the kernel manages process transition between the user and kernel

modes.

Pattern 1: Inspection point is undertaken before the system call execution. Pattern 1 involves

inspecting whether the system call argument is suspicious data input before the adversary

can execute malicious code by using the kernel vulnerability.

Pattern 2: Inspection points during system call function or kernel code processing. Pattern 2

inspects the kernel code and data in the kernel virtual memory. There may be inspection

points having multiple functions during a system call consisting of multiple functions.

Pattern 2 involves the direct detection of memory corruption in the kernel virtual memory

for any timing during the kernel function flow.

Pattern 3: Inspection point is undertaken after the system call execution. Pattern 3 inspects the

kernel code and data in the kernel virtual memory. It reliably detects memory corruption

after an attack completes a system call execution.

Therefore, KMO automatically switches from every pattern for system call invocation at the

kernel layer. It combines multiple inspection point of patterns at one system call invocation.

Although it is effective in detecting kernel memory corruption and attacks, the number of

inspections results in a significant overhead. Examination of simulated attacks on KMO

mechanism to identify suitable inspection points in a running system.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 31

Upon identifying the attack, the kernel handles the interruption of system calls by returning

the error number to the user process. Additionally, the kernel is considered available to fix the

modified memory region.

2.3.3 Design Approach

KMO overcomes three challenges facing the monitoring of kernel virtual memory in kernel

mode.

Challenge 1: The monitoring code has access permission for monitored data and will be

executed in the secret virtual memory. KMO has three virtual memory switching

patterns with different inspection points on a running kernel with system calls. The

inspection timing at which memory corruption is detected is also differs for each

switching pattern. It efficiently monitors the already implemented kernel security

feature and the module space in the kernel virtual memory to detect memory corruption

attacks.

For virtual memory switching, KMO writes the physical address of the multiple-page

table of the secret virtual memory into a specific register (i.e., CR3 register points to

the page table for x86 64). The monitoring code executes in the secret virtual memory

space. After monitoring, the KMO writes the physical address of the original kernel

virtual memory into a specific register (i.e., the CR3 register for x86 64), and then

continues the processing of the kernel code before the switching event occurs.

Challenge 2: The kernel code cannot access the secret virtual memory space.

KMO fully copies the secret memory space from the original one such that both

memory spaces contain the same kernel code, kernel data, monitoring code, and

monitoring data.

The monitoring code and valid monitoring data are not accessed through the page table

flag management for the original kernel virtual memory. Therefore, in kernel mode,

the original and secret virtual memory are completely isolated in KMO, ensuring that

the kernel code acts on the original kernel virtual memory space by using its virtual

addresses. Furthermore, it ensures that the monitored kernel code cannot access the

kernel mode secret virtual memory space.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 32

Figure 2.4 Overview of secret virtual memory space for Linux kernel.

Challenge 3: The monitoring code and valid data are not affected through a direct mapping

space. The kernel virtual memory management provides a direct mapping space

containing the physical memory for effective page-based memory allocation and

collection. KMO shares the physical memory between the kernel and the secret virtual

memory, which can be abused by allowing direct access to the monitoring code and

valid data KMO modifies the allocation mechanism of direct mapping to prevent

memory corruption via the direct mapping space. To exclude the monitoring code

and valid data from the direct mapping of the kernel virtual memory, KMO forces the

unmapping of these in the kernel virtual memory.

2.4 KMO Implementation

Implementation of KMO is on Linux as the target OS and x86 64 as the CPU architecture.

2.4.1 Secret Virtual Memory Space Management

KMO can monitor the kernel virtual memory (Figure 2.4). The latest Linux kernel has the KPTI

feature, which already provides each process has 2 virtual memory spaces.

For the kernel, the pgd variable of init_mm in mm_struct points to the physical memory

address of the kernel virtual memory. KMO creates an additional virtual memory space on the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 33

Figure 2.5 Virtual memory space switching on Linux kernel.

kernel whose physical address is a 4 page (16 KB on x86 64) logical conjunction from the physical

address of the pgd variable of init_mm. Moreover, the kernel code and data are duplicated from

the pgd variable. KMO uses the physical address of the created virtual memory to switch from the

kernel virtual memory to the monitoring of each process in the kernel mode.

2.4.2 Switching of the Virtual Memory Space

Implementation of KMO is to provide a virtual memory switching mechanism for the secret

virtual memory space in kernel mode (Figure 2.5).

In user mode, Interrupt (SYSCALL, IRQ) and Exception are triggered for the transition to

kernel mode. It calls the SWITCH KPTI CR3 function on the virtual memory of the user and

then changes to the kernel virtual memory space.

In kernel mode, KMO fulfills challenge 1, as the kernel calls the SWITCH KMO CR3 function,

which calculates a 4-page offset to the physical address of the secret virtual memory space

from the pgd variable of init_mm. The kernel writes this value to the CR3 register, followed

by automatically switching the virtual memory space for monitoring. After the monitoring

process, the SWITCH KMO CR3 function writes the physical address of the pgd variable in the

active_mm of the current (task_struct) variable to the CR3 register, which can change the

virtual memory space for the currently running process in kernel mode. The kernel then calls

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 34

Figure 2.6 Position and unmap region for the virtual memory space on Linux x86 64.

SWITCH KPTI CR3 to change the virtual memory space for the user, and the system changes to

user mode via an interrupt (SYSRET Interrupt return) or exception (Exception exit).

KMO currently supports the Process Context ID (PCID) during CR3 register writing. It enables

the cache of TLB entry (lower 12 bits of CR3 value) by using the conversion of caches between

the virtual and physical addresses on the specific CPU. If the CPU or environment does not

support PCID, KMO uses TLB flush after the CR3 register writing. However, the virtual address

conversion is accompanied by overheads.

2.4.3 Monitoring of Virtual Memory Space

KMO has almost the same virtual memory space layout both original and secret virtual memory

on Linux x86 64 (Figure 2.6). KMO monitors the security_hook_list variable for LSM on

the kernel text mapping and the module list variable modules in the kernel virtual memory.

Additionally, KMO disables Copy on Write of the monitored data, whereas it supports targeted

kernel space reading after virtual memory switching occurs. KMO fulfills challenge 2 as both the

monitoring code and the valid monitoring data have a designated flag setting that does not accept

reading and writing at the supervisor level on the Page Table Entry.

KMO keeps the secret virtual memory space in the kernel boot sequence and then starts the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 35

Figure 2.7 Monitoring attacker process using the secret virtual memory space on Linux.

monitoring feature according to the following sequence.

(1) The mm_init function initializes the kernel virtual memory, whereas the kaiser_init of

KPTI function initializes the virtual memory for the user on the kernel boot sequence.

(2) KMO initializes the secret virtual memory in physical memory.

(3) The security_init function initializes the LSM and MAC mechanism.

(4) The load_default_modules function executes the module reading process on the kernel.

(5) KMO duplicates the valid monitoring data between the secret and kernel virtual memory

spaces.

(6) KMO starts the monitoring feature in the secret virtual memory space.

2.4.4 Direct Mapping Management

Linux 4.4 (x86 64) has a direct mapping space of 64 TB. Therefore, the machine physical

memory is mapped to a space of less than 64 TB, and the kernel manages physical page allocation

by using direct mapping. Thus, it is possible to access the kernel code and the data virtual and

direct mapping virtual addresses.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 36

Linux uses the init_mem_mapping function to create the virtual memory direct mapping space.

The kernel_physical_mapping_init function then maps the physical addresses to virtual

memory. KMO covers challenge 3, as KMO uses the remove_pagetable function to unmap

secret pages of the monitoring code and valid monitoring data from the direct mapping space in

the kernel virtual memory after establishing a secret virtual memory setup (Figure 2.6). Any access

to the unmapped pages occurs through a page fault. Subsequently, KMO registers an original page

fault handler of unmapped memory region for panic processing.

2.4.5 Kernel Vulnerability Attacking Case

In one of the memory corruption kernel vulnerability cases, the adversary uses the eBPF

vulnerability[44] to modify the targeted data on the kernel virtual memory. The adversary

finally takes the shell as the root capability without any LSM limitation after memory corruption

overrides the SELinux function pointer, as well as credential information. KMO monitors these

modifications and detects the following sequences (Figure 2.7):

(1) The adversary executes the PoC code of the eBPF vulnerability with the user privilege. The

PoC code inserts malicious BPF code into the kernel virtual memory via the sys_bpf system

call. Although KMO traps the system calls, this does not lead to suspicious behavior at the

time.

(2) The adversary overwrites the LSM function pointer and performs privilege escalation

through memory corruption via the sys_bpf system call at the kernel mode. KMO also traps

the issued system calls. The KMO’s Pattern 2 monitoring identifies the LSM function pointer

modification on the kernel control flow. It compares the security_hook_list variable

with the monitoring data containing valid data and determines whether the monitored data

is invalid. If the KMO’s Pattern 2 is not invoked at kernel, KMO’s Pattern 3 also traps it and

identifies the same malicious behavior after the eBPF system call execution.

(3) The adversary launches the shell program from the PoC code. In KMO’s Pattern 1, it traps

the sys_exec system call and then determines whether it constitutes malicious behavior.

System call arguments contain the shell program name, and memory corruption is already

identified upon modification of the variable security_hook_list.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 37

2.5 Evaluation

2.5.1 Evaluation Purpose and Environment

Evaluation of KMO’s effectiveness in term of detection capability and overhead. The evaluation

items and objectives are described below:

E1: Monitoring system call argument experiment

Evaluation of switching Pattern 1 of KMO to verify whether the target system call argument

is valid before system call execution.

E2: Detection of overwriting of LSM function

Assessment of switching Patterns 2 and 3 of KMO to check whether or not they correctly

identify an eBPF vulnerability PoC that modifies the LSM function’s virtual address.

Determining of the timing at which the attacks on the kernel virtual memory are detected.

E3: Evaluation of the prevention of access to direct mapping

Examined whether KMO prevents access to valid monitoring data in the direct mapping space

after KMO unmaps secret pages.

E4: Measurement of overhead of system call interaction with KMO

Monitoring of the effect of kernel availability with KMO by switching the virtual memory

space. The measurement of the overhead by benchmark software to calculate the system call

latency.

E5: Measurement of the overhead of application with KMO

Measurement of the performance overhead of a user process by using benchmark software on

KMO, which adopts several virtual memory switching patterns.

Evaluation of KMO on a physical machine with an Intel(R) Core(TM) i7-7700HQ (2.80 GHz,

x86 64) and 16 GB DDR4 memory. The implementation targeted Linux Kernel 4.4.114 on

Debian 9.0. 17 source files are modified regarding alternative virtual memory, virtual memory

switching and monitoring functions, which required 1,653 lines in the Linux kernel. eBPF kernel

vulnerability [44] PoC is customized for the modification of any virtual address on the kernel

virtual memory. Of the evaluations E4 and E5, the comparison of the vanilla kernel with PCID

(K0), KMO kernel without PCID (K1), and KMO kernel with PCID (K2). K0 supports TLB

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 38

Figure 2.8 Monitoring result for Linux system call arguments.

caches for user and kernel virtual memory. Although K1 does not enable a TLB cache of secret

virtual memory, K2 pushes user, kernel, and secret virtual memory into TLB cache mechanism.

2.5.2 Monitoring System Call Argument

Assumption of rootkit installation. KMO monitors the module installation mechanism that uses

the init_module and finit_module system calls. It inspects the kernel module binary image

from the system call argument and then outputs whether the module is invalid as the detection

result. In the log message, switching Pattern 1 denotes the monitoring system call as “target

system call” and the invalid module as “invalid module name”.

KMO correctly identifies the invalid kernel from the system call argument (Figure 2.8). The

monitoring function detects invalid module names via the module binary for only 0.05 ms before

the kernel executes the system call and then invokes the module initial function.

Confirmation of switching Pattern 1 yields the correct evaluation results for the monitoring and

inspection of the system call argument. Although the module executes its initialization function,

the module installation process is not yet completed at the time of detection in Patterns 1. This

indicates that KMO interrupts the kernel code, specifically the system call invocation mechanism

to determine if the validation is possible before system call processing.

2.5.3 Detection of Linux Security Module Overwrite

The original kernel module that replaces the LSM hook function. The custom eBPF vulnerability

PoC forces the exchange of one LSM hook function in the selinux hooks variable to the kernel

module function on the kernel virtual memory. KMO stores the valid data at kernel boot. It then

automatically identifies this memory corruption on switching patterns 2 and 3. These patterns

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 39

Figure 2.9 Monitoring result for LSM function

Figure 2.10 Preventing result for modification through direct mapping.

compare the target LSM hook function’s virtual address with the valid monitoring data, and then

outputs the result as a log message. An invalid case is denoted by “Invalid lsm function is detected”

and “Virtual Address (Invalid)” in the detection.

KMO’s detection result is successful on Patterns 2 and 3 (Figure 2.9). Patterns 2 and 3 determine

whether the illegal memory is overwritten after the LSM function is modified for detection.

Confirmation of switching patterns 2 and 3 determine the illegal memory corruption at suitable

detection timings. Therefore, KMO has an effective detection capability for kernel vulnerability

against attacks that modify the LSM function’s virtual address to prevent its existence in the kernel

virtual memory.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 40

Table 2.1 Overhead of switching virtual memory space and monitoring (µs).

System call Vanilla kernel (K0) KMO kernel Overhead

NO PCID (K1) PCID (K2) K1-K0 K2-K0

fork+/bin/sh 914.900 946.758 925.269 31.858 10.369

fork+execve 260.357 274.589 265.324 14.232 4.967

fork+exit 238.784 255.276 244.128 16.492 5.344

fstat 0.359 0.384 0.377 0.025 0.018

open / close 7.245 7.598 7.293 0.353 0.048

read 0.356 0.358 0.358 0.002 0.002

write 0.309 0.312 0.310 0.003 0.001

stat 2.322 2.408 2.351 0.086 0.029

2.5.4 Evaluation of Direct Mapping Access Validation

Evaluation of KMO when preventing the overriding of valid monitoring data with invalid data

via the direct mapping region in the kernel virtual memory. The KMO unmaps the specific page

of the valid data on direct mapping at kernel boot. Subsequently, the kernel module installation

attempts to write the invalid data and output the result to a log message.

Figure 2.10 shows the log information after the unmapping process. The kernel module

calculates the virtual address on direct mapping from the correct virtual address of the valid data

and then accesses it. Next, the kernel issues the page request for the unmapped page having the

virtual address on direct mapping. Thus, overwriting fails from the kernel module’s write access

via direct mapping.

2.5.5 Measurement System Call Interaction Overhead

Comparison of the Linux kernel, including KMO’s mechanism, with a vanilla Linux kernel to

measure the performance overhead. Adopted benchmark software, lmbench, and execute it 10

times to calculate an average score and determine whether each system call has an overhead effect.

The overhead results are the measurement switching virtual memory features. The results are

the switching of the virtual memory for each system call execution (Table 2.1). lmbench shows

different counts of system calls invoked for each benchmark. fork+/bin/sh has approximately

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 41

Table 2.2 ApacheBench overhead of virtual memory switching and monitoring on the Linux

kernel (µs).

File size (KB) Vanilla kernel (K0) KMO kernel Overhead

NO PCID (K1) PCID (K2) K1-K0 K2-K0

1 1,041.26 1,080.96 1,050.60 39.70 9.34

10 1,878.02 1,962.70 1,895.78 84.68 17.76

100 9,621.70 10,012.22 9,718.02 390.52 96.32

Table 2.3 ApacheBench overhead of virtual memory switching patterns 1 and 3 with monitoring

(µs).

File size (KB) Vanilla kernel (P0) KMO kernel (PCID) Overhead

Pattern 1 (P1) Pattern 3 (P3) P1-P0 P3-P0

1 1,041.26 1,051.89 1,050.01 10.63 8.75

10 1,878.02 1,892.16 1,893.10 14.14 15.08

100 9,621.70 9,711.18 9,678.76 89.48 57.06

54 invocations; fork+execve has 4 invocations; fork+exit has 2 invocations; open / close has 2

invocations; and the others have 1 invocation.

Table 2.1 shows that the overhead of the KMO (NO PCID) and KMO (PCID) versions. In KMO

(NO PCID), the system calls with the highest overheads are fork+exit (8.246 µs) and fork+execve

(3.558 µs). The system calls with lower overheads are read (0.002 µs) and write (0.003 µs). A

kernel with KMO (NO PCID) exhibits an overhead of 0.002 µs to 8.246 µs for each system call

invocation. Otherwise, KMO (PCID) has the highest overheads are fork+exit (2.672 µs), and

fork+execve (1.2417 µs). The system calls with lower overheads are write (0.001 µs) and read

(0.002 µs) improvement. KMO (PCID) exhibits a range of overhead from 0.001 µs to 2.672 µs for

each system call invocation.

The lmbench overhead results indicate that the performance of KMO is affected by the switching

virtual memory and monitoring process cost. The PCID contributes to the context switching of

processes and kernel thread memory access to reduce the overhead of KMO.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 42

2.5.6 Measurement Application Overhead

The comparison of the application overhead among the vanilla kernel, KMO (NO PCID),

and KMO (PCID) kernels. Additionally, Evaluation of the effect of PCID on both kernels

with switching patterns 1 and 3 Running of Apache 2.4.25 process. The benchmark software

is ApacheBench 2.4. The environment includes a 100-Mbps network, one connection, and

benchmark file sizes of 1 KB, 10 KB, and 100 KB. The ApacheBench calculates one download

request average of 100,000 accesses to each file. The client machine is an Intel(R) Core(TM) i5

4200U (1.6 GHz, two cores), with 8 GB of memory and running Windows 8 as the OS.

The virtual memory switching patterns do not call the monitoring process because the evaluation

measures the performance effect of the kernel on each switching pattern. Comparison of the KMO

(NO PCID) and KMO (PCID) kernels. KMO (NO PCID) switches the virtual memory every

200 system call invocations, whereas KMO (PCID) switches it every 100 system call invocations

(Table 2.2). In KMO (PCID) for Patterns 1 and 3, the monitoring function is called to evaluate the

differences of the two patterns’ overheads for every 100 system call invocations (Table 2.3).

KMO (NO PCID) has an overhead ranging from 39.70 µs to 390.52 µs, and KMO (PCID) has

an overhead from 9.34 µs to 96.32 µs at each HTTP access. Additionally, the KMO (PCID) of

Pattern 1 is from 10.63 µs to 89.48 µs, and that of Pattern 3 is from 8.75 µs to 57.06 µs at each

HTTP access.

The overhead of ApacheBench depends on the total number of system call invocations in the

process. The ApacheBench result shows that Patterns 1 and 3 considerably increase the overhead

factor for a large file. When used on the benchmark, the overhead cost becomes relatively small

at the application processing time. Consideration of Pattern 1 to require an argument inspection of

register transfer cost with a high impact. Pattern 3 incurs the same overhead cost, indicating that

the switching of virtual memory and the memory monitoring have a constant of inspection cost.

2.6 Discussion

2.6.1 Performance Consideration

Consideration of the performance overhead, whereby KMO enables the reduction of the

performance overhead by using tag-based TLBs that provide an Address Space Identifier. The

PCID on x86 is the cache for the virtual address to physical address conversion. The cache on

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 43

TLBs improves physical memory access without a page table walk to identify targeted page after

a CR3 register update. Moreover, mitigation of overhead of KMO (PCID) relies on the number of

TLB cache hits for page accesses while monitoring the secret virtual memory. Additionally, the

Linux KPTI mechanism uses the PCID of TLB. Moreover, KMO (PCID) enables the storage of

KPTI’s caches without a TLB flush to perform a quick virtual memory switch. A virtual machine

feature or cloud service may not provide the PCID of the virtual CPU, and KMO requires the

performance penalty for calling the TLB flush for CR3 register updation in that environment.

Moreover, the application process has no overhead in user mode. Nearly the entire performance

effect involves the switching of the virtual memory, followed by the monitoring feature in kernel

mode. The overhead cost in the system call latency evaluation is identical for all types of system

calls. Estimation of the actual application performance is proportional to the switching virtual

memory and the monitoring process in the kernel mode after system call invocation in user mode.

The monitoring system call has a different cost for the type of system call argument. A string

variable or address information has low overhead, but reading the data from the user mode has

a high overhead. KMO requires nearly the same cost as an actual system call. In addition, the

monitoring function’s cost depends on the monitoring data size. The target kernel code or data

affects the comparison process with the valid data.

2.6.2 KMO Detection Capability

Kernel vulnerabilities that enable privilege escalation have two effect types in the kernel layer.

One type induces memory corruption on the kernel virtual memory (e.g., eBPF vulnerability

[44]), whereas the other type does not create any kernel memory side effects (e.g., Dirty COW

vulnerability [133]). If an adversary attempts to gain full administrator privilege of the OS,

kernel memory corruption vulnerability is high priority to execute on attack scenarios for the

defeating of security features. KMO provides a combination of switching virtual memory patterns

having different inspection timings. Its feature detection capabilities compensate for the memory

corruption of kernel vulnerability attacks for the kernel mode. During the evaluation, the eBPF

vulnerability attack overwrites the SELinux functions’ virtual address of the LSM hook variable

that was automatically detected on KMO for protecting the security features on the kernel

Moreover, KMO identifies an attack code starting point from the user space and kernel space via

using multiple system calls for the prevention of kernel vulnerability attacks leading to memory

corruption. At an actual attack detection point, Pattern 1 determines the attack before system call

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 2 Detecting and Identifying Kernel Memory Corruption 44

execution on the kernel and prevents memory corruption. Although Pattern 2 identifies memory

corruption, it interrupts the kernel execution flow of multiple functions having one system call.

The user inserts a suitable detection point to reduce the effect of the kernel vulnerability attack.

Preventing the execution of malicious code on one system call invocation for Pattern 3 is difficult

because its checkpoint is just before switching back to the user mode. Therefore, Pattern 3 reliably

detects memory corruption during kernel processing for multiple functions.

2.7 Conclusion
Most kernel vulnerability attacks that focus on kernel virtual memory corruption aim to perform

privilege escalation or defeat security features. The OS kernel should reduce the effect of the

attack on the adoption capability and MAC restrict privileges. Although kernel adopts KASLR,

CFI, KPTI, and SMAP / SMEP of CPU features to prevent kernel vulnerability attacks for memory

corruption occurs privilege escalation or the avoidance of security features, kernel have been

potential to compromise at only kernel layer. The proposed KMO is contributed as follows.

• The KMO provides secret observation mechanism for monitoring of the original kernel

virtual memory. To determine invalid kernel virtual memory overwriting, KMO supports

multiple inspection points, identifies malicious system call arguments, and prevents attacks

through the direct mapping region.

• On the evaluation of Linux with KMO that successes to inspect system call arguments

and identify the memory corruption of security features. The performance overhead from

0.002 µs to 8.246 µs in terms of each system call invocation on KMO kernel. The web

application overhead for KMO monitoring from 39.70 µs to 390.52 µs at the running

process. Additionally, the adoption of PCID on TLB for KMO, which reduces the overhead

requirement of KMO, to adopt the actual load effect for monitoring and virtual memory

switching.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 45

Chapter 3

Detection of Sensitive Information Leakage
in Android Applications

3.1 Introduction

In many cases, malware is detected by the anti-virus software. Various other methods have been

proposed, such as detecting anomalous traffic generated by malware [96, 97, 98, 99, 100, 101,

102, 103, 104]. However, free software that allows sensitive information leakage is not malware

(and thus is not discovered by anti-virus software) but still presents a threat to the user’s privacy.

Furthermore, sensitive information leakage may show different network patterns than malware, and

thus sensitive information leakage detection in Android applications should be handled separately

from malware detection.

Of evaluation, 1,188 free Android applications are analyzed from the Top 100 and the Recent

Uploads lists in Google Play Japan and collected 107,859 HTTP packets that these applications

generated. Examination of the number of HTTP packets that included sensitive information and

sent it to outside servers using string matching. Considered sensitive information to be unique

device identifiers (UDIDs) (Android ID, IMEI, IMSI and SIM Serial ID), hashed UDIDs (MD5,

SHA1), and carrier names. In this trace, 23,309 HTTP packets contained such information.

Some advertisement modules obfuscate or hide sensitive information in packets. Therefore, string

matching is not sufficient for detecting all information leakage. After sensitive packets had been

identified, the clustering is applied to a sample of the refined data to generate signatures (individual

device is information is, of course, unique to each device, and thus not part of matched string used

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 46

Figure 3.1 Overview of Android architecture

to generate the signature). And re-applied these signatures to the entire dataset. This method

resulted in a high percentage of true positives, and a low percentage of false positives. Thus,

the conclusion indicates that generated signatures have sufficient accuracy for detecting sensitive

information transmissions.

The main contributions is considered following:

• A novel clustering method using HTTP packet distance that identifies the similarity between

the two of Android application network packets.

• A system, using the proposed clustering method followed by signature generation, that can

detect sensitive information leakage without altering the Android framework.

3.2 Background

3.2.1 Android Architecture

Figure 3.1 shows an overview of the Android architecture, which consists a Linux kernel,

Middleware, Android applications, and sensitive information (Address Book, Location, Mail, and

Phone State are shown). Middleware includes the Binder, the Library framework, and one Dalvik

Virtual Machine (DVM) per application.

The Linux kernel provides some fundamental features for the upper layers: process

management, a file system, and network services. Middleware provides DVMs, which are used

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 47

Table 3.1 Number of applications with dangerous permission combinations. Out of 1,188

applications total, 55% required both the INTERNET permission and at least one permission

for sensitive information.
Internet Location Phone Contacts # Apps

x 302

x x 329

x x x 153

x x 148

x x x x 23

233

run applications. The Binder supports IPC and checks an application’s permission list when it

tries to access sensitive information via the Library. Applications on Android each have a unique

Linux UID and resources have Linux UID specific permissions. This environment paradigm is

called sandboxing. The application can only access resources within the bounds of its privilege

permissions.

3.2.2 Android Permissions

Android provides the permission framework for managing an application’s privileges. In order

to access resources on Android, an application needs a specific set of permissions which link to

these resources. For instance, the INTERNET permission allows an application to connect to any

outside server using network. The READ PHONE STATE permission allows an application to

access the unique device identifier and line number on the device. At the time of writing, there are

151 privileges permissions defined by Android API level 21 [134].

When an application accesses a controlled resource object, the Binder takes charge of the

reference monitor to manage the application’s request. The Binder verifies that the application

has the appropriate permissions to bind to the requested resource.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 48

3.3 Problem Description

In this section, the explanation that is how particular combinations of application permissions

can allow a violation of user privacy. Analysis of the network traffic of 1,188 free applications –

how many servers are connected to by an application; what, if any, sensitive information is included

in the traffic – to show that this problem is a practical concern.

3.3.1 Application Request Permissions

Previous studies show that many applications require the INTERNET permission [127]. Table

3.1 shows the permissions held by collected 1,188 applications: 302 applications (25%) require

only the INTERNET permission, while 653 applications (55%) require the INTERNET and

some combination of sensitive information permissions. The consideration of sensitive information

permissions to include LOCATION, READ PHONE STATE, and READ CONTACTS. Those

653 applications can access sensitive resources on the device and send information gathered from

those sensitive resources using the network feature, all without user confirmation, putting the user’s

privacy at risk.

3.3.2 Application Traffic Analysis

In fact, previous researches have been shown that some applications transmit sensitive

information to external servers [31, 54]. One of the main reasons for this is that developers

build an advertisement module into the free version of their applications for revenue. In order

to collect statistical information of the device usage and to provide a targeted advertisement for

users, advertisement modules take advantage of their ability to access sensitive information.

UDIDs are most commonly used by advertisement modules [55]. The types of UDIDs include

the Android ID, the International Mobile Equipment Identity (IMEI), the International Mobile

Subscriber Identity (IMSI) and the SIM Serial ID. Additionally, some modules compute UDID’s

hash with a cryptographic hash function at the time of transmission [56]. These UDIDs are

immutable and linked to a user’s real name and bank account. Unlike Internet cookies and IP

addresses, UDIDs are hard (if not impossible) to change or erase, so it can be very dangerous

for a user to have an advertisement module leaking his UDIDs. If an advertisement module

generates a UDID’s hash value from only a UDID, the hash value is same all the time, thus the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 49

user cannot change the UDID’s hash value without changing the original UDID, so the hash values

have similar security problems. An advertisement module should use an application’s unique

user ID value (e.g., UUID value) rather than its UDID. If UUIDs (which are mutable) were used

instead of UDIDs, harvested information would be restricted to the transmitting application, and

the user would have the ability to alter his device’s ID if he were concerned by the accumulation

of information.

Selected 1,188 free applications from the popular ranking in Japan’s Google Play from January

to April, 2012. Since many users choose their applications from this ranking, consideration of this

to be a good sample of applications used in Japan. Investigated the network traffic generated by

these applications. The applications sent 107,859 GET / POST HTTP packets. The experiment

environment was a Nexus S, Android 2.3.6.

Table 3.2 shows the number of HTTP packets destined for the most common hosts and the

number of applications that send to each destination domain. Note that many applications send

HTTP packets to the same destinations, and that some of these domains, such as “admob.com”

and “ad-maker.info”, are clearly advertisement services. Other domains are Web API service

providers. Many of investigated applications send information to advertisement servers. During

this experiment that several applications have multiple advertisement modules (e.g., AdMob,

AdMaker, Adlantis, and MicroAd). Suspecting of applications switch from one module to another,

depending on the user’s device environment, such as country or carrier, to improve the revenue.

Figure 3.2 shows the cumulative frequency distribution of HTTP host destinations of

investigated applications. From this, confirmed most of the targeted applications connect to

multiple servers. From examination of the HTTP host destinations, 81 applications (7%) have

1 destination, 885 applications (74%) have up to 10 destinations, and 1,006 (90%) application

have up to 16 destinations. The average number of destinations was 7.9. One application included

an embedded browser, and thus had the largest number of destinations at 84.

Table 3.3 shows the number of HTTP packets, applications, and HTTP host destinations that are

touched by sensitive information, where sensitive information is considered to be: UDIDs (IMEI,

IMSI, SIM Serial ID, and Android ID), UDIDs’ hashed values, and carrier name. IMEI refers

to the assigned device number, IMSI to the assigned telephone service subscriber number in the

SIM card, SIM Serial ID to the assigned SIM card number, and the Android ID to the assigned

Android instance number, which is generated at Android’s initial boot. The Android ID is the

most frequently used identifier. Many examples of sensitive information being sent to the same

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 50

Figure 3.2 Frequency Distribution of HTTP Host Destinations. Out of 1,188 applications total, 81

(7%) have 1 destination, 885 (74%) have up to 10 destinations, and average number of destinations

was 7.9.

destination. For example: “ad-maker.info”, “mydas.mobi”, “medibaad.com”, and “adlantis.jp”

expect IMEI and Android ID; “zqapk.com” expects IMEI, SIM Serial ID, and carrier name; and

“googlesyndication.com” and “admob.com” expect only Android ID.

From these results, the user’s sensitive information is accessed by applications which send it

to outside servers via the network. Since Android does not provide the usage history of runtime

applications’ permissions, the users cannot observe the application’s network behavior, and thus

cannot prevent the sensitive information leakage.

3.4 Approach

Presented the following HTTP packet clustering and signature generation methods to address

the problem described in Section 4.3. The objective of proposed approach is to without an

Android framework modification, detect suspicious network behavior, specifically the transmission

of sensitive information by an application to an outside server. Additionally, proposed system

should be practical and lightweight for users to apply. Ideally, users would install the application

component of proposed system to handle all the network transmissions generated by other

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 51

Figure 3.3 (a) The architecture of proposed clustering and signature generation system. (b) The

information flow control application that uses the signatures generated by (a).

applications. Proposed approach is to collect network traffic and generate signatures from the

clustering of the traffic. If sensitive information is sent unencrypted over the network, it is a fairly

simple matter to detect such transmission, and signature generation can help to counteract leakage

even when sensitive information is nondeterministically altered or obfuscated by an application’s

Software Development Kit (SDK) such as the Apperhand [135]) which is an advertisement SDK

acted unwanted behavior for user. It is also effective against encrypted traffic that uses the same

encryption key over a variety of modules or applies a cryptographic hash function to sensitive

information.

3.4.1 Overview

Figure 3.3 shows proposed approach, which consists of two parts. First, a separate server (shown

in Figure 3.3a) collects application traffic, clusters the data, and generates signatures. Second, an

information flow control application on the user’s device (shown in Figure 3.3b) fetches signatures

from the server and manages the transmission of other applications’ network traffic.

The server generates signatures by the following process. First, it performs a payload check,

which separates application network traffic into two groups: one containing packets with sensitive

information, and the other not. Second, the server clusters the group containing sensitive

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 52

information based on packet destination distance and content distance. Finally, it constructs

a set of signatures from the clustering result using conjunction signatures [105], then sifts out

overly general signatures and the actual sensitive information values, which assumption is to

be device or advertisement service provider specific, and thus not useful for identifying future

leakage. The screening process is most effective when the seed packets contain accurate patterns

of sensitive information leakage, and proposed clustering and signature choices reflect that. Using

the HTTP packet distance emphasizes patterns in HTTP packets, allowing us to distinguish trends

and distributions of HTTP packets. Thus a packet with sensitive information will be clustered with

other packets containing the same sensitive information, generating a useful signature. For that

reason, definition of distance to include both packet content and packet destination. This broader

definition causes packets sent to the same server to be clustered together, creating advertisement

module specific signatures.

The information flow control application inspects network traffic using the Android API

VpnService on Android 4.0 and later, which does not require any special privileges. On Android

2.3 special privileges for iptables are required for packet inspection.

3.4.2 HTTP Packet Destination Distance

The HTTP packet destination distances are calculated by the packets’ destination IP addresses,

port numbers, and HTTP host domains. Given two HTTP packets px and py, definition of the

HTTP packet destination distance to be:

ddst(px, py) = dip(px, py) + dport(px, py) + dhost(px, py).

Let HTTP packet pn destination be defined as pn = {ipn, portn, hostn}, where ipn is a destination

IPv4 address, portn is the port number, hostn is HTTP host. The distance in the above equation is

defined as follows:

• Destination IP Address Distance: The distance between destination IP addresses’ high bit

is the longest matching prefix of the binary representations. IPv4 addresses have a 232 bit

space, and IP address blocks are denoted approximately by the upper 8 bit range. IP address

blocks are allocated to organizations by the National Internet Registry and if the upper bits

of IP addresses match on separate packets, there is a high possibility that the two destinations

are managed by the same organization. Therefore, definition of the destination IP address

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 53

distance on packets px, py as

dip(px, py) = lmatch(ipx, ipy)/32 ∈ [0, 1]

where lmatch is a function returns a number of common upper bits in two IP address.

• Port Number Distance: The distance between port numbers is a Boolean: matching or not.

Port numbers have a 216 bit space, and usually specific port number is reserved for services.

Definition of the port number distance on packets px, py as

dport(px, py) = match(portx, porty) ∈ {0, 1}

where match is a function returns 1 on matching ports, and 0 on different ports.

• HTTP Host Distance: definition of the HTTP host as the character string of the Fully

Qualified Domain Name (FQDN). Thus, the distance between HTTP host domains can be

computed using the generality method to determine their edit distance. Definition the HTTP

Host distance on packets px, py as

dhost(px, py) =
ed(hostx, hosty)

max(len(hostx), len(hosty))
∈ [0, 1]

where ed is a function which returns an edit distance result, len is a function which returns

a length of character strings, and max is a function which returns the greater of its two input

values.

3.4.3 HTTP Packet Content Distance

The HTTP packet content distance is computed using the request-line, cookie, and

message-body fields of the HTTP header. Given two HTTP packets px and py, definition of the

HTTP content distance dheader(px, py) as

dheader(px, py) = drline(px, py) + dcookie(px, py) + dbody(px, py).

Let HTTP packet pn contents be defined as pn = {rlinen, cookien, bodyn}, where rlinen is

request-line, cookien is cookie, bodyn is message-body. These contents are character or binary

strings. In order to accurately compute a distance, the applying of the normalized compression

distance (NCD) algorithm [136], which is based on Kolmogorov’s complexity, to calculate the

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 54

closeness of two strings without any context dependency. The NCD of any two character strings is

defined as

ncd(x, y) =
C(xy) − min(C(x),C(y))

max(C(x),C(y))
where C(x) is a function which compresses a character string x, then returns its length. Definition

of the distance between content components of HTTP packets px, py as

ddata(px, py) = ncd(datax, datay) ∈ [0, 1]

where data corresponds to request-line, cookie, and message-body respectively. After each data

has been computed, they are combined into the overall distance.

3.4.4 Hierarchical Clustering

Hierarchical clustering uses group averages for iterative calculation and computes the proximity

of clusters with HTTP packet distance (HTTP packet destination distance and HTTP packet content

distance) as a heuristic. It then assigns a cluster to each HTTP packet, and iteratively composes

new clusters from the nearest distance of HTTP packet pairs until there is only one cluster. Given

two HTTP packets px and py, definition of the HTTP packet distance as

dpkt(px, py) = ddst(px, py) + dheader(px, py)

using the formula from sections 3.4.2 and 3.4.3 to compute ddst and dheader. Given two clusters Cx

and Cy, group average distance is defined as

dgroup(Cx,Cy) =
1

|Cx||Cy|
∑

px∈Cx

∑
py∈Cy

dpkt(px, py).

In a dataset of N HTTP packets H = {pi}i=1..N , hierarchical clustering is applied to a subset P of

size M: P j, j=1..M ⊂ H, using the following method:

(1) Assign each HTTP packet pk ∈ P to cluster Ck. At the end of this step, C = {Ck}k=1..M is the

set of defined clusters.

(2) Chose any cluster Cx ∈ C, and compute the distance to all other clusters Cy,y=1..M ∈ C, x , y

using the cluster distance dgroup.

(3) Select the cluster Cy that is the closest to Cx. Create a new cluster Cz = {Cx,Cy} and add it

to C, then remove Cx and Cy.

(4) Repeat until C has one cluster.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 55

3.4.5 Signature Generation

The generating of a conjunction signature set from the hierarchical clustering result, which

is a dendrogram of the HTTP packet group. A conjunction signature set contains the invariant

tokens that describe the longest common substrings (LCS) in the dendrogram. Signatures each

represent a feature of the cluster. That is, they reflect sensitive information as an invariant token.

Given a dataset of N HTTP packets H = {pi}i=1..N and a subset P j, j=1..M ⊂ H used to generate

(as described in Section 3.4.4) dendrogram C, which has the nesting structure characteristic of

clusters, generating of the conjunction signature set using the following process:

(1) Select the top of cluster Ci ∈ C.

(2) Compute a signature S i as LCS of HTTP contents in Ci.

(3) Remove Ci from C and repeat for all clusters in C.

3.4.6 Signature Screening

A conjunction signature set contains many general signatures such as POST, GET, HTTP/1.1

which match most network packets. Proposed system screens signature candidates by checking

whether a candidate determines most non-sensitive packets to be sensitive. Such signatures are

considered too general and are removed from the conjunction signature set. If the signatures

are not screened in this manner, proposed system blocks almost all applications’ network traffic.

Additionally, proposed system screens for patterns of UDIDs and hashed UDIDs from the

conjunction signature set. Since different each devices generally have different UDIDs, these

signatures are not useful when detecting network traffic.

3.5 Evaluation

3.5.1 Experimental Setup

Collection of network traffic is from 1,188 free applications running on an Android 2.3.6,

Nexus S, from January to April, 2012. The application set was as described in Section 4.3.

Each application was run manually for 5 to 15 minutes on the device. Attempting is to test

every possible application function. Generated the network traffic manually, since it is difficult

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 56

to automatically test an application that requires user interaction such as entering passwords and

other user identification, or correct screen taps for a game.

The resulting dataset of application network traffic contained 107,859 GET / POST HTTP

packets. For this experiment, the dataset is manually separated into a suspicious group and a

normal group. In practice, this separation task would be automatically processed by the payload

checking system, using previously generated signatures. Manual separation would only be needed

to evaluate the signatures’ detection rate and at the initial start-up. The suspicious group consisted

of packets containing sensitive information. The normal group was made up of those not containing

sensitive information. Again, considered UDIDs (Android ID, IMEI, IMSI, and SIM Serial ID),

hashed UDIDs (MD5, SHA1), and carrier name to be sensitive information.

In this experiment, encrypted packets were not concerned, and did not observe any applications

which nondeterministically changed or obfuscated sensitive information. In addition, the dataset

did not contain mail addresses, address lists or changeable parameters such as location. Therefore,

this evaluation does not include nondeterministic or obfuscation signatures except the hashes

mentioned above. The suspicious group consisted of 23,309 HTTP packets, and the normal group

contained 84,550 HTTP packets. The details of the suspicious group are shown in Table 3.3.

Selected N HTTP packets at random out of the suspicious group for signature generation and

screening, where N was increased from 100 up to 600 in intervals of 100. Finally, the generated

signatures is applied to the dataset in its entirely to see how accurately they could identify packets

containing sensitive information.

3.5.2 Experimental Results

Figure 3.4 shows the results of this experiment. Evaluation of the percentage of true positives,

false positives, and false negatives for varying values of N.

True Positive: a correctly detected packet containing sensitive information. The percentage of

true positives was calculated according to the following equation:

TP =
number of detected sensitive information packets − N

number of sensitive information packets − N

There were 23,309 sensitive information packets in the dataset for this evaluation. Proposed system

produced 85% true positives at sampling size N = 100. It grew to > 90% by N = 200, with the best

result being 97% at N = 600. These results show that true positives rise as the number of signature

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 57

Figure 3.4 Detection Rate of Sensitive Information Leakage.

generating sensitive information packets increases, implying that signatures generated from more

packets cover a wider common pattern of information leakage.

False Negative: a sensitive packet that was not correctly detected. The calculation is percentage

of false negative results using following equation:

FN =
number of undetected sensitive information packets

number of sensitive information packets − N

As stated above, there were 23,309 sensitive packets in the dataset. In this experiment, there were

15% false negatives at N = 100, only 8% or less for N ≥ 200, and finally 3% at N = 600.

Thus, effective detection of information leakage is improved by increasing the number of sensitive

information packets used for generating signatures.

False Positive: a non-sensitive packet incorrectly detected as sensitive. the percentage of false

positives is calculated using following equation:

FP =
number of detected non-sensitive information packets

number of non-sensitive information packets

This value is important for an evaluation of proposed system’s signatures detection rate in terms of

practicality. If proposed system produces many false positives, users will be continually bothered

by unnecessary warnings and prompts. This dataset had 84,550 non-sensitive information packets.

The signatures from this dataset produced 0.3% false positives at N = 100, 0.9% at N = 200, and

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 58

eventually 3.2% at N = 600. More general signatures are generated by increasing the number of

clustering packets. Lrge signature generating sets produce signatures that detect packets without

relation to their information leakage.

3.6 Discussion

3.6.1 Approach Consideration

Other approaches to preventing sensitive information leakage include taint tracking and

permission framework modifications. In this section, comparing of proposed approach with current

research results, and discuss the limitations of proposed scheme.

These clustering methods use malware traffic with characteristic patterns for clustering. Focused

sensitive information in benign traffic using novel packet distance measures. Proposed approach is

applied to a real dataset to test for sensitive information leakage.

Clustering in general is useful for pulling together patterns in large amounts of data, but the

number of the generated signatures tend to increase with cluster size, and can produce signatures

that match most network packets (e.g., POST *, GET *, * HTTP/1.1), if signature generation is

applied carelessly. For this reason, it has been difficult for a signatures approach to achieve high

detection rates using a real dataset.

3.6.2 Complexity Analysis

the time and space complexity of the worst case for clustering and signature generation

algorithms are analyzed.

Take the clustering input to be size N packets. The time complexity is O(N3), as there are N

steps and at each step the packet distance matrix of at worst size N2 must be updated and searched.

The space complexity is O(N2) because the packet distance matrix must be stored.

Take the signature generation input to consist of M clusters. The time complexity is O(M), as

there are M steps each with a comparison of a cluster’s LCS to that of its children. The space

complexity is O(M2), as the matrix of the clusters’ LCS must be stored.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 59

3.7 Conclusion
Application developers adopt advertisement service revenue mechanisms. These application

with regards to security and privacy risk, then Investigation of application behavior is important to

protect personal information. Many Android applications permission require sensitive information

access and network features, and that among them are applications that connect to many outside

servers without the user’s acknowledgment. Moreover, observation of applications’ network

behavior contains a large amount of sensitive information, particularly immutable identifiers such

as UDIDs. The proposed information leakage protection method is contributed as follows.

• In order to detect sensitive information leakage from applications, proposed novel clustering

method using HTTP packet distances contains both the distance between HTTP packet

destinations and the distance between HTTP packet contents. For improving detection

accuracy, approach uses clustering method in combination with signature generation and

signature screening.

• On experimental results with dataset consists with 1,188 applications and 107,859 packets.

It has 23,309 sensitive information packets, approach shown that 97% accurate detection of

packets containing sensitive data with only 3% false positives.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 60

Table 3.2 HTTP packet destinations. This table shows the number of packets sent to each HTTP

host destination, and the number of applications that send packets to each HTTP host destination.

HTTP Host Destination # Packets # Apps

doubleclick.net 5786 407

admob.com 1299 401

google-analytics.com 3098 353

gstatic.com 1387 333

google.com 3604 308

yahoo.co.jp 1756 287

ggpht.com 940 281

googlesyndication.com 938 244

ad-maker.info 3391 195

nend.net 1368 192

mydas.mobi 332 164

amoad.com 583 116

flurry.com 335 119

microad.jp 868 103

adwhirl.com 548 102

i-mobile.co.jp 3729 100

adlantis.jp 237 98

naver.jp 3390 82

adimg.net 315 72

mbga.jp 1048 63

rakuten.co.jp 502 56

fc2.com 163 52

medibaad.com 1162 49

mediba.jp 427 48

mobclix.com 260 48

gree.jp 228 45

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 3 Detection of Sensitive Information Leakage in Android Applications 61

Table 3.3 Sensitive Information. This table shows for each type of information considered

sensitive, the number of packets containing the information, the number of applications that send

those packets, and the number of destinations to which those packets go.

Sensitive Information # Packets # Apps # Destinations

ANDROID ID 7590 21 75

ANDROID ID MD5 10058 433 21

ANDROID ID SHA1 1247 47 12

CARRIER 2095 135 44

IMEI (Device ID) 3331 171 94

IMEI MD5 692 59 15

IMEI SHA1 1062 51 13

IMSI (Subscriber ID) 655 16 22

SIM Serial ID 369 13 18

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 62

Chapter 4

Detecting and Characterizing of Mobile
Advertisement Network Traffic

4.1 Introduction

Advertisement (ad) modules access sensitive user data and send this information to outside

servers using the device’s network connection [31, 54, 56]. If the user does not have the opportunity

to accept or deny the ad module behavior, this is a privacy violation. Grace et al showed that more

than 100 ad modules distribute users’ sensitive information [55].

Examined the applications’ network traffic, and found that 797 applications included 45 known

ad modules [31, 54, 55, 56]. These have characteristic network traffic patterns for acquiring ad

content, specifically images. In order to identify ad modules’ network traffic, a novel method

based on the distance between network traffic graphs mapping the relationships between HTTP

session data (such as HTML or JavaScript). The similarity between the sessions that derives a

detection of ad modules’ traffic by comparing session graphs with the graphs of already known ad

modules.

Of proposed approach that converts the network traffic into graphs. The result shows that

dataset consisted of 4,698 graphs from ad network sessions (called ad graphs), and 16,205 graphs

of other network sessions. Using 1,000 randomly selected known ad graphs as training set,

proposed approach were able to identify 76% of the other known ad graphs. This training set

does not includes one vertex graphs. Since some ad modules have different network patterns, a

real world system would need to carefully select ad graphs that covering ad modules’ network

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 63

Figure 4.1 An overview of an ad modules’ network behavior. Application bundles include ad

modules, which connect to their suppliers’ servers to download ad images or provide user statistics.

behavior. Evaluation of proposed approach using 6,093,682 packets generated by 1,188 free

Android applications from the Top 100 and the Recent Uploads lists in Google Play Japan. Known

ad graph subset to 2,000 other session graphs (referred to as candidate ad graphs) and 2,000 graphs

from standard application traffic (referred to as standard graphs) which were manually identified

as representing as yet unknown ad modules network traffic. In this evaluation, proposed method

accurately detected 96% of candidate ad graphs and under 10% false positive rate of standard

graphs. Additionally, the examination of an effect of one vertex graphs in training set for detection

rate. In the result, training set without one vertex graphs shows improved detection rate 6.7% of

known ad graphs and 3.5% of candidate ad graphs.

The main contributions is considered to be:

• A method for generating graphs of HTTP sessions that can be used to show relationships

between sessions.

• A process, using this method, for detecting ad module traffic even when it is interleaved with

normal application traffic.

4.2 Background

4.2.1 Permission Framework

Android provides a permission framework for an application privileges management.

Permissions are linked to specific resources and an application needs the appropriate permission

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 64

to access a specific resource. At the time of writing, there are 151 permissions defined by Android

API level 21 [134].

4.2.2 Advertisement Modules

Figure 4.1 shows an ad module’s network behavior. In general, an ad module is an SDK provided

by the ad service provider, and is executed as part of the application. During execution, an ad

module connects to its provider’s server.

Ad modules usually provide the following three features. First, an ad delivery service that

periodically gets ad images and displays them on the user’s device. Second, a mediation service

that combines multiple ad delivery services. Mediation services optimize ad processing by

accessing device information. Third, ad modules collect user statistics, such as application

run-time information history and device location, and periodically send this information to outside

servers. Typical ad modules are Google’s admob [137], Mobclix [138], and Flurry [139]. Admob

uses the device identification number for targeted ads. Mobclix connects multiple ad services,

in different applications, and adjusts its ad images accordingly. Flurry collects a run-time log of

application behavior to generate user statistics.

4.3 Problem Description

4.3.1 Advertisement Modules Behavior

Typical ad module behavior is shown in Figure 4.2. If an application uses an ad module, the

application must acquire the permissions required by the ad module. This process can build a

sense of distrust for two reasons. In some cases, the ad module takes advantage of the essential

permissions required by the application but not required for ad module operation. In other cases,

the application does not require certain permissions, but requests these permissions on behalf of

the ad module.

Many applications’ permission combinations require both INTERNET and sensitive

information (e.g., LOCATION, PHONE STATE and CONTACTS) permissions in the section

3.3. The ad modules attached to these applications can access sensitive information without

additional user acknowledgment, and send it to outside servers. The Android permission

framework does not support a privilege separation granularity on the level of SDK, so the user

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 65

Figure 4.2 An overview of the organization and permissions of an application that includes an ad

module. The ad module can use the application’s permissions the access sensitive information on

the device and send it over the network.

cannot limit the part of an application’s permissions that applies only to the ad module SDK.

Therefore, if a user notices privacy violations carried out by the ad module, she cannot restrict the

application’s network behavior without rewriting the application.

4.3.2 Advertisement Modules Traffic Analysis

HTTP Sessions

In order to understand ad modules’ network behavior in detail, The HTTP GET requests in

the network traffic data is collected and analyzed from 1,188 free applications. Table 4.1 shows

the number of HTTP GET requests sent for each content type. Table 4.2 details the image sizes

generally downloaded by the various content types in HTTP responses. In the HTTP GET requests

are investigated, the most common request was for image files, and the second most common was

for text. In HTTP GET responses, the most common response image size was 320 x 50. The

images of this size, and they primarily represented ads for various services are manually reviewed

(e.g., games, goods). Therefore, almost all 320 x 50 images are downloaded by ad modules.

Advertisement image downloading

The analysis of HTTP GET requests shows that applications downloading images are likely

to be doing so for an ad module. Examination of how many ad modules were included in

analyzed applications, and inspected each ad module’s sequence of network traffic during ad image

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 66

Table 4.1 The number of HTTP GET requests for each type of with content. The most commonly

requested content types (in decreasing order) are image files, script files, and document files.

Content Type # HTTP GET Requests

jpg 13941

png 12539

gif 9197

php 5888

js 5114

css 2870

html 2093

json 841

txt 380

jpeg 282

JPG 128

Total 53273

downloads. A set of 120 already known ad modules is used for this investigation [31, 54, 55, 56].

To detect the suspicious ad modules’ network traffic, these are filtered packets by the ‘Host’ field

in the HTTP header contained a known ad module’s name. This is rough selection method of ad

modules’ network traffic, it is manually comprehended the detail of these traffic whether is ad or

not.

Table 4.3 shows the number of applications that include certain ad modules, and the methods

that those ad modules used to download images. Analyzed applications’ network traffic contained

traffic from 45 known ad modules; and 797 applications included at least one ad module. Google’s

ad modules “doubleclick.net” and “admob.com” were widely used. Japanese ad modules such as

“adlantis.jp” and “mediba.jp” are identified. In addition, some applications contained mediation

service modules (“adwhirl.com”, “mobclix.com” and “mobfox.com”) and others had multiple

ad modules. Analysis result shows that application ad module usage varies depending on the

environment of device (e.g., country, network).

A set of rules that define the process of downloading an ad image is identified. The HTTP

sessions consist of HTML, JavaScript, and HTTP redirects. An HTTP redirect that causes data to

be fetched from a different URL, HTML and JavaScript is effective for ad delivery, because they

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 67

Table 4.2 Content types banner image sizes in HTTP GET responses. Banners of size 320x50 are

most commonly downloaded by ad modules. Banners of size 300x48 are the next most common.

Content Type Image Size

320x48 320x50 300x48 300x50

jpg 57 278 2 4

png 271 870 0 59

gif 248 1197 0 115

jpeg 25 249 0 20

Total 601 2594 2 198

Figure 4.3 An overview of proposed approach. First, the known ad module network traffic is

separated out. Next, ad graphs from the remaining network traffic is extracted by comparing the

candidate graph distance from ad graph. Finally, new ad graphs is predicted.

allow dynamic control on the server side: an ad module can renew an ad image on the user’s device

at any given point in time, and different redirections allow different ad images to be displayed for

each user without having to update the ad module. HTTP redirects and transitions to other domains

used as load balancing method by the Content Delivery Networks (CDNs) that generate ad images,

or provide mediation services for optimizing ad revenue, depending on the device location.

4.4 Approach
In this section, presented methods for: generating graphs from network traffic, and for

calculating the graph distance between two such graphs. Discussion of how graph distance can

be used to detect ad modules’ network traffic as described in Section 4.3. The objective is to detect

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 68
Ta

bl
e

4.
3

T
he

nu
m

be
ro

fa
pp

lic
at

io
ns

th
at

in
cl

ud
e

ad
m

od
ul

es
,a

nd
th

e
m

et
ho

ds
th

os
e

ad
m

od
ul

es
us

ed
to

do
w

nl
oa

d
im

ag
es

.T
he

to
ta

l

nu
m

be
ro

fa
pp

lic
at

io
ns

ex
ce

ed
s

th
e

nu
m

be
ro

fa
na

ly
ze

d
ap

pl
ic

at
io

ns
,b

ec
au

se
so

m
e

ap
pl

ic
at

io
ns

co
nt

ai
n

m
or

e
th

an
on

e
ad

m
od

ul
e.

N
o.

A
d

M
od

ul
e

#
A

pp
A

d
Pa

th

H
T

M
L

Ja
va

Sc
ri

pt
H

T
T

P
R

ed
ir

ec
t

O
th

er
D

om
ai

ns

1
do

ub
le

cl
ic

k.
ne

t
39

7
x

2
go

og
le

-a
na

ly
tic

s.
co

m
35

1
x

3
ad

m
ob

.c
om

33
7

x

4
go

og
le

sy
nd

ic
at

io
n.

co
m

24
4

x

5
flu

rr
y.

co
m

11
0

6
ad

la
nt

is
.jp

78
x

7
ad

w
hi

rl
.c

om
57

x
x

x

8
m

ed
ib

aa
d.

co
m

49
x

9-
11

in
m

ob
i.c

om
,i

nm
ob

ic
dn

.n
et

,i
nm

ob
i-

jp
.c

om
44

x
x

12
m

ed
ib

a.
jp

30
x

13
m

yd
as

.m
ob

i
24

x

14
ai

rp
us

h.
co

m
19

15
m

ob
cl

ix
.c

om
17

x
x

16
w

iy
un

.c
om

14
x

17
m

op
ub

.c
om

10
x

x

18
m

ob
fo

x.
co

m
10

x
x

19
-4

5
U

nd
er

10
ap

pl
ic

at
io

ns
m

od
ul

es
76

14
9

1
9

To
ta

l
45

18
75

20
14

2
17

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 69

an ad module’s network traffic, specifically the receipt of ad images by an ad module bundled in

an application. The unique pattern of ad module HTTP sessions is focused, which start with an

HTML or JavaScript request, then it downloads ad images, HTML or JavaScript files from a server,

often after one or more redirects. Some HTTP sessions share same cookie is identified.

Figure 4.3 shows proposed approach, which consists of two phases. First, the network traffic is

separated into two groups, and apply proposed graph transformation algorithm to them in order to

generate graph groups representing 1) known ad modules and 2) graphs to be tested for ad content

(candidate ad graphs). In the second phase, detection whether or not a network traffic graph was

generated by an ad module. Specifically, the candidate ad graphs are compared with the known

ad graphs using graph distance, and if the result of graph distance calculation is under a certain

threshold, classified network traffic as ad modules generated.

4.4.1 Graph Definition

In this paper, graph has labeled vertices and labeled edges. Let LV and LE be the finite sets of

possible vertex and edge labels. A graph is a 4-tuple G = (V, E, µ, ν), where V is a set of finite

vertices, E ⊆ V × V is the set of finite edges, µ : V → LV is a function assigning labels to the

vertices, and ν : E → LE is a function assigning labels to the edges. If vi is vertex in V , then

ei j = (vi, v j) is edge between vertices vi and v j in E, and Ei∗ ⊆ E is the set of finite edges of vertex

vi. If V = ∅ then G is an empty graph.

4.4.2 Graph of HTTP Sessions

The graph of HTTP sessions is constructed using an HTTP request and response pair derived

from HTTP headers. Given an HTTP request and response, definition of an HTTP session graph

vertex as the HTTP request and response pair, and the label of that vertex as the HTTP request

line and content type from its HTTP header; that is, the vertex label of HTTP session v is LV(v) =

(rline, ctype).

HTTP is a stateless protocol, which consists mainly of simple exchanges: an HTTP request

from the client and an HTTP response from the server. Even though HTTP sessions do not usually

relate to other HTTP sessions, content data between HTTP sessions can have direct relationships.

Specifically, the ad module traffic discussed in section 4.3.2 involves multiple HTTP sessions

following a standard set of patterns:

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 70

Figure 4.4 Ad module HTTP session graphs. (a) Graph of doubleclick, consisting of 5 vertices

and 4 edges. One image vertex connects to both JavaScript and HTML vertices, while the other

image vertex connects only to the HTML vertex. (b) Graph of mydas, consisting of 8 vertices and

7 edges. All 3 image vertices share the same cookie, but connect to different HTML vertices. One

HTML vertex connects to another HTML vertex, as well as a JavaScript vertex.

• URL in HTTP Message-Body : Based on HTML or JavaScript, the original response

includes URL in HTML or JavaScript, which causes new HTTP requests to start another

HTTP sessions to access to included URL.

• HTTP Cookie : A relationship between multiple HTTP sessions, where the HTTP header

field includes session information for the client and server.

• HTTP Persistent Connections : Multiple HTTP sessions related by their use of one TCP

session.

• HTTP Redirect : HTTP sessions related by one URL forwarding to another URL.

These relationships to be assigned and labeled the edges. Given two HTTP sessions of vertices

v1 and v2, definition of an edge as e12 = (v1, v2) if a relation exists in between v1 and v2, and

definition of the edge label LE(e12) = (url, cookie, persistent, redirect) as the type of relation the

edge represents. i.e., v1 and v2 have only same url, edge label shows LE(e12) = (url) that has the

type of relations in two vertices.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 71

Figure 4.4 shows two sample graphs extracted from dataset. Both graphs represent relationships

between ad modules’ HTTP sessions, showing how many images and HTML or JavaScript files

are downloaded and connected to each other.

4.4.3 Graph Distance

The similarity of two graph is computed by several graph matching algorithms in [140].

Proposed approach uses graph distance in [141], which computes the most common subgraph

and uses that to determine the similarity between the graphs. Given two non-empty graphs G1 and

G2, definition of the graph distance d(G1,G2) as

d(G1,G2) =
|mcs(G1,G2)|

max(|G1|, |G2|)

where mcs(G1,G2) is a function which returns the most common subgraph of G1 and G2; |G| is
the number of vertices in graph G; and max is a function which returns the greater of its two input

values.

4.4.4 HTTP Session Distance

Computing the distance between HTTP sessions requires two steps. First, graphs are generated

from the network traffic using the graph translation algorithm described in section 4.4.2. Second,

the similarity between the graphs is calculated using the graph distance algorithm from section

4.4.3. The graph distance requires the largest common subgraph between any two graphs, which

is computed using Ullman’s backtrack method [142]. The consistency of HTTP sessions is

determined by matching vertices and edges to find the maximum common subgraph.

Algorithm 1 takes two HTTP session graphs, G1 and G2, as input, and outputs the permutation

matrix P that represents a graph isomorphism from a subgraph of G2 to a subgraph of G1. Let M1

and M2 denote the adjacency matrices of G1 and G2 respectively; n and m, the number of vertices

of G1 and G2 ; P = (pi, j), the n× n permutation matrix whose initial state is pi j = 0; i, j = 1, . . . , n;

and k, the number of matching vertices between G1 and G2, which is incremented before calling

Backtrack.

The Backtrack function (pseudocode included in Algorithm 1) is designed to find a permutation

matrix that represents a graph isomorphism from G2 to G1. First, Backtrack checks k, and if k

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 72

is bigger than m, Backtrack returns the permutation matrix P. Backtrack then checks whether

the vertices v1,i and v2,k match, and then whether the edges E1,i∗ and E2,k∗ match (lines 13-14). If

vertices and edges both match, Backtrack sets pki ∈ P to 1 and pk j ∈ P to 0, where j = 0 . . . n, i ,

j. Finally, Backtrack determines whether P is a permutation matrix of a subgraph isomorphism

from G2 to G1 by comparing S k,k(M2) to S k,n(P)M1(S k,n(P))T . S k,n(P) denotes the i × n submatrix

of P, and P is valid subgraph isomorphism when S k,k(M2) = S k,n(P)M1(S k,n(P))T . S k,n(P) then

represents the matching of k vertices between G2 and G1. If P is subgraph isomorphism, recursive

on Backtrack after k is incremented.

4.4.5 Vertex and Edge Matching Rules

The vertex and edge matchings are computed using the graph labels. Given two graphs of HTTP

sessions G1 = (V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2), definition of matchings as follows:

• Vertex matching : Two vertices vi ∈ V1 and v j ∈ V2 is considered to be matching if their

all vertex labels LV1(vi) = (rlinei, ctypei) and LV2(v j) = (rline j, ctype j) are the same, i.e.

rlinei = rline j and ctypei = ctype j.

• Edge matching : Two edge groups Ei∗ ⊆ E1 and E j∗ ⊆ E2 is considered to be matching if any

of their contained edge pairs, eia ∈ Ei∗ and e jb ∈ E j∗, have matching labels, where if edge

labels LE1(eia) and LE2(e jb) are equal, then the two edges are matching.

4.5 Evaluation

4.5.1 Experimental Setup

Evaluation dataset contains 1,188 free applications from Google Play Japan’s Top 100 and

Recently Uploaded lists from January to April 2012, and collected the network traffic generated

by running each application manually for 5 to 15 minutes on Android device.

Collected network traffic dataset contained 6,093,682 packets, and the total data size was 5.6

GBytes. There were 5,565,529 HTTP packets, and HTTP GET / POST requests made up 107,859

packets. Graphs are generated from this dataset, resulting in 4,696 generated ad graphs. Table 4.4

shows the number of graphs of each ad module. There were 16,205 other graphs which were not

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 73

generated by known ad modules. However, it is reasonable to assume that these graphs contain

other ad module traffic and standard application traffic.

2,000 of these graphs (candidate ad graphs) are manually classified and 2,000 graphs from

standard traffic (standard graphs), in order to evaluate the validity of proposed approach. All

ad modules’ name and traffic is not be able to collect, because ad modules are developed by a

lot of company in worldwide. Assumption that is proposed approach detects general cases of ad

modules’ traffic with only major ad modules’ graphs. Therefore, candidate ad graphs is classified

and standard graphs to evaluate see if proposed approach has availability of detection or not.

Evaluation process determined which graphs were likely to be ad graphs by carefully investigating

each graph’s topology. If graph contained an image label vertex that, when viewed was an ad

image, it is defined as a candidate ad graph. This step does not depend on ‘Host’ field in the

HTTP header. Assumption that accuracy ad modules’ name are extracted from static analysis of

application. Since ad graphs is only identified by their images, then may be text-based ad modules

that were not considered. Table 4.5 shows the number of candidate ad graphs are able to associate

with an ad module. Encrypted packets were not considered in this experiment.

The entirely of proposed approach is tested as follow. First, an ad module and N ad graphs

at random is selected from each ad module’s known graphs (see Table 4.4) except for one vertex

graphs, where N was raised from 100 to 1,000 in intervals of 100. The N known ad graphs is used

to test how accurately proposed approach could identify other ad graphs, and to see what could be

detected about the 2,000 candidate ad graphs. Additionally, evaluation of false positive rate that

shows how many graphs in 2,000 standard graphs could be detected by N known ad graphs. In

detection rate, investigation shows that one vertex graphs affect to detection rate. the comparison

of detection rate in between training set includes one vertex graphs and other set does not include

it.

4.5.2 Experimental Results

Figure 4.5 shows the number of detected known ad graphs per graph distance, and Figure 4.6

shows the number of detected candidate ad graphs per graph distance. In both cases, the Y axis

shows the number of detected ad graphs, and the X axis, the graph distance between graphs. these

results is used to determine the threshold detecting ad graphs. If the distance between a candidate

and a known ad graph is 1, the graphs are identical, so the candidate must be an ad graph. A

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 74

Table 4.4 The number of graphs associated with each known ad module, converted from the

dataset traffic. Ad modules’ traffic was selected using destination domain matching.

No. Ad Module # Graphs

1 google-analytics.com 1385

2 doubleclick.net 843

3 googlesyndication.com 408

4 admob.com 393

5 medibaad.com 363

6 mediba.jp 188

7 flurry.com 187

8 madserving.cn 131

9 adlantis.jp 114

10 mobclix.com 114

11 mydas.mobi 101

12 adwhirl.com 95

13 mopub.com 54

14 airpush.com 41

15 yicha.jp 35

16 inmobicdn.net 33

17 inmobi.com 31

18 mobfox.com 21

19 jumptap.com 15

20 adfonic.net 14

21 wiyun.com 14

22 mdotm.com 13

23 admarvel.com 12

24 domob.cn 12

25 inmobi-jp.com 10

26-45 others (under 10 graphs) 69

Total 45 4696

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 75

Table 4.5 The number of candidate ad graphs, associated with various ad modules. The traffic

to convert to graphs was selected using domain matching in the HTTP headers and patterns of ad

image downloading.

No. Candidate Ad Module # Graphs

1 ad-stir.com 229

2 ad-maker.info 140

3 nend.net 82

4 i-mobile.co.jp 63

5 microad.jp 58

6 amoad.com 51

7 adsmogo.com 49

8 droidhen.com 37

9 wallsmobile.com 33

10 menue.fm 32

11 pianoman-am.com 29

12 adimg.net 28

13 adlayout.net 28

14 shufoo.net 28

15 naver.jp 26

16 adresult-sp.jp 23

17 edgesuite.net 23

18 durasite.net 23

19 goo-net.com 20

20 carsensor.net 19

21 strikead.com 18

22 adsta.jp 16

23 umeng.com 16

24 madvertise.de 15

25-254 others (under 15 graphs) 914

Total 254 2000

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 76

threshold of 0.5 is selected, because in that case at least half of the graph is an isomorphism to an

ad graph.

Figure 4.7 shows the detection rate of known ad graphs for varying values of N, and Figure 4.8

shows the detection rate of candidate ad graphs for varying values of N, and Figure 4.9 show the

false positive rate of standard graphs for varying values of N. The Y axis shows the detection rate

proposed approach achieves according to the values of N (shown on the X axes).

4.5.3 Training Set Screening

While investigating detection case in the experiments, if a small graph (only one vertex) was

included in the training set, it matched many other small graphs, generating excessive false

positives. Therefore, small graphs is avoided when determining the final training set.

In detail of this decision effect, comparison of detection rate of training set includes one vertex

graphs whether or not. Figure 4.10 shows the improved detection rate of known ad graphs and

candidate ad graphs for varying values of N except for one vertex graphs. used threshold is 0.5 in

both cases. The detection rate are improved at 6.7% by N = 100 to 1.4% by N = 1,000, ad graphs.

In candidate ad graphs, detection rate are decreased at 3.5% by N = 100 to 0.7% by N =1,000.

In proposed method, it derives to a distance is 1 that the case of one vertex graph is compared

with one vertex graph. Then a distance is decreased from 0.5 in two vertices graph. If training set

includes one vertex graphs, almost other one vertex graphs and two vertices graphs are detected as

ad modules’ traffic by proposed method. When training set has small number of graphs, this case

directory affects to detection rate. Therefore, conclusion is one vertex graphs do not model correct

ad modules’ network traffic pattern for training set.

4.6 Discussion

4.6.1 Detection Rate Consideration

The experimental results show that this approach can detect ad modules’ network traffic using

given ad graphs. The accurate detection of ad modules and false positive of standard traffic rely on

the value of the graph distance threshold.

When detecting other known ad graphs, proposed approach had a 50% detection rate at N =

1, 000 with a graph distance threshold 1, but at only N = 200, the detection rate approached 70%

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 77

Figure 4.5 Graph distance statistics using N known ad graphs to classify other known ad graphs.

Figure 4.6 Graphs distance statistics for candidate ad graphs using N known ad graphs.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 78

Figure 4.7 Detection rate of other known ad graphs using N known ad graphs.

Figure 4.8 Detection rate of candidate ad graphs using N known ad graphs.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 79

Figure 4.9 False positive rate of standard graphs using N known ad graphs.

Figure 4.10 Improved Detection rate of know ad graphs and other known ad graphs using N

known ad graphs except for only one vertex graphs.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 80

at a graph distance threshold of 0.5. All known ad modules’ groups (regardless of the size of N)

included at least 1 graph from each known ad module. Therefore, the conclusion is a small number

of N known ad graphs can be used to detect almost all ad modules’ network traffic. Different ad

modules produce similar network traffic, which shows that extracting a characteristic graph of an

ad modules network traffic is a good indicator of other ad modules’ network traffic.

When detecting candidate ad graphs, proposed approach only had a 50% rate of detection for all

N > 500 with a graph distance of 1. However, using a graph distance threshold of 0.5 increased

the detection rate to 90% by N = 200, indicating that the number of perfectly isomorphic graphs

does not increase noticeably for N ≥ 500, but that almost all candidate ad graphs are identifiable

at only N = 200 with in a distance of 0.5. This result shows that a small number of known ad

graphs can cover almost all candidate ad module graphs. the conclusion is candidate ad modules

and known ad modules have similar network behavior.

4.6.2 False Detection Rate Consideration

When false detected standard graphs, proposed approach had 1.5% by N = 100 in a graph

distance of 0.5 and 1.0. This rate is increased to under 10% by N = 1, 000. This result shows a

distance of 0.5 has more false positive than a distance of 1.0. It covers variety topology graphs

and not strict matching. Therefore, these reason leads to false positive case at distance of 0.5. The

conclusion is false positive rate is small effected from the number of know ad graphs. Proposed

approach could smoothly distinguish between ad graphs and standard graphs.

4.6.3 Ad Module Network Traffic Consideration

Proposed approach shows only a 70% detection rate for other known ad graphs, but a 90%

detection rate for candidate ad graphs. Ad module’s graphs can exhibit different topologies,

representing different network traffic patterns. Known ad graphs are randomly selected for the

training set, so represents only a part of the other known ad graphs, leading to the relatively low

detection rate. However, if the known ad graphs used for detection are carefully chosen, they

can support a variety of network behavior, resulting a high detection rate. In the experiments, the

candidate ad modules’ behavior (both in the original traffic and in the converted graphs) is similar

to that of known ad modules in the training set, particularly with regard to downloading images. It

is this similarity that leads to proposed approach’s high detection rate for candidate ad graphs.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 81

The experimental results show that the number of detectable graphs remain fairly consistent for

graph distance values over 0.5 and under 1. Ad modules’ destinations change frequently because

ad modules use cloud services or CDNs for load balancing. Additionally, an ad module update

might influence the module’s network behavior. However, proposed approach considers not only

destination IP addresses but also network traffic patterns including the URLs in HTTP contents, the

HTTP cookies, the HTTP persistent connections, and the HTTP redirects, so proposed approach

can still identify ad modules network traffic with a high level of accuracy.

4.6.4 Complexity Analysis

If the graph matching input is taken to be two graphs of HTTP sessions G1 and G2, the time

complexity is O(|G1||G2||G1 |), as there are |G1| steps and at each step, a permutation matrix of

at worst size |G2||G1 | be must be computed. The space complexity is O(|G1|2|G2|), because the

adjacency matrix of G1 and G2 and the permutation matrix of G1 must be stored.

4.7 Conclusion

Ad services are supplied by ad modules, which can have access to personal information. It is

pointed out that advertisement modules possibly which can violate the user’s privacy. Ad module

network traffic which are constructed by receiving ad contents over the network is characteristic

in applications. Previous works analyzing ad modules aim to identify ad modules with in

applications. These methods disassemble the application, or track information flow on the device.

Proposed approach uses only the network traffic relationships to detect ad modules’ activity and is

thus applicable even if static analysis is can not be used (e.g., large quantities of data in corporate

or WiFi networks). Additionally, while there are a small number of major ad service providers,

many smaller providers are unlikely to be detected by static analysis. However, the experiments

indicate that manually identified ad graphs are similar to known ad graphs, and thus previously

unknown modules could be detected by proposed approach using only a few known ad graphs.

The proposed advertisement traffic detection method is contributed as follows.

• In order to identify ad modules embedded in applications, new method is proposed for ad

module traffic identification. Proposed method generates a graph of ad module network

behavior focusing on the relationships between HTTP sessions, and computes the distance

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 82

between these graphs. In the evaluation, 1,188 Android applications’ network behavior

analyzed, which produced a dataset of 5,565,529 packets. 4,696 graphs of known ad modules

is then generated and 16,205 graphs of other traffic from dataset.

• Proposed approach showed a 76% detection rate when using 1,000 known ad graphs to

identify other known ad graphs, a detection rate of 96% for 2,000 manually selected

candidate ad graphs and under 10% false positive rate for 2,000 manually selected standard

graphs from the remaining 16,205 graphs. To further evaluation, a detection rate difference

is measured when training set includes one vertex graphs. In the result, training set without

one vertex graphs improved detection rates are 6.7% for known ad graphs and 3.5% for

candidate ad graphs.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 4 Detecting and Characterizing of Mobile Advertisement Network Traffic 83

Algorithm 1 : Subgraph isomorphism using Ullman’s method
Input: G1 = (V1, E1, µ1, ν1),G2 = (V2, E2, µ2, ν2)

Output: Matrix P, a subgraph isomorphism from G2 to G1

1: n⇐ |V1|
2: m⇐ |V2|
3: M1,M2 are adjacency matrices of G1,G2

4: P = (pi j) is n × n initial permutation matrix

5: k ⇐ 1

6: Backtrack(M1,M2, P, k)

7:

8: function Backtrack (M1,M2, P, k)

9: if k > m then

10: return P

11: end if

12: for all i⇐ 1 to n do

13: if vertex label matches (v1,i, v2,k) then

14: if edge label matches (E1,i∗, E2,k∗) then

15: pki ⇐ 1

16: for all j⇐ 1 to n do

17: if j , i then

18: pk j ⇐ 0

19: end if

20: end for

21: if S k,k(M2) = S k,n(P)M1(S k,n(P))T then

22: Backtrack(M1,M2, P, k + 1)

23: end if

24: end if

25: end if

26: end for

27: end function

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Conclusions 84

Chapter 5

Conclusions

5.1 Concluding remarks

In this dissertation, several novel techniques that may be useful in a multi-layered defense

against information leakage were introduced and evaluated.

In Chapter 1, it was argued that multiple layers of defense are an effective countermeasure

for information leakage. The importance of the OS and application layers was stressed. Kernel

vulnerability attacks on the OS being a significant security risk, novel countermeasures are needed

to mitigate this threat. Given the popularity of devices with applications that store user information,

the OS should prevent personal information leakage by novel network detection methods based on

traffic modeling. Three research problems were presented. The first problem is that the adversary

can defeat kernel countermeasures by executing an exploit code that leads to memory corruption

in the kernel mode. Although existing protective methods cannot solve this problem, the proposed

KMO does so by monitoring kernel virtual memory to identify illegal memory overwrites in the

kernel mode. The second and third problems involve applications that leak personal information

for advertising and tracking purposes. Previous security approaches are not able to deal with this

satisfactorily. From a network security perspective, automatic signature generation and inspection

of traffic at the network layer are effective at detecting personal information leaks without requiring

modification of the Android framework. The problem of classification and identification of

advertisement modules was introduced. The proposed network traffic modeling algorithm correctly

converts advertisement module network behavior into a graph, to identify applications contains

what kind of advertisement module is contained in the application.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Conclusions 85

In Chapter 2, it was noted that the OS must mitigate various attacks and reduce the attack surface

to prevent hostile exploitation of kernel vulnerabilities. Although KASLR, CFI, KPTI, and SMAP

/ SMEP mitigate kernel vulnerability to memory corruption and thus to privilege escalation or

the avoidance of security features, kernel layer attacks still have the potential to succeed. KMO,

the proposed novel security mechanism, provides a secret observer to monitor the original kernel

virtual memory. KMO has multiple inspection points to determine invalid kernel virtual memory

overwriting, identify malicious system call arguments, and prevent attacks through the direct

mapping region. In an evaluation of Linux, KMO was able to inspect system call arguments

and identify the memory corruption of security features. The performance overhead achieved

mitigation of this in terms of each system call invocation on the kernel. The web application

overhead for KMO monitoring has a small cost at the running process. KMO supports PCID on

TLB, which reduces the overhead penalty of KMO, to decrease the actual cost for monitoring and

virtual memory switching.

In Chapter 3, advertisement services, which are widely accepted among application developers

but pose security and privacy challenges, were considered. Many Android applications require

permissions for sensitive information access and network features; among them are applications

that connect to outside servers without the user’s knowledge. Furthermore, observations

of applications’ network behavior have shown that a large amount of sensitive information,

particularly immutable identifiers such as UDIDs, is routinely transmitted. A novel clustering

method is proposed using HTTP packet distances, including both the distance between HTTP

packet destinations and the distance between HTTP packet contents. This clustering method, in

combination with signature generation and screening, was used on a dataset of actual Android

applications and network packets, including sensitive information packets. The proposed method

was able to achieve highly accurate detection of packets containing sensitive data, at the cost of

relatively small false positives.

In Chapter 4, it was remarked that many “free” applications include ad services in order to obtain

developer revenue. Ad services are supplied by ad modules, which can violate the user’s privacy.

Ad module network traffic is identifiable by its use of HTTP redirection and use of HTML or

JavaScript requests to download ad images. A new method was proposed to identify ad modules

embedded in applications. The proposed method generates a graph of ad module network behavior

focusing on the relationships between HTTP sessions and computes the distance between these

graphs. In the evaluation, the network behavior of actual Android applications was analyzed,

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Conclusions 86

producing a dataset of network packets. From this dataset, known ad modules graphs and other

traffic graphs were generated. The proposed approach showed a high detection rate when using

the parts of known ad graphs to identify other known ad graphs, a high precision detection rate for

manually selected candidate ad graphs, and a low false positive rate for manually selected standard

graphs from the remaining graphs.

5.2 Future directions
This study has a number of limitations that need to be overcome in the future. In addition, it has

implications for the direction of future research in this field.

(1) OS Monitoring Enhancement

KMO keeps the virtual memory switching functions in the kernel virtual memory space and

then invokes them from the original kernel code. Although the adversary can potentially

target the KMO’s function, KASLR randomizes the virtual memory space, thus obscuring

the KMO function’s virtual addresses. The adversary identifies the valid monitoring data’s

virtual address of direct mapping to calculate manually the position from the physical page’s

virtual address. In response, KMO unmaps the secret pages of the direct mapping space in

the kernel virtual memory to reduce the attack surface. Future research should support other

security features that can run in this secret virtual memory space. This method could prevent

kernel vulnerability attacks that evade the monitoring mechanism of the kernel security

feature. The application overhead should be measured with other benchmark software,

and the cost of increasing the monitoring data should be investigated. Additionally, the

relationship between both monitoring timing and kernel vulnerability effects should be

examined for attack-detection capability.

(2) Application Traffic Monitoring Capability

The using of HTTP packet destination distance allows the proposed system to generate useful

signatures. A concern regarding the use of the destination distance is that two HTTP packets

may have close IP addresses, but be owned by different organizations, thus generating an

erroneously small distance. In practice, this situation is rare, so current implementation

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Chapter 5 Conclusions 87

does not specifically handle it. However, using a registration information process such as

WHOIS could be helpful for the verification of IP addresses and domain names, which could

be used to confirm the distances. The proposed approach also does not focus on encrypted

or obfuscated traffic. It can be difficult to detect sensitive information in SSL traffic, but if

an ad module uses one encryption key for all applications, or applies a deterministic hash

function to sensitive information, the proposed approach can detect it. Some ad modules

collect information supplied by the developers. If this traffic is small, the proposed approach

may not cluster and thus not detect it. Detection would require deeply investigating small

network traffic to determine the causes of sensitive information leakage from characteristic

network behavior. This is a feature to add in the future. Also, the applications investigated

in this study did not send email addresses, address lists, or location information; in future

work, the number and type of applications evaluated should be increased.

(3) Deep Analysis of Suspicious Applications Libraries

The proposed graph modeling process focuses on the sequence of HTTP sessions. However,

ad modules have other characteristic behaviors, such as refreshing images at predictable

intervals and responding to user actions [143]. Automatically modeling and extracting

protocol specifications from network traffic would improve the correctness of the ad module

behavior models; this will be attempted in future work. Other goals include improving the

exactness of the graphs and determining whether a combination of the approaches. Actually,

a detection rate difference was measured when the training set included one vertex graph:

it was found that the training set without the one vertex graph improved detection rates for

known ad graphs and candidate ad graphs. Additionally, consideration should be given to

the possibility of generating more general graphs from multiple known graphs, which would

(ideally) widely cover a variety of ad module network behavior. If this is possible, it would

decrease the total number of graphs without compromising the high detection rate. However,

if such a graph were large, it could increase the time required for graph comparisons. The

graph matching algorithm proposed has improved the time complexity of Ullman’s algorithm

[144], and so should be applied to the proposed approach in the future.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

Acknowledgements 88

Acknowledgements

I am cordially grateful to my supervisor Associate Professor Toshihiro Yamauchi of the Graduate

School of Natural Science and Technology at Okayama University for all the coordination and

encouragement, and for his invaluable directions and constructive suggestions on this research

activity and on writing this dissertation.

Many thanks also to Professors Akito Monden and Hideo Taniguchi of the Graduate School of

Natural Science and Technology at Okayama University for their brilliant comments and numerous

suggestions for revising this dissertation.

I greatly appreciate Mr. Satoshi Tonami, Mr. Kenichi Magata, and Mr. Yasushi Matsumoto of

Intelligent Systems Laboratory, SECOM Co., Ltd. for their support and useful advice ever since I

joined for SECOM Co., Ltd.

My sincere thanks also go to Professor Toyoo Takata of Iwate Prefectural University and

Professor Hiroyuki Seki of Nagoya University, who support me with an opportunity to conduct

this research.

Finally, I would also like to say a heartfelt thank you to my wife, sons, brother, and parents for

helping me during this challenging research period.

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 89

References

[1] Japan Network Security Association (JNSA), 2018 Information security incident investigation

report (Japanese), available from https://www.jnsa.org/result/incident/2018.html, (accessed

2019-10-09).

[2] National Center of Incident readiness and Strategy for Cybersecurity (NISC), Annual report

of Cyber security 2019 (Japanese), available from https://www.nisc.go.jp/active/kihon/pdf/

cs2019.pdf, (accessed 2019-10-09).

[3] Information-technology Promotion Agency, Japan (IPA), Information Security White Paper

2019 (Japanese), available from https://www.ipa.go.jp/security/publications/hakusyo/2019.

html, (accessed 2019-10-09).

[4] The New York Times, Ecuador Investigates Data Breach of Up to 20 Million

People, available from https://www.nytimes.com/2019/09/17/world/americas/ecuador-data-

leak.html, (accessed 2019-11-01).

[5] The Japan Times, 1.25 million affected by Japan Pension Service hack, available from https://

www.japantimes.co.jp/news/2015/06/01/national/crime-legal/japan-pension-system-hacked-

1-25-million-cases-personal-data-leaked/, (accessed 2019-11-01).

[6] Department of Justice, U.S. Attorney’s Office, Northern District of California, Former

Yahoo Software Engineer Pleads Guilty To Using Work Access To Hack Into Yahoo Users’

Personal Accounts, https://www.justice.gov/usao-ndca/pr/former-yahoo-software-engineer-

pleads-guilty-using-work-access-hack-yahoo-users, (accessed 2019-11-01).

[7] ZDNet, Adobe left 7.5 million Creative Cloud user records exposed online, available from

https://www.zdnet.com/article/adobe-left-7-5-million-creative-cloud-user-records-exposed-online/,

(accessed 2019-11-01).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 90

[8] Nikkei Asian Review, Customer data leak deals blow to Benesse, available from https://asia.

nikkei.com/Business/Customer-data-leak-deals-blow-to-Benesse, (accessed 2019-11-01).

[9] The Shadow Brokers, Lost in Translation1, available from https://steemit.com/shadowbrokers/

@theshadowbrokers/lost-in-translation, (accessed 2019-11-01).

[10] Reuters, Bangladesh Bank official’s computer was hacked to carry out $81 million heist,

available from https://www.reuters.com/article/us-cyber-heist-philippines/bangladesh-bank-

officials-computer-was-hacked-to-carry-out-81-million-heist-diplomat-idUSKCN0YA0CH,

(accessed 2019-11-01).

[11] The Japan Times, Cryptocurrency exchange Coincheck loses JPY 58 billion in

hacking attack, available from https://www.japantimes.co.jp/news/2018/01/27/national/

cryptocurrency-exchange-coincheck-loses-58-billion-hacking-attack/, (accessed 2019-11-01).

[12] Information Security Management System (ISMS), ISO 27001:2013, available from https:

//www.isms.online/iso-27001/, (accessed 2019-10-09).

[13] National Institute of Standards and Technology (NIST), SP 800 series, available from https:

//csrc.nist.gov/publications/sp800, (accessed 2019-10-09).

[14] The Center for Financial Industry Information Systems (FISC), Security Guidelines on

Computer Systems for Financial Institutions (Ninth Edition), available from https://www.

fisc.or.jp/publication/book/000020.php, (accessed 2019-10-09).

[15] The PCI Security Standards Council, PCI DSS, available from https://www.pcisecuritystandards.

org/ (accessed 2019-10-09).

[16] U.S. Department of Health & Human Services (HHS), Health Insurance Portability

and Accountability Act (HIPAA) and the Patient Protection and Affordable Care

Act (ACA), available from https://www.cms.gov/Regulations-and-Guidance/Administrative-

Simplification/HIPAA-ACA/index.html, (accessed 2019-10-09).

[17] Japan Institute for Promotion of Digital Economy and Community, The PrivacyMark system,

available from https://privacymark.org/, (accessed 2019-10-09).

[18] The Cybersecurity and Infrastructure Security Agency (CISA), U.S. Computer Emergency

Readiness Team (US-CERT), available from https://www.us-cert.gov/, (accessed 2019-10-09).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 91

[19] Japan Computer Emergency Response Team Coordination Center (JPCERT/CC), available

from https://www.jpcert.or.jp/, (accessed 2019-10-09).

[20] Lockeed Martin, The Cyber Kill Chain, available from https://www.lockheedmartin.com/en-

us/capabilities/cyber/cyber-kill-chain.html, (accessed 2019-10-09).

[21] Information-technology Promotion Agency, Japan (IPA), System Design Guide for

Thwarting Targeted Email Attacks, available from https://www.ipa.go.jp/security/vuln/

newattack.html, (accessed 2019-10-09).

[22] The MITRE Corporation, ATT&CK, available from https://attack.mitre.org/, (accessed

2019-10-09).

[23] National Center of Incident readiness and Strategy for Cybersecurity (NISC), Common

Standards for Information SecurityMeasures for Government Agencies and Related Agencies

(FY2018), available from https://www.nisc.go.jp/eng/pdf/kijyun30-en.pdf, (accessed 2019-10-09).

[24] Cloud Security Alliance (CSA), CSA Security Trust Assurance and Risk (STAR), available

from https://cloudsecurityalliance.org/star/, (accessed 2019-10-09).

[25] The GSMA Foundation, IoT Security Guidelines and IoT Security Assessment, available

from https://www.gsma.com/iot/iot-security/iot-security-guidelines/, (accessed 2019-10-09).

[26] International Organization for Standardization (ISO), ISO 28000:2007 (Specification for

security management systems for the supply chain), available from https://www.iso.org/

standard/44641.html, (accessed 2019-10-09).

[27] The Charter of Trust, available from https://www.charter-of-trust.com, (accessed 2019-10-09)

[28] Linux Vulnerability Statistics, available from https://www.cvedetails.com/vendor/33/Linux.

html. (accessed 2019-07-05).

[29] Chen, H., Mao, Y., Wang, X., Zhow, D., Zeldovich, N. and Kaashoek, F, M.: Linux kernel

vulnerabilities - state-of-the-art defenses and open problems, the 2nd Asia-Pacific Workshop

on Systems (APSys), (2011).

[30] Linux Kernel Defence Map, available from https://github.com/a13xp0p0v/linux-kernel-

defence-map. (accessed 2019-06-05).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 92

[31] Enck, E., Octeau, D., McDaniel, P. and Chaudhuri, S.: A Study of Android Application

Security, the 20th USENIX Conference on Security Symposium, (2011).

[32] Kemerlis, P, V., Polychronakis, M. and Keromytis, D, A.: ret2dir - Rethinking Kernel

Isolation, the 23rd USENIX Conference on Security Symposium, pp. 957 - 972, (2014).

[33] Linden, A. T.: Operating System Structures to Support Security and Reliable Software, ACM

Computing Surveys (CSUR), Vol. 8, No. 4, pp. 409 – 445, (1976).

[34] Security-enhanced Linux, available from http://www.nsa.gov/research/selinux/, (accessed

2018-08-10).

[35] Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N. and Boneh, D.: On the

effectiveness of address-space randomization. the 11th ACM Conference on Computer and

Communications Security (CCS), pp. 298 - 307, (2004).

[36] Abadi, M., Budiu, Mihai., Erlingsson, U. and Ligatti, J.: Control-Flow Integrity Principles,

Implementations, the 12th ACM Conference on Computer and Communications Security

(CCS), pp. 340 - 353, (2005).

[37] Kemerlis, P, V., Portokalidis, G. and Keromytis, D, A.: kGuard - Lightweight Kernel

Protection against Return-to-User Attacks, the 21st USENIX Conference on Security

symposium, (2012).

[38] Ingo Molnar, [announce] [patch] NX (No eXecute) support for x86, 2.6.7-rc2-bk2, available

from http://lkml.iu.edu/hypermail/linux/kernel/0406.0/0497.html, (2004). (accessed 2018-08-10).

[39] Mulnix D.: Intel R⃝ Xeon R⃝ Processor D Product Family Technical Overview, available from

https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview,

(2015), (accessed 2018-08-10).

[40] Lipp, M., Schwarz, M., Fellner, R., Maurice, C. and Mangard, S.: KASLR is Dead - Long

Live KASLR, 2017 International Symposium on Engineering Secure Software and Systems

(ESSoS), Vol. 10379, No. 3, pp. 161 - 176, (2017).

[41] CVE-2016-8655, available from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2016-8655. (accessed 2019-05-12).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 93

[42] CVE-2017-6074, available from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2017-6074. (accessed 2019-05-12).

[43] CVE-2017-7308, available from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2017-7308. (accessed 2019-05-12).

[44] CVE-2017-16995, available from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2017-16995. (accessed 2019-05-12).

[45] CVE-2017-1000112, available from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2017-1000112. (accessed 2019-05-12).

[46] CVE-2017-7533, available from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2017-7533. (accessed 2019-05-12).

[47] CVE-2016-9793, available from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2016-9793. (accessed 2019-05-12).

[48] CVE-2016-4997, available from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2016-4997. (accessed 2019-05-12).

[49] Exploit Database, Nexus 5 Android 5.0 - Privilege Escalation, available from https://www.

exploit-db.com/exploits/35711/. (accessed 2019-06-15).

[50] grsecurity: super fun 2.6.30+/RHEL5 2.6.18 local kernel exploit, available from https:

//grsecurity.net/∼spender/exploits/exploit2.txt. (accessed 2019-06-15).

[51] AppBrain, Number of available Android applications, available from http://www.appbrain.

com/stats/, (accessed 2014-02-06).

[52] Manuscript, inc.: Karelog, available from http://karelog.jp/, (accessed 2014-12-12).

[53] ASIAJIN, Android App Karelog Lets You Spy On Your Boyfriend Remotely, available from

http://asiajin.com/blog/2011/08/31/android-app-karelog/ , (accessed 2014-11-12).

[54] Hornyack, P., Han, S., Jung, J., Schechter, S. and Wetherall, D.: These Aren’t the Droids

You’re Looking For: Retrofitting Android to Protect Data from Imperious Applications, 18th

ACM Conference on Computer and Communications Security (CCS), (2011).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 94

[55] Grace, M., Zhow, W., Jian, X. and Sadeghi, A.: Unsafe Exposure Analysis of mobile In-App

Advertisements, 5th ACM Conference on Security and Privacy in Wireless and Mobile

Networks (WiSec), (2012).

[56] Stevens, R., Gibler, C. and Crussell, J.: Investigating User Privacy in Android Ad Libraries,

Mobile Security Technologies (MoST), (2012).

[57] Leontiadis, I., Efstratiou, C., Picone, M. and Mascolo, C.: Don’t kill my ads! Balancing

Privacy in an Ad-Supported Mobile Application Market, 13th ACM Sigmobile Workshop on

Mobile Computing Systems and Applications (HotMobile), (2012).

[58] Pearce, P., Felt, P, A., Nunez, G. and Wagner, D.: AdDroid: Privilege Separation for

Applications and Advertisers in Android, 7th ACM Symposium on Information, Computer

and Communications Security (AsiaCCS), (2012).

[59] Shekhar, S., Dietz, M. and Wallach, S, D.: AdSplit: Separating smartphone advertising from

applications, the 21st USENIX Conference on Security Symposium, (2012).

[60] Shu, R., Wang, P., Gorski III, A, S. andow, B., Nadkarni, A, Deshotels, L, Gionta, J, Enck, W.

and Gu, X.: A Study of Security Isolation Techniques, ACM Computing Surveys (CSUR),

Vol. 49, No. 3, pp. 1 – 37, (2016).

[61] Zhang, F. and Zhang, H.: SoK A Study of Using Hardware-assisted Isolated Execution

Environments for Security, the Hardware and Architectural Support for Security and Privacy

2016, pp. 1 - 8, (2016).

[62] Spencer, R., Smalley S., Loscocco, P., Hibler, M. andersen, D. and Lepreau, J.: The

Flask Security Architecture: System Support for Diverse Security Policies, the 8th USENIX

Conference on Security Symposium, (1999).

[63] Koning, K., Chen, H, B., Giuffrida, C. and Athanasopoulos, E.: No Need to Hide: Protecting

Safe Regions on Commodity Hardware, the Twelfth European System Conference (EuroSys),

pp. 437 - 452, (2017)

[64] Vahldiek-Oberwagner, A., Elnikety, E., Garg, D. and Druschel, P.: ERIM: Secure and

Efficient In-process Isolation with Memory Protection Keys, CoRR abs/1801.06822, (2018).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 95

[65] Mogosanu, L., Rane, A. and Dautenhahn, N.: MicroStache - A Lightweight Execution

Context for In-Process Safe Region Isolation, the 21st International Symposium on Research

in Attacks, Intrusions and Defenses (RAID), pp. 359 - 379, (2018).

[66] Frassetto, T., Jauernig, P., Liebchen, C. and Sadeghi A.-R.: IMIX - In-Process Memory

Isolation EXtension, the 28th USENIX Conference on Security Symposium, (2018).

[67] Kim, H, C., Kim, T., Choi, H., Gu, Z., Lee, B., Zhang, X. and Xu, D.: Securing Real-Time

Microcontroller Systems through Customized Memory View Switching, the 25th Network

and Distributed System Security Symposium (NDSS), (2018).

[68] K. Volodymyr., L. Szekeres., M. Payer., G. Candea., R. Sekar. and D. Song.: Code-Pointer

Integrity, 10th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), (2014).

[69] Song, C., Lee, B., Lu, K., Harris, W., Kim, T. and Lee, W.: Enforcing Kernel Security

Invariants with Data Flow Integrity, the 2016 Annual Network and Distributed System

Security Symposium (NDSS), (2016).

[70] Ge, X., Cui, W. and Jaeger, T.: GRIFFIN: Guarding Control Flows Using Intel Processor

Trace, the 22nd ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (APLOS), pp. 585 - 598, (2017).

[71] Huang, W., Huang, Z., Miyani, D. and Lie, D.: LMP: Light-Weighted Memory Protection

with Hardware Assistance, the 32nd Annual Conference on Computer Security Applications

(ACSAC), pp. 460 - 470, (2016).

[72] Yamauchi, T., Akao, Y., Nakamura, Y., Hashimoto, M.: Additional Kernel Observer to

Prevent Privilege Escalation Attacks by Focusing on System Call Privilege Changes, the

2018 IEEE Conference on Dependable and Secure Computing (DSC), (2018).

[73] Davi, L., D. Gens, C. Liebchen, and A.-R. Sadeghi.: PT-Rand: Practical Mitigation of

Data-only Attacks against Page Tables, the 23th Network and Distributed System Security

Symposium (NDSS), (2016).

[74] Pomonis, M., and Petsios, T.:“kRˆX: Comprehensive Kernel Protection against Just-In-Time

Code Reuse, the Twelfth European Conference on Computer Systems (EuroSys), pp. 420 -

436, (2017).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 96

[75] Hua, Z., Du, D., Xia, Y., Chen, H. and Zang, B.: EPTI - Efficient Defence against Meltdown

Attack for Unpatched VMs, 2018 USENIX Annual Technical Conference (ATC), 2018.

[76] Witchel, E, Rhee, J. and Asanovic, K.: Mondrix - memory isolation for linux using mondriaan

memory protection, the 20th ACM Symposium on Operating Systems Principles (SOSP), pp.

31 - 49, (2005).

[77] Castro, M., Costa, M., Martin, J., Peinado, M., Akritidis, P., Donnelly, A., Barham, P. and

Black, R.: Fast byte-granularity software fault isolation, the ACM 22nd Symposium on

Operating Systems Principles (SOSP), pp. 45 - 58, (2009).

[78] Hsu. C, T., Hoffman, K., Eugster, P. and Payer M.: Enforcing Least Privilege Memory

Views for Multithreaded Applications, the 2016 ACM Conference on Computer and

Communications Security (CCS), pp. 393 - 405, (2016).

[79] Litton, J., Vahldiek-Oberwagner, A., E. Elnikety, D. G., Bhattacharjee, B. and Druschel,

P.: Light-Weight Contexts - An OS Abstraction for Safety and Performance, 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI), (2016).

[80] Boyd-Wickizer, S. and Zeldovich, N.: Tolerating Malicious Device Drivers in Linux,

USENIX Annual Technical Conference (ATC), (2010).

[81] Tian, J, D., Hernandez, G., Choi, I, J., Frost, V., Johnson, C, P. and Butler, B, R, K.: LBM:

A Security Framework for Peripherals within the Linux Kernel, 2019 IEEE Symposium on

Security and Privacy, (2019).

[82] Hund, R., Willems, C. and Holz, T.: Practical Timing Side Channel Attacks against Kernel

Space ASLR, 2013 IEEE Symposium on Security and Privacy, pp. 191-205, (2013)

[83] Jang, Y., Lee, S. and Kim, T.: Breaking Kernel Address Space Layout Randomization with

Intel TSX, the 2016 ACM Conference on Computer and Communications Security (CCS),

pp. 380 - 392, (2016).

[84] Carlini, N., Barresi, A., Payer, M., Wagner, D. and Gross, T. R.: Control-Flow Bending:

On the Effectiveness of Control-Flow Integrity, the 24th USENIX Conference on Security

Symposium, pp. 161 – 176, (2015).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 97

[85] Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc without

Function Calls (on the x86), the 14th ACM Conference on Computer and Communications

Security (CCS), pp. 552 - 561, (2007).

[86] Song, D., Hetzelt, F., Das, D., Spensky, C. and Na, Y.: PeriScope: An Effective Probing

and Fuzzing Framework for the Hardware-OS Boundary, the 26th Annual Network and

Distributed System Security Conference (NDSS), (2019).

[87] Seshadri, A., Luk, M., Qu, N. and Perrig, A.: SecVisor - a tiny hypervisor to provide lifetime

kernel code integrity for commodity OSes, the 21st ACM Symposium on Operating Systems

Principles (SOSP), pp. 335 - 350, (2007).

[88] Azab, A., Swidowski, K., Bhutkar, R, Ma, J., Shen, W., Wang., R. and Ning, P.: SKEE: A

Lightweight Secure Kernel-level Execution Environment for ARM, the 2011 Network and

Distributed System Security Symposium (NDSS), (2016).

[89] Cho, Y., Kwnon, D., Yi, H. and Paek, Y.: Dynamic Virtual Address Range Adjustment for

Intra-Level Privilege Separation on ARM, the 2017 Network and Distributed System Security

Symposium (NDSS), (2017).

[90] McCune, M, J., et al.: TrustVisor - Efficient TCB Reduction and Attestation, 2010 IEEE

Symposium on Security and Privacy, (2010).

[91] Koromilas, L., Vasiliadis, G., Athanasopoulos, E. and Ioannidis, S.: GRIM - Leveraging

GPUs for Kernel Integrity Monitoring, the 19th International Symposium on Research in

Attacks, Intrusions and Defenses (RAID), pp. 3 - 23, (2016).

[92] Trusted computing group. tpm main specification, available from http://www.trustedcomputinggroup.

org/resources/tpm main specification, 2003, (accessed 2018-08-10).

[93] Sharif, I, M., Lee, W., Cui, W. and Lanzi, A.: Secure in-VM monitoring using hardware

virtualization, the 16th ACM Conference on Computer and Communications Security (CCS),

(2009).

[94] Deng, L., Liu, P., Xu, J., Chen, P. and Zeng, Q.: Dancing with Wolves: Towards

Practical Event-driven VMM Monitoring, the 13th ACM SIGPLAN/SIGOPS International

Conference, (2017).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 98

[95] Zhang, Z., Cheng, Y., Nepal, S., Liu, D., Shen, Q. and Rabhi, F.: KASR: A Reliable

and Practical Approach to Attack Surface Reduction of Commodity OS Kernels, the 21st

International Symposium on Research in Attacks, Intrusions and Defenses (RAID), (2018)

[96] Bailey, M., Oberheide, J., Andersen, J. and Mao, M, Z.: Automated Classification and

Analysis of Internet Malware, 10th Symposium on Recent Advances in Intrusion Detection

(RAID), (2007).

[97] Ingham, L, K. and Inoue, H.: Comparing Anomaly Detection Techniques for HTTP, 10th

Symposium on Recent Advances in Intrusion Detection (RAID), (2007).

[98] Wehner, S.: Analyzing Worms and Network Traffic using Compression, Journal of Computer

Security, Vol. 15, No. 3, pp. 303 - 320, (2007).

[99] Gu, G., Zhang, J. and Lee, W.: BotSniffer: Detecting Botnet Command and Control Channels

in Network Traffic, 18th Network and Distributed System Security Symposium (NDSS),

(2008).

[100] Bayer, U., Comparetti, M, P., Hlauschek, C., Krugel, C. and Kirda, E.: Scalable,

Behavior-Based Malware Clustering, 18th Network and Distributed System Security

Symposium (NDSS), (2009).

[101] Chung, Y, J., Park, B., Won, J, Y., Strassner, J. and Hong, W, J.: Traffic Classification

Based on Flow Similarity, IP Operations and Management, 9th IEEE International Workshop

(IPOM), (2009).

[102] Coull, E, S., Monrose, F. and Bailey, M.: On Measuring the Similarity of Network

Hosts: Pitfalls, New Metrics, and Empirical Analyses, 18th Network and Distributed System

Security Symposium (NDSS), (2009).

[103] Gu, G., Perdisci, R., Zhang, J. and Lee, W.: BotMiner: Clustering Analysis of

Network Traffic for Protocol- and Structure-Independent Botnet Detection, the 17th USENIX

Conference on Security Symposium, (2008).

[104] Perdisci, R., Lee, W. and Feamster, N.: Behavioral Clustering of HTTP-Based Malware

and Signature Generation Using Malicious Network Traces, 7th USENIX Symposium on

Networked Systems Design and Implementation (NSDI), (2010).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 99

[105] Newsome, J., Karp, B. and Song, D.: Polygraph: Automatically Generating Signatures for

Polymorphic Worms, IEEE Security and Privacy (S&P), (2005).

[106] Li, Z., Sanghi, M., Chen, Y., Kao, Y, M. and Chavez, B.: Hamsa*: Fast Signature

Generation for Zero-day Polymorphic Worms with Provable Attack Resilience, IEEE

Security and Privacy (S&P) (2006).

[107] Kong, D., Jhi, C, Y., Pan, Q., Zhu, S., Liu, P. and Xi, H.: SAS: Semantics Aware Signature

Generation for Polymorphic Worm Detection, 6th International ICST Conference on Security

and Privacy in Communication Networks (SecureComm), (2010).

[108] Ingols, K., Lippmann, R. and Piwowarski, K.: Practical Attack Graph Generation for

Network Defense, the 22th Annual Computer Security Applications Conference (ACSAC),

(2006).

[109] Wondracek, G., Comparetti, M, P., Krugel, C. and Kirda, Engin.: Automatic Network

Protocol Analysis, 16th Annual Network and Distributed System Security Symposium

(NDSS), (2008).

[110] Cui, W., Kannan, J. and Wang, J. H.: Discoverer: Automatic Protocol Reverse Engineering

from Network Traces, the 16th USENIX Conference on Security Symposium, (2007).

[111] Lin, Z., Jiang, X., Xu, D. and Zhan, X.: Automatic Protocol Format Reverse Engineering

through Context-Aware Monitored Execution, 16th Annual Network and Distributed System

Security Symposium (NDSS), (2008).

[112] Comparetti, M, P., Wondracek, G., Kruegel, C. and Kirda, E.: Prospex: Protocol

Specification Extraction, IEEE Security and Privacy (S&P), (2009).

[113] Kolbitsch, C., Comparetti, M. P., Krugel, C., Kirda, E., Zhow, X. and Wang, X.: Effective

and Efficient Malware Detection at the End Host, the 18th USENIX Conference on Security

Symposium, (2009).

[114] Li, Z., Zhang, K., Xie, Y., Yu, F. and Wang, X.: Knowing Your Enemy: Understanding

and Detecting Malicious Web Advertising, 19th ACM Conference on Computer and

Communications Security (CSS), (2012).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 100

[115] Enck, W., Gilbert, P., Chun, B., Cox, P, L., Jung, J., McDaniel., P. and Sheth, N, A.:

TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on

Smartphones, 9th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), (2010).

[116] Zhemin, Y., Min, Y., Yuan, Z., Guofei, G., Peng, N. and Sean, X, W.: AppIntent: analyzing

sensitive data transmission in android for privacy leakage detection, 20th ACM Conference

on Computer and Communications Security (CCS), (2013).

[117] Enck, W., Ongtang, M. and McDaniel, P.: On Lightweight Mobile Phone Application

Certification, 16th ACM Conference on Computer and Communications Security (CCS),

(2009).

[118] Ongtang, M., McLaughlin, S., Enck, W. and McDaniel, P.: Semantically Rich

Application-Centric Security in Android, The 25th Annual Computer Security Applications

Conference (ACSAC), (2009).

[119] Nauman, M., Khan, S., Alam, M. and Zhang, X.: Apex: Extending Android Permission

Model and Enforcement with User-defined Runtime Constraints, 4th ACM Symposium on

Information, Computer and Communications Security (AsiaCCS), (2009).

[120] Jeon, J., Michinsk, K, K., Vaughan, A, J., Reddy, N., Zhu, Y., Foster, S, J. and Millstein, T.:

Dr. Android and Mr. Hide: Fine-grained security policies on unmodified Android, University

of Maryland, Department of Computer Science Technical Report (CS-TR-5006), (2012).

[121] Xu, R., Saidi, H. and Anderson, R.: Aurasium: Practical Policy Enforcement for Android

Applications, the 21st USENIX Conference on Security Symposium, (2012).

[122] Hao, H., Singh, Vicky. and Du, W.: On the Effectiveness of API-Level Access Control

Using Bytecode Rewriting in Android, 8th ACM Symposium on Information, Computer and

Communications Security (AsiaCCS), (2013).

[123] Xiao, Z., Amit, A. and Wenliang. D.: AFrame: Isolating Advertisements from Mobile

Applications in Android, the 29th Annual Computer Security Applications Conference

(ACSAC), (2013).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 101

[124] Rosen, S., Qian, Z. and Mao, M.: AppProfiler: A Flexible Method of Exposing

Privacy-Related Behavior in Android Applications to End users, Third ACM Conference

on Data and Application Security and Privacy (CODASPY), (2013).

[125] Toubiana, V., Narayanan, A., Boneh, D., Nissenbaum, H. and Barocas, S.: Adnostic:

Privacy Preserving Targeted Advertising, 17th Network and Distributed System Security

Symposium (NDSS), (2010).

[126] Bilenko, M., Richardson, M. and Tsai Y, J.: Targeted, Not Tracked: Client-side Solutions

for Privacy-Friendly Behavioral Advertising, The 11th Privacy Enhancing Technologies

Symposium (PETS), (2011).

[127] Barrera, D., Kayacik, G, H., Oorschot, P, C. and Somayaji, A.: A Methodology for

Empirical Analysis of Permission-Based Security Models and its Application to Android,

17th ACM Conference on Computer and Communications Security (CCS), (2010).

[128] Gilbert, P., Chun G, B., Cox, P, L. and Jung, J.: Automated Security Validation of Mobile

Apps for App Markets, Mobile Cloud Computing and Services, (2011).

[129] Schlegel, R., Zhang, K., Zhow, X., Intwala, M., Kapadia, A. and Wang X.: Soundcomber:

A Stealthy and Context-Aware Sound Trojan for Smartphones, 18th Network and Distributed

System Security Symposium (NDSS), (2011).

[130] Book, T., Pridgen, A. and Wallach, S, D.: Longitudinal Analysis of Android Ad Library

Permissions, Mobile Security Technologies (MoST), (2013).

[131] Felt, P, A., Wang, J, H., Moshchuk, A., Hanna, S. and Chin, E.: Permission Re-Delegation:

Attacks and Defenses, the 20th USENIX Conference on Security Symposium, (2011).

[132] Lipp, M., et al.: Meltdown - Reading Kernel Memory from User Space, the 27th USENIX

Conference on Security Symposium, (2018).

[133] CVE-2016-5195, available from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2016-5195. (accessed 2019-06-05).

[134] Google, inc. Android Developers Manifest.permission, available from http://developer.

android.com/reference/android/Manifest.permission.html, (accessed 2014-11-12).

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

References 102

[135] Lookout, inc.: Lookout’s take on the Apperhand SDK (aka Android.Counterclank),

available from https://blog.lookout.com/blog/2012/01/27/lookout’s-take-on-the-’apperhand’-

sdk-aka-android-counterclank/, (accessed 2014-12-12).

[136] Cilibrasi, L, R.: Statistical Inference Through Data Compression, Ph.D Thesis, Amsterdam

Universitity, (2007).

[137] Admob, available from http://www.google.com/ads/admob/, (accessed 2014-11-12).

[138] Mobclix, available from http://www.mobclix.com/, (accessed 2014-11-12).

[139] Flurry, available from http://www.flurry.com/, (accessed 2014-11-12).

[140] Conte, D., Foggia, P., Sansone, C. and Vento, M.: Thirty years of Graph Matching in Pattern

Recognition, International Journal of Pattern Recognition and Artificial Intelligence, Vol. 18,

No. 3, pp. 265 - 298, (2004).

[141] Bunke, H. and Shearer, K.: A graph distance metric based on the maximal common

subgraph, Pattern Recognition, Vol. 19, Issue 3 - 4, pp.255 - 259, (1998).

[142] Ullman, R, J.: An algorithm for subgraph isomorphism, Journal of the Association for

Computing Machinery, Vol. 23, No. 1, pp. 31 - 42, (1976).

[143] Narseo, R. V., Jay, S., Alessandro, F., Yan, G., Konstantina, P., Hamed, H. and Jon., C.:

Breaking for commercials: characterizing mobile advertising, the 2012 ACM conference on

Internet Measurement Conference (IMC), (2012).

[144] Messmer, T, B. and Bunke, H.: Subgraph Isomorphism in Polynomial Time, Technical

Report IAM-95-003, University of Bern, (1995)

Division of Industrial Innovation Sciences
Graduate School of Natural Science and Technology

