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Abstract— In Swarm Search and Service (SSS) applications,
swarm vehicles are responsible for concurrently searching an
area while immediately servicing jobs discovered while search-
ing. Multiple job types may be present in the environment.
As vehicles move in and out of the swarm to service jobs,
the coverage rate (i.e., area searched by the swarm per time
step) changes dynamically to reflect the number of vehicles
currently engaged in search. As a result, the arrival rates of
jobs also changes dynamically. When planning SSS missions, the
resource requirements, such as the swarm size needed to achieve
a desired system performance, must be determined. The dynam-
ically changing arrival rates make traditional queuing methods
ill-suited to predict the performance of the swarm. This paper
presents a hybrid method – Hybrid Model – for predicting the
performance of the swarm a priori. It utilizes a Markov model,
whose state representation captures the proportion of agents
searching or servicing jobs. State-dependent queuing models
are used to calculate the state transition function of the Markov
states. The model has been developed as a prediction tool to
assist mission planners in balancing complex trade-offs, but also
provides a basis for optimizing swarm size where cost functions
are known. The Hybrid Model is tested in previously considered
constant coverage rate scenarios and the results are compared
to a previously developed Queuing Model. Additional SSS
missions are then simulated and their resulting performance is
used to further evaluate the effectiveness of using the Hybrid
Model as a prediction tool for swarm performance in more
general scenarios with dynamically changing coverage rates.

I. INTRODUCTION

Robot swarm missions, known as Swarm Search and
Service (SSS) missions, require swarm vehicles to use decen-
tralized (i.e., local) control laws to simultaneously search a
given area and to identify and service any jobs that arise. For
example, forest fire applications may require any found brush
fire to be put out. Prior research, such as [1], has considered
missions to be complete as soon as targets are found or the
region has been searched. However, to successfully complete
a real mission, jobs found must also be serviced. Multiple job
types can be present, each requiring a different sized group of
vehicles to break off from the swarm for a different specified
length of time to successfully service it. Figure 1 depicts
a sample wildfire mission where 2 job types are present:
putting out small brush fires and attending to injured people.
In this example, the swarm traverses the environment with
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Fig. 1: Example SSS mission with two different job types.

a lawn mower pattern (yellow dashed line). When too many
jobs arrive in quick succession, there may not be enough
vehicles present in the swarm to service all jobs. This results
in one or more of the jobs being dropped (i.e., not serviced).
Once a job has been serviced, the vehicles used to service it
return to the swarm and are available for reallocation. Each
mission scenario consists of an environment with a different
distribution of jobs types.

In many SSS applications, the environment is open and
the coverage rate of the swarm dynamically varies with the
number of vehicles actively searching. More specifically, as
the number of vehicles in the swarm decreases (allocated
to service a job), the rate of coverage also decreases. This
results in an increase in time between the arrival of all job
types and vice versa for an increase in swarm size.

For many applications, negative consequences can result
from not immediately servicing jobs. In the case of forest
fire missions, failure to put out identified brush fires that
have been started with embers carried by the wind could
result in the fire spreading more rapidly. This may lead
to a loss of wildfire containment. Surveillance jobs may
require the tracking of suspicious targets within the search
area. In military applications, suspicious targets left without
surveillance could lead to unanticipated attacks. Due to the
costs associated with dropping a job and with deploying each
vehicle, an inherent trade-off exists between swarm size and
mission performance.

The work in this paper aims to develop a model to predict,
a priori, the performance of a swarm (of a given size)
deployed for an SSS mission with a given job distribution and
dynamically changing coverage and arrival rates. We present
a Hybrid Model that estimates the predicted performance of
the swarm by combining aspects of queuing theory with a
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Markov chain state space representation. The Hybrid Model
incorporates the following attributes: (1) a state space rep-
resentation that captures the dynamically changing coverage
rate resulting from vehicles moving in and out of the search-
ing swarm to service jobs, (2) the use of queuing theory
to determine the transition probabilities between swarm
states and (3) the utilization of the stationary distribution
to evaluate the average performance of the swarm.

The Hybrid Model is an extension to the previously
developed Queuing Model [2], which only considered a
special case of SSS missions where the swarm coverage
rate – and therefore the job arrival rate – of the swarm
remained constant. In applications where the costs of de-
ploying robots and dropping jobs can be explicitly defined,
the Hybrid Model can be used as a prediction tool to
determine the optimal swarm size to deploy. In scenarios
where humans are required for mission planning (e.g, to
make swarm deployment decisions or for making legal,
moral, or ethical decisions), the Hybrid Model can be used
by human operators as a planning tool aid. The Hybrid
Model prediction is compared against the Queuing Model
prediction in constant coverage rate scenarios (Section IV-
A). In addition, the Hybrid Model predictions are compared
to the results of simulated SSS missions in dynamically
changing coverage rate scenarios (Section IV-B).

II. RELATED WORK

In static vehicle routing target locations are known in
advance and the problem to be solved is planning explicit
routes to them [3][4]. In dynamic vehicle routing (DVR),
however, targets appear dynamically and the problem be-
comes determining policies for routing the vehicles [5].
Because demands are not known a priori, steady-state system
performance must be optimized [5]. In the past, DVR policies
have focused on assigning a predetermined vehicle or group
of vehicles to a partition of an area. Each vehicle or group of
vehicles then individually monitored their partition for new
jobs and adjusted the optimal service order for the current
jobs in their partition as required [5][6].

In [2] we developed a simple policy of optimally allocating
the nearest vehicles as new jobs are detected while the
swarm traverses the environment (as is the case in SSS
missions). A Queuing Model was then developed to predict
the performance of a swarm using these policies to service
jobs by modeling the system as a variant of the DVR problem
with time constraints. More specifically, the Queuing Model
was able to predict the relationship between swarm size and
the expected number of dropped jobs for SSS missions with
a given job distribution.

The initial work concentrated on applications where the
coverage rate of the swarm remained constant, such as in
urban environments where narrow streets could eliminate
the advantages of multiple robots searching abreast to cover
greater area. As a result, the arrival rate for all job types
remained constant throughout the environment, regardless
of the number of vehicles currently in the swarm (i.e., the
unallocated vehicles). Analysis showed that the Queuing

Model accurately modeled such SSS missions [2]. The use of
the predicted relationship between swarm size and dropped
jobs as a planning tool resulted in operators planning SSS
missions that resulted in better overall performance, fewer
used vehicles, and a lower unsearched area than those who
planned the mission without the tool [7]. However, traditional
queuing theory cannot be used to model systems where
arrival rates change dynamically according to an unknown
function. Therefore, it is ill-suited for more realistic applica-
tions where coverage rates vary dynamically.

Current research has explored how Markov chains can
be used to model the macroscopic behaviors of the swarm
as a whole [8]. In such models, a single Markov chain
state space and its corresponding transitions can represent
the entire swarm with each state representing the average
number of robots in a particular state [9][10]. Markov chain
representations have also been used for the probabilistic
guidance of robots in a swarm in formation generation
[11][12][13] and swarm splitting for task allocation [14].

III. METHOD OVERVIEW

The Hybrid Model presented below is an extension to the
previously developed Queuing Model [2], which was used
to estimate the predicted performance of an SSS mission a
priori. In the Queuing model, a Poisson process is used to
describe the arrival times of individual jobs, and the time
required to complete each job is drawn from an exponential
distribution. In this model, the coverage rate (i.e., area
searched per time step) of the swarm remains constant,
regardless of the size of the swarm.

The constant coverage rate assumption may be true in
urban environments with constrained streets. However, in
more general scenarios, the coverage rate varies as vehicles
leave the swarm to service arriving jobs (i.e., is dependent on
the number of vehicles left in the swarm). More specifically,
as the number of vehicles in the swarm decreases, the
rate of coverage will also decrease. Thus, jobs arrive less
frequently to the system (i.e., the arrival rate decreases).
The dynamically changing arrival rates make the Queuing
Model an infeasible solution. For small environments, em-
pirical studies can be used to simulate SSS systems with
dynamically changing arrival rates. However, as the size of
the environment grows, these simulations become computa-
tionally expensive. Therefore, we propose the use of a Hybrid
Model that captures the dynamically changing coverage rate
using a Markov chain state space representation. For each
state, queuing theory is utilized to calculate the transition
probabilities between itself and all other states using the
information provided from the state representation about the
distribution of robots over the jobs being serviced and the
those free to search. The stationary distribution is then used
to determine the expected a priori mission performance of
the swarm.

A. Queuing Theory

Consider an environment of size A. There are M job types
present in the environment. Jobs are randomly distributed



in the environment such that each location has an equal
probability of having a job (i.e., distributed randomly with
a uniform spatial density function). Their locations are i.i.d.
and are not known a priori. Given the expected distribution
of jobs over the environment, the job density for each job
type is given by Φ = [φ1, ..., φM ], where φm is the job
density for job type m. φm =

nm
job

A , where nmjob is the number
of expected jobs of type m in the environment.

In our formulation, the area covered by a swarm of n
vehicles in a single time step, ts, is given by F(n) and is
referred to as the coverage rate. This function is assumed
to be known a priori and is used as an abstraction of the
real-world attributes of the swarm, such as swarm formation,
sensing range, and vehicle velocities. As vehicles cover area,
jobs arrive to the system (i.e., jobs are dynamically sensed).
As jobs are distributed randomly and uniformly, their arrivals
follow a Poisson distribution. As in the queuing theory
literature [15], for jobs that arrive according to a Poisson
distribution: for a swarm of size n, the probability of k jobs
of type m arriving is given by

pma (λm(n), k) = e−λm(n)λm(n)
k

k!
, (1)

where λm(n) is the expected number of jobs of type m to
arrive in a single time step (the arrival rate)

λm(n) = φm · F(n). (2)

Each arriving job requires a specified amount of resources.
The resource requirements for each job type are defined by
the tuple jm =< nmservice, µm >, where nmservice and µm are
the required number of service vehicles and the mean service
time for a job of type m respectively. The set of all vehicle
and service time requirements can be defined as nservice =
[n1service, ..., n

M
service] and µ = [µ1, ..., µM ] respectively.

When jobs arrive and not enough vehicles are present in
the swarm, the job is dropped (i.e., not serviced). Similar to
other queuing formulations, the service times are assumed
to follow an exponential distribution [15]. Therefore, the
probability of a job of type m being completed in a single
time step is

pmc = 1− e−µm . (3)

All service times include the travel time between the job site
and the swarm.

For a swarm of size N , vehicles are either allocated and
servicing jobs or they are in the swarm searching area

N = Nbusy +Nsearch, (4)

where Nbusy is the number of vehicles currently allocated
to service jobs and Nsearch is the number of free vehicles
available to continue searching the environment. If Nsearch
were constant, then F would be constant and the previously
developed Queuing Model could be used to predict the
performance of the swarm. However, as jobs arrive and are
completed, vehicles dynamically move in and out of the
swarm resulting in F being state dependent.

B. State Space Representation

To represent the different system states that exist in SSS
mission scenarios, a discrete time Markov chain state space
representation is used. Discrete time Markov chains are a
stochastic model that are used to describe the evolution of
a finite number of states over discrete time. Each state is
assumed to be independent and memoryless. The transition
matrix, T , is an |S|×|S| matrix where |S| is the size of the
state space S. Each element, Tij defines the probability of
transitioning from state i to another state j in a time step
[16].

To capture the dynamically changing swarm size that
results from jobs arriving and being completed in SSS
missions, each state, si, is defined as si = [n1, ..., nM ],
where nm is the number of jobs of type m that are currently
being serviced at state si. The full state space is given by
S = {s1, ..., sK |N−nservice ·si ≥ 0}, where i ∈ {1, ...,K}.
Therefore, the valid states are those in which there are
enough vehicles in the swarm to service the current jobs in
the system. By using this state space representation each state
can encode both the number of vehicles currently allocated
(busy vehicles) and the number of vehicles left in the swarm
to search the remaining area (search vehicles). For each state,
the number of search vehicles left in the swarm is used to
determine the coverage rate for that swarm in that state (i.e.,
F(Nsearch)).

C. Transition Dynamics

At each time step, the following can happen: jobs arrive,
jobs are completed, or nothing (i.e., the swarm stays in the
same state). One or more things can happen within the same
time step. For each state, the transition probabilities are found
by calculating the state dependent arrival and completion
probabilities. For each job type, m, the set of all arrival
probabilities, Pma , is given by

Pma ={pma (λm(si), km = 0), ..., pma (λm(si), km = γm),

pma (λm(si), km > γm)},
(5)

where km is the number of jobs that arrive of type m and γm
is the maximum number of jobs of type m that can appear
at the same time without any of the jobs being dropped if
Nsearch(si) = N (i.e., no vehicles are already busy with
other jobs). pma (λm(si), km > γm) is found as follows

pma (λm(si), km > γm) = 1−
γm∑
km=0

pma (λm(si), km). (6)

For a state, si, a maximum of nm(si) jobs of type m can
be completed in a time step ,where nm(si) is the number of
jobs of type m currently being serviced at state si. Therefore,
the probability of χ jobs of type m being completed is

pmc (χ) =

(
nm(si)

χ

)
(pmc )χ(1− pmc )(nm(si)−χ). (7)



The set of all completion probability for each job type m in
state si is

Pmc = {pmc (χ = 0), ..., pmc (χ = nm(si))}. (8)

The joint probability of k jobs arriving and χ jobs com-
pleting is calculated for each combination of jobs arriving
and completing. Each joint probability, Pj contributes to
the transition from state si to a new state, sj . If sj ∈ S,
then the joint probability is added to the appropriate column
in the transition matrix. In cases where sj /∈ S, too many
jobs have arrived to the system at once and not all of them
can be serviced given Nsearch(si). Therefore, a policy for
determining the service priority of arriving jobs must be
defined. As a result of this policy, one or more jobs will
be dropped. Once the policy has determined which possible
state the joint probability can transition the current state to,
the joint probability can be added to the appropriate column
in the transition matrix. The total probability of dropping a
job in state si is defined as:

Pdrop(si) =
∑
j∈D

Pj , (9)

where D denotes the set of joint probabilities that, if allowed,
would cause the system to transition to an impossible state
(i.e., Nsearch(si) ≤ 0).

D. Steady State Distribution

Using the transition matrix, the steady state (or limiting)
distribution, π, of the system can then be found. The steady
state distribution describes the probability of being in each
of the states at any given time. The limiting distribution, π,
is defined as

π = lim
p→∞

T p · π0, (10)

where π0 is the initial distribution. In the case of SSS
missions, the system always starts off with zero jobs being
serviced (i.e., π0 = [1, 0, ..., 0]

′
). π is found by repeated

matrix multiplications. However, since it is possible to move
from any state to any other state in the finite state system and
there is a non-zero probability of staying in the same state,
the transition matrix is irreducible and aperiodic. Therefore,
the limiting probability is unique [15] and it also satisfies
the following

π = π · T and
∑
i

πi = 1. (11)

Thus, the steady state distribution can be found by solving
the linear system above. The steady state distribution can
then be used to determine the expected number of dropped
jobs, d as follows

d = (Pdrop · π)Ts, (12)

where Pdrop · π is the dot product between the probability
of dropping a job and the stationary distribution (i.e., a

weighted dropped job probability for one time step across all
states). Ts = t̄/ts is the total number of time steps required
to complete the mission, where t̄ is the weighted average
mission time across all the states. The mission time for each
state, si, is the average time Nsearch(si) vehicles would take
to cover the search area, A (i.e., A/Nsearch(si)).

E. Constant Coverage Rate Scenarios

Although the Hybrid Model was designed to model SSS
missions with varying coverage rates, the state space rep-
resentation can also model missions with constant coverage
rates. In such scenarios the coverage rate function which
defines the relationship between the real mission dynamics
(e.g., vehicle formation, sensing speed, velocity, etc.) is given
by F = r, where r is a constant and is not dependent
upon the number of available search vehicles. An example is
shown in Section IV-A. The results are also compared against
those given by the previously developed Queuing Model [2].

IV. EXPERIMENTAL RESULTS

The validation results shown in this section will consider a
wildfire scenario where the swarm is tasked with monitoring
injured people who may be trapped due to the rapidly
expanding fire (job type 1) and putting out brush fires that
have sparked (job type 2). A grid-based environment, 50x50
in size, is used to simulate mission where the swarm searches
the area using a lawn-mower (boustrophedon) pattern. Jobs
are spread across the environment randomly from a uniform
distribution. The environment is broken down in to 1x1 cells.
Only one job can be present in each cell. The Hybrid Model’s
ability to predict system performance is compared against the
previously developed Queuing Model in Section IV-A. The
Hybrid Model is further evaluated in scenarios with varying
coverage rates in Section IV-B. For both scenarios, two test
configurations were simulated where the number of each job
was varied, as summarized in Table II. Swarm sizes of 20,
25, 30 and 35 were tested.

TABLE I: Resource Requirements for Each Job Type

Job Type Required No. of Veh. µm (jobs/time unit)
1 10 1/10
2 15 1/2

TABLE II: Test Configurations

Configuration Type 1 Jobs Type 2 Jobs
1 10 10
2 15 10

The required resources for each job type is displayed in
Table I. Job Type 1 requires 10 vehicles while Job Type 2
requires 15. Table I also shows the mean service rate for
each job type. The two different job configurations shown
in Table II are explored for both the varying (Section IV-
B) and constant (Section IV-A) coverage rate validations. In
Configuration 1 there are 10 jobs of each type present in the
environment. Configuration 2 has 15 jobs of type 1 present
and 10 jobs of type 2 present.



(a) Configuration 1 (b) Configuration 2

Fig. 2: Comparison between the Hybrid Model and the previously implemented Queuing Model [2].

(a) Configuration 1 (b) Configuration 2

Fig. 3: Comparison between the simulated performance of the swarm and the predicted performance from the Hybrid Model.

A. Comparison to Queuing Model

Although the Hybrid Model’s state space was designed to
capture the dynamically changing coverage rate of the swarm
as it transitions from one state to another, it can also be used
to predict the performance in missions where the coverage
rate remains constant (e.g., urban settings) by setting the
coverage rate function F equal to a constant. To evaluate
the Hybrid Model’s ability to model constant coverage rate
scenarios, it is compared with the previously developed
Queuing Model [2]. The Queuing Model assumed a constant
coverage rate of 1 cell per time step (i.e., F(n) = 1).
Both models were used to predict the swarm performance in
the two environment configurations given by Table II. The
swarm size versus the predicted number of dropped jobs
is shown in Figure 2. Figure 2a displays the comparison
between the Hybrid Model and the Queuing Model for
Configuration 1, while Figure 2b shows the comparison for
Configuration 2. The results of the Hybrid Model are shown
with the black dashed line, while the Queuing Model results
are shown with the solid red line.

B. Simulation Validation

The grid world SSS mission was simulated in MATLAB.
The two configurations in Table II were simulated using

the resource requirements for the two job types shown in
Table I. The location of all jobs was randomly and uniformly
distributed for each simulated mission. Each cell could only
be occupied by 1 job. The swarm was assumed to travel in
a line formation where every robot sensed 1 cell per unit of
time (F(n) = n). The dropped job policy used prioritized
servicing jobs that required fewer vehicles.

For each swarm size tested, the results for 100 simulated
missions were averaged. Figure 3 displays the swarm size
versus the number of dropped jobs. The predicted values
from the Hybrid Model are shown with the black dashed
line, the simulated results are shown in blue. The solid color
line represents the mean value, while the standard deviation
is shown with the surrounding colored region. Configuration
1 and 2 are shown in Figures 3a and 3b respectively.

V. DISCUSSION

Figure 2 indicates that the Hybrid Model is able to
effectively predict swarm performance for cases where the
swarm maintains a constant coverage rate. The predicted
values given by the Hybrid Model are very similar to those
found using the Queuing Model in both configurations.
This illustrates the appropriateness of the Hybrid Model for
use in predicting the performance of swarms in previously
considered constant coverage rate scenarios.



The results in Figure 3 show that the Hybrid Model is
also able to accurately model SSS missions with dynamically
changing coverage rates for configurations where the relative
arrival rates between the job types is the same (Figure 3a)
and when they differ (Figure 3b). For both configurations
the predicted values from the Hybrid Model fall within
one standard deviation around the mean of the simulated
values. For the same swarm size, the number of dropped
jobs increases as the total job density in the environment
increases. In both the prediction and the empirical study
the number of dropped jobs decreases as the swarm size
increases. The results further illustrate the appropriateness of
the Hybrid Model as a prediction tool for a broader variety of
SSS missions, including those with varying coverage rates.

For illustration purposes the results presented in this paper
were found using a dropped job policy that prioritized
servicing jobs with a lower vehicle requirement. However,
the Hybrid Model formulation is flexible enough to allow
for any dropped job policy to be used. The choice of policy
affects the determination of which feasible state an identified
dropped job transition leads to. In other words, it modifies
the determination of the leaf node transitions in the transition
matrix. Other possible policies could include jobs being
serviced in a random order or jobs being serviced in order of
their cost where cost is defined as the product of the number
of vehicles needed and their service time, etc.

Furthermore, the formulation of the Hybrid Model gives
the model the ability to capture different real world features
and constraints on SSS missions such as the swarm’s for-
mation, sensor coverage, vehicle velocity, etc. These real
world constraints and their effect on the coverage rate of the
swarm given the number of vehicles currently in the swarm
are mapped in to the functional relationship represented by
F(n). By including this direct bridge between the real world
scenario and the formulation for the arrival rates of each job
type, the model is able to accurately describe the dynamics
of the real mission. The functional relationship represented
by F(n) can be determined for each unique SSS mission
scenario, thus ensuring that the Hybrid Model is reflective
of the real world state dynamics of the swarm.

VI. CONCLUSION AND FUTURE WORK

This paper presented a Hybrid Model for predicting the
performance of a swarm during Swarm Search and Service
missions. The state space representation provided a method
for capturing the dynamically changing arrival rates caused
by the difference in coverage rates. The predicted perfor-
mance given by the Hybrid Model was compared against
a previously validated Queuing Model. Results show little
difference between the performance values predicted by the
Hybrid Model and the Queuing Model, illustrating the ap-
propriateness of the Hybrid Model for previously considered
scenarios. In addition, a validation study was performed to
compare the predicted system performance from the Hybrid
Model to simulation results. The results illustrate that the
Hybrid Model is able to describe the performance of the

swarm for more general missions where the coverage rate
dynamically changes with swarm size.

While the previously developed Queuing Model was re-
stricted to dropping jobs when resources were exceeded,
future work could extend the Hybrid Model to substitute
pauses for the dropping of jobs by including additional
pausing states. Instead of dropping a job, the job would
be delayed until sufficient vehicles returned to service it.
Expected pausing times would then be reflected through
increased mission times making the model better suited to
applications in which servicing of all jobs is crucial. In
addition, the use of the model as a planning tool aid for
human operators who are tasked with determining resource
requirements while balancing complex interactions between
mission parameters will be evaluated.
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