
Power Management Strategies for Wired

Communication Networks

by

Qun Yu

Bachelor of Engineering

Beijing Information Science and Technology University

2000

Submitted to the Graduate Faculty of

the School of Computing and Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Qun Yu

It was defended on

December 13th, 2019

and approved by

Dr. Taieb Znati, School of Computing and Information, University of Pittsburgh

Dr. Martin B.H. Weiss, School of Computing and Information, University of Pittsburgh

Dr. Prashant Krishnamurthy, School of Computing and Information, University of Pittsburgh

Dr. Daniel Mosse, School of Computing and Information, University of Pittsburgh

Dr. Balaji Palanisamy, School of Computing and Information, University of Pittsburgh

Dissertation Director:

Dr. Taieb Znati, School of Computing and Information, University of Pittsburgh

ii

Copyright c© by Qun Yu

2020

iii

Power Management Strategies for Wired Communication Networks

Qun Yu, PhD

University of Pittsburgh, 2020

With the exponential traffic growth and the rapid expansion of communication infrastruc-

tures worldwide, energy expenditure of the Internet has become a major concern in IT-reliant

society. This energy problem has motivated the urgent demands of new strategies to reduce

the consumption of telecommunication networks, with a particular focus on IP networks. In

addition to the development of a new generation of energy-efficient network equipment, a

significant body of research has concentrated on incorporating power/energy-awareness into

network control and management, which aims at reducing the network power/energy con-

sumption by either dynamically scaling speeds of each active network component to make

it capable of adapting to its current load or putting to sleep the lightly loaded network

elements and reconfiguring the network. However, the fundamental challenge of greening

the Internet is to achieve a balance between the power/energy saving and the demands of

quality-of-service (QoS) performance, which is an issue that has received less attention but

is becoming a major problem in future green network designs. In this dissertation, we study

how energy consumption can be reduced through different power/energy- and QoS-aware

strategies for wired communication networks.

To sufficiently reduce energy consumption while meeting the desire QoS requirements,

we introduce several different schemes combing power management techniques with different

scheduling strategies, which can be classified into experimental power management (EPM)

and algorithmic power management (APM). In these proposed schemes, the power manage-

ment techniques that we focus on are speed scaling and sleep mode. When the network

processor is active, its speed and supply voltage can be decreased to reduce the energy con-

sumption (speed scaling), while when the processor is idle, it can be put in a low power

mode to save the energy consumption (sleep mode). The resulting problem is to deter-

mine how and when to adjust speeds for the processors, and/or to put a device into sleep

mode. In this dissertation, we first discuss three families of dynamic voltage/frequency

iv

scaling (DVFS) based, QoS-aware EPM schemes, which aim to reduce the energy consump-

tion in network equipment by using different packet scheduling strategies, while adhering

to QoS requirements of supported applications. Then, we explore the problem of energy

minimization under QoS constraints through a mathematical programming model, which

is a DVFS-based, delay-aware APM scheme combing the speed scaling technique with the

existing rate monotonic scheduling policy. Among these speed scaling based schemes, up to

26.76% dynamic power saving of the total power consumption can be achieved. In addition

to speed scaling approaches, we further propose a sleep-based, traffic-aware EPM scheme,

which is used to reduce power consumption by greening routing light load and putting the

related network equipment into sleep mode according to twelve flow traffic density changes in

24-hour of an arbitrarily selected day. Meanwhile, a speed scaling technique without violat-

ing network QoS performance is also considered in this scheme when the traffic is rerouted.

Applying this sleep-based strategy can lead to power savings of up to 62.58% of the total

power consumption.

v

Table of Contents

Preface . xiii

1.0 INTRODUCTION . 1

1.1 Problem Statement . 2

1.2 Research Overview . 4

1.2.1 DVFS-based Power Management and QoS-aware Scheduling Strategies 5

1.2.2 DVFS-based Power Management and Delay-aware, Optimal Energy

Strategies . 6

1.2.3 Sleep-based Power Management and a Traffic-aware Strategy 6

1.3 Claims and Contributions . 7

1.4 Structure of this Dissertation . 8

2.0 BACKGROUND . 9

2.1 Characteristics of Power Consumption in Wired IP Networks 9

2.2 Toward Energy- and QoS-aware Network Devices 11

2.3 Dynamic Power Management Techniques for Wired Network Resources . . . 12

2.3.1 Power Scaling Techniques . 12

2.3.1.1 Current Approaches and Concepts 13

2.3.1.2 Dynamic Voltage/Frequency Scaling 15

2.3.2 Power/Energy Measuring Techniques 16

2.3.2.1 Power measurement . 16

2.3.2.2 A general power-aware model for router power consumption . 16

2.4 Conclusions . 17

3.0 DVFS-based Power Management and QoS-aware Scheduling Strategies 18

3.1 Introduction . 18

3.2 Related Work . 20

3.3 DVFS-Scheduler Design and Architecture 21

3.4 Load-aware DVFS-Schedulers . 24

vi

3.4.1 Load-aware Scheduler (LA) . 24

3.4.2 Predicted Load-aware Scheduler (L̄A) 26

3.5 QL-aware DVFS-Schedulers . 27

3.5.1 Single-threshold, QL-aware Scheduler (sQLA) 28

3.5.2 Multi-threshold, QL-aware Scheduler (mQLA) 29

3.5.3 Single-threshold Average QL-aware Scheduler (sQ̄LA) 31

3.5.4 Multi-threshold Average QL-aware Scheduler (mQ̄LA) 32

3.6 Delay-aware DVFS-Scheduler . 32

3.6.1 Delay-aware DVFS-Scheduler Design and Architecture 33

3.6.2 QL-based Delay-Aware Packet Scheduler (QLDA) 34

3.7 Evaluation . 38

3.7.1 Packet- and Router-based Energy Consumption Models 38

3.7.1.1 Packet-based Energy Model 39

3.7.1.2 Router-based Energy Model 40

3.7.2 Simulation Setup . 42

3.7.3 Sensitivity to the main parameters of Load-aware Schemes 47

3.7.3.1 Sensitivity to τ . 47

3.7.3.2 Sensitivity to ca . 47

3.7.4 Sensitivity to the main parameters of QL-aware Schemes 47

3.7.4.1 Sensitivity to η . 48

3.7.4.2 Sensitivity to τ . 48

3.7.4.3 Sensitivity to cq . 49

3.7.4.4 Sensitivity to ql and qh . 49

3.7.5 Comparative analysis . 50

3.7.5.1 The class of Load-aware schemes 51

3.7.5.2 The class of QL-aware schemes 52

3.7.5.3 Cross class comparative analysis 52

3.7.5.4 Comparison with the related work 53

3.7.6 Sensitivity to the main parameters of QLDA 53

3.7.6.1 Sensitivity to η . 54

vii

3.7.6.2 Sensitivity to τ . 55

3.7.6.3 Sensitivity to cq . 56

3.7.6.4 Sensitivity to cd . 57

3.7.6.5 Sensitivity to ql and qh . 57

3.7.7 Comparative analysis . 57

3.8 Conclusions . 59

4.0 DVFS-based Power Management and Delay-aware, Optimal Energy

Strategies . 61

4.1 Introduction . 61

4.2 Related Work . 63

4.3 Periodic task scheduling . 65

4.3.1 Utilization factor . 67

4.3.2 Rate Monotonic scheduling . 67

4.4 Network and Flow Specification . 68

4.5 The General Problem Formulation . 69

4.5.1 Delay-based Packet Scheduling Policy 71

4.5.2 Per-router Delay Computation . 72

4.5.2.1 Smallest Feasible Delay . 72

4.5.2.2 Largest Feasible Delay . 72

4.5.3 Power Model . 73

4.5.4 Router-based Energy Consumption Model 73

4.5.5 Path-based Energy Consumption Model 74

4.5.6 Energy- and Delay-aware Flow Scheduling 75

4.5.6.1 Opt ED Solution . 77

4.5.6.2 Opt LD Solution . 80

4.5.6.3 Opt EDFS Solution . 83

4.5.7 Delay Assignment Heuristics . 86

4.5.7.1 Processing-capability based heuristic, PCH() 86

4.5.7.2 Load-balancing based heuristic, LBH() 87

4.6 Performance Evaluation . 92

viii

4.6.1 Comparison with Two Heuristics . 93

4.6.2 Energy and Power Gain Evaluation of Opt EDFS 95

4.7 Conclusions . 97

5.0 Sleep-based Power Management and a Traffic-aware Strategy 99

5.1 Introduction . 99

5.2 Related Work . 101

5.3 Sleep-based Power Controller . 103

5.3.1 Sleep-based Traffic-aware Power Controller Architecture 104

5.3.2 A Sleep-based, Traffic-aware Power Management Strategy 105

5.3.3 Departure Handler Algorithm . 106

5.3.4 Sleep Control Algorithms . 108

5.4 Performance Evaluation . 110

5.4.1 A Traffic-aware Power Management Simulation Framework 110

5.4.1.1 Initialization Module (IM) . 111

5.4.1.2 Event Processing Module (EPM) 113

5.4.1.3 Data Collection Module (DCM) 114

5.4.2 Router-based Power Model and Network-based Energy-efficient Metrics 117

5.4.2.1 Power measurement . 117

5.4.2.2 A general power-aware model for router power consumption . 117

5.4.2.3 Network-based energy-efficient metrics 118

5.4.3 JPNAP Daily Traffic Study . 120

5.4.4 Simulation-based Performance and Analysis 122

5.5 Conclusions . 124

6.0 Conclusions and Future Work Directions 127

6.1 Summary . 127

6.2 Conclusions . 130

6.3 Recommendations for Future Research . 133

Appendix. Bibliography . 135

ix

List of Tables

3.1 Three families of DVFS-based, QoS-aware packet scheduling schemes. 22

3.2 Main simulation parameters and conditions. 44

3.3 Traffic source models and specifications. 44

3.4 Speed scaling schedulers. 45

3.5 Impact of η on ESP, AED, DJB and PLR of sQ̄LA and mQ̄LA (ql : qh = 4% :

80%) under traffic load ρ = 0.9 and τ = 1 ms. 45

3.6 Four combinations of (ql, qh) in the mQ̄LA scheme. 49

3.7 Impact of ql : qh on ESP and AED in mQ̄LA scheme. 49

3.8 Impact of η on ESP, AED, DJB and PDMRT of QLDA scheme with ql : qh =

4% : 80%. 55

3.9 Impact of ql : qh on ESP and AED in the QLDA scheme under dumbbell model. 55

4.1 Traffic source models and specifications. 90

4.2 Main simulation parameters and conditions. 91

4.3 Energy-efficient Metrics. 91

5.1 Main simulation parameters and conditions. 111

x

List of Figures

2.1 Estimation of power consumption sources in a generic platform of high-end IP

router [Tucker et al., 2009]. 11

2.2 Energy-aware Profiles [Vassilakis, 2012]. 14

3.1 DVFS-Scheduler basic architecture. 22

3.2 Packet buffer. 29

3.3 Delay-aware DVFS-enabled scheduling architecture. 34

3.4 Two network topology models: (a) dumbbell, and (b) parking lot. 42

3.5 ESP and AED comparisons for (a) Load-aware schemes with different τ , and

(b) L̄A scheme with different ca. 46

3.6 ESP comparisons for (a) sQLA/sQ̄LA schemes with η = 0.05, and (b) mQLA/mQ̄LA

schemes with η = 0.15 under different τ . 46

3.7 ESP and AED comparisons for two Load-aware schemes. 50

3.8 ESP comparison for four QL-aware schemes. 50

3.9 ESP and AED comparisons between mQ̄LA (η = 0.15, ql : qh = 4% : 80%)

and L̄A (ca = 0.03) for (a) dumbbell model, (b) parking lot model. 51

3.10 ESP and AED comparisons between mQ̄LA (η = 0.15, ql : qh = 4% : 80%)

and EWMAP (wa = 0.2) for (a) dumbbell model, (b) parking lot model. . . . 51

3.11 The aggressivity factor η(ρ). 54

3.12 ESP comparisons for QLDA with different τ in (a) dumbbell model, and (b)

parking lot model. 56

3.13 ESP and AED comparisons between QLDA (ql : qh = 4% : 80%) and EWMAP

(µ = 0.2) for (a) dumbbell model, (b) parking lot model. 56

4.1 A new connection request along a path, p, in a network topology, N 89

4.2 Connection request acceptance. 92

4.3 DPR comparison between PCH and LBH. 93

4.4 DEGR for LBH with different π. 94

xi

4.5 (a) Dynamic energy gains and (b) Power gains for the combination traf-

fic source under fixed ψmin = 1.6 GHz and randomly generated ψmin ∈

[0.6, 1.6] GHz. 95

4.6 Dynamic energy gains and power gains for different traffic sources under (a,b)

fixed ψmin = 1.6 GHz and (c,d) randomly generated ψmin ∈ [0.6, 1.6] GHz. . 96

4.7 Power gains comparisons under different values of the static power ratio ω. . 97

5.1 Sleep-based traffic-aware power controller architecture. 104

5.2 Traffic-aware power management simulation framework. 110

5.3 Random topology generator. 119

5.4 JPNAP daily traffic densities collected on (a) weekly days (Sept. 14th, Sept. 21st,

Sept. 28th, 2018); (b) weekend days (Sept. 15th, Sept. 22th, Sept. 29th, 2018)

respectively. 119

5.5 (a,b) Dynamic power gains, (c,d) Static power gains, and (e,f) Power gains of

a 10-node network topology under different bandwidths on Sept. 28th, 2018 (a

weekly day), and Sept. 29th, 2018 (a weekend day) respectively. 120

5.6 (a,b) Dynamic power gains, (c,d) Static power Gains, (e,f) Power gains, and

(g,h) Blocking rates of a 10-node network topology on weekly days such as

Sept. 14th, Sept. 21st, Sept. 28th, 2018, and weekend days such as Sept. 15th,

Sept. 22th, Sept. 29th, 2018 respectively. 125

5.7 (a,b) Power gains and (c,d) Blocking rates of 10-node, 20-node, and 30-node

network topologies on Sept. 28th,2018 (a weekly day) and Sept. 29th, 2018 (a

weekend day). 126

6.1 Research work. 128

xii

Preface

This dissertation is the result of interdisciplinary research in network telecommunication

and computer science, which is a research topic I embraced since becoming a graduate

student. During this long journey, I have a special appreciation for my academic advisor,

Dr. Taieb Znati, for his long-time support and encouragement in my academic studies. I

admire his patience in modifying my drafts and manuscripts as well as his rigorous academic

attitude. Without his support, I could not have completed this dissertation.

I thank the committee members who provided me a vast amount of suggestions to improve

my dissertation. I also appreciate Dr. Wang Yang, who insisted that I focus on the writing

style of my proof. By following his suggestions, I spotted the logic flaws in my proof, which

significantly elevated the quality of the math parts.

Last, I welcome the support from my lab mates and residential community. I am very

grateful to Dr. Xiao Ma from TELE at Pitt, who enriched my research and study methods.

A special thank you goes to Dr. Yang Song from ECON at Pitt for her inspiration and

encouragement. Finally, thanks go to my family: my parents, my husband, and my younger

sister.

xiii

1.0 INTRODUCTION

In the past few years, Information and Communication Society (ICS) has experienced

unprecedented growth in the amount of information being processed, stored, and transferred

over the Internet [Pierson, 2015]. Due to the constantly increasing number of customers

and new services being offered, data traffic volume doubles every eighteen months according

to Moore’s law [Zhang et al., 2008b], which causes an even larger increase in number and

capacity of network equipment to guarantee the QoS requirements of supported applica-

tions. Recent advances in semiconductor technology, which enable higher parallelism and

increase clock frequencies, paved the way to a new generation of powerful routers. These

advances, however, come at a costly price of increased power consumption [Chabarek et al.,

2008]. According to figures in 2007, Information and Communications Technology (ICT)

power requirement was estimated to be within a range from 2% to 10% of global power

consumption [Lubritto et al., 2008; Koomey et al., 2007], while the energy demand of net-

work equipment, excluding servers in data centers, was around 22 GW with expectations of

reaching 95 GW in 2020 [Vereecken et al., 2008]. Other data related to energy consumption

show that the telecom operators’ demand grew from 150 TWh/y in 2007 to 260 TWh/y

in 2012, around 3% of the total worldwide need [Lambert et al., 2012]. Finally, other work

focusing on a single Internet Service Provider (ISP) shows that the energy consumed by

the largest ISPs, such as AT&T or China Mobile, reached 11 TWh per year in 2010, while

medium-sized ones like Telecom Italia and GRNET were expected to approach 400 GWh in

2015 [Bolla et al., 2012].

With the dramatic increase in energy expenditures of the Internet, the power consump-

tion of routers is becoming a bottleneck with the growing traffic, despite all of the semicon-

ductor technology’s upgrades [Lange et al., 2009; Tucker et al., 2009]. In 2009, the backbone

energy consumption accounted for less than 10% of the overall network energy consumption,

but this percentage was expected to increase to 40% in 2017 [Lange et al., 2009], and reach up

to or even exceed 50% in 2020; thus, it will become unsustainable [Group, 2007; Lange et al.,

2011; Hinton et al., 2011]. In addition, another problem is that the energy consumption of

1

current IP networks is not proportional to the utilization level. Traditionally, networking

systems are designed and dimensioned according to principles that are inherently in opposi-

tion with green networking objectives, namely over-provisioning and redundancy [Bianzino

et al., 2012]. On the one hand, due to the lack of QoS support from the Internet architec-

ture, over-provisioning is a common practice: networks are dimensioned to sustain peak hour

traffic, with extra capacity to allow for unexpected events. As a result, during low traffic

periods, over-provisioned networks are also over-energy-consuming. Moreover, for resiliency

and fault-tolerance, networks are also designed in a redundant manner. Devices are added

to the infrastructure with the sole purpose of taking over the duty when another device fails,

which further adds to the overall energy consumption. Therefore, even in low or no usage

context, network equipment consumes energy at a high level [Pierson, 2015].

For these reasons, the key to green network designs is to seek effective strategies that in-

corporate power/energy-awareness into network control and management to reduce power/energy

consumption, without compromising either the quality of service or the network reliabil-

ity [Bolla et al., 2011b; Bianzino et al., 2012; Zeadally et al., 2012]. Currently, two of

the most exciting dynamic power management (DPM) techniques are speed scaling and

sleep mode [Recupero et al., 2013]. The former is used to reduce energy consumption by

dynamically adjusting clock frequencies of the active component to make it able to adapt

to the current load. The latter is used to save energy by putting network elements into

sleep state when they are idle or low-demand. Excessive reduction in execution rates or

extended sleep periods to save energy, however, could result in severe network degradation

which may lead to violation of QoS requirements of the underlying applications. Conse-

quently, seeking effective power/energy-aware strategies by using these techniques to reduce

power/energy consumption, while guaranteeing QoS performance requirements, becomes a

significant challenge.

1.1 Problem Statement

The problem studied in this dissertation is sufficient energy saving or energy minimization

under QoS requirements for wired communication networks, focusing on the exploration

2

of energy-aware strategies to sufficiently reduce and even minimize network power/energy

consumption by pursuing three aspects: (i) the definitions of methodologies for power- or

energy-aware networking design; (ii) the designs of power/energy management strategies

to adapt the network energy consumption to current traffic load; and (iii) a fine balance

achievement between saving energy and adhering to QoS performance, which is an issue

that has not been sufficiently studied but is becoming a major concern in future networks.

As introduced above, two DPM techniques, namely speed scaling and speed mode, which

have been the conventionally effective methods to reduce energy consumption, can be used to

solve this problem [Bolla et al., 2011b]. The speed (operations per second) of many devices

can be decreased to lower the power consumption. This technique is called speed scaling,

which usually results in a decreased energy consumption, despite the fact that the power is

consumed for a longer time 1. A popular speed scaling technique that is used in modern

microprocessors is dynamic voltage/frequency scaling (DVFS). DVFS is applied to decrease

the clock frequency (and with it, the voltage) that leads to reduced speed and power con-

sumption. Speed scaling is also used in other devices, such as flash storage, hard drives, and

network cards [Lee and Kim, 2010; Rao and Vrudhula, 2005]. Currently, various DVFS tech-

niques [Mandviwalla and Tzeng, 2006; Valentini et al., 2013; Gerards, 2014; Nedevschi et al.,

2008] are utilized to exploit the variations in the actual workload for dynamically adjusting

the voltage and frequency of processors to achieve energy saving. Besides speed scaling, many

devices support switching to various low-power sleep states to reduce energy consumption

when they are idle or low-demand. This technique is called speed mode. Typically, the main

challenge for seeking effective energy saving though DVFS-based techniques is to preserve

the feasibility of scheduling strategies and provide performance guarantees, while reducing

the energy demand of network-enabled devices through sleep mode techniques is not only

about getting idle devices to sleep but also about making sure that they can respond to valid

network requests, i.e. that they wake up quickly when needed. The inconvenience with sleep

mode techniques are that once in a power-efficient state, bringing a component back to the

active or running state requires additional energy and/or delay to serve incoming traffic load,

and that constantly switching network devices or their components off and on might lead to

1Energy is power multiplied by time.

3

more energy consumption than keeping them on all the time. Consequently, how these two

prominent DPM techniques can be effectively used to reduce network energy consumption,

while adhering to QoS requirements, becomes the exploration goal of this research.

The following research questions are explored and studied in this dissertation:

• DVFS-based power management and QoS-aware scheduling strategies

– What characteristics does a DVFS-based, QoS-aware scheduler have?

– How should the aggressivity for speed scaling to save more energy be defined?

– How can a fine balance between energy saving and network performance be achieved?

• DVFS-based power management and delay-aware optimal energy strategies

– What characteristics does a DVFS-based, delay-aware energy minimizing schedule

have?

– How can an existing scheduling algorithm minimize network energy consumption?

– What are the optimal speeds for speed scaling?

• Sleep-based power management and and a traffic-aware strategy

– What characteristics does a sleep-based, traffic-aware power controller have?

– How is a sleep-based power management strategy designed?

– How can a speed scaling technique be combined with a sleep mode strategy?

• How can power/energy-efficient metrics be defined?

1.2 Research Overview

With the exponential traffic growth and the rapid expansion of communication infras-

tructures worldwide, energy expenditure of the Internet has become a major concern in

IT-reliant society and how to reduce or minimize power/energy consumption has become a

critical objective in the design of future networks [Lange et al., 2009]. A significant body

of schemes has focused on incorporating energy-awareness into network control and man-

agement. In general, the involved power management techniques can be summarized into

two categories: (i) DVFS-based techniques can reduce energy consumption by tuning the

4

packet processing engine frequency or voltage to adapt to the current traffic load at different

levels [Mandviwalla and Tzeng, 2006; Nedevschi et al., 2008; Bolla et al., 2011c; Zhang et al.,

2008a; J., 2014; Chiaraviglio et al., 2009a; Alonso et al., 2004; Cisco, 2007; Galan-Jimenez

and Gazo-Cervero, 2013; Vasić and Kostić, 2010]. This, however, is at the expense of lower

performance; and (ii) sleep-based techniques can achieve energy saving through turning off

the network devices or components when they are idle or low-demand [Nedevschi et al.,

2008; Gupta and Singh, 2003; Fisher et al., 2010; Chiaraviglio et al., 2008; Gupta and Singh,

2007a; Nordman and Christensen, 2010; J., 2014; Chiaraviglio et al., 2009a; Bianzino et al.,

2010; Idzikowski et al., 2010; Zhang et al., 2010b; Chiaraviglio et al., 2009b; Sabhanatara-

jan et al., 2008]. It, however, could come the expense of extra more energy and longer

time for sleepings and wake-ups due to frequent switching on/off. These techniques and ap-

proaches mostly aim at dynamically managing network resources, in response to traffic load,

in order to minimize energy consumption and reduce congestion. However, with the advent

of Internet-based multimedia communication services, such as voice over IP (VoIP), video

streaming, video conferencing, etc., QoS and Quality of Experience (QoE) become more and

more important. The slowdown or shutdown of a process to save energy by these power man-

agement techniques may lead to QoS violations. Consequently, the need to support the QoS

requirements of these emerging applications further compounds the sufficient energy saving

or energy minimization problem, calling for new power/energy- and QoS-aware strategies to

traffic management and congestion control.

To address the above challenges and answer the aforementioned questions in Section 1.1,

this dissertation explores several effective power/energy- and QoS-aware strategies based on

two prominent DMP techniques to achieve sufficient network energy saving or minimizing

network energy consumption while supporting QoS requirements.

1.2.1 DVFS-based Power Management and QoS-aware Scheduling Strategies

The power management technique that we first focus on is speed scaling. Using DVFS

techniques, routers can adaptively adjust the operational frequencies of their network pro-

cessor unites (NPUs), according to current conditions of the network. Excessive reduction

5

in execution speeds to save energy, however, could result in QoS violation of the supported

applications. To address the energy-QoS dichotomy, we discuss three families of QoS-aware

packet scheduling strategies in Chapter 3 to dynamically control the execution rates of net-

work components to reduce the energy consumption in routers. The main objective of these

experimental power management (EPM) schemes with different packet scheduling strate-

gies is to sufficiently save the dynamic energy consumed by routers through rate adaption,

while achieving a fine balance between significant energy saving improvements and network

performance requirements. Two metrics, namely queue length and link utilization, are

considered to achieve this goal [Yu et al., 2015a,b].

1.2.2 DVFS-based Power Management and Delay-aware, Optimal Energy Strate-

gies

In addition to the EPM schemes through different DVFS-based, QoS-aware packet schedul-

ing strategies to reduce the predictable energy consumption, the energy saving issue can also

be formulated by mathematical programming models by using algorithmic power manage-

ment (APM) schemes. Chapter 4 addresses a key issue of how to efficiently assign per-node

delays and per-node execution speeds for a given routing path, to minimize the energy

consumption of network components, while satisfying the QoS delay requirements of the

supported applications. To this end, under a given scheduling policy, we explore a DVFS-

based, delay-aware energy optimal strategy and its two heuristics to optimize the energy

consumption of network components through rate adaption, which takes into consideration

the workload and the delay requirements across the routing path. To minimize energy con-

sumption without violating network performance, we discuss the feasible per-node delays

and the current potential processor execution speeds for a given flow through analyzing the

processing capacity of delay-based processors along the given routing path [Yu and Znati,

2017].

1.2.3 Sleep-based Power Management and a Traffic-aware Strategy

Chapter 5 involves another dynamic power management technique: sleep mode. In a

given network, when one network element is idle or low-demand, it can be put into sleep

6

mode by shutting down it or its partial components, thereby achieving significant energy

saving. Many related studies have shown that the base system (including chassis, switch

fabric, and router processor) consumes more than half of the whole power consumption of

a network router. Therefore, switching off the whole router could save more energy than

shutting/slowing down its components such as line cards (LCs) over the low-demand or idle

periods. To this end, our work in this chapter further explores a sleep-based, traffic-aware

EPM strategy, which focuses on how to achieve network sufficient energy saving by putting

redundant network equipment into sleep, thereby placing network resources in more power-

and energy-efficient way. A speed scaling technique is also considered to adapt to the traffic

load change without damaging the QoS performance when the selected traffic is rerouted.

The discussed scheme in this chapter combines the two dynamic power management tech-

niques, namely sleep mode and speed scaling.

1.3 Claims and Contributions

In general, the research in this dissertation aims to unify the proposed energy- and

QoS-aware strategies on power management for energy problems that arise with modern

network architectures. A part of the theoretical work from literature does not consider

important practical restrictions. On the other hand, application-oriented research projects

rarely use the existing theory. Summarizing, the general contributions of this dissertation

are algorithms, schemes, strategies, and concepts which are straightforward to implement

and use in practice, which can be briefly concluded as the following:

• We study the dynamic power management for wired communication networks. In Chap-

ter 3, we propose and develop three families of DVFS-based, QoS-aware packet schedul-

ing schemes to reduce the network energy consumption through different speed scaling

strategies, while adhering to the QoS requirements of the routed traffic.

• Targeting energy-performance challenges, we study different metrics, such as queue

length and link utilization, to control execution rates, and try to strike a fine balance

among performance, energy and accuracy in Chapter 3. A holistic simulation frame-

7

work, including an energy consumption model, is proposed to evaluate and compare the

performance of each scheme in different networking environments and traffic models.

• To address the energy minimization problem under a given scheduling policy, we further

propose a DVFS-based, delay-aware strategy through an algorithmic power management

approach in Chapter 4. This strategy aims at describing a mechanism that obtains

minimal energy consumption by assigning feasible per-node delays and potential per-

node execution speeds across a given routing path under QoS constraints. In addition,

another two heuristics are also proposed and discussed.

• Going further, we explore issues and challenges in sleep-based, energy-aware strategies

for wired communication networks. In Chapter 5, we propose a feasible sleep-based,

traffic-aware solution, combining two techniques of speed scaling and sleep mode, to

sufficiently reduce the power consumption by putting into sleep the redundant network

elements and reconfiguring the network, without network QoS violation.

1.4 Structure of this Dissertation

The rest of this dissertation is organized in the following way. Chapter 2 briefly investi-

gates and characterizes the sources of power consumption in wired communication networks,

and reviews the existing dynamic power management techniques. In Chapter 3, we dis-

cuss three families of DVFS-based, QoS-aware packet scheduling schemes to reduce energy

consumption while balancing a fine tradeoff between the energy saving and QoS require-

ments. Given an existing scheduling policy, we build up a DVFS-based, Delay-aware energy

optimization framework, and further study energy minimization under QoS constraints in

Chapter 4. We explore a sleep-based, traffic-aware power management strategy and its two

heuristics without network QoS violation in Chapter 5. Chapter 6 concludes the dissertation

and lists future work directions.

8

2.0 BACKGROUND

In this chapter, we first investigate the main sources of power consumption in wired IP

networks by assessing the energy characteristics of key wire-networking components. Then

we introduce the existing dynamic power management techniques. Our goals are to review

the state of the art on energy efficiency and to drive the research fostering activities toward

energy- and QoS-aware solutions for future networks.

2.1 Characteristics of Power Consumption in Wired IP Networks

Routers and switches are widely used to connect different types of high-speed networks

that make up the Internet today. From a general point of view, IP routers have a similar

architecture with respect to high-end switching systems, i.e. highly modular and hierarchical

architectures [Pierson, 2015]. A router or a switch chassis consists of three major subsystems,

namely data plane, control plane, and environmental units [Vishwanath Member et al., 2014].

• The data plan, or called the forwarding plan, is responsible for deciding how to handle the

ingress packets by looking up the routing table and then sending them to the appropriate

egress interfaces (or ports). Line-cards and switch fabric cards comprise key data plane

elements. The line-card is used for processing and forwarding packets using its local

processing subsystem and buffer spaces for processing the packets arriving along with

the ingress interfaces and awaiting transmission at the egress interfaces. The switch fabric

provides sufficient bandwidth for transferring packets among different line cards. It is

used to receive data from the ingress line-card interfaces and switch it to an appropriate

egress one(s).

• The control plan is responsible for routing-related control functions, such as generating

the network map, the way to treat packets according to the different service classifications

and discard certain packets. The control plane manages the routing functions, which

involve communicating with other network devices, via routing protocols such as Open

9

Shortest Path First (OSPF), to establishing the routing tables. Routing engine cards

represent the control plane elements, which run control plane protocols to populate and

update the forwarding (IP and MAC address) tables.

• The environmental units are constituted of the elements that do not play a role in

handling data traffic, such as the chassis power supply, fans (or air cooling), etc.

As pointed out by Tucker et al. in [Tucker et al., 2009], network devices networking in the

different network portions play a central role, since they are major contributors to the energy

consumption of modern networks, and the overall energy consumption in networks arises

from their operational power requirements and their density. In more detail, operational

power requirements arise from all the hardware (HW) elements realizing network-specific

functionalities, like the ones related to data and control planes, as well as from HW elements

devoted to auxiliary functionalities, such as power supply, air cooling, etc.. In this respect,

the data plane certainly handles the most energy-starving and critical component in the

largest part of network device architectures, since it is generally composed of special-purpose

HW elements (packet processing engines, network interfaces, etc.) that have to perform per-

packet forwarding operations at very high speeds. It has been reported in [Wobker, 2012;

Imaizumi and Morikawa, 2010] that LCs in the data plane consume about 70% of the total

router power, and the network processor units (NPUs), where packet processing engines are

used, consume more than 50% of the power consumed by one line card (LC). Focusing on

high-end IP routers, Tucker et al. [Tucker et al., 2009] estimated that the power consumed

by the data plane weighs for 54% of the total, vs. 11% for the control plane and 35% for

power and heat management, as shown in Figure 2.1. The same authors further broke out

energy consumption sources at the data-plane on a per-functionality basis. Internal packet

processing engines require about 60% of the power at the data plane of a high-end router,

network interfaces weigh for 13%, switching fabric for 18.5% and buffer management for

8.5%. These valuable resulting estimations provide a relevant and clear indication of how

and where future research efforts need to be focused in order to build next-generation green

devices [Bolla et al., 2011b].

10

Figure 2.1: Estimation of power consumption sources in a generic platform of high-end IP
router [Tucker et al., 2009].

2.2 Toward Energy- and QoS-aware Network Devices

With the rapid growth in the bandwidth of communication links for wired networks,

new powerful packet switches and routers are being designed with increasing capacities and

performance by exploiting recent improvements in semiconductor technologies. However, the

power efficiency of the underlying technology is starting to plateau [Chabarek et al., 2008].

The slowing-down of power savings due to technology improvements will lead to an increase

in power density. At the same time, the heat dissipation demands of routers are reaching the

limits of traditional solutions based on air cooling. Furthermore, current router architectures

are not energy-aware, in the sense that their energy consumption does not scale sensibly

with the traffic load. Therefore, effective and efficient power management in networking

equipment is presenting a fundamental challenge to continued bandwidth scaling on the

Internet. Chabarek et al. in [Chabarek et al., 2008] analyzed two router architectures and

evaluated their energy consumption under different traffic loads. The results show that the

energy consumption between an idle and a heavily loaded router (with 75% of offered traffic

load) vary only of 3% (about 25 W on 750 W). This happens because the router line cards,

11

which are the most power-consuming elements in a router, are always powered on even if they

are idle. On the contrary, the energy consumption decreases to just 50% if the idle line cards

are physically disconnected according to [Chabarek et al., 2008]. Such a scenario suggests

that future router architectures will be energy-aware, which means that they will be able to

automatically switch off or dynamically slow down subsystems (e.g. line cards, input/output

ports, switching fabrics, and buffers) according to the traffic loads in order to save energy

whenever possible. Therefore, energy-efficiency is the first improvement that leads to energy

saving through technological innovations without affecting performance. Such solutions are

usually referred to as eco-friendly solutions. While energy-awareness is the next improvement

toward eco-sustainability, it refers to an intelligent technique that adapts the behavior or

performance of the system to minimize its energy consumption [Pierson, 2015]. Furthermore,

the fundamental problem of greening the Internet is to strike a fine balance between the

demands of performance and the limitations of energy usage. Consequently, it has become

a trend that the new smarter and more effective strategies enable energy awareness in the

Internet architecture, taking into account the tradeoff between energy saving and network

performance. Therefore, in order to realize the green Internet, an energy-oriented approach

needs to define a comprehensive solution encompassing energy-efficient, energy-aware and

QoS-aware aspects.

2.3 Dynamic Power Management Techniques for Wired Network Resources

In the following, the main dynamic power management techniques are detailed. Besides,

the existing power/energy modeling and measuring techniques also are introduced. Using a

generic power/energy model along with these power management techniques, researchers can

further explore the potential impact of energy-awareness in wired communication networks.

2.3.1 Power Scaling Techniques

Power scaling techniques are aimed at achieving dynamic power management through

modulating capacities of network devices resources (e.g. links bandwidths, computational

12

capacities of packet processing engines, etc.) or turning off low-demand (i.e.lightly loaded)

or unused devices (or their subsystems) according to current traffic loads and service require-

ments.

2.3.1.1 Current Approaches and Concepts In general, the largest part of under-

taken approaches is founded on a few base concepts, which have been generally inspired by

energy saving mechanisms and dynamic power management criteria that are already par-

tially available in computing systems. These base concepts can be categorized as Dynamic

Adaptation and Smart Standby.

• Dynamic Adaptation (or Speed Scaling) approaches allow to modulate capacities

of packet processing engines and of network interfaces according to the current traffic

load and service requirements. This can be performed by using two power-aware tech-

niques, namely, Adaptive Rate (AR) and Low Power Idle (LPI). Adaptive Rate allows a

dynamic reduction of the device working rate by tuning the packet processing engine fre-

quency or voltage. The result is a reduction of power consumption, at the price of lower

performance. Low Power Idle, instead, allows reducing power consumption by putting

sub-components into low power states when not sending/processing packets, and waking

them up as rapidly as possible when the system needs their activity. In detail, the highest

rate provides the most energy-efficient transmission while low power idle consumes mini-

mal power. Both AR and LPI are implemented by pre-selecting a set of hardware (HW)

configurations that can provide different trad-offs between packet service performance

and power consumption. In a sense, AR and LPI might be jointly exploited to better fit

system requirements. It is worth noting that the effectiveness of these methods strictly

depends on the traffic and network characteristics. For example, the application of LPI

capabilities shows better results when incoming traffic presents a high burstiness, so that

the system has enough time to spend in an idle state before a new burst is received.

• Smart Standby (or Sleep Mode) approaches can be considered as deeper idle states:

using power management primitives, devices can be turned off smartly and selectively,

providing higher power saving than idle states at the price of longer wake up times [Bolla

et al., 2011a]. The main issue with this approach is represented by the loss of network

13

connectivity. When a device is sleeping, it cannot be seen on the network, thus wake up

time includes a re-connection phase, in which the device has to send signaling traffic to

communicate its presence on the network and allow updating the forwarding tables. This

is probably the predominant reason why the networking devices are left fully powered

even when not employed. Recent solutions propose the introduction of a proxy to take

charge of the host network presence during sleeping times, standby modes have to be

explicitly supported with special proxying techniques able to maintain the “network

presence” of sleeping nodes or components [Gunaratne et al., 2005].

Figure 2.2: Energy-aware Profiles [Vassilakis, 2012].

Dynamic adaptation, i.e. speed scaling, approaches will enable to modulate energy ab-

sorption according to the actual workload through slowing down HW components. While

approaches based on smart standby, i.e. sleep mode, will help to further cut the power con-

sumption of unneeded or unused devices (or parts of them) by shutting down them or putting

them into sleep modes. All these approaches are not mutually exclusive, and their joint adop-

tion may eventually impact on next-generation network devices by providing “energy-aware”

profiles, as depicted in Fig. 2.2. Since these approaches are founded on the idea of either

14

tuning device processing/transmission capacities, or of waking up the hardware upon “ac-

tive” request or their combinations. Although the adoption of such green optimizations or

their combinations affect network performance, the trading energy consumption for network

performance is paid more and more attention by network researchers.

2.3.1.2 Dynamic Voltage/Frequency Scaling Nowadays, although the largest part

of today’s network equipment does not include such HW power saving capabilities, power

management is a key feature in today’s processors across all market segments. This is

usually accomplished by scaling the clock frequency or by throttling the CPU clock, we call

this technology as dynamic voltage/frequency scaling (DVFS). As one of the most promising

energy-efficient technologies of speed scaling approaches, DVFS is becoming an integral part

of networks for saving power. In detail, power scaling capabilities allow dynamically reducing

the working rate of processing engines or of link interfaces, thereby achieving the purpose

of energy saving. With DVFS technology, a CMOS-based processor can operate at different

voltages/frequencies to reduce the dynamic power consumption, defined by ϕD, which can

be roughly characterized as follows [Mandviwalla and Tzeng, 2006; Valentini et al., 2013]:

ϕD = a · V 2
DD · f · C (2.1)

where a (0 ≤ a ≤ 1) is the switching activity factor, i.e. the switching activity for each clock

tick, and can be considered to be the utilization of the component, VDD is the supply voltage

of the processor, f is the clock frequency of the processor, and C is the effective switched

capacitance constant. For efficient control and smooth application of DVFS, a proportion-

ately linear relationship is expected between the frequency and applied voltage [Gerards,

2014; Chen et al., 2012], thus, the dynamic power consumption can be modeled in terms of

frequency like:

ϕD = γ · f 3 (2.2)

where γ is a constant parameter.

15

2.3.2 Power/Energy Measuring Techniques

How to measure and model the power/energy consumption is another big issue for power

management of wired networks, various solutions have been proposed in the literature to

evaluate at different levels the energy processors consume. Considering a set of power scalable

network components, this section introduces several basic techniques used to model/measure

power/energy consumption.

2.3.2.1 Power measurement When discussing power issues, two main aspects impact-

ing power consumption need to be considered. The first, referred to as static power, arises

from the bias and leakage current to support control plane, environment units, and load-

independent data plane [Tucker et al., 2009; Vishwanath Member et al., 2014]. The second,

referred to as dynamic power, results from the charging and discharging of the voltage saved

in node capacitance of the circuit. Using ΦS and ΦD to denote static and dynamic power,

respectively, the power Φ consumed by a router can be expressed as follows:

Φ = ΦS + ΦD (2.3)

According to [Vishwanath Member et al., 2014], the power consumption of an IP router

is the sum of the power consumed by its three major subsystems, namely control plane,

environmental units and data plane. Assume that Φcontrol denotes the static power consumed

by control plane, Φenvironment denotes the static power consumed by environment units, ΦS
data

denotes the static power consumed by the constant baseline components in data plane, and

ΦD
data denotes the dynamic power consumed by the traffic load dependent components in

data plane. Accordingly, the above power components can be further expressed as:

ΦS = Φcontrol + Φenvironment + ΦS
data

ΦD = ΦD
data

(2.4)

2.3.2.2 A general power-aware model for router power consumption Joseph

Chabarek et al. in [Chabarek et al., 2008] performed several experiments to measure the

energy consumption of two different Cisco router. Both of them include their base systems

16

(Chassis plus router processor) and line cards, based on which it provides a generic model for

router power consumption, as described in Eq. 5.5. In this model, the power consumption

Φ of a router is determined by its configuration and current use. The vector X defines the

chassis type of the device, the installed line cards and the configuration and traffic profile

of the device. The function ΦS(x0) returns the power consumption of a particular chassis

type, which is from control plan and environment unit, N is the number of active line cards,

ϕDdata(xi0) is the dynamic cost with a scaling factor corresponding to the traffic utilization on

the router, and ϕSdata(xi1) gives the cost of the line card in a base configuration. The cost of

traffic is dependent on the configuration of the router and the amount of traffic. This model

is used to formulate the optimization problem for power-aware network design.

Φ(X) =ΦS(x0) +
N∑
i=0

(ϕDdata(xi0, xi1) + ϕSdata(xi1))

= ΦS(x0) +
N∑
i=0

ϕSdata(xi1)︸ ︷︷ ︸
ΦS(X)

+
N∑
i=0

ϕDdata(xi0, xi1)︸ ︷︷ ︸
ΦD(X)

(2.5)

2.4 Conclusions

Using the above techniques introduced in this chapter, diverse energy- and QoS-aware

power management schemes and strategies for wired communication networks to reduce

energy consumption can be put forward by researchers. Speed scaling is available as DVFS

on network processor units (NPUs), while sleep modes are available as DPM to decide when

to sleep unneeded network components. These two dynamic power management techniques

can be used either individually or cooperatively, and the distinct scheduling strategies based

on them may influence the energy saving with different levels. Some results from power

management literature were discussed in this chapter and will be used in the following

chapters.

17

3.0 DVFS-based Power Management and QoS-aware Scheduling Strategies

The power management technique that we first focus on for wired communication net-

works is speed scaling. In current commercial routers, faster network processor units (NPUs)

in line cards (LCs) can significantly improve network QoS performance. However, this im-

provement may come at a high cost of energy consumption. Using DVFS techniques, routers

can adaptively adjust the operational frequencies of their processor units according to cur-

rent network congestion. Excessive reduction in execution speeds to save energy, however,

could result in QoS violation of the supported applications. To address the energy-QoS di-

chotomy, three families of DVFS-based, QoS-aware packet scheduling schemes are discussed

in Chapter 3. The main objective of these proposed schemes is to sufficiently reduce the dy-

namic energy consumed by network routers through different speed scaling strategies, while

achieving a fine balance between energy saving improvements and network performance re-

quirements. Two metrics, namely queue length and link utilization, are considered to achieve

this goal. Compared to existing methods under the same network environments, the results

show that among our proposed speed scaling strategies, the highest energy saving can reach

up to 10% dynamic energy saving of the total energy consumption, while also meeting the

desired performance of the supported applications.

3.1 Introduction

The exponential growth of worldwide broadband subscribers, coupled with data- and

compute-intensive applications that broadband deployment has enabled, is fueling the de-

mand for higher Internet bandwidth to support the QoS requirements of these applications.

An increase in bandwidth demand, however, comes at the costly price of higher power and

energy consumption. Today’s higher performance router LCs handle most data plane traffic

processing tasks with specialized application-specific integrated circuit (ASIC) processors or

other programmable hardware [Pierson, 2015; Group, 2007]. According to [Imaizumi and

18

Morikawa, 2010; Gupta and Singh, 2007a], LCs consume around 70% of the total router

power, and the power consumption of NPUs accounts for more than 50% in each LC. Recent

advances in semiconductor technology, which enabled higher parallelism and increased clock

frequencies, paved the way to a new generation of power routers. These advances, however,

come at a heavy price of increased power consumption, due to higher line card speeds [Pier-

son, 2015]. Therefore, seeking solutions to reducing power consumption, without adversely

affecting network performance, becomes imperative for the design of future energy-efficient

networks, with minimal impact on the environment.

Currently, two approaches are frequently used to manage power in computing and net-

working environments [Bolla et al., 2009; Etoh et al., 2008]. The first, referred to as Speed

Scaling, uses dynamic voltage frequency scaling (DVFS) to control execution rates and reduce

energy consumption [Bolla et al., 2009; Etoh et al., 2008; Bolla et al., 2011b; Tucker et al.,

2009]. The second, referred to as Dynamic Power Management (DPM), uses sleep mode

to control power and save energy [Etoh et al., 2008; Bolla et al., 2011b; Chen et al., 2012;

Yu et al., 2015b]. A large body of research work showed that DVFS can achieve significant

power savings [Bolla et al., 2009; Etoh et al., 2008; Bolla et al., 2011b; Tucker et al., 2009].

However, excessive slowing-down of the processors may lead to an unacceptable level of QoS

degradation of the supported applications. Consequently, dynamically adjusting processors’

execution rates to reduce power and energy consumption while satisfying QoS requirements

becomes a challenge.

To address this challenge, we propose and investigate three families of QoS-aware, DVFS-

based packet scheduling schemes to control execution rates in line cards and reduce energy

consumption. The major contributions of this chapter are: (i) the design of three families of

QoS-aware, DVFS-based packet schedulers, based on link utilization, queue length and packet

delay, respectively. Variants in each family, which differ in when and how decisions are made

to adjust the execution rates, are derived; (ii) a holistic simulation framework, including

an energy model, is proposed to investigate and compare the performance of each scheme,

in different networking environments and traffic models; and (iii) a thorough performance

study focusing on the energy consumption and network delay, for each scheduling scheme in

each family, is carried out.

19

The rest of this chapter is organized by sections as follows: The related work is discussed

in Section 3.2. The three families of DVFS-based, QoS-aware packet scheduling schemes and

their variants are presented in Section 3.3, Section 3.4, Section 3.5 and Section 3.6. The sim-

ulation framework and the comparative analysis of the different QoS-aware strategies, under

different network environments and traffic loads, are discussed in Section 3.7. Section 3.8

presents the conclusion of this chapter.

3.2 Related Work

Several energy-efficient schemes have been proposed for green networks [Bolla et al.,

2009; Etoh et al., 2008; Puype et al., 2009]. Some of these schemes propose energy-based

traffic engineering approaches designed to only keep a sufficient number of active routers,

linecards, and interfaces to support the network workload. The remaining network devices

are either shut down or put into sleep mode. Other research works focus on energy saving

using DVFS-based power management approaches. In [Bolla et al., 2011b], Nedevschi, et

al. present two simple power management algorithms, and explore the effect of sleep mode

and DVFS-based rate adaptation on network energy saving. In [Tucker et al., 2009], Mand-

viwalla et al. propose three load-dependent strategies, i.e. Value Predictor (VP), Moving

Average Predictor (MAP) and Exponentially-Weighted MAP (EWMAP), to reduce energy

consumption in multiprocessor-based LCs. The results show that more than 60% dynamic

power savings of the maximal dynamic power consumption can be achieved in one LC. Al-

though these proposed schemes seek to reduce dynamic energy consumption at different

levels through using link utilization in DVFS-enabled processors, they do not address the

impact of the entire energy savings on QoS performance under different traffic loads in a

network. On the other hand, considering the lack of a comprehensive router-based energy

model, in [Group, 2007], Vishwanath, Arun, et al. propose a power model measurement

methodology that quantifies the energy efficiency of high-capacity routing platforms at the

packet- and byte-level. It focuses on network energy evaluation. The approach used to save

energy, however, is not discussed and analyzed in detail. In this chapter, our proposed QoS-

20

aware, energy-minimizing packet schedulers address this shortcoming and seek a balanced

tradeoff between network energy savings and acceptable levels of network QoS performance

under different network environments and traffic loads, based on a derived comprehensive

router-based energy model. This is achieved by controlling the NPU execution rates based

on queue length or link utilization. Both metrics are critical to maintaining packet delay

within acceptable levels of QoS performance [Yu et al., 2015a,b].

3.3 DVFS-Scheduler Design and Architecture

The DVFS-Scheduler dynamically adjusts processor frequency, based on the current state

of the network, to reduce energy while meeting QoS performance. To design a QoS-aware,

energy-efficient strategy for speed-scaling, several issues must be addressed. The first issue

is related to monitoring network traffic to determine current network congestion. This in-

formation is used to adjust processor frequency, accordingly. When the congestion is high,

the frequency must be scaled up, in order to meet the QoS requirements of the applica-

tion. When the network congestion is low, however, the frequency is scaled down to reduce

energy consumption, without violating QoS performance. The second issue deals with accu-

rately determining the congestion granularity and time scale needed to effectively manage

frequency scaling. A finer congestion granularity measured over a short time scale leads to

higher accuracy, but at the expense of additional overhead. A tradeoff between granularity,

time scale and overhead must, therefore, be worked out to achieve accuracy while maintain-

ing a low overhead. The third issue deals with the scheduler’s aggressivity when scaling the

processor’s frequency up or down. An aggressive strategy to lower processor speed to save

energy, when the network congestion is low, may lead to a violation of QoS performance.

Similarly, an aggressive strategy to increase processor speed in response to a high burst of

traffic may lead to energy waste. The strategy must, therefore, achieve the right balance

between saving energy and adhering to QoS performance.

To address the above issues, a DVFS-based scheduling architecture, depicted in Fig-

ure 3.1, is proposed. The architecture has three main components: Traffic Monitor (TM),

21

Figure 3.1: DVFS-Scheduler basic architecture.

Rate Scaler (RS) and DVFS Adjustor (DA). The TM component monitors the packets, over

an interval τ , and compute the statics related to the state of the network. Depending on the

scheduling strategy, the queue length, q(τ), or the link utilization, ρ(τ), are used to scale up

or down the Network Processor Unit (NPU) execution rates. The RS component computes

a network state-dependent scaling function, ξ(), which takes into consideration the aggres-

sivity factor of the scheduling strategy, η, and the current level of network congestion. The

scaling function is used by the DA component to adjust the NPU frequency, f(τ).

Table 3.1: Three families of DVFS-based, QoS-aware packet scheduling schemes.

Family Scheme Metric Scaling Factor Scaling Strategy

Load-aware
[Yu et al., 2015a]

LA Average traffic Load ρ f(τk) = max (fmin,min(fmax · ρ(τk), fmax))

L̄A Predicted traffic Load
(EWMA)

ρ f(τk) = max (fmin,min(fmax · ρ(τk), fmax))

QL-aware
[Yu et al., 2015a]

sQLA Current Queue Length (q+1
Q+1

)η f(τk) = max
(
fmin, fmax · (q(tk)+1

Q+1
)η
)

sQ̄LA Predicted Queue Length
(EWMA1)

(q+1
Q+1

)η f(τk) = max
(
fmin, fmax · (q(τk)+1

Q+1
)η
)

mQLA Current Queue Length (
(q−ql)+1
(qh−ql)+1

)η f(τk) =



fmin, if q(tk) ≤ ql
fmax, if q(tk) > qh

fmin + (fmax − fmin) · (
(q(tk)− ql) + 1

(qh− ql) + 1
)η ,

if ql < q(tk) ≤ qh

mQ̄LA Predicted Queue Length
(EWMA)

(
(q−ql)+1
(qh−ql)+1

)η f(τk) =



fmin, if q(τk) ≤ ql
fmax, if q(τk) > qh

fmin + (fmax − fmin) · (
(q(τk)− ql) + 1

(qh− ql) + 1
)η ,

if ql < q(τk) ≤ qh

Delay-aware
[Yu et al., 2015b]

QLDA Predicted Queue Length
& Packet Delay (EWMA
& GPR2)

(q−ql
qh−ql)

η(ρ) f(τk) =



fmin, if q(τk) ≤ ql
fmax, if q(τk) > qh

f(τk−1),

if ql < q(τk) ≤ qh and
∣∣∣d(τk)− dT

∣∣∣ ≤ d̃v(τk)

fmin + (fmax − fmin) · (
q(τk)− ql
qh− ql

)η(ρ(τk)),

if ql < q(τk) ≤ qh and
∣∣∣d(τk)− dT

∣∣∣ > d̃v(τk)

22

Motivated by our research work on DVFS-based dynamic power management, we ex-

plored and developed three families of DVFS-based, QoS-aware packet scheduling schemes

to reduce the energy consumption of routers based on different strategies, operating under

different traffic loads and network topologies under the same QoS constraints, as summa-

rized in Table 3.1. Using DVFS, routers can adaptively adjust the operational frequencies of

their processors, based on current conditions of the network. In these schemes, two metrics,

namely current queue length and link utilization, are considered.

The first family of schemes studied in this dissertation uses the network traffic load, i.e.

link utilization, to dynamically scale the processor’s speed [Pierson, 2015]. The first Load-

based scheme, referred to as Load-aware scheduler (LA), uses the traffic load over packet

inter departure interval to adjust the NPU frequency. The second scheme, referred to as pre-

dicted Load-aware scheduler (L̄A), uses the predicted average load by exponentially weighted

moving average (EWMA) algorithm over a given interval time, to adjust the frequency. In

this family, when the load is high, the speed is scaled up, and when the load is low, the speed

is scaled down [Yu et al., 2015a]. The detail is introduced in Section 3.4.

The second family of schemes, referred to as Single-threshold, QL-aware scheduler (sQLA),

Multi-threshold, QL-aware Scheduler (mQLA), Single-threshold Average QL-aware Sched-

uler (sQ̄LA) and Multi-threshold Average QL-aware Scheduler (mQ̄LA) [Pierson, 2015], uses

the queue length, instead of link utilization, to scale the frequency [Yu et al., 2015a]. When

the queue length increases, the scheduler scales the frequency up to meet the QoS delay

requirements. When the queue length decreases, however, the scheduler scales the frequency

down to save energy, without violating the QoS requirements. sQLA and mQLA use instan-

taneous queue length when adjusting NPU frequency. As such, they are instantly responsive

to traffic load variation. Insights derived from these schemes are valuable in gaining a better

understanding of the energy saving levels that can be achieved. These schemes, however,

are not feasible in real networks, due to the overhead caused by excessive frequency adjust-

ments. A practical implementation of these schemes can be achieved by using the average, as

opposed to the instantaneous, queue length. Therefore, the resulting average queue-length

based schemes, sQ̄LA and mQ̄LA, both use the EWMA algorithm to estimate the queue

length periodically over a given interval to dynamically adjust processor frequencies [Yu

23

et al., 2015a]. The detail is introduced in Section 3.5.

The third family scheme, referred to as Queue Length (QL)-based, Delay-aware packet

scheduler (QLDA) [Yu et al., 2015b], is an extended scheme of mQ̄LA [Yu et al., 2015a].

In this scheme, a DVFS-based, Delay-aware scheduler is proposed, to decide when and how

to adjust the router execution rates are based on not only the predicted queue-length but

also the target packet delay. The goal is to scale network processor frequency and achieve

maximal energy saving, under QoS delay requirements [Yu et al., 2015b]. The detail is

introduced in Section 3.6.

3.4 Load-aware DVFS-Schedulers

Load-aware DVFS adjusts the NPU frequency based on link utilization. To this end, the

scheduler increases the NPU frequency to meet QoS requirements when the load increases,

and decreases it to save energy when the load decreases. The effectiveness of the Load-aware

DVFS-Schedulers depends on what levels of load granularity are used in the scheduling

decision when the load is measured, and how aggressive is the scheduler in its quest to

reduce energy. In [Yu et al., 2015a], we propose two Load-aware schedulers and investigate

their performance, based on the load granularity and the scheduler’s aggressiveness toward

energy saving.

3.4.1 Load-aware Scheduler (LA)

The LA scheme uses the link utilization, upon the departure of a packet, to adjust

dynamically the processor frequency. Similarly, let τk be the elapsed time interval upon

the departure of packet k, k ≥ 1. The link utilization, ρ(τk), is defined as the ratio of

the packet arrival rate, λ(τk), to the packet service rate, µ(τk), over the time interval, τk.

Depending on the traffic burstiness and the level of network congestion, the NPU load during

the service of a packet may either decrease or increase. The RS determines ρ(τk) as the Load-

based scaling function, ξρ(), over the kth packet inter departure time, and scales the NPU

24

execution frequency, either up or down, based on Eq. 3.1. Note that, the adjusted frequency

must not exceed the maximum frequency, fmax, and must not be less than the minimum

frequency, fmin.

f(τk) = max (fmin,min(fmax · ξρ(τk), fmax)) (3.1)

Let ∆A(τk) and ∆D(τk) denote the number of packet arrivals and departures over the

interval τk, respectively. The Load-based scaling factor, ξρ(τk), can be computed as follows:

ξρ(τk) =
λ(τk)

µ(τk)
=

∆A(τk)

∆D(τk)
(3.2)

ξρ(τk) is the Load-based scaling factor used to adjust the NPU execution frequency,

taking into consideration the dynamics of the network congestion level, while seeking to

minimize energy consumption. The basic steps of the LA scheduling scheme are described

in Algorithm 3.1.

Algorithm 3.1 LA Scheduling Scheme.

1: For each NPU in LC at the router

2: Initialization:

3: A(0), D(0)← 0, f(τ0)← fInital

4: Measure link utilization ρ(τk) at kth packet departure time

5: τk ← the kth inter departure time

6: Calculate average arrival rate

7: ∆A(τk)← A(k)− A(k − 1), λ(τk)← ∆A(τk)
τk

8: Calculate departure rate

9: ∆D(τk)← D(k)−D(k − 1), µ(τk)← ∆D(τk)
τk

10: Calculate the link utilization

11: ρ(τk)← λ(τk)
µ(τk)

12: Calculate scaling factor, ξρ(τk)

13: ξρ(τk)← ρ(τk)

14: Scale frequency, f(τk)

15: f(τk)← max (fmin,min(fmax · ξρ(τk), fmax))
Saved Variables:

• A(k): the accumulated arrival packets until the kth packet departure time.
• D(k): the accumulated departure packets until the kth packet departure time.

25

3.4.2 Predicted Load-aware Scheduler (L̄A)

Contrary to the LA scheduler, the L̄A scheduler uses the predicted load, ρ(τk) over a

given time interval, τ , to adjust the NPU execution speed. To this end, it uses the EWMA

algorithm to predict the average packet arrival rate, λ(τk), as shown in Eq. 3.3, over the kth

time interval τ , k ≥ 1.

λ(τk) = (1− wa(τk)) · λ(τk−1) + wa(τk) · λ(τk) (3.3)

In the above equation, λ(τk) represents the packet arrival rate over the time interval τk,

and wa(τk) is the traffic weight factor defined as:

wa(τk) = ca ·
e2
a(τk)

σa(τk)
(3.4)

The term ea(τk) represents the load prediction error function, defined as ea(τk) = λ(τk)−

λ(τk). The term σa(τk) denotes the square prediction error for the time interval τk, defined

as σa(τk) = ca · e2
a(τk) + (1 − ca) · σ(τk−1), where ca is a constant parameter within (0, 1),

which is used to estimate to the value of σa(τk). The first order auto-regressive filter used

to predict future traffic load, combined with the error prediction method used to adaptively

compute the smooth factor wa(τk), guarantee that the predicted traffic load is not affected

by small deviations.

The L̄A scheme also use the above Eq. 3.2 to compute its scaling factor, ξρ(τk). In the LA

scheme, the number of packet departures over two consecutive packet departures is always

equal to 1, while in the L̄A scheme, τk, k ≥ 1, refers to a generic, regular time interval

τ , during which more packet departures may occur. The basic steps of the L̄A scheduling

scheme are described in Algorithm 3.2.

26

Algorithm 3.2 L̄A Scheduling Scheme.

1: For each NPU in LC at the router

2: Initialization:

3: A(0), D(0), λ(τ0)← 0, k ← 1, f(τ0)← fInital

4: Monitoring traffic load over the kth interval τ

5: Calculate average arrival rate

6: ∆A(τk)← A(k)− A(k − 1), λ(τk)← ∆A(τk)
τ

7: Calculate average departure rate

8: ∆D(τk)← D(k)−D(k − 1), µ(τk)← ∆D(τk)
τ

9: Update the dynamic smooth filter wa(τk) with Eq. 3.4

10: Predict the new link utilization ρ(τk) for the kth interval τ

11: λ(τk)← (1− wa(τk)) · λ(τk−1) + wa(τk) · λ(τk)

12: ρ(τk)← λ(τk)
µ(τk)

13: Calculate scaling factor, ξρ(τk)

14: ξρ(τk)← ρ(τk)

15: Scale frequency, f(τk)

16: f(τk)← max (fmin,min(fmax · ξρ(τk), fmax))
17: k ← k + 1

Saved Variables:
• A(k): the accumulated arrival packets until the end of the kth interval τ .
• D(k): the accumulated departure packets until the end of the kth interval τ .

3.5 QL-aware DVFS-Schedulers

In contrast to Load-aware DVFS, the basic QL-aware DVFS-Scheduler seeks to reduce

energy, while adhering to QoS performance, by dynamically adjusting processor frequency,

based on queue length derived metrics. Different variants of this scheme can be designed,

depending on the metric and the level of granularity used to characterize network congestion,

and the aggressivity of the scheme to achieve higher energy saving.

Two metrics, namely instantaneous and average queue length, are used to characterize

congestion. Based on these metrics, four QL-aware DVFS-Schedulers, using single and mul-

tiple queue length thresholds, are proposed. These schedulers differ in the strategy used

27

to account for queue length and the method used to capture different granularity and time

scales of the network congestion.

3.5.1 Single-threshold, QL-aware Scheduler (sQLA)

The sQLA scheme uses the queue length, q(tk), upon the kth packet departure time, tk,

k ≥ 1, to adjust dynamically the NPU execution frequency. Let τk be the elapsed departure

interval upon the departure of packet k, k ≥ 1. The frequency, f(τk), over τk, is defined in

Eq. 3.5.

f(τk) = max (fmin, fmax · ξq (τk)) (3.5)

The scaling function, ξq(), is determined based on the queue occupancy, defined as the

ratio of the queue length, q(tk), to the maximum queue capacity, Q, raised to the power, η.

ξq(τk) = (
q(tk) + 1

Q+ 1
)η (3.6)

The scaling function, (0 < ξq() ≤ 1), adapts the NPU frequency to the current queue

length. As the queue length increases, the sQLA scheduler scales the frequency up to meet

the QoS delay requirements. When the queue length decreases, however, the sQLA scheduler

scales the frequency down to save energy, without violating the QoS requirements. Algo-

rithm 3.3 describes the basic steps of the sQLA scheduling scheme.

Algorithm 3.3 sQLA Scheduling Scheme.

1: For each NPU in LC at the router

2: Initialization:

3: f(τ0)← fInital

4: Measure current queue length, q(tk), at the kth packet departure time.

5: Calculate scaling factor, ξq(τk)

6: ξq(τk)← (q(tk)+1
Q+1

)η

7: Scale frequency, f(τk)

8: f(τk)← max (fmin, fmax · ξq(τk))

sQLA relies exclusively on queue length to schedule packets. As such, it can easily be

incorporated in packet scheduling schemes commonly used in current routers, such as FIFO,

28

priority-based, and weighted fair queuing. By adjusting NPU frequency at the packet level,

the scheme has the potential to lead to significant energy savings. Its main shortcoming,

however, is its inability to capture finer levels of congestion granularity, when controlling

NPU execution rates. More specifically, coarse congestion granularity may underestimate

the current traffic load, which, in turn, may lead to violations of QoS requirements. Overes-

timating current traffic load, on the other hand, may lead to a missed opportunity to reduce

energy. To address this shortcoming, we introduce a multi-threshold variant of the sQLA

scheme.

3.5.2 Multi-threshold, QL-aware Scheduler (mQLA)

Similar to sQLA, mQLA uses queue length, upon the departure of a packet, to adjust

NPU execution rates. Contrary to sQLA, however, mQLA uses a coarser level of network

congestion granularity in its decision to scale up or down the NPU execution rates. More

specifically, mQLA uses two queue length thresholds, namely ql and qh (0 ≤ql<qh≤Q),

to specify three network congestion regions, namely low, medium and high, as depicted in

Figure 3.2.

Figure 3.2: Packet buffer.

mQLA depends on a scaling function based on these three packet buffer occupancy

regions, as illustrated in Eq. 3.7.

f(τk) =


fmin, if q(tk) ≤ ql

fmax, if q(tk) > qh

fmin + (fmax − fmin) · ξ′q(τk), if ql < q(tk) ≤ qh

(3.7)

29

In the above Equation, the scaling factor is defined as Eq. 3.8.

ξ
′

q(τk) =

(
(q(tk)− ql) + 1

(qh − ql) + 1

)η
, if ql < q(tk) ≤ qh (3.8)

Algorithm 3.4 describes the basic steps of the mQLA scheduling scheme.

Algorithm 3.4 mQLA Scheduling Scheme.

1: For each NPU in LC at the router

2: Initialization:

3: f(τ0)← fInital

4: Measure current queue length, q(tk), at the kth packet departure time.

5: if q(tk) ≤ ql then

6: Scale frequency f(τk) to fmin

7: f(τk)← fmin

8: else if q(tk) > qh then

9: Scale frequency f(τk) to fmax

10: f(τk)← fmax

11: else

12: Calculate scaling factor, ξ
′
q(τk)

13: ξ
′
q(τk)← ((q(tk)−ql)+1

(qh−ql)+1
)η

14: Scale frequency, f(τk)

15: f(τk)← fmin + (fmax − fmin) · ξ′q(τk)
16: end if

The above schemes use instantaneous queue length when adjusting NPU frequency. As

such, they are instantly responsive to traffic load variation. Insights derived from these

schemes are valuable in gaining a better understanding of the energy saving levels that can

be achieved. These schemes, however, are not feasible in real networks, due to the overhead

caused by excessive frequency adjustments. A practical implementation of these schemes

can be achieved by using the average, as opposed to the instantaneous, queue length. These

schemes are described next.

30

3.5.3 Single-threshold Average QL-aware Scheduler (sQ̄LA)

The sQ̄LA scheme uses the exponentially weighted moving average (EWMA) algorithm

to periodically predict the average queue length over a given time interval, τ . Consequently,

the average queue length, q(τk), for the kth time interval, τk, k ≥ 1, is defined as:

q(τk) = (1− wq(τk)) · q(τk−1) + wq(τk) · q(tk) (3.9)

In the above Eq. 3.9, q(tk) represents the queue length measured at the ending time of

the kth time interval, tk, and wq(τk) is the queue-length weight factor defined as:

wq(τk) = cq ·
eq(τk)

2

σq(τk)
(3.10)

The term eq(τk) represents the queue length prediction error function, defined as eq(τk) =

q(tk) − q(τk), and σq(τk) denotes the square prediction error for the interval τk, defined as

σq(τk) = cq · e2
q(τk) + (1− cq) · σq(τk−1), where cq is a constant parameter within (0, 1), which

is used to estimate the value of σq(τk). The first order auto-regressive filter used to predict

future queue length, combined with the error prediction method used to adaptively compute

the weight function wq(τk), guarantee that the predicted queue length is not affected by

small deviations. Algorithm 3.5 describes the basic steps of the sQ̄LA scheduling scheme.

Algorithm 3.5 sQ̄LA Scheduling Scheme.

1: For each NPU in LC at the router

2: Initialization:

3: q(τ0)← 0, k ← 1, f(τ0)← fInital

4: Measure queue length, q(tk), at the ending time of the kth interval τ

5: Update the dynamic smooth filter wq(τk) with Eq. 3.10

6: Estimate the new average q(τk) for the kth interval τ

7: q(τk)← (1− wq(τk)) · q(τk−1) + wq(τk) · q(tk)
8: Calculate scaling factor, ξq(τk)

9: ξq(τk)← (q(τk)+1
Q+1

)η

10: Scale frequency, f(τk)

11: f(τk)← max (fmin, fmax · ξq(τk))
12: k ← k + 1

31

3.5.4 Multi-threshold Average QL-aware Scheduler (mQ̄LA)

Similarly, as a variant of the mQLA scheme, the mQ̄LA scheme uses the average queue

length estimated by EWMA method and multi-threshold strategy to adaptively control the

execution rates of line cards. Algorithm 3.6 describes the basic steps of the mQ̄LA scheduling

scheme.

Algorithm 3.6 mQ̄LA Scheduling Scheme.

1: For each NPU in LC at the router

2: Initialization:

3: q(τ0)← 0, k ← 1, f(τ0)← fInital

4: Measure queue length, q(tk), at the end time of the kth interval τ

5: Update the dynamic smooth filter wq(τk) with Eq. 3.10

6: Estimate the new average q(τk) for the kth interval τ

7: q(τk)← (1− wq(τk)) · q(τk−1) + wq(τk) · q(tk)
8: if q(τk) ≤ ql then

9: Scale frequency f(τk) to fmin

10: f(τk)← fmin

11: else if q(τk) > qh then

12: Scale frequency f(τk) to fmax

13: f(τk)← fmax

14: else

15: Calculate scaling factor, ξ
′
q(τk)

16: ξ
′
q(τk)← ((q(τk)−ql)+1

(qh−ql)+1
)η

17: Scale frequency, f(τk)

18: f(τk)← fmin + (fmax − fmin) · ξ′q(τk)
19: end if

20: k ← k + 1

3.6 Delay-aware DVFS-Scheduler

Queue Length (QL)-based, Delay-aware packet scheduler (QLDA) [Yu et al., 2015b], is

an extended scheme of mQ̄LA. It uses multiple queue length thresholds to accurately capture

32

network congestion. In response to different levels of network congestion, different NPU-rate

scaling strategies are used to determine when and how NPU execution rates are adjusted

based on the predicted queue length and the estimated delay variance, aiming to achieve

adequate energy savings under different traffic loads, without degrading delay performance.

3.6.1 Delay-aware DVFS-Scheduler Design and Architecture

The basic idea of DVFS-Scheduler is to dynamically adjust the processor frequency, based

on the current state of the network, to reduce energy consumption. Similarly, to design an

effective QL-based Delay-aware DVFS-Scheduler, several issues must be addressed. First,

a strategy must be in place to determine how queue length impacts scheduling decisions.

Second, appropriate levels of congestion granularity must be taken into consideration when

adjusting the NPU’s execution rate. Multiple queue length thresholds to model different

levels of network congestion are considered in this chapter. Third, a mechanism must be

in place to predict traffic end-to-end delay and bind its variability so that the desired de-

lay performance can be achieved. In the proposed scheduler, an effective method, which

estimates packet delay variability to predict the deviation of packet delay from the target

end-to-end delay, is used to control NPU’s execution rate adjustments. Finally, an adaptive

mechanism must be in place to control the “aggressivity” of the scheduling policy to ensure

energy savings without degrading QoS performance.

To address the above issues, a Delay-aware DVFS-enabled scheduling architecture, de-

picted in Figure 3.3, is proposed. The Traffic Monitor (TM) monitors the packet queue and

gathers statics related to its length. The estimated average queue length, q(τ), and average

packet delay, d(τ), over a time interval τ , are used to scale up or down the NPU execution

rates. The NPU Rate Scaler (RS) computes a network state-dependent scaling function, ξ(),

taking into consideration the aggressivity factor of the scheduling strategy, η(τ) generated

by the average network traffic load ρ(τ), and the current level of network congestion. The

DVFS Adjustor (DA) adjusts the NPU frequency, f(τ), based on the scaling factor.

Based on the above architecture, a Delay-aware DVFS-enabled packet scheduler is pro-

posed, which uses predicted average queue length and average packet delay to control the

33

Figure 3.3: Delay-aware DVFS-enabled scheduling architecture.

frequency adjustment. The related NPU rate scaling strategies, queue-length, and packet-

delay prediction mechanisms are introduced in the following.

3.6.2 QL-based Delay-Aware Packet Scheduler (QLDA)

Similarly, QLDA uses the exponentially weighted moving average (EWMA) scheme to

periodically predict the average queue length over a given time interval, τ , to adjust the

NPU execution frequency dynamically. In order to reduce DVFS switching overhead, QLDA

uses a coarser level of network congestion granularity in its decision to scale up or down the

NPU execution rates. More specifically, QLDA uses two queue length thresholds, namely ql

and qh (0 ≤ ql < qh ≤ Q) to define low, medium and high network congestion regions, as

depicted in Figure 3.2.

According to the above three packet buffer occupancy regions Fig.3.2, the frequency,

f(τk), over the kth time interval, τk, k ≥ 1, is defined in Eq. 3.11.

f(τk) =



fmin, if q(τk) ≤ ql

fmax, if q(τk) > qh

f(τk−1), if ql < q(τk) ≤ qh and
∣∣d(τk)− dT

∣∣ ≤ d̃v(τk)

fmin + (fmax − fmin) · ξ(τk),

if ql < q(τk) ≤ qh and
∣∣d(τk)− dT

∣∣ > d̃v(τk)

(3.11)

In the above strategy function, the scaling factor, ξ(τk), over τk, as illustrated in Eq. 3.12,

is determined based on the queue occupancy in the middle region (ql, qh), defined as the ratio

34

of the queue length occupancy to the difference between two queue length thresholds, raised

to the power, η(ρ).

ξ(τk) = (
q(τk)− ql
qh − ql

)η(ρ) (3.12)

The average queue length, q(τk), over τk, is defined in Eq. 3.13. q(τk) represents the

queue length at the end of the interval τk, and wq(τk), defined as wq(τk) = cq · eq
2(τk)

σq(τk)
, where

0 < cq < 1, 0 < wq(τk) < 1, is the queue-length weight factor.

q(τk) = (1− wq(τk)) · q(τk−1) + wq(τk) · q(τk) (3.13)

The term eq(τk) represents the queue length prediction error function, defined as eq(τk) =

q(τk) − q(τk), and σq(τk) denotes the square prediction error for τk, defined as σq(τk) =

cq · eq2(τk) + (1 − cq) · σq(τk−1). The first order auto-regressive filter used to predict future

queue length, combined with the error prediction method used to adaptively compute the

weight function, wq(τk), guarantee that the predicted queue length is not affected by small

deviations.

The aggressivity factor η(ρ(τk)) associated with the average traffic load ρ(τk), over τk, is

defined as Eq. 3.14.

η(ρ(τk)) = a · e−(
ρ(τk)−b

c
)2 (3.14)

The aggressivity function, η(), uses Gaussian regression model to generate the aggres-

sivity factor of the scheduling strategy based on the traffic load. a, b, and c are constant

model parameters. The average traffic load ρ(τk) is computed by the traffic average arrival

rate λ(τk) over τk and the maximal NPU service rate umax, as illustrated Eq. 3.15.

ρ(τk) =
λ(τk)

umax
(3.15)

In order to further reduce DVFS scaling overhead, QLDA uses the estimated delay vari-

ance to decide when to adjust NPU’s frequency. When the estimated average queue length

falls in the middle region (ql, qh), QLDA does not systematically scale up or down the NPU’s

execution rate over every time interval τ . DVFS scaling in this region only takes place when

35

the absolute value of the deviation between the predicted average packet delay, d(τk), over

τk, and the target packet delay, dT , exceeds the estimated delay deviation, d̃v(τk). When a

deviation occurs, the frequency is scaled up or down, depending on the queue length and

the target packet delay, as illustrated in Eq. 3.11.

In order to predict the average packet delay, d(τk), the same exponential smoothing

technique, defined in Eq. 3.16, is used. d(τk) represents the kth average packet delay, which

is computed based on the average queue length, the average arrival rate and the average

departure rate over τk.

d(τk) = (1− wd(τk)) · d(τk−1) + wd(τk) · d(τk) (3.16)

The term wd(τk), 0 < wd(τk) < 1, denotes a dynamic delay weight factor and is defined

as wd(τk) = cd · ed
2(τk)

σd(τk)
, where 0 < cd < 1. Similarly, ed(τk) represents the delay prediction

error function, defined as ed(τk) = d(τk) − d(τk), and σd(τk) denotes the square prediction

error for τk, defined as σd(τk) = cd ·ed2(τk)+(1−cd)·σd(τk−1). The first order auto-regressive

filter used to predict future packet delay, combined with the error prediction method used

to adaptively compute the weight function wd(τk), guarantee that the predicted delay is not

affected by small delay deviations.

Based on the delay prediction error function and a constant αdv, 0 < αdv < 1, (αdv = 0.25

is recommended), the delay deviation can be estimated in Eq. 3.17.

d̃v(τk) = (1− αdv) · d̃v(τk−1) + αdv · |ed(τk)| (3.17)

QLDA relies exclusively on queue length to schedule packets. As such, it can easily be

incorporated in packet scheduling schemes commonly used in current routers, such as FIFO,

priority-based, and weighted fair queuing. Algorithm 3.7 describes the basic steps of the

QLDA scheduling scheme.

36

Algorithm 3.7 QLDA Scheduling Scheme.

1: For each NPU in LC at the router

2: Initialization:

3: q(τ0), d(τ0), d̃v(τ0)← 0, k ← 1, f(τ0)← fInital

4: Monitor queue length, q(τk), at the end time of τk

5: Update the queue-length smooth filter, wq(τk)

6: Estimate the new average q(τk) for τk

7: q(τk)← (1− wq(τk)) · q(τk−1) + wq(τk) · q(τk)
8: Calculate d(τk) based on q(τk)

9: Estimate the new d(τk) and d̃v(τk) for τk

10: Update the delay smooth filter, wd(τk)

11: d(τk)← (1− wd(τk)) · d(τk−1) + wd(τk) · d(τk)

12: ed(τk)← d(τk)− d(τk)

13: d̃v(τk)← (1− αdv) · d̃v(τk−1) + αdv · |ed(τk)|
14: if q(τk) ≤ ql then

15: Scale frequency f(τk) to fmin

16: f(τk)← fmin

17: else if q(τk) ≥ qh then

18: Scale frequency f(τk) to fmax

19: f(τk)← fmax

20: else

21: if
∣∣d(τk)− dT

∣∣ ≤ d̃v(τk) then

22: f(τk)← f(τk−1)

23: else

24: λ(τk)← A(τk)/τk

25: ρ(τk)← λ(τk)/umax

26: Generate aggressivity factor, η(ρ(τk))

27: Calculate scaling factor, ξ(τk)

28: ξ(τk)← (q(τk)−ql
qh−ql

)η(ρ(τk))

29: Scale frequency, f(τk)

30: f(τk)← fmin + (fmax − fmin) · ξ(τk)
31: end if

32: end if

33: k ← k + 1

Parameters:
• umax: a fixed parameter donates the maximal service rate at NPU.
• A(τk): a saved variable donates the number of the arrival packets over τk.

37

3.7 Evaluation

A simulation framework to assess the performance of the energy- and QoS-aware schedul-

ing schemes discussed above are proposed in [Yu et al., 2015a,b]. We consider a set of DVFS-

enabled routers and present a detailed model to determine the packet-based and router-based

energy consumption, taking into consideration the frequency adjustment strategy used by the

underlying scheduler. A NS2-based simulation framework is used to assess the performance

of the proposed strategies in terms of energy gain.

3.7.1 Packet- and Router-based Energy Consumption Models

Two main components impact power consumption in network routers [Vishwanath Mem-

ber et al., 2014; Valentini et al., 2013]. The first, referred to as static power, arises from the

bias and leakage current to support control plane, environment units, and load-independent

data plane [Vishwanath Member et al., 2014]. The second, referred to as dynamic power,

results from the charging and discharging of the voltage saved in node capacitance of the

circuit. We use ΦS and ΦD to denote static and dynamic power, respectively. In a router,

NPUs operate in two possible states, namely “idle” and “busy”. In the “idle” state, the

power consumption is load-independent and equals to the static power, ΦS. In the “busy”

state, the power consumption is load-dependent and is composed of the static power ΦS and

dynamic power ΦD. Consequently, the power consumed by a router can be expressed as

follows:

Φ =

ΦS, “idle” state

ΦS + ΦD, “busy” state
(3.18)

The dynamic power, ΦD, can be further expressed as ΦD = γ · f 3 [Gerards, 2014; Chen

et al., 2012]. The parameter f denotes the clock frequency of the NPU processor and γ is a

constant parameter, expressed in units of Watts/GHz3.

38

3.7.1.1 Packet-based Energy Model For a given router, the dynamic power consumed

by the data plane, ΦD, is composed of two components, namely the per-packet processing

power component, ΦP , and the per-byte store and forward power component, ΦS&F [Vish-

wanath Member et al., 2014]. Both components are affected by the operational processor

frequency, f . ΦP represents the power consumed to process a given packet, regardless of

the packet payload size. ΦS&F , on the other hand, represents the power needed to receive,

store, switch and transmit a packet. Contrary to ΦP , which only depends on the number

of instructions needed to process a packet (IPPP), ΦS&F depends on the packet length,

as packets with different lengths require different storage, switching time and transmission

time, thereby consuming different amounts of power.

Let IPBS&F denote the number of instructions required to process, store and forward a

byte worth of data. Assuming a packet length of L bytes, the number of instructions required

to process the packet is IPPS&F = L · IPBS&F . Note that IPBS&F is constant, as it only

depends on the number of instructions to process a byte. Therefore, IPPP can be expressed

as a linear function of IPBS&F , namely IPPP = h · IPBS&F , where h > 0.

Let IPP represent the number of instructions to complete the processing, store, switch

and transmission an entire packet with length L by a NPU at a given LC. We have IPP =

IPPP+IPPS&F = (h+L)·IPBS&F . The NPU’s processing, storage, switching and transmis-

sion time of a packet, Tp = IPP
IPS

, where IPS represents the number of instructions executed

by the NPU per second. IPS can be further expressed as f
CPI

, where f denotes the op-

erational frequency of the NPU and CPI represents the number of cycles per instruction.

Therefore, Tp = IPP ·CPI
f

= Θ·(h+L)
f

, where Θ = CPI · IPBS&F .

Let fj,i denote the operational frequency of the active NPU j in LC i. In practice,

the NPU only allows a number of manufacturer-specified discrete operational voltage lev-

els, V={V1, ..., Vl, ..., VM}. These discrete levels result in a corresponding set of discrete

frequencies, F={f1, ..., fl, ..., fM}. Consequently, fj,i must be set to the smallest discrete

frequency, fl(1 ≤ l ≤M)|fl ≥ fj,i. The dynamic energy consumed by a successful packet

39

transmission with length L at NPU j in LC i is given by:

ED
j,i(Tp) = γj,i · f 3

j,i︸ ︷︷ ︸
ϕDj,i

·Tp = γj,i ·Θj,i · f 2
j,i · (hj,i + L) (3.19)

3.7.1.2 Router-based Energy Model Assume that a router is equipped with Ψ LCs,

each LCi (1 ≤ i ≤ Ψ) is equipped with ni active NPUs. Let TBj,i =
∑
∀ pTp (1 ≤ j ≤ ni and

1 ≤ i ≤ Ψ) denote the busy time interval during which NPU j in LC i processes, stores,

switches and transmits packets over the entire router’s operation time, T , which includes

idle and busy periods. The energy consumption of the router, over T , can be expressed as

E(T) = ES(T)+ED(TB), where ES(T) represents the energy consumed due to static power

during T and ED(TB) represents the energy consumed due to dynamic power over the busy

period, TB. These energy components can be expressed as:

ES(T) = ΦS · T

ED(TB) =
Ψ∑
i=1

ni∑
j=1

ED
j,i(T

B
j,i)

(3.20)

ED
j,i represents the energy consumption by NPU j in LC i due to dynamic power, over the

busy period, TBj,i. Note that ED
j,i depends on the dynamically changing frequencies used to

process, store, switch and transmit a given packet, based on the scheduler’s scaling decision.

Let Zj,i be the amount of time intervals at NPU j in LC i over time T , and τ1, · · · , τk, · · · , τZj,i ,

1 ≤ k ≤ Zj,i, represent the frequency time slots at NPU j in LC i. Assuming fj,i(τ0) is the

initial frequency. The frequency of NPU j at LC i, over the time interval τk, is fj,i(τk−1),

where 1 ≤ i ≤ Ψ, 1 ≤ j ≤ ni and 1 ≤ k ≤ Zj,i. Let Dj,i(τk) denote the number of packets

serviced by NPU j in LC i over the time interval τk. According to Eq. 3.19, the total dynamic

energy consumed by Dj,i(τk) packets over the busy period TBj,i(τk) =
∑

p∈Dj,i(τk) Tp during

the time interval τk can be expressed as:

ED
j,i(T

B
j,i(τk)) = γj,i ·Θj,i · f 2

j,i(τk−1) ·Dj,i(τk) · (hj,i + Lj,i(τk)) (3.21)

The parameter Lj,i(τk) represents the average length of the packets serviced at NPU j

40

in LC i over the interval τk. The energy consumed by the router over the total operational

period, T =
∑Zj,i

k=1 τk, is derived in Eq. 3.22.

E(T) = P S · T +
Ψ∑
i=1

ni∑
j=1

Zj,i∑
k=1

γj,i ·Θj,i · f 2
j,i(τk−1) ·Dj,i(τk) · (hj,i + Lj,i(τk)) (3.22)

To validate the above router energy model, without loss of generality, we derive the

total energy consumed by a router for two special cases: the first case assumes a set of

Ψ homogeneous LCs, while the second assumes all LCs have the same number of active

NPUs. Note that, in both cases, the packet energy consumption can be expressed as Ep =

EPP + EBS&F · L, where EPP , expressed in nJ/packet, denotes the per-packet processing

energy, and EBS&F , expressed in nJ/byte, denotes the per-byte store and forward energy,

and L is the average packet length [Vishwanath Member et al., 2014].

Using the above model, we can derive an expression for h and γ, for a homogeneous

network. Let EBPmaxj,i
= EPPmax , EBS&Fmaxj,i

= EBS&Fmax , fmaxj,i = fmax. Consequently,

hj,i = h, γj,i = γ, Θj,i = Θ, where 1 ≤ j ≤ ni, 1 ≤ i ≤ Ψ. According to Eq. 3.19,

we can compute h =
EPPmax

EBS&Fmax
and γ =

EBS&Fmax
Θ·f2max

. The router total energy for the simple

homogeneous case is expressed in Eq. 3.23. The same method can be used to compute γj,i

and hj,i, for a network of heterogeneous LCs.

E(T) = P S · T +
Ψ∑
i=1

ni∑
j=1

Zj,i∑
k=1

f 2
j,i(τk−1)

f 2
max

·Dj,i(τk) · (EPPmax + EBS&Fmax · Lj,i(τk)) (3.23)

Suppose that each LC has the same number of active NPUs. Furthermore, assume that

all NPUs in LCs synchronously process their incoming traffic with average packet length L,

use the same speed-scaling strategy over the operational time interval, T . We set Zj,i = Z,

ni = n, Lj,i = L and Dj,i(τk) = D(τk), where 1 ≤ j ≤ n, 1 ≤ i ≤ Ψ, 1 ≤ k ≤ Z. The above

energy model in Eq. 3.23 can be further simplified to:

E(T) = P S · T + Ψ · n · (EPPmax + EBS&Fmax · L)

f 2
max

·
Z∑
k=1

f 2(τk−1) ·D(τk) (3.24)

41

Eq. 3.23 and Eq. 3.24 demonstrate that adjusting the frequency, as opposed to using the

maximum frequency, further reduces energy consumption. The following simulation study

will be used to further determine the impact of dynamically adjusting frequencies on energy

consumption.

Figure 3.4: Two network topology models: (a) dumbbell, and (b) parking lot.

3.7.2 Simulation Setup

Simulation is an important tool in studying the performance of network protocols. The

main objectives of this simulation-based performance analysis are threefold. The first objec-

tive aims to assess the sensitivity of each proposed scheme to its main parameters and how

these parameters are correlated, particularly, its aggressivity to energy savings and network

behavior predictability. The second objective is to carry out a comparative analysis of the

proposed schemes, with respect to energy saving and adherence to QoS performance. The

last objective is to compare the performance of the different schemes to similar schemes

proposed in the literature.

The topology used in simulation-based performance analysis of network protocols of-

ten influences the outcome of the experiment. Consequently, the use of realistic network

topologies to accurately capture the main behavior, dynamics and performance objectives is

critical to producing realistic simulation results. Several studies were carried out to assess

the viability of different types of topologies used in network simulation [Hayes et al., 2014;

Jonckheere et al., 2002; Shah et al., 2003; Móczár et al., 2014]. Based on these studies,

the dumbbell and parking lot topologies emerged as two promising models to capture the

42

behavior and performance of a large variety of applications, ranging from TCP applications

over the Internet to multimedia applications, home networking, and transportation systems.

A Dumbbell topology consists of a number of traffic hosts, attached to an inbound and an

outbound switch. The two switches are connected by a single communication link. The

parking lot topology is similar to the dumbbell topology, except that traffic hosts are also

attached to intermediate routers between the inbound and outbound routers. In this study,

we use an extended configuration of these topologies, by allowing multiple links between the

inbound and outbound routers. Furthermore, the bandwidth and latency of the link are

configurable. Fig.3.4 depicts the extended dumbbell and parking lot topologies used in this

performance analysis study.

In Figure 3.4, S and D, denote the end-hosts, and the intermediate nodes between S and

D are energy-saving routers. The capacities of links between all the routers are 10 Gbps.

The routers implement FIFO scheduling and DropTail queuing. The propagation delays

between the sources and the destinations are 40 ms, which is equivalent to the time the

light travels from the east coast to west coast. In each router, all LCs are configured with

multiple NPUs, each using a specific QoS-aware DVFS scheduler. In order to simulate real

scenarios, Huawei CX600-X3 Metro Router model [Group, 2007], supporting 10GE LCs, is

used. We further assume that each 10GE port provides 250 ms worth of traffic buffering.

This results in processor buffers of approximately 250ms× 10Gbps, which is roughly 250000

packets, assuming the average packet size of 1250 bytes. The range of operating frequencies,

[1.6GHz, 2.4GHz], for a given NPU, is based on Intel XEON DPDK specification [Intel,

2012].

Table 3.2 describes the main simulation parameters used in this simulation study. Ac-

cording to [Simpson, 2006; Cha], Table 3.3 specifies three traffic source models, namely

one constant bit rate (CBR) model: CBR Video, and two variable bit rate (VBR) mod-

els: VBR VoIP and VBR Data, which satisfy Pareto and Exponential On/Off distribution,

respectively. Table 3.4 summarizes the different schedulers analyzed and compared in this

simulation study. In addition to the QoS-aware schedulers, we also implemented a generic

scheduler with no DVFS capabilities, called NoDVFS, as the experimental baseline, which

uses the maximum frequency.

43

Table 3.2: Main simulation parameters and conditions.

Items Simulation Parameters Simulation Conditions

Router Router Node Metro Router [Vishwanath Member et al.,
2014]

NIC port 10GE

Operating Frequency (GHz) 1.6 ∼ 2.4

CPI(cycles/instruction) 1.2

EPPmax(nJ/pkt) 1375 [Vishwanath Member et al., 2014]

EBS&Fmax
(nJ/byte) 14.4 [Vishwanath Member et al., 2014]

PS(Watts) 352 [Vishwanath Member et al., 2014]

Packet Packet Max size (bytes) 1500

IPB(instructions/byte) 1.5

Queue Service Discipline FIFO

Queuing Management Discipline DropTail

Network Topology Model 3-hop dumbbell

4-hop parking lot

Network Traffic Load 0.5, · · · , 0.9

Propagation Delay (ms) dumbbell: 40; parking lot: 40

Traffic Model Video:VoIP:Data

Table 3.3: Traffic source models and specifications.

Flow
Type

Load
Percentage

TOn
(ms)

TOff
(ms)

Peak
Rate

β

Video 50% NA NA 10Mbps NA

VoIP 20% 400 400 64Kbps 1.1

Data 30% 40 360 256Kbps NA

44

Table 3.4: Speed scaling schedulers.

Scheme Metric Scaling Factor Scaling Strategy

NoDVFS None None f(t) = fmax

EWMAP
[Tucker et al.,
2009]

Predicted Load with wa =
0.2

ρ f(τk) = max (fmin,min(fmax · ρ(τk), fmax))

LA Average Load ρ f(τk) = max (fmin,min(fmax · ρ(τk), fmax))

L̄A Predicted Load with
wa(τk)

ρ f(τk) = max (fmin,min(fmax · ρ(τk), fmax))

sQLA Current Queue Length (q+1
Q+1

)η f(τk) = max
(
fmin, fmax · (q(tk)+1

Q+1
)η
)

sQ̄LA Predicted Queue Length (q+1
Q+1

)η f(τk) = max
(
fmin, fmax · (q(τk)+1

Q+1
)η
)

mQLA Current Queue Length (
(q−ql)+1
(qh−ql)+1

)η f(τk) =



fmin, if q(tk) ≤ ql
fmax, if q(tk) > qh

fmin + (fmax − fmin) · (
(q(tk)− ql) + 1

(qh− ql) + 1
)η ,

if ql < q(tk) ≤ qh

mQ̄LA Predicted Queue Length (
(q−ql)+1
(qh−ql)+1

)η f(τk) =



fmin, if q(τk) ≤ ql
fmax, if q(τk) > qh

fmin + (fmax − fmin) · (
(q(τk)− ql) + 1

(qh− ql) + 1
)η ,

if ql < q(τk) ≤ qh

QLDA Predicted Queue Length &
Packet Delay (EWMA &
GPR3)

(q−ql
qh−ql)

η(ρ) f(τk) =



fmin, if q(τk) ≤ ql
fmax, if q(τk) > qh

f(τk−1),

if ql < q(τk) ≤ qh and
∣∣∣d(τk)− dT

∣∣∣ ≤ d̃v(τk)

fmin + (fmax − fmin) · (
q(τk)− ql
qh− ql

)η(ρ(τk)),

if ql < q(τk) ≤ qh and
∣∣∣d(τk)− dT

∣∣∣ > d̃v(τk)

Table 3.5: Impact of η on ESP, AED, DJB and PLR of sQ̄LA and mQ̄LA (ql : qh = 4% : 80%)
under traffic load ρ = 0.9 and τ = 1 ms.

Dumbbell model Parking lot model

Scheme sQ̄LA mQ̄LA sQ̄LA mQ̄LA

η 0.04 0.05 0.06 0.14 0.15 0.16 0.04 0.05 0.06 0.14 0.15 0.16

ESP (%) 4.53 4.84 5.15 4.63 4.70 4.85 5.93 6.12 6.32 5.86 5.99 6.21

AED(ms) 103.68 137.09 168.73 126.6 134.4 153.15 96.77 126.11 156.69 123.38 129.39 150.42

DJB(ms) 2.32 7.09 21.39 4.74 9.76 11.48 1.08 7.84 10.78 5.36 8.71 10.55

PLR(%) 0 0 0 0 0 0 0 0 0 0 0 0

45

Figure 3.5: ESP and AED comparisons for (a) Load-aware schemes with different τ , and (b) L̄A
scheme with different ca.

Figure 3.6: ESP comparisons for (a) sQLA/sQ̄LA schemes with η = 0.05, and (b) mQLA/mQ̄LA
schemes with η = 0.15 under different τ .

The ITU G.114 specification recommends less than 150 ms one-way end-to-end delay

for high-quality real-time traffic such as voice and video. In order to assure a good quality

of the above traffic models, measures of the QoS parameters must respect the following

values [Szigeti and Hattingh, 2005; ITU-T, 2003; Ellis et al., 2003]. In our simulation, we

consider the following QoS requirements to evaluate energy saving percentage (ESP), average

end-to-end delay (AED) for all discussed QoS-aware schemes.

46

• 150 ms as the average end-to-end delay threshold (AEDT) [ITU-T, 2003],

• 30 ms as the delay jitter bound (DJB),

• 1% as the packet loss rate (PLR) threshold.

3.7.3 Sensitivity to the main parameters of Load-aware Schemes

In this section, we carried a series of experiments to explore the sensitivity of Load-aware

schemes to different parameters. The objective is to fine tune the main parameters of these

schemes to achieve the balance between the high energy saving and the QoS performance.

3.7.3.1 Sensitivity to τ Different values of the monitoring period τ are tested to de-

termine the sensitivities of the Load-aware schedulers to DVFS adjustment. Choosing a

small prediction period, τ , in Load-aware schemes could suffer the overhead impact of the

back-to-back undesirable DVFS adjustment. In this experiment, we study the impact of the

prediction period τ on the energy saving and the packet average delay of the L̄A scheme in

the range [0.1, 10] ms. Different from the Q̄LA schemes, the L̄A scheme exhibits sensitivity

to τ . Fig.3.5 (a) shows that the L̄A scheme can achieve adequate energy saving without QoS

violence when τ is set as 10 ms.

3.7.3.2 Sensitivity to ca In the L̄A scheme, the EWMA algorithm uses a prediction

factor ca to dynamically adjust smooth filter wa to predict the traffic load. Different values of

ca in the range [0.01, 0.50] are tested. Fig.3.5 (b) depicts that the energy saving and average

packet end-to-end delay are very sensitive to ca. The energy saving increases with the value

of ca decreases. However, a small value of ca could lead to a sharp delay increase and a high

packet loss rate, such as the scenario with ca = 0.01 in L̄A scheme. In order to guarantee

the QoS requirements, ca = 0.03 is selected under τ = 10 ms for the following analysis.

3.7.4 Sensitivity to the main parameters of QL-aware Schemes

Similarly, we carried a series of experiments to explore the sensitivity of QL-aware, single-

and multi-thresholds schemes to different parameters.

47

3.7.4.1 Sensitivity to η The first experiment is designed to study the schedulers’ sensi-

tivity to the aggressivity factor, η. A series of values in the range [0.01, 0.20] under the high

traffic load, ρ = 0.9, is tested for QL-aware schemes. The results show that the energy sav-

ing and the average packet delay both increase when the value of η increases, a larger value

of η can save more energy, it, however, could lead to a dramatic delay increase, especially

under the high traffic load, as displayed in Table 3.5. Therefore, given a NPU’s frequency

range and a network model, the upper bound value of η can be found to achieve adequate

energy saving without QoS violence. Setting η = 0.05 for sQLA/sQ̄LA, and η = 0.15 for

mQLA/mQ̄LA, we can get the largest energy saving under the acceptable QoS requirements

in the respective family schemes.

In this chapter, we mainly analysis 3-hop dumbbell and 4-hop parking lot models. In

the real world, however, there are more realistic and complex topologies. Therefore, given

the QoS requirements, the network model, the routing path, the number of hops along the

routing path and the application traffic load could be important impact factors to the upper

bound of η. Our future work will further explore these issues.

3.7.4.2 Sensitivity to τ The second experiment is designed to study the schedulers’

sensitivity to the rate of DVFS adjusting. Assuming a frequency range, [fmin, fmax], a small

frequency adjustment interval creates more opportunities for a more accurate adjustment

of the frequency, based on the current or average queue length. A small interval, however,

increases the frequency adjustment overhead. A large frequency adjustment interval reduces

the overhead required to adjust frequencies, but fails to capture more accurately the current

level of congestion. Fig.3.6 (a,b) depicts the energy saving percentage for the different

QL-aware schemes under the acceptable average end-to-end packet delay, using different

frequency adjustment interval, τ . The results show that two Q̄LA schemes with the respective

aggressivity factors are not sensitive to τ when the value of τ is under 1 ms. Therefore,

τ = 1 ms is selected for the rest of the experiments.

48

3.7.4.3 Sensitivity to cq In sQ̄LA and mQ̄LA schemes, the EWMA algorithm uses a

constant parameter, cq, to adaptively adjust the smooth filter, wq. Different values of cq in

the range [0.01, 0.50] are tested in both sQ̄LA scheme and mQ̄LA scheme. The results show

that the energy saving and packet average end-to-end delay are not sensitive to cq. When

the value of cq increases, the energy saving increases slightly. Therefore, the value of cq is

set to 0.5 in our simulation study.

3.7.4.4 Sensitivity to ql and qh In this experiment, the value of η is set to 0.15, and

the value of τ is set to 1 ms, while the thresholds, ql and qh are varied, as described in

Table 3.6. Four combinations of ql and qh are tested to study the impact of the queue-length

thresholds on energy saving and average packet delay in the mQ̄LA scheme. As shown in

Table 3.7, although the energy saving is not very sensitive to qh, a higher qh can save more

energy. On the other hand, the packet delay is very sensitive to ql, it increases dramatically

with the value of ql increases. Therefore, adjusting queue-length thresholds, i.e. ql and qh,

can optimize the effectiveness and efficiency of the mQ̄LA scheme. Our experiment shows

that setting ql : qh = 4% : 80% provides an adequate balance between the high energy saving

and the acceptable QoS requirements.

Table 3.6: Four combinations of (ql, qh) in the mQ̄LA scheme.

qh = 60% ·Q qh = 80% ·Q
ql = 4% ·Q (1.0 E+4, 1.5 E+5) (1.0 E+4, 2.0 E+5)

ql = 10% ·Q (2.5 E+4, 1.5 E+5) (2.5 E+4, 2.0 E+5)

Table 3.7: Impact of ql : qh on ESP and AED in mQ̄LA scheme.

ESP (%) AED (ms)

ql : qh 4% :
60%

4% :
80%

10% :
60%

10% :
80%

4% :
60%

4% :
80%

10% :
60%

10% :
80%

ρ = 0.7 9.43 9.45 9.67 9.68 79.72 79.72 126.77 126.77

ρ = 0.8 7.43 7.44 7.69 7.69 78.49 79.05 130.14 130.66

ρ = 0.9 4.56 4.70 4.80 4.94 120.63 134.40 162.82 176.76

49

3.7.5 Comparative analysis

The following mainly analyzes and compares the performance of the two basic family

scheduling schemes, namely Load-aware family and QL-aware family, in terms of energy

gain such as energy saving percentage (EAP) and average end-to-end delay (AED).

Figure 3.7: ESP and AED comparisons for two Load-aware schemes.

Figure 3.8: ESP comparison for four QL-aware schemes.

50

Figure 3.9: ESP and AED comparisons between mQ̄LA (η = 0.15, ql : qh = 4% : 80%) and L̄A
(ca = 0.03) for (a) dumbbell model, (b) parking lot model.

Figure 3.10: ESP and AED comparisons between mQ̄LA (η = 0.15, ql : qh = 4% : 80%) and
EWMAP (wa = 0.2) for (a) dumbbell model, (b) parking lot model.

3.7.5.1 The class of Load-aware schemes As illustrated in Figure 3.7, the LA scheme

has a severe QoS degradation, leading to heavy packet dropping and huge packet delay

missing. However, the traffic load prediction based on the EWMA algorithm is useful in

controlling the network delay and improving network performance. The results show that

properly setting the values of ca and τ , such as ca = 0.03 and τ = 10ms, the L̄A scheme can

achieve a better balance between the high energy saving and the QoS performance compared

51

to the LA scheme. When ρ = 0.5, L̄A can save up to 7.0% energy with AED of 40.25 ms

and DJB of 0.75 ms, when ρ = 0.9, it can save around 2.5% energy with AED of 76.43 ms

and DJB of 4.95 ms. The parking lot model shows results with the same trend and range

in Figure 3.9.

3.7.5.2 The class of QL-aware schemes As shown in Figure 3.8, among QL-aware

schedulers, the energy saving of sQ̄LA and mQ̄LA under τ = 1 ms are very approximate to

sQLA and mQLA with their respective aggressivity factor. Although sQLA and sQ̄LA has

very slight higher energy saving than mQLA and mQ̄LA at the high traffic load, ρ = 0.9,

mQLA and mQ̄LA with η = 0.15 and ql : qh = 4% : 80% are potential to save more energy

than sQLA and sQ̄LA with η = 0.05 under the QoS requirements in general. Furthermore,

mQ̄LA can achieve almost the same energy saving as mQLA, with lower DVFS switching

overhead. Fig.3.8 shows that mQ̄LA saves more than 4% energy compared to the NoDVFS

scheme in dumbbell network model. For ρ = 0.7, mQ̄LA can save up to 9.5% energy with

AED of 79.72 ms and DJB of 1.81 ms. Even although ρ = 0.9 results in 134.40 ms AED

and 9.76 ms DJB, the corresponding energy-saving percentage in mQ̄LA is up to 4.7%. For

parking lot model, we have results with the same trend and range, as displayed in Figure 3.9.

3.7.5.3 Cross class comparative analysis As discussed above, the two most effective

and efficient schemes from the QL-aware and Load-aware DVFS classes are the potential

to save significant energy without QoS violence given the appropriate parameters. Fig.3.9

(a) and (b) depict that the mQ̄LA scheme and the L̄A scheme in two different network

topologies, i.e. dumbbell and parking lot, have the same trend in the energy saving and the

packet average delay, whereby the mQ̄LA scheme with η = 0.15, ql : qh = 4% : 80% and

cq = 0.5 under τ = 1 ms can provide up to around 9.5% energy saving, and the mQ̄LA

scheme can achieve up to 4% more energy saving than the L̄A scheme without QoS violence.

In general, it is hard for Load-ware schemes to control the QoS performance accurately,

especially in the high traffic load when Load-ware schemes are easy to violate QoS require-

ments. On the contrary, the QL-aware scheduler, mQ̄LA, can more accurately control the

QoS performance through adjusting queue length thresholds. Therefore, QL-aware schemes

52

have an advantage over Load-aware schemes in balancing high energy saving and QoS re-

quirements.

3.7.5.4 Comparison with the related work In [Tucker et al., 2009], Mandviwalla and

Tzeng propose three Load-aware predictors to reduce energy consumption in LCs, in which

the most effective Load-aware predictor is called EWMAP. Different from our proposed

L̄A scheme, EWMAP uses EWMA algorithm with a fixed load smooth filter, wa (i.e. µ

in [Tucker et al., 2009]), to predict link utilization over a constant perdition interval, τ

(i.e. PI in [Tucker et al., 2009]), to control the execution rates of LCs, aiming to achieve

energy saving. According to [Tucker et al., 2009], a fixed load prediction factor wa = 0.2 is

recommended in the EWMAP scheme. Through testing different values of wa in the range

[0.01, 0.50], wa = 0.2 is verified to be the best choice to achieve the high energy saving

without QoS violence in the EWMAP scheme. In addition, different values of the prediction

period, τ , in the range [0.1, 10] ms are also tested to determine the sensitivities of the

EWMAP scheduler to DVFS adjustment. Different from mQ̄LA, the Load-based EWMAP

scheme exhibits sensitivity to τ . The results show that the EWMAP scheme can achieve the

largest energy saving without QoS violence when τ is set to be 1 ms.

Using the same router-based energy model, we compare the mQ̄LA scheme with the

EWMAP scheme under τ = 1 ms in different network topologies, as shown in Figure 3.10

(a) and (b). The results show that the EWMAP scheme can save router energy from 2%

to 7% according to different traffic load, however, the mQ̄LA scheme can achieve up to 5%

more energy saving than the EWMAP scheme without QoS violence. Therefore, the mQ̄LA

scheme outperforms the other Load-aware schemes in achieving significant energy saving

under the acceptable QoS requirements.

3.7.6 Sensitivity to the main parameters of QLDA

Furthermore, we carried out a series of experiments to do the sensitivity analysis of the

proposed QLDA scheme to different parameters.

53

Figure 3.11: The aggressivity factor η(ρ).

3.7.6.1 Sensitivity to η The first experiment is designed to study the sensitivity of the

scheduler to the aggressivity factor η. The results show that the value of the aggressivity

factor to achieve the highest energy saving depends on the network load. In order to de-

termine the “optimum” η∗, a series of simulation experiments where carried out, whereby

for a given network load, ρ, multiple values of η are tested and the value which produces

the highest energy saving, without violating the traffic QoS requirements, is selected. The

experiments used two different network models, namely dumbbell and parking lot, assuming

fmin = 1.6 GHz and fmax = 2.4 GHz. Using Matlab, the two independent variables, η and

ρ, are fitted by a Gaussian process regression (GPR) function of successive approximations,

as illustrated Eq. 3.25. In this equation, (a1, b1, c1) and (a2, b2, c2) are GPR model parame-

ters, where (a1, b1, c1) = (4.4, 0.6085, 0.1805) and (a2, b2, c2) = (−2.745, 0.6554, 0.1466). The

fitted curve is depicted in Figure 3.11.

η(ρ) =η1(ρ) + η2(ρ)

=a1 · e−(
ρ−b1
c1

)2
+ a2 · e−(

ρ−b2
c2

)2
(3.25)

Using the load-dependent values of η, generated by the GPR function, the two network

topology models, dumbbell and parking lot, were used to assess the performance of QLDA

54

and determine the levels of energy saving it achieves, under different network loads, while

maintaining acceptable QoS requirements. The results of these experiments are shown in

Table 3.8.

Table 3.8: Impact of η on ESP, AED, DJB and PDMRT of QLDA scheme with ql : qh = 4% : 80%.

Dumbbell model Parking lot model

Load ρ 0.7 0.8 0.9 0.7 0.8 0.9

ESP (%) 9.82 7.83 4.76 9.76 8.68 6.16

AED(ms) 122.30 133.89 132.34 116.89 131.18 125.77

DJB(ms) 1.73 3.40 6.12 1.24 2.78 5.74

PLR(%) 0 0 0 0 0 0

Table 3.9: Impact of ql : qh on ESP and AED in the QLDA scheme under dumbbell model.

ESP (%) AED (ms)

ql : qh 4% :
60%

4% :
80%

10% :
60%

10% :
80%

4% :
60%

4% :
80%

10% :
60%

10% :
80%

ρ = 0.7 9.75 9.82 9.77 9.85 111.19 122.23 143.33 150.77

ρ = 0.8 7.73 7.83 7.75 7.85 117.90 133.89 162.18 177.65

ρ = 0.9 4.60 4.76 4.63 4.76 117.03 132.34 158.62 174.17

3.7.6.2 Sensitivity to τ The second experiment is designed to study the scheduler’s

sensitivity to the rate of DVFS adjusting. The values of η for different traffic loads refer

to Table 3.8. Under a frequency range, [fmin, fmax], a small frequency adjustment interval

creates more opportunities for a more accurate adjustment of the frequency, based on the

queue length. A small interval, however, increases the frequency adjustment overhead. A

large frequency adjustment interval reduces the overhead required to adjust frequencies, but

fails to capture more accurately the current level of congestion. Fig.3.12 (a) and (b) depict

the energy-saving percentage for the different network models, using different frequency

adjustment interval, τ , under the range of [0.01, 100] ms. The results show that QLDA,

assuming ql = 4%×Q and qh = 80%×Q, is not sensitive to τ when the value of τ is under

1 ms. Therefore, τ = 1 ms is selected for the rest of the experiments.

55

Figure 3.12: ESP comparisons for QLDA with different τ in (a) dumbbell model, and (b) parking
lot model.

Figure 3.13: ESP and AED comparisons between QLDA (ql : qh = 4% : 80%) and EWMAP
(µ = 0.2) for (a) dumbbell model, (b) parking lot model.

3.7.6.3 Sensitivity to cq QLDA scheme uses EWMA based algorithm with weight, wq,

to predict the queue length. The constant parameter cq is used in the error prediction

function to adaptively adjust wq. Different values of cq in the range [0.01, 0.50] are tested

in the QLDA scheme. The results show that the energy saving and the average end-to-

end packet delay are not sensitive to cq. When the value of cq increases, the energy saving

increases slightly. Therefore, cq = 0.5 is selected for the following analysis.

56

3.7.6.4 Sensitivity to cd Similarly, QLDA uses the EWMA algorithm to predict the

average packet delay. The constant parameter cd is used in the error prediction function

to dynamically adjust the smooth filter wd. Different values of cd in the range [0.01, 0.5]

are tested in the QLDA scheme. The results show that the energy saving and the average

end-to-end packet delay are not sensitive to cd. When the value of cd decreases, the energy

saving increases slightly. Therefore, cd = 0.01 is considered.

3.7.6.5 Sensitivity to ql and qh In this experiment, the value setting of η for different

traffic load is based on the above GPR function, as shown in Figure 3.11, and the value

of τ is set to 1 ms, while the thresholds, ql and qh, are varied, as described in Table 3.6.

Four combinations of ql and qh are tested to study the impact of the queue length thresholds

on energy saving and average packet delay. The results, shown in Table 3.9, indicate that,

although the energy saving is not highly sensitive to qh, a higher value of qh leads to higher

energy saving. The results also show that packet delay is highly sensitive to ql, as the delay

increases dramatically when the value of ql increases. Therefore, adjusting queue-length

thresholds can improve the effectiveness and efficiency of the QLDA scheme. The results

show that for a dumbbell topology, the ratio ql : qh = 4% : 80% leads to the highest energy

savings, without violating QoS requirements. A similar outcome can be observed in the case

of a parking lot model.

3.7.7 Comparative analysis

As mentioned above, the most effective Load-aware predictor, EWMAP, proposed in [Tucker

et al., 2009], uses EWMA algorithm with a fixed load smooth filter, µ (µ = 0.2 is recom-

mended), to predict traffic load over a constant perdition interval, τ (i.e. PI in [Tucker

et al., 2009]), to control the execution rates of LCs, thereby achieving energy saving. Differ-

ent values of the prediction period, τ , in the same range [0.01, 100] ms as the QLDA scheme

are tested to determine sensitivities of the same EWMAP scheduler to DVFS adjustment.

Different from QLDA, the Load-aware EWMAP scheme exhibits sensitivity to τ . The same

results as above show that the EWMAP scheme achieves the maximal energy saving without

57

QoS violence when set τ be equal to 1 ms.

Using the same router-based energy model, we compare the proposed QLDA scheme

with the EWMAP scheme under τ = 1 ms in two different network models, as shown in

Figure 3.13 (a) and (b). We found that two network models have the same trend in the energy

saving and the average end-to-end packet delay in both QoS-aware schemes respectively. The

results show that these two QoS-aware schemes are the potential to save significant energy.

Under the same QoS requirements, the QLDA scheme with ql : qh = 4% : 80% can provide

up to 9.82% energy saving with AED of 122.30 ms and DJB of 1.73 ms, and 9.76% energy

saving with AED of 116.89 ms and DJB of 1.24 ms, in the dumbbell model and the parking

lot model, respectively. Although the EWMAP scheme leads to an increase in energy saving,

from 2% to 7%, under different traffic loads, the results show that QLDA achieves up to 5%

increase in energy saving than EWMAP, without violating QoS requirements. In addition,

choosing a small prediction period in the Load-aware schemes could suffer the overhead

impact of the back-to-back undesirable DVFS adjustment, as discussed above. However,

under the same prediction period condition, since the scaling decisions depends on not only

a given prediction period but also the predicted queue length and packet delay, QLDA shows

much lower overhead compared with EWMAP scheme.

As an extended scheme of mQ̄LA [Yu et al., 2015a], QLDA [Yu et al., 2015b] scheme

adopts multiple queue length thresholds to accurately capture network congestion. In re-

sponse to different levels of network congestion, different NPU-rate scaling strategies are

used to determine when and how NPU execution rates are adjusted based on the predicted

queue length and the estimated delay variance, aiming to achieve adequate energy savings

under different traffic loads, without degrading delay performance. Besides, using the Gaus-

sian regression model to generate the aggressivity factor of the scheduling strategy based on

the traffic load is another improvement of mQ̄LA. Therefore, QLDA displays more efficient

and sufficient on balancing high energy saving and QoS requirements compared with mQ̄LA,

as depicted in Figure 3.10 and Figure 3.13 (note: µ in Figure 3.13 is wa in Figure 3.10).

And the related results show that QLDA can achieve energy saving of around 10%, as shown

in Figure 3.13 (a), higher than mQ̄LA scheme. And QLDA also outperforms mQ̄LA in

decreasing the overhead because of its more demanding conditions.

58

3.8 Conclusions

In this chapter, we proposed three families of QoS-aware DVFS-based schedulers and

derived variants for each family, based on queue length and link utilization. The variants,

in each family, differ in when and how decisions are used to adjust the execution rates.

The objective is to fine tune the main parameters of these schemes to achieve the balance

between the energy minimization and the QoS requirements. A thorough analysis of the

proposed schemes, using NS2, has been carried out for different network environments and

traffic loads. The simulation results show that all QoS-aware DVFS-based schemes have the

potential for significant energy saving in high-speed networks with acceptable delay perfor-

mance, and that QL-aware family schemes achieve, on average, higher energy savings than

Load-aware family schemes. The mQ̄LA scheme achieves the best results within these two

basic families, with performance gains of up to 9.5% energy saving, while meeting the QoS

performance of the supported applications. Furthermore, as the extension of mQ̄LA, QLDA

has an advantage over mQ̄LA, which can achieve up to 10% energy saving while keeping the

desired QoS performance. In general, it is hard for Load-aware schemes to accurately con-

trol the QoS performance, especially in the high traffic load. On the contrary, the QL-aware

schedulers and the QL-based, Delay-aware scheduler, QLDA, can more accurately control

the QoS performance through adjusting queue length thresholds. Specifically, QLDA, as an

improvement of QL-aware family schemes, more efficiently balances high energy saving and

QoS requirements and less overhead compared with other QL-aware schemes.

Compared to the existing speed scaling solutions, our proposed QoS-aware packet sched-

ulers address the energy-performance challenge. By doing so, they not only save significant

dynamic energy, but they also seek a balanced tradeoff between high network energy savings

and acceptable levels of network QoS performance under different traffic loads, based on

a comprehensive router-based energy model. In this chapter, we only analyzed two simple

dumbbell and parking lot network topology models. In the real world, however, there are

more realistic and complex network topologies. Therefore, given the QoS requirements, the

network model, the routing path, and the character of traffic load could become the critical

factors that would impact the upper bound of the corresponding aggressivity parameter in

59

a scheduling strategy design. They should be considered in future research work. More-

over, this chapter mainly discussed DVFS-based experimental power management, but is it

possible to minimize energy consumption under the QoS constraints by a mathematical pro-

gramming model theoretically? The next chapter will further explore this issue: DVFS-based

algorithmic power management and its optimal energy strategies.

60

4.0 DVFS-based Power Management and Delay-aware, Optimal Energy

Strategies

The ability to efficiently manage network resources to minimize energy consumption

is critical to effectively address network congestion and end-to-end QoS guarantees. The

previous chapter discusses DVFS-based experimental power management, which is used to

sufficiently reduce energy consumption while meeting QoS requirements through applying

different energy- and QoS-aware packet scheduling strategies. However, among a large num-

ber of dynamic power management solutions, a less expensive one is to use mathematical

optimization models to formulate the energy saving problem [Orgerie et al., 2014]. For

DVFS-enabled network components, the key issue is how to let their energy optimization

problem subjects to the conflicting dual objectives of speed scaling and QoS requirements. In

this chapter, we study DVFS-based algorithmic power management to explore this question.

Given a traffic flow, each router along the routing path the flow is traveling must determine

the node execution speed, at which it must process traffic to minimize energy consumption

under the corresponding QoS constraints. By applying an existing scheduling policy, we pro-

pose a DVFS-based, delay-aware energy optimal strategy and its two heuristics to optimize

the energy consumed by network components, which take into consideration the workload

and the delay requirements across the routing path. The results show that the proposed

strategy achieves up to 83.33% dynamic energy saving of total dynamic energy consumption

and up to 26.76% power saving of total power consumption under QoS constraints.

4.1 Introduction

Minimizing power and energy consumption has become a critical objective in the design

of future networks [Lange et al., 2009]. In 2009, the backbone energy consumption accounted

for less than 10% of the overall network energy consumption, but this percentage is expected

to increase to 40% in 2017 [Lange et al., 2009], and reach up to or even exceed 50% in 2020,

61

and thus will become unsustainable [Hinton et al., 2011]. Recent advances in networking

and communications technologies paved the way for a new generation of faster and more

powerful routers and switches, ushering in the proliferation of delay-bound IP applications.

The need to support the quality-of-service (QoS) requirements of these emerging applications

further compound the power and energy consumption problem, calling for new energy- and

delay-aware approaches to traffic management and congestion control in future differentiated-

service networks [Chabarek et al., 2008; Bolla et al., 2011b; Pierson, 2015; Bianzino et al.,

2012; Zeadally et al., 2012].

A number of approaches have been proposed to reduce the energy consumed by network

processing routers and interfaces [Pierson, 2015]. These approaches mostly aim at managing

network resources, in response to traffic load, to minimize network energy consumption. How-

ever, the problem of minimizing energy consumption, while meeting the QoS-requirements

of delay-sensitive applications, has received minimal attention [Addis et al., 2016]. To ad-

dress this shortcoming, we propose an energy- and delay-aware traffic control and manage-

ment framework and explore the design and performance assessment of a DVFS-enabled,

energy- and delay-aware flow scheduling strategy to support delay-sensitive applications.

More specifically, given a flow specification, which characterizes the flow’s traffic rate and

QoS performance requirements, a per-router feasible minimum and maximum delay values

are computed. Using these values, the energy- and delay-aware problem is modeled as a

routing path energy-minimization problem to determine, for each router along the path, the

processing router execution speed and the flow delay that minimize energy without violating

the flow’s end-to-end delay requirement. The main contributions in the chapter are: (i)

develop a model to compute a path-based energy consumption, taking into consideration

both the static and dynamic energy components; (ii) build up a methodology to compute

feasible lower and upper bound delays of a flow, based on the router’s current traffic load;

and (iii) propose a strategy to compute feasible per-router delays that meet the end-to-end

delay requirements and minimize energy across the path. A simulation framework is used to

assess the performance of the proposed strategy algorithm and its two heuristics in terms of

two energy-efficient metrics, namely dynamic energy gain (DEG) and power gain (PG).

The rest of this chapter is organized as follows: the related work is reviewed in Sec-

62

tion 4.2. An existing scheduling policy is introduced in Section 4.3. The network and

flow specifications are introduced in Section 4.4. The formulation of the energy- and delay-

aware traffic control and management framework is discussed in Section 4.5. Within this

framework, a methodology used for computing per-router delays is described. A path-based

energy consumption model is then built up and a DVFS-enabled, energy- and delay-aware

flow scheduling strategy and its two heuristics to compute the execution speed of a router

and a per-router delay budget are proposed. The performance of the proposed strategy is

assessed in Section 4.6. Finally, Section 4.7 presents the conclusion of this chapter.

4.2 Related Work

Energy-efficient scheduling techniques to reduce energy consumption can be broadly

classified into two categories, namely Sleep Mode (SM) and Dynamic Voltage and Frequency

Scaling (DVFS) [Pierson, 2015; Bolla et al., 2011b; Bianzino et al., 2012; Zeadally et al.,

2012; Nedevschi et al., 2008]. Sleep Mode [Sabhanatarajan et al., 2008; Ghazisaeedi et al.,

2012; Ghazisaeedi and Huang, 2015]. To reduce energy consumption, SM-based approaches

selectively put system components into a power-efficient mode, by turning them off when-

ever they become idle. The shortcomings of the Sleep Mode based techniques is that once

a computing or communication component is moved into a power-efficient mode, bringing

the component back to an active or running mode incurs additional energy and latency,

which may have a significant impact on the performance of the system. DVFS-based ap-

proaches dynamically adjust the processor’s voltage and frequency, in response to workload

variation, in order to minimize energy consumption [Mandviwalla and Tzeng, 2006]. Yu

et al. [Yu et al., 2015a,b] propose three families of delay-aware packet scheduling schemes

to dynamically control line cards’ execution rates and reduce routers’ energy consumption.

Two congestion control metrics, namely queue length and link utilization, are used to assess

the level of network congestion and adjust the processor’s frequency to sufficiently reduce

energy consumption. The results show that queue length(QL)-aware schemes outperform

Load-aware schemes and achieves higher energy savings. It has been found that the main

63

challenge of DVFS-based power management techniques stems from the difficulty of deter-

mining the minimum voltage to meet a particular component performance level. As such,

most of the proposed experimental power management schemes do not guarantee the end-

to-end delay requirements of the underlying application to achieve maximal energy saving.

To this end, the demand for the less expensive DVFS-based algorithmic power management

strategies through optimization models increases.

In Gupta et al. propose sleep modes to reduce network energy consumption [Gupta et al.,

2004; Gupta and Singh, 2007b]. The focus of this work, however, is on Local Area Networks

(LANs). This limits significantly the applicability of the proposed approach to backbone

networks, where inter-packet time is too short to warrant putting links into sleep mode.

In [Nedevschi et al., 2008], Nedevschi et al. propose a method to shape traffic into bursts

and create link sleeping opportunities between bursts. It also uses link rate adaptation to

traffic load to save network energy. The effectiveness of the scheme depends on the inter-

packet arrival time and the burst size. In [Chabarek et al., 2008], Chabarek et al. explore

power-awareness in the design of networks and routing protocols. The proposed approach,

however, does not lead to a specific power-aware routing design. In [Heller et al., 2010],

Heller et al. propose ElasticTree, to optimize the energy consumption of a data center

network by turning off unnecessary links and switches during off-peak hours. The solution

is specific to the class of data center tree-based topologies. In [Zhang et al., 2010a], Zhang

et al. propose the GreenTE framework for a network-level power management approach to

optimize the number of links that can be put into sleep mode in order to maximize network

energy saving. This scheme, however, is prone to large delay variation, which may lead to

unacceptable delay-jitter.

The discussed framework in this chapter addresses these shortcomings and proposes

several DVFS-based, delay-aware optimal energy strategies to minimize energy consumption

while adhering to the end-to-end delay requirements of the underlying traffic flows, within

this framework. All of these strategies follow a given scheduling policy, which is introduced

in the coming Section 4.3.

64

4.3 Periodic task scheduling

This section introduces an existing famous scheduling policy, rate monotonic schedul-

ing [Liu and Layland, 1973; Baker, 2003], which broadly applied in real-time control sys-

tems. Real-time control systems are mostly characterized by periodic activities, this feature

is strictly related to the nature of such a system. In fact, most of them are control systems

and therefore their functioning depends on sensors’ feedback, low level activities, monitoring

and so on. Each task is cyclically triggered at a given sample rate, and it has to perform its

activity concurrently with other tasks. In this context, the role of the operating systems is

crucial because all of these tasks have individual timing requirements and they have to exe-

cute within their deadlines. This chapter focus on the problem of scheduling periodic tasks,

and the main basic algorithm developed to cope with these specific issues will be treated

in detail. They are rate monotonic, earliest deadline first (EDF), deadline monotonic and

finally the EDF version to treat tasks with the deadline less than periods. Each algorithm

will be introduced basic concepts, schedulability analysis, and guarantee tests. In order to

make the read easy, the basic concepts will be pointed out and a set of the hypothesis will

be assumed to simplify the scenario without loss of generality. As a consequence of the

foregoing mentioned, the following notations will be introduced:

• Γ denotes a set of periodic tasks;

• τi denotes a generic periodic ith task;

• τi,j denotes the jth instance of task τi;

• ri,j denotes the release time of the jth instance of task τi;

• Λi denotes the phase of task τi. It also represents the release time of the forst instance

of the task (Λi = ri,j);

• Di denotes relative deadline of task τi;

• di,j denotes the absolute deadline of the jth instance of task τi. It is also given by

di,j = Λi + (j1) · Ti +Di;

• si,j denotes the start time of the jth instance of task τi. It represents when task start

running;

65

• fi,j denotes the finishing time of task jth instance of task τi. It represents when task stop

running.

In order to simplify the analysis, the following hypotheses and assumptions will be con-

sidered:

• A1. the instances of a periodic task are activated at a constant rate. The interval, Ti,

between two consecutive activations represents the period of the task;

• A2. all instances of a periodic task τi have the same worst-case execution time (WCET)

Ci;

• A3. all instances of a task have the same relative deadline Di. All the deadlines are

assumed to be equal to the periods Ti;

• A4. there not exist any precedence constraints among the tasks belonging to the task-set

Γ;

• A5. each task cannot suspend itself (i.e.: for I/O operations);

• A6. task-set Γ is fully-preemptive;

• A7. the system overhead is negligible.

According with the notation introduced above, a task-set can be summarized as follow:

Γ = {τ(Λi, Ti, Ci), i = 1, · · · , n} (4.1)

while arrival times ri,j and relative deadline di,j of the generic kth instance of the ith task

can be easily computed as:

τi,k = Λi + (K − 1) · Ti (4.2)

di,k = ri,k + Ti = Λi +K · Ti (4.3)

66

4.3.1 Utilization factor

Given a task-set Γ, composed of n tasks, the utilization factor is the fraction of time

spent by the CPU to execute the task-set. It is formally defined by

U =
n∑
1

Ci
Ti

(4.4)

where Ci
Ti

denotes the fraction of time spent by the CPU for the execution of task τi. The

utilization factor can be improved by modifying Ci and Ti but there exists a maximum value

of U that, in case of overcame, it yields a not schedulable task-set. This particular value

depends on the features of the task-set and the adopted scheduling policy. We can denote

with Uub(Γ, A) the upper bound of the utilization factor for a given task-set Γ and scheduling

algorithm A. Under the particular condition in which Uub = Uub(Γ, A), the processor is known

to be fully utilized, according to this status any other increase of the computation time of

even a single task, caused task-set to be not schedulable.

Given an algorithm A and a task-set Γ, let us to introduce the concept of least upper

bound Ulub(A) of the processor utilization factor, as the minimum of the utilization factors

considering all possible task-set that fully utilize the processor:

Ulub(A) = minΓUub(Γ, A) (4.5)

Since Ulub(A) is the minimum of all upper bounds, any task-set with a utilization factor

less or equal to Ulub(A) is certainly schedulable. Another important result concerning the

utilization factor is that a task-set with a utilization factor greater than one, cannot be

scheduled by any algorithm:

∀A,Γ|U(A) > 1⇒ Γ is not schedulable by A (4.6)

4.3.2 Rate Monotonic scheduling

Rate Monotonic (RM) is a fixed priority scheduling algorithm that consists of a priority

rule assignment based on task arrivals rate. Once the priorities are assigned they cannot be

67

modified at run-time. Tasks with a high rate of arriving instants have high priorities, tasks

that are characterized by a low rate of arrival instants have low priorities. Another feature

of RM is that it is intrinsically preemptive because if a new instance of a task arrives and

it has a greater priority, it preempts the task currently executing [Liu and Layland, 1973;

Baker, 2003].

Under rate monotonic policy [Liu and Layland, 1973], the Ulub value calculated for an

arbitrary number N of tasks composing the task set is:

Ulub = n · (21/n − 1) (4.7)

This value decrease with n and for a high value of n, the least upper bound converges to

Ulub(RM) = ln2 ∼= 0.69 (4.8)

To check for the schedulability of a given task set under RM, the following condition has

to be verified

U =
n∑
1

Ci
Ti

< Ulub(RM) = n · (21/n − 1) (4.9)

Acording to the above Eq. 4.7 and Eq. 4.9, we can have the rule of rate monotonic

scheduling policy in Eq. 4.10, which is applied into the following DVFS-based, energy- and

delay-aware traffic management framework.

Ulub(RM) ≤ n · (21/n − 1) (4.10)

4.4 Network and Flow Specification

The proposed energy- and delay-aware traffic management framework assumes the exis-

tence of an edge-controller that regulates access to the network. The controller relies on the

existing routing protocol infrastructure to compute routing paths between a traffic source

and destination. Furthermore, the controller uses a flow’s traffic specification to verify the

68

feasibility of the computed routing path to accommodate the flow’s QoS requirements. If

successful, the router establishes and maintains the selected path to route traffic generated

by QoS flows. Otherwise, the flow request is rejected.

The network is defined as a graph N = (R,L), where R represents the set of routers

and L the set of links between routers. A router r ∈ R is characterized by its frequency-

dependent execution rate, σminr ≤ σr ≤ σmaxr , where σminr and σmaxr represent the minimum

and maximum execution rates, respectively. We use P to denote the set of paths in the

network. A path, p ∈ P , of length K, is defined as p = {r ∈ R (1 ≤ r ≤ K) | (r, r + 1) ∈ L}.

Let F be the set of traffic flows supported by the network.

A flow, f ∈ F , is characterized by its end-to-end delay bound, ∆f , and its traffic rate

specification vector, (ρf , βf), where ρf represent the f ’s long-term average packet rate of the

flow and βf its maximum packet burst size. In this chapter, we assume a linear bounded

arrival processes (LBAP). Consequently, the maximum number of packets, Ωf (τ), generated

by f over a time interval of size τ , does not exceed ρf · τ + βf ,∀τ > 0.

In the following, we formulate the energy- and delay-aware flow establishment problem as

an energy minimization problem, subject to end-to-end delay requirements. We then describe

a methodology to compute a set of feasible per-router delays along the routing path, to meet

end-to-end delay requirements and minimize the path’s energy consumption. Finally, we

describe an effective strategy to minimize energy consumption under QoS constraints.

4.5 The General Problem Formulation

Definition 1. A flow, f ∈ F , characterized by (ρf , βf) and ∆f , is delay-feasible over path

p = {1, · · · , r, · · · , K} if and only if ∃ ~δf = (δf,1, · · · , δf,r, · · · , δf,K) such that
∑K

r=1 δf,r ≤

∆f , where δf,r represents the delay a packet generated by flow f suffers at router r(1 ≤ r ≤ K)

along path p.

Definition 2. Let Fr ⊂ F (Fr = ‖Fr‖) represent the set of flows traversing router r. Router

r is said to be Fr-feasible if ∀f ∈ Fr, f is delay-feasible over its routing path, pf .

69

Definition 3. A path p = {1, · · · , r, · · · , K} is said to be energy-optimum if ∀r ∈ p, r

is Fr-feasible and the energy consumed by r, Er =
∑

f∈Fr Ef , is minimum, where Ef is the

energy consumed by flow f ∈ Fr.

Let Fp ⊂ F be the set of flows traversing path p (Fp = ‖Fp‖). Path p is energy-optimal if

there exists ~σp = (σ1, · · · , σr, · · · , σK) (σr ∈ [σminr , σmaxr]) and ~δf = (δf,1, · · · , δf,r, · · · , δf,K)

such that (i) ∀f ∈ Fp, f is delay-feasible over p, (ii) ∀r ∈ p, r is Fr-feasible, and (iii) the

energy consumed by p, Ep =
∑

r∈p Er, is minimum. Consequently, for a given path, p ∈ P ,

the energy-aware and delay-assignment flow establishment problem can be formulated as

follows:

Minimize Ep(~σp, ~δf)

Subject to lf,r ≤ δf,r ≤ hf,r, (1 ≤ r ≤ K) and (f ∈ Fp)

σminr ≤ σr ≤ σmaxr , (1 ≤ r ≤ K)

K∑
r=1

δf,r ≤ ∆f , (f ∈ Fp)

where:

• lf,r: a lower bound on the delay values router, r, can assign to flow, f , traversing path,

p,

• hf,r: an upper bound on the delay values router, r, can assign to flow, f , traversing path,

p,

• ∆f : the end-to-end delay bound for flow, f , traversing path, p,

• σr : the execution rate at router, r ∈ p, and

• σminr and σmaxr : the minimum and maximum execution rates of router, r. These rates

are dependent on the associated operational frequencies, ψminr and ψmaxr at router, r.

Consider an energy-optimal path, p, supporting a flow set Fp. In order to assess the

feasibility of accepting a new flow, n, each router r across p must determine the energy-

optimum execution rate, σ∗r , and a delay, δn,r, to meet the end-to-end delay requirement of

the new flow, without violating the delay requirements of the currently supported flows in

Fp. In the following, we first introduce the delay-based scheduling policy scheme used by

70

routers to service packets. We then describe a methodology that can be used to compute,

for a given flow, a feasible range of delays for each router along the path. The delay range

can be used to assign a per-router delay that guarantees the end-to-end delay requirement

of the new flow, while minimizing energy across the path.

4.5.1 Delay-based Packet Scheduling Policy

In the proposed framework, routers use a nonpreemptive delay-based scheduling policy,

whereby flows with shorter delays are assigned higher priorities than those with longer de-

lays [Liu and Layland, 1973]. A delay-based scheduling policy is optimal among fixed-priority

scheduling algorithms and adheres to flow specification of the DiffServ service model [Chan

et al., 2003]. According to the rule of the scheduling policy shown in Eq. 4.10, assuming

that a delay-based router r processes packets at a service rate, µr(σr), a set of flows, Fr
(Fr = ‖Fr‖), where each flow f is characterized by Ωf (δf,r) and ∆f , is delay feasible at

router r if the following holds:

Fr∑
f=1

Wf,r(σr, δf,r)

δf,r
≤ U(Fr)−

u

∆
, (4.11)

where Wf,r(σr, δf,r) =
Ωf (δf,r)

µr(σr)
, represents the maximum amount of service time required to

process packets generated by flow f , at router, r, over a time interval of size δf,r. The term

u
∆

, u = max1≤f≤Fr {uf,r}, where uf,r = 1
µr(σr)

denotes the service time used to process a

packet from flow f at router, r, and ∆ = min1≤f≤Fr {δf,r} accounts for the nonpreemptive

aspect of the scheduling policy at router, r. It represents the maximum amount of time a

higher priority packet, arriving just at the instant a lower priority packet gained access to

the server, may be forced to wait before being serviced by r [Znati and Melhem, 2004; Field

et al., 1995]. U(Fr) denotes the total percentage of r’s processing capacity which can be

allocated to provide guaranteed service to the flow set, Fr. For a delay-based scheduling

policy, U(Fr) = Fr · (2
1
Fr − 1) [Liu and Layland, 1973; Znati and Melhem, 2004]. In the

following, we describe a methodology used to compute a feasible delay range to a new flow

at a given router along a routing path.

71

4.5.2 Per-router Delay Computation

The characterization of the processing capacity and the flow traffic load provide a basis

for the computation of the smallest and largest per-router delay bounds that can be assigned

by a router to a new flow [Znati and Melhem, 2004].

4.5.2.1 Smallest Feasible Delay Let Fr (‖Fr‖ = Fr) represent the flow set currently

supported by a delay-based nonpreemptive router, r, executing at a rate σr. The exact

criterion for a new flow n to be delay-feasible over path p, without violating current flows

delay requirements, can be expressed as:

Wn,r(σ
∗
r , δn,r)

δn,r
+

Fr∑
f=1

Wf,r(σ
∗
r , δf,r)

δf,r
≤ U(F+

r)− u

min (∆, δn,r)
(4.12)

where F+
r = Fr ∪ {n} (F+

r = ‖F+
r ‖ = Fr + 1) represents the new flow set supported by r,

executing at the new rate, σ∗r , and δn,r represents the delay flow n’s packets suffer at router

r.

The value δn,r = ln,r, for which the equality holds, specifies a lower bound on the delay

values router, r, can offer to flow, n, based on r′s current processing excess capacity. This

smallest feasible delay value is achieved by dedicating all router r′s excess processing capacity

to flow, n ∈ F+
r , and can be further derived as:

ln,r =



βn + 1

µr(σ∗r) · U(F+
r)−

∑Fr
f=1

Ωf (δf,r)

δf,r
− ρn

,

if δn,r ≤ ∆

βn

µr(σ∗r) · U(F+
r)−

∑Fr
f=1

Ωf (δf,r)

δf,r
− 1

∆
− ρn

,

if δn,r > ∆

(4.13)

4.5.2.2 Largest Feasible Delay The maximum feasible router delays of given traffic

flow are correlated with its end-to-end delay requirement. Consequently, the upper bound

on the delay value, hn,r, a router r (1 ≤ r ≤ K) can assign to a new flow, n, must verify∑K
r=1 hn,r = ∆n. For a given routing path, p of length K, the largest feasible delay value,

72

hn,r, assigned to flow, n by router, r, can be expressed as hn,r = ζr · ∆n. Assuming that

the routers across path p are uniformly loaded, ζr can be set to 1
K

. If the load across the

routers is unevenly distributed, however, ζr can be set to ϑr∑
r∈p ϑr

, where ϑr represents the

load at router, r. The second upper bound values assignment will be further discussed in

Section 4.5.7.2.

In the following, we discuss the model used to derive power and energy consumption.

We then formalize the energy- and delay-aware minimization problem to reduce energy con-

sumption, while adhering to flows’ delay requirements.

4.5.3 Power Model

Routers in large scale networks are typically equipment with specialized ASIC hardware

to handle most of the data plane traffic processing and forwarding tasks. These processors

are generally among the most energy-consuming components of the router [Chabarek et al.,

2008]. The execution rate, σ, of a DVFS-enable processor, with a minimum frequency, ψmin,

and a maximum frequency, ψmax, ranges from σmin to σmax. Therefore, the dynamic power

consumption of a computing router executing at rate, σ, can be approximately expressed

as ϕD(σ) = α · σ3, where α is a constant [Yu et al., 2015b,a]. In addition to the load-

dependent dynamic power, the bias and leakage current to support the execution of load-

independent control and data plane tasks contribute to the static power consumption, which

is independent of the processor rate [Vishwanath et al., 2014; Yu et al., 2015a]. In this

chapter, we define the static power ratio, ω, as a fixed fraction of the router power consumed

when executing at maximum rate [Cui et al., 2014]. Hence, the power consumption of an

active router processor can be expressed as: ϕ(σ) = ω ·α · (σmax)3 +(1−ω) ·α ·σ3. Typically,

the dynamic power constitutes up to 30% of the total power, resulting in ω ≥ 0.7 [Imaizumi

and Morikawa, 2010; Wobker, 2012].

4.5.4 Router-based Energy Consumption Model

Consider a set of flows, Fr ⊆ F (Fr = ‖Fr‖), currently supported by router, r ∈ R. Each

flow, f in Fr is characterized by its per-router delay, δf,r. Furthermore, assume that router,

73

r, operating at a feasible execution rate, σminr ≤ σr ≤ σmaxr , can process all flows in f ∈ Fr,

without violating their end-to-end delay requirements. The dynamic energy, EDr (σr, ~δr|∀f∈Fr)

consumed by r to process packets generated by all flows, 1 ≤ f ≤ Fr, can be expressed as:

EDr (σr, ~δr|∀f∈Fr) = ϕD(σr) ·
Fr∑
f=1

Wf,r(σr, δf,r)

= θr ·

(
Fr∑
f=1

Ωf (δf,r)

)
· (σr)2

(4.14)

where ~δr|∀f∈Fr represents the per-router delay vector, (δ1,r, · · · , δf,r, · · · , δFr,r) and θr = αr ·

IPPr for router, r. Assuming IPPr represents the number of instructions to complete the

processing and transmission of a packet, at router, r, is:

Wf,r(σr, δf,r) =
Ωf (δf,r)

µr(σr)
=
IPPr · (ρf · δf,r + βf)

σr
(4.15)

4.5.5 Path-based Energy Consumption Model

Consider a routing path, p ∈ P of length K, where each router r supports a set of flows

Fr(1 ≤ r ≤ K). Let Fc = {F1, · · · ,Fr, · · · ,FK} represent the super set of flows supported

along path, p. Furthermore, let ~σp = (σ1, · · · , σr, · · · , σK) represent the feasible execution

rate vector of the routers along path, p, and ~δ =
(
~δ1|∀f∈F1 , · · · , ~δr|∀f∈Fr , · · · , ~δK |∀f∈FK

)
represent the feasible delays for the flow set, Fc. Thus, the energy consumed by processing

all currently scheduled flows, Fc, over their feasible delays, ~δ, can be further derived as:

EDp (~σp, ~δ) =
K∑
r=1

EDr (σr, ~δr|∀f∈Fr)

=
K∑
r=1

θr ·

(
Fr∑
f=1

Ωf (δf,r)

)
· (σr)2

(4.16)

where Fr = ‖Fr‖, 1 ≤ r ≤ K.

Consider a new flow, n, traversing path, p, and let F+
c =

{
F+

1 , · · · ,F+
r , · · · ,F+

K

}
repre-

sent a new set of schedulable flows across p, where F+
r = Fr ∪ n (1 ≤ r ≤ K). Furthermore,

let ~σ∗p = (σ∗1, · · · , σ∗r , · · · , σ∗K), be the new execution rate vector required to achieve a delay

74

vector ~δn = (δn,1, · · · , δn,r, · · · , δn,K) that meets n’s end-to-end requirement. The total en-

ergy consumed by processing packets generated by flows, F+
c , over their respective feasible

delays, ~δ+ =
(
~δ1|∀f∈F+

1
, · · · , ~δr|∀f∈F+

r
, · · · , ~δK |∀f∈F+

K

)
, can be expressed as:

EDp (~σ∗p,
~δ+) = EDp (~σ∗p,

~δ)︸ ︷︷ ︸
∀f∈Fc

+ EDp (~σ∗p,
~δn)︸ ︷︷ ︸

n

=
K∑
r=1

θr ·

(
Ωn(δn,r) +

Fr∑
f=1

Ωf (δf,r)

)
· (σ∗r)2

(4.17)

where Ωn(δn,r) = ρn ·δn,r+βn. Note that
∑Fr

f=1 Ωf (δf,r) is independent of the σ∗r(1 ≤ r ≤ K),

Eq. 4.17 reduces to:

EDp (~σ∗p,
~δn) =

K∑
r=1

(an,r · δn,r + bn,r) · (σ∗r)2 (4.18)

where an,r = θr · ρn and bn,r = θr ·
(
βn +

∑Fr
f=1 Ωf (δf,r)

)
. Following, we formalize the

energy-aware, delay-assignment problem.

4.5.6 Energy- and Delay-aware Flow Scheduling

Assume the network receives a request to establish a new flow, characterized by its traffic

rate specification vector (ρ, β) and its end-to-end delay value ∆, over a path, p. A feasible

solution to minimize energy, while adhering to end-to-end delay requirements, must achieve

the following requirements.

• The per-router delay assignments are feasible across the routing path;

• The per-router execution rate assignments are feasible across the routing path;

• The end-to-end delay requirements of the new flow are enforced without violating the

delay requirements of the currently supported flows; and

• The energy consumed by routers across the path is minimum.

Since the static power is independent of the traffic workload, only the load-dependent

energy is considered in our optimization objective to determine the new optimal routers’

execution rates vector, ~σ = (σ1, · · · , σK) and the per-router delay vector, ~δ = (δ1, · · · , δK)

75

of the new flow, across the routing path p. Given that the workload requested by the new

flow at router, r, over a time interval, δr, is ρ · δr +β, the optimization problem is reduced to

minimizing the dynamic energy consumption of the new and the currently supported flows

across the routing path, p, while adhering to delay requirements of the supported flows.

Therefore, the objective function can be expressed as:

EDp (~σ, ~δ) =
K∑
r=1

(ar · δr + br) · (σr)2 (4.19)

It is worth noting that the sum of per-router delays across the routing path must approach

as closely as possible the new flow requested end-to-end delay budget, ∆, in order to optimize

the objective function. Thus, the per-router delay and per-router execution rate assignment

that minimizes energy reduces to finding ~σ and ~δ such that
∑K

r=1(ar·δr+br)·(σr)2 is minimum,

where ar and br, 1 ≤ r ≤ K, are two constants defined in Eq. 4.18. Furthermore, a solution

must satisfy the delay constraints, namely
∑K

r=1 δr ≤ ∆, lr ≤ δr ≤ hr, and σminr ≤ σr ≤ σmaxr ,

where lr and hr represent the lower and upper delay bounds values at router, r, respectively,

and [σminr , σmaxr] denote the range of per-router execution rates of router, r (1 ≤ r ≤ K).

To minimize energy consumption, while adhering to flows’ end-to-end delay require-

ments, the Energy- and Delay-aware Flow Scheduling (EDFS) optimization problem can be

formalized as:

minimize EDp (~σ, ~δ) =
K∑
r=1

(ar · δr + br) · (σr)2

subject to gr(~σ, ~δ) = lr − δr ≤ 0, (1 ≤ r ≤ K)

gK+r(~σ, ~δ) = δr − hr ≤ 0, (1 ≤ r ≤ K)

g2K+r(~σ, ~δ) = σminr − σr ≤ 0, (1 ≤ r ≤ K)

g3K+r(~σ, ~δ) = σr − σmaxr ≤ 0, (1 ≤ r ≤ K)

d(~σ, ~δ) =
K∑
r=1

δr −∆ = 0

Note that if
∑K

r=1 lr ≥ ∆, then no per-node delay assignment is feasible and the request

for the flow establishment should be rejected. Furthermore, if
∑K

r=1 lr = ∆, then the optimal

76

solution is to set δr = lr, for all routers across the path. This is due to the fact that increasing

δr, to slowdown the processor and save energy, causes the violation of the flow’s end-to-end

delay. It is also clear that the flow’s end-to-end delay, ∆, should be used in its entirety

in order to optimize the objective function. This stems from the observation that if there

exists a set of delay values, lr ≤ δr ≤ hr(1 ≤ r ≤ K), such that
∑K

r=1 δr < ∆, it is easy to

show that there exist a set of δ̂r and a set of εr, such that δ̂r = δr + εr(1 ≤ r ≤ K; εr > 0),∑K
r=1 δ̂r = ∆̂; and ∆̂r(1 ≤ r ≤ K) further minimize energy consumption, thereby negating

the optimality of δr’s. Based on this observation and using the fact that δr ≥ lr, for all

r = 1, · · · , K, the per-router delay optimization problem can be expressed as: Minimize

EDp (~σ,
~̂
δ) =

∑K
r=1(ar·(lr+δ̂r)+br)·(σr)2, subject to:

∑K
r=1 δ̂r = ∆̂, 0 ≤ δ̂r and δ̂r ≤ ĥr = hr−lr,

where ∆̂r = ∆ −
∑K

r=1 lr, δ̂r = δr − lr and ĥr = hr − lr. To solve the EDFS optimization

problem, approaches described in [Znati and Melhem, 2004]. It is to be noted that in the

above formulation, EDp , gi(i : 1, · · · , 4K), and d() are convex. The Kuhn-Tucker conditions of

optimality conditions states that a solution
(
~σ,
~̂
δ
)

to the above problem is globally optimal

if and only if there exist a scalar λj ≥ 0 for j ∈ I=
{
j : gj(~σ,

~̂
δ) = 0

}
, and a scalar υ such

that:∇EDp (~σ,
~̂
δ) +

∑
j∈I λj ·∇gj(~σ,

~̂
δ) +υ ·∇d(~σ,

~̂
δ) = 0. Based on the observation, the EDFS

problem, referred to as Opt EDFS, can be solved by first solving the auxiliary optimization

problem, referred to as Opt ED, which considers only the equality constraint of delays. Then

a second problem, referred to as Opt LD, which takes into consideration the equality and

lower bound constraints of delays, but ignores their upper bound constraints, is solved. The

solutions to these problems can be used to solve the original EDFS optimization problem.

4.5.6.1 Opt ED Solution The Opt ED problem does not take into account the bound-

ary constraints of delays, and thus can be expressed as:

minimize EDp (~σ,
~̂
δ) =

K∑
r=1

(ar · (lr + δ̂r) + br) · (σr)2 (4.20)

subject to σminr − σr ≤ 0, (1 ≤ r ≤ K) (4.21)

77

σr − σmaxr ≤ 0, (1 ≤ r ≤ K) (4.22)

K∑
r=1

δ̂r − ∆̂ = 0 (4.23)

The application of Lagrange multipliers technique to the above problem yields

ar · (σr)2 + υ = 0, r = 1, · · · , K (4.24)

2 · σr · (ar · (lr(σr) + δ̂r) + br)− Zr = 0,

where Zr = λ2K+r − λ3K+r, r = 1, · · · , K
(4.25)

λ2K+r · (σminr − σr) = 0, r = 1, · · · , K (4.26)

λ3K+r · (σr − σmaxr) = 0, r = 1, · · · , K (4.27)

λ2K+r, λ3K+r ≥ 0, r = 1, · · · , K (4.28)

where λj, j = 2K + 1, · · · , 4K and υ are the Lagrange multipliers. Using the fact that∑K
r=1 δ̂r = ∆̂,δ̂r = δr − lr, and Eq. 4.24∼4.28, results in

σr =

√
|υ|
ar
, r = 1, · · · , K (4.29)

δr =
λ2k+r − λ3K+r

2
√
ar · |υ|

− br
ar
, r = 1, · · · , K

δ̂r = δr − lr(σr =

√
|υ|
ar

), r = 1, · · · , K
(4.30)

78

According to Eq. 4.13, lr(σr =
√
|υ|
ar

) in Eq. 4.30 can be expressed as:

lr(σr =

√
|υ|
ar

) =



C2

C1 ·
√
|υ|
ar
− C3

, if lr ≤ ∆

C4

C1 ·
√
|υ|
ar
− C5

, if lr > ∆

(4.31)

where C1 = U(F+
r)

IPPr
, C2 = β + 1, C3 =

∑Fr
f=1

Ωf (δf,r)

δf,r
− ρ, C4 = β and C5 = C3 + 1

∆
.

Lemma 1. If Opt ED violates some inequality constraints given by Eq. 4.21 and Eq. 4.22,

then ∃r such that λ2k+r = 0 or λ2k+r · λ3k+r > 0.

Proof. Assume that ∃r, λ2k+r = 0. In this case, Eq. 4.25 implies that ∃r, δ̂r < 0 (or δr < 0)

as shown in Eq. 4.30, this violates the optimality property of the solution. Therefore, ∀r, the

Lagrange multiplier λ2k+r, 1 ≤ r ≤ K are strictly greater than 0. Furthermore, assume ∀r,

λ2k+r > 0 and ∃r, λ3K+r > 0. In this case, Eq. 4.26 and Eq. 4.27 imply that ∃r, σr = σminr

and σr = σmaxr at the same time, which results in the occurrence of inequality constraint

violations in Eq. 4.21 and Eq. 4.22. Therefore, ∀r, λ3k+r is strictly equal to 0.

Lemma 2. If Opt ED violates some inequality constraints given by Eq. 4.23, then ∃r such

that λ2k+r ≤ 2σminr · (ar · lr(σminr) + br), where υ = −ar · (σminr)2, λ3k+r = 0 according to

Lemma 1.

Proof. Assume that ∀r, λ2k+r ≤ 2σminr · (ar · lr(σminr) + br). In this case, Eq. 4.30 implies

that ∀r, δ̂r ≤ 0. This implies that
∑K

r=1 δ̂r is less than or equal to 0, and the delay budget,

∆̂, remains totally unused. This violates the optimality property of the solution.

Hence, if there were a solution to Opt ED where for ∀r, λ2k+r > 0 and λ3K+r = 0, then

the solution will be discovered by solving a set of nonlinear equations which are identical

to Kuhn-Tucker conditions. In this solution, since ∀r, σr = σminr , Opt ED is an optimal

solution for the case that the maximal traffic load along the given path can be accepted

under the constraints of σr = σminr and
∑K

r=1 δ̂r = ∆̂. In other words, Opt ED algorithm is

fit for minimizing energy consumption for the maximal acceptance of traffic load under the

minimal execution rates of the routers along the path. If the traffic load is far from this the

maximal acceptance value, the constraint Eq. 4.23 should be replaced by
∑K

r=1 δ̂r−∆̂ ≤ 0 to

79

find optimal per-router delay assignment for the low traffic load. From the above observation

and discussion, Opt ED would not achieve the goal of significant energy saving through

dynamical speed scaling to adapt to the higher traffic load. The following optimization

algorithm Opt LD is used to further explore this issue.

4.5.6.2 Opt LD Solution The Opt LD problem can be expressed as

minimize EDp (~σ,
~̂
δ) =

K∑
r=1

(ar · (lr + δ̂r) + br) · (σr)2 (4.32)

subject to 0− δ̂r ≤ 0, (1 ≤ r ≤ K) (4.33)

σminr − σr ≤ 0, (1 ≤ r ≤ K) (4.34)

σr − σmaxr ≤ 0, (1 ≤ r ≤ K) (4.35)

K∑
r=1

δ̂r − ∆̂ = 0 (4.36)

To solve Opt LD, we first evaluate the solution set SOpt LD to the corresponding problem

Opt ED and check whether all inequality constraints are automatically satisfied. If this is

the case, the solution set of the Opt LD problem reduces to the solution set, SOpt LD, which

can be used to find the traffic maximal acceptance under the minimal execution rates, while

minimizing the corresponding energy consumption. Otherwise, SOpt LD, especially for more

new traffic flows’ requests, will be constructed iteratively as described below.

A well-known result of nonlinear optimization theory states that the solution SOpt LD

of the Opt LD must satisfies Kuhn-Tucker conditions [Panik, 1976]. Furthermore, Kuhn-

Tucker conditions are also sufficient due to the properties of the objective function. For

Problem Opt LD, Kuhn-Tucker conditions can be derived from Eq. 4.33∼ Eq. 4.36 as

ar · (σr)2 + υ − λr = 0, r = 1, · · · , K (4.37)

80

λr ·
∂lr(σr)

∂σr
+ 2 · σr · (ar · (lr(σr) + δ̂r) + br)− Zr = 0,

where Zr = λ2K+r − λ3K+r, r = 1, · · · ,K
(4.38)

−λr · δ̂r = 0, r = 1, · · · , K (4.39)

λ2K+r · (σminr − σr) = 0, r = 1, · · · , K (4.40)

λ3K+r · (σr − σmaxr) = 0, r = 1, · · · , K (4.41)

λr, λ2K+r, λ3K+r ≥ 0, r = 1, · · · , K (4.42)

where λj, j = 1, · · · , K, 2K + 1, · · · , 4K and υ are the Lagrange multipliers. The neces-

sary and sufficient character of Kuhn-Tucker conditions provides optimal values for Opt LD.

One method for solving the optimization problem Opt LD is to find a solution to Eq. 4.37,

Eq. 4.38, Eq. 4.40 and Eq. 4.41 which satisfies constraint sets Eq. 4.39 and Eq. 4.42. Itera-

tively solving the nonlinear equations is a complex process that is not guaranteed to converge.

A more efficient approach to the solution uses the Kuhn-Tucker conditions Eq. 4.37∼ Eq. 4.42

to prove some useful properties of the optimal solution. The properties derived are then used

to refine the solution of the optimization problem Opt ED. Using the fact that
∑K

r=1 δ̂r = ∆̂,

δ̂r ≥ 0, and Eq. 4.37∼ Eq. 4.42, results in

σr =

√
|λr − υ|
ar

, r = 1, · · · , K (4.43)

δr =

λ2k+r − λ3K+r − λr · ∂lr(σr)∂σr
|
σr=

√
|λr−υ|
ar

2
√
ar · |λr − υ|

− br
ar
,

r = 1, · · · , K

δ̂r = δr − lr(σr =

√
|λr − υ|
ar

), r = 1, · · · , K

(4.44)

81

According to Eq. 4.13, lr(σr) in Eq. 4.44 can be expressed as:

lr(σr) =


C2

C1 · σr − C3

, if lr ≤ ∆

C4

C1 · σr − C5

, if lr > ∆

(4.45)

where C1 = U(F+
r)

IPPr
, C2 = β + 1, C3 =

∑Fr
f=1

Ωf (δf,r)

δf,r
− ρ, C4 = β and C5 = C3 + 1

∆
.

From Eq. 4.45, we can further derive

∂lr(σr)

∂σr
|
σr=

√
|λr−υ|
ar

=


− C1 · C2

(C1 ·
√
|λr−υ|
ar
− C3)2

, if lr ≤ ∆

− C1 · C4

(C1 ·
√
|λr−υ|
ar
− C5)2

, if lr > ∆

(4.46)

Lemma 3. If Opt LD violates some inequality constraints given by Eq. 4.33, then ∃r such

that λr > 0.

Proof. Assume to the contrary that ∀r, λr = 0. In this case, Kuhn-Tucker conditions reduce

to the equality constraints of Opt ED, the set of inequality constraints Eq. 4.33 plus the

Lagrangian condition given in Eq. 4.44. On the other hand, the set should satisfy Eq. 4.36

and the Lagrangian condition Eq. 4.37 and Eq. 4.38. In other words, solving Opt ED is

always equivalent to solving a set of nonlinear equations which are identical to Kuhn-Tucker

conditions of Opt LD, except for the inequality constraints, by setting λr = 0, ∀r. Hence, if

there were a solution to Opt LD where for all λr = 0, then the solution will be discovered

by Opt ED algorithm described above without the occurrence of any inequality constraint

violations. This is in contradiction with the assumption that the solution SOpt ED fails to

satisfy all the inequality constraints. Therefore, there exists at least one Lagrange multiplier

λr that is strictly greater than 0.

Lemma 4. If Opt LD violates some inequality constraints given by Eq. 4.33, then ∃r such

that λr = 0.

Proof. Assume that ∀r, λr > 0. In this case, Eq. 4.39 implies that ∀r, δ̂r = 0. This implies

that
∑K

r=1 δ̂r is equal to 0, and the delay budget, ∆̂, remains totally unused. This violates the

82

optimality property of the solution. Therefore, there exists at least one Lagrange multiplier

λr that is strictly equal to 0.

Lemma 5. If Opt LD violates some inequality constraints given by Eq. 4.34 and Eq. 4.35,

then ∃r such that λ2k+r > 0 and λ3K+r > 0.

Proof. Assume ∃r such that λ2k+r > 0 and λ3K+r > 0. In this case, σr = σminr and

σr = σmaxr at the same time, which results in the occurrence of inequality constraint violations

in Eq. 4.34 and Eq. 4.35. Therefore, ∀r, the value of λ2k+r ·λ3K+r is strictly equal to 0, which

implies ∀r, such that (i) λ2k+r > 0 and λ3K+r = 0, or (ii) λ2k+r = 0 and λ3K+r > 0, or (iii)

λ2k+r = 0 and λ3K+r = 0.

4.5.6.3 Opt EDFS Solution Opt EDFS is characterized by the set Y ={yr()|yr(σr, δ̂r)=(ar·

(lr + δ̂r) + br) · (σr)2} the set Ĥ =
{
ĥ1, · · · , ĥK

}
of upper bounds, and the end-to-end delay

budget, ∆̂. The optimization problem can be expressed as

minimize EDp (~σ,
~̂
δ) =

K∑
r=1

(ar · (lr + δ̂r) + br) · (σr)2 (4.47)

subject to 0− δ̂r ≤ 0, (1 ≤ r ≤ K) (4.48)

δ̂r − ĥr ≤ 0, (1 ≤ r ≤ K) (4.49)

σminr − σr ≤ 0, (1 ≤ r ≤ K) (4.50)

σr − σmaxr ≤ 0, (1 ≤ r ≤ K) (4.51)

K∑
r=1

δ̂r − ∆̂ = 0 (4.52)

Furthermore, we have 0 < ∆̂ <
∑K

r=1 ĥr and 0 < ĥr,∀i. Opt LD differs from Opt EDFS

in the additional set of upper bound constraints of delays. Consequently, it is easy to show

83

that if SOpt LD satisfies the constraints of δ̂r − ĥr ≤ 0, r = 1, · · · , K, the set SOpt LD is

a feasible solution for Opt EDFS, and SOpt L = SOpt EDFS. However, if an upper bound

constraint is violated, an iterative process, in a way analogous to the process used to derive

SOpt LD, must be used to remove upper bound constraint violations.

Let U ={m| − y′m(σm, δ̂m)≥−y′r(σr, δ̂r),∀r}. The set U contains the functions ym ∈ Y ,

such that −y′m() leads to the largest marginal returns at the upper bounds.

Algorithm 4.1 Opt EDFS(Y, Ĥ, ∆̂).

1: Set SOpt EDFS = �
2: if Y = � then

3: exit

4: end if

5: Find SOpt LD by invoking algorithm Opt LD

6: if all upper bounds are satisfied then

7: if computed execution rates are feasible then

8: SOpt EDFS = SOpt EDFS ∪ SOpt LD
9: exit

10: else

11: Compute U

12: end if

13: end if

14: Set δ̂q = ĥq, ∀q ∈ U in SOpt EDFS

15: Set ∆̂ = ∆̂−
∑

m∈U ĥm

16: Set Y = Y − U
17: Set Ĥ = Ĥ −

{
ĥk|k ∈ U

}
18: Go to step 2

The algorithm Opt EDFS(), depicted in Algorithm 4.1, solves the Opt EDFS problem

based on successive invocations of Opt LD. First, we find the solution of the corresponding

Opt LD problem. The solution, if it exists, is optimal for the Opt LD problem, which

does not take into account upper bound constraints. If the upper bound constraints are

automatically satisfied, SOpt LD is also optimal for the Opt EDFS problem. However, if this

is not the case, the correctness of the algorithm needs to be further argued in a similar fashion

as in the case of the Opt LD problem. Deriving the necessary and sufficient Kuhn-Tucker

84

conditions for problem Opt EDFS after considering the upper bounds, results in

ar · (σr)2 + υ − λr + λK+r = 0, r = 1, · · · , K (4.53)

λr ·
∂lr(σr)

∂σr
+ 2 · σr · (ar · (lr(σr) + δ̂r) + br)− Zr = 0,

where Zr = λ2K+r − λ3K+r, r = 1, · · · ,K
(4.54)

−λr · δ̂r = 0, r = 1, · · · , K (4.55)

λK+r · (δ̂r − ĥr) = 0, r = 1, · · · , K (4.56)

λ2K+r · (σminr − σr) = 0, r = 1, · · · , K (4.57)

λ3K+r · (σr − σmaxr) = 0, r = 1, · · · , K (4.58)

λr, λK+r, λ2K+r, λ3K+r ≥ 0, r = 1, · · · , K (4.59)

where λj, j = 1, · · · , 4K and υ are the Lagrange multipliers. Using the fact that∑K
r=1 δ̂r = ∆̂, 0 ≤ δ̂r ≤ ĥr, and Eq. 4.53∼4.59, results in

σr =

√
|λr − λK+r − υ|

ar
, r = 1, · · · , K (4.60)

δr =

λ2k+r − λ3K+r − λr · ∂lr(σr)∂σr
|
σr=

√
|λr−λK+r−υ|

ar

2
√
ar · |λr − λK+r − υ|

− br
ar
,

r = 1, · · · , K

δ̂r = δr − lr(σr =

√
|λr − λK+r − υ|

ar
), r = 1, · · · , K

(4.61)

It can easily be shown that if SOpt LD violates upper bound constraints given by Eq. 4.49

then ∃i, λK+r > 0. A similar argument, which states that if ∃i, λK+r > 0 then λr = 0,

can also be proven. Besides, it also can be proved that ∀i, such that λ2K+r, λ3K+r ≥ 0 and

85

λ2K+r ·λ3K+r = 0, which implies ∀r, such that (i) λ2k+r > 0 and λ3K+r = 0, or (ii) λ2k+r = 0

and λ3K+r > 0, or (iii) λ2k+r = 0 and λ3K+r = 0. These observations can then be used to

prove that if the Lagrange multipliers λK+r > 0, r ∈ U , are all nonzero, this implies, based

on Eq. 4.56, that λ̂q = ĥq, ∀q ∈ U .

4.5.7 Delay Assignment Heuristics

One possible approach to compute suitable per-router delay values considers the process-

ing capabilities of the node as the limiting factor, which is used to estimate the per-router

delay values for the new flow along with its end-to-end delay requirement, ∆. This policy

is likely to achieve more efficient use of the network resources, which in turn increases the

capability of a node to support future flow requests. A different approach would be to bal-

ance the load across the routing path in order to minimize the likelihood bottlenecks. To

achieve this goal, the policy assigns larger per-router delay budgets to highly loaded nodes

than to lightly loaded nodes. This is based on the observation that assigning a large delay

value to a given flow causes a relatively small load increase to a heavily loaded node. In the

following, we describe two heuristics, namely processing-capacity based heuristic, PCH(),

and load balancing heuristic, LBH(). PCH() aims at reducing the processing load placed

by the new flow over the node, while LBH() attempts to distribute the load uniformly across

the routing path. The performance of these two heuristics is then compared to the optimal

policy.

4.5.7.1 Processing-capability based heuristic, PCH() The basic steps of the processing-

capability based heuristic, PCH(), are described in Algorithm 4.2. The input parameters of

PCH() include the delay bounds, lr and hr, for each router along the routing path, derived

from the new flow traffic rate specification and the end-to-end delay requirement, ∆, of the

underlying application.

The approach used by PCH() is to compute a potential delay value, ∆r, which only

considers per-router processing capabilities. This is achieved by taking the routing paths

current delay and distributing it proportionally across all nodes on the routing path. There-

86

fore, ∆r is set to be equal to ∆ · lr∑
r∈p lr

. Based on processing-capability based ∆r, PCH()

uses Exponentially Weighted Moving Average (EWMA) algorithm to predict the per-router

delay upper bounds, ∆P
r , (1 ≤ r ≤ K), for the new flow.

∆P
r = (1− πPCH) ·∆P old

r + πPCH · ·∆r (4.62)

where the smooth factor, πPCH ∈ [0, 1], is used to guarantee that the predicted delay value

is not affected by small deviations. Notice that the sum over of ∆P
r s does not exceed the

new flows end-to-end delay requirement, ∆. To address this limitation, if it occurs, ∆P
r s are

adjusted to hrs, which are defined in Section 4.5.2.2.

Algorithm 4.2 PCH().

1: Initialize ∆P old
r s to be hr, r ∈ {1, ..., K}

2: for r ∈ {1, ..., K} do

3: ∆r = ∆ · lr∑
r∈p lr

4: Predict the per-delay upper bound values for the new flow

5: ∆P
r = (1− πPCH) ·∆P old

r + πPCH · ·∆r

6: end for

7: if
∑K

i=1 ∆P
r > ∆ then

8: for r ∈ {1, ..., K} do

9: ∆P
r = hr

10: end for

11: end if

12: ∆P old
r = ∆P

r

4.5.7.2 Load-balancing based heuristic, LBH() Different from to PCH(), load bal-

ancing heuristic, LBH(), attempts to balance the load along the routing path when accepting

a flow request. It does so by computing the initial lower bound delay values, ∆rs, to be pro-

portional to the nodes’ respective loads and then adjusting these values such that they lie

within each node’s smallest and largest feasible delay values, without violating the end-to-

end delay requirement of the flow. Therefore, ∆r is set to be equal to ∆ · ϑr∑
r∈p ϑr

, where ϑr

denotes the current load at node r. Based on this strategy, a lightly loaded node is assigned

a smaller delay value and thus takes on a higher load, while a highly loaded node is assigned

87

a higher delay value and sees a smaller increase in its load. LBH() attempts to distribute

the load uniformly across the routing path.

Similarly, based on processing-capability based ∆r, LBH() also uses the EWMA algo-

rithm to predict the per-router delay upper bounds, ∆P
r , (1 ≤ r ≤ K), for the new flow.

∆P
r = (1− πLBH) ·∆P old

r + πLBH · ·∆r (4.63)

where the smooth factor, πLBH ∈ [0, 1], is used to guarantee that the load-balancing based

predicted delay value is not affected by small deviations.

In addition to the smallest and largest delay values, lr and hr, supported by each node

i : 1, · · · , K along the routing path and the maximum end-to-end delay requirement, ∆, of

the new flow, LBH() includes the current load, ϑr, at node r as input parameter. The heuris-

tic uses the information about the current workloads of the routers to achieve a balanced

delay assignment across the routing path. The basic steps of the heuristic are described in

Algorithm 4.3. Initially, LBH() computes a delay value ∆r = ∆ · ϑr∑
r∈p ϑr

to be proportional

to the load of each node along the routing path. Notice that the sum of ∆P
r s does not exceed

the new flows end-to-end delay requirement, ∆. To address this limitation, if it occurs, ∆P
r s

are adjusted to hrs. LBH() attempts to adjust this value to meet the delay constraints of

each node along the routing path discussed above. The procedure used by LBH() to adjust

the initial lower bound delay value, lr, assigned to each node. A predicted upper bound delay

value ∆P
r is computed based exclusively on the current traffic loads of the routing routers.

If the minimum within the interval
[
lr,∆

P
r

]
is not feasible, a search procedure to locate a

feasible value within the interval [lr, hr] is initiated. The search continues until a feasible

value is determined.

In the following section, we present a simulation framework used to evaluate the per-

formance of the proposed energy- and delay-aware flow scheduling algorithm and its two

heuristics.

88

Algorithm 4.3 LBH().

1: Initialize ∆P old
r s to be hr, r ∈ {1, ..., K}

2: for r ∈ {1, · · · , K} do

3: ∆r = ∆ · ϑr∑
r∈p ϑr

4: Predict the per-delay upper bound values for the new flow

5: ∆P
r = (1− πLBH) ·∆P old

r + πLBH · ·∆r

6: end for

7: if
∑K

i=1 ∆P
r > ∆ then

8: for r ∈ {1, ..., K} do

9: ∆P
r = hr

10: end for

11: end if

12: ∆P old
r = ∆P

r

Figure 4.1: A new connection request along a path, p, in a network topology, N .

89

Table 4.1: Traffic source models and specifications.

Traffic Class Traffic Model
Average Packet

Length (bytes)

QoS LBAP Parameters

End-to-end Delay

(ms)

Average Burst

(β kbits)

Average Rate

(ρ kbps)

WWW Interactive Exponential 1250 ≤ 150 ≤ 40 ≤ 2000

Voice Interactive Exponential 1250 ≤ 150 ≤ 62.67 ≤ 64

Video Streaming Exponential 1250 ≤ 150 ≤ 320 ≤ 1660

Comb WWW:Voice:Video Exponential 1250 ≤ 150 refer above refer above

Traffic∗ WWW Exponential 1250 ≤ 150 3.0 ∼ 7.0 42.4 ∼ 122.490

Table 4.2: Main simulation parameters and conditions.

Items Simulation Parameters Simulation Values

Router NIC port 10GE

CPI(cycles/instruction) 1.2

ψmin(GHz) 0.6 ∼ 1.6

ψmax(GHz) 2.4[
ψmin, ψmax

]
(GHz) 1) [1.6, 2.4] [Intel, 2012]

2) [0.6 ∼ 1.6, 2.4]

Packet Packet Max size (bytes) 1500

IPB(instructions/byte) 1.6

Network Propagation Delay (ms) 30

Traffic Model WWW,Voice,Video

Comb (WWW:Voice:Video)

Others Random Generator (Seed) 0,1,2

Table 4.3: Energy-efficient Metrics.

Metrics Definition Description

DEG(%)
EDp (~σmax,~δ)−EDp (~σ,~δ)

EDp (~σmax,~δ)
Dynamic Energy Gain (static energy is
not included)

PG (%) ϕ(~σmax)−ϕD(~σ)
ϕ(~σmax) Power Gain (both static and dynamic

power are included)

DPR (%)
∆P

r −hr

hr
Delay Prediction Ratio (for delay
bound assignment)

DEGR (%) DEGHeuristic−DEGEDFS

DEGEDFS
Dynamic Energy Gain Ratio (static en-
ergy is not included)

91

Connection Request Acceptance

WWW Voice Video Comb
0

0.5

1

1.5

2

2.5

3

3.5

N
o.

 o
f C

on
ne

ct
io

n
R

eq
ue

st
 G

en
er

at
ed

104

PCH (
PCH

=0.15)

LBH (
LBH

=0.15)

Opt_EDFS

Figure 4.2: Connection request acceptance.

4.6 Performance Evaluation

In order to assess the efficiency of the proposed energy- and delay-aware flow manage-

ment strategy and its two heuristics, we developed a simulation framework to carry out a

set of simulation-based experiments. The network topology in this study is depicted in Fig-

ure 4.1. The focus of the analysis is on the shaded path, p, carrying QoS flows from source

to destination. All line cards (LCs) in each router are configured with multiple network

processor units (NPUs); each unit uses a DVFS-enabled, delay-based scheduling policy. We

set the capacity of all network links to 10 Gbps. Two cases of processor execution rates are

considered. In the first case, the frequency range is [1.6, 2.4] GHz, which is used in Intel

XEON DPDK line card [Intel, 2012]. In the second case, the minimum frequency, ψmin, of

a router is randomly selected from the range [0.6, 1.6] GHz and the maximum frequency,

ψmax is set to 2.4 GHz.

Five classes of traffic are simulated. These classes and their traffic rate specifications

and QoS requirements are listed in Table 4.1. The ITU G.114 specification recommends less

92

than 150 ms one-way end-to-end delay for high-quality real-time traffic. Consequently, the

end-to-end delay requirements of the traffic flows are randomly generated from an interval,

[0, 150] ms. The number of flows, within each traffic class, is varied to generate different

network loads.

Table 4.2 describes the main simulation parameters used in this simulation study. In

addition, two different metrics are defined, namely dynamic energy gain (DEG) and power

gain (PG). The first metric is to measure the relative dynamic energy gain of a processor

running at an execution rate, σ over a processor running at a maximum execution rate,

σmax. The second measures the relative power gain. These metrics are defined in Table 4.3.

Besides, another two ratios, namely delay prediction ratio (DPR) and dynamic energy gain

ratio (DEGR), are provided in Table 4.3, which are two energy-efficient metrics as auxiliary

use to help comparison between the optimal algorithm Opt EDFS and its two heuristics.

1000 2000 3000 4000 5000 6000 7000 8000

Connection Request Acceptance(
min

[0.6,1.6]GHz)

-10

-5

0

5

10

15

20

25

30

35

40

45

D
el

ay
 P

re
di

ct
io

n
R

at
io

(%
)

Delay Prediction Ratio at one Router for Comb (PCH Vs LBH)

PCH (
PCH

=0.15)

LBH (
LBH

=0.15)

Opt_EDFS

Figure 4.3: DPR comparison between PCH and LBH.

4.6.1 Comparison with Two Heuristics

In this chapter, two delay assignment heuristics, namely PCH() and LBH() are proposed

to compared with the optimal algorithm Opt EDFS. we carried a series of experiments to

93

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 8000 8200

Connection Request Acceptance(
min

[0.6,1.6]GHz)

-1.5

-1

-0.5

0

0.5

1

D
ya

nm
ic

 E
ne

rg
y

G
ai

n
R

at
io

(%
)

Dynamic Energy Gain Ratio for LBH with different

LBH (
LBH

=0.15)

LBH (
LBH

=0.25)

LBH (
LBH

=0.35)

LBH (
LBH

=0.45)

Opt_EDFS

Figure 4.4: DEGR for LBH with different π.

explore the energy saving compared with the optimal algorithm Opt EDFS to different

parameters. This set of experiments is to assess the performance of different classes of

traffic, based on two metrics: DPR and DEGR described in Table 4.3. The simulated traffic

is generated by web, voice and video flows. The traffic and QoS specification parameters of

these applications are described in Table 4.1, whereby background traffic is used to vary the

network load.

Fig.4.2 depicts the number of accepted flows for different classes of traffic, namely WWW,

Voice, Video, and Comb (WWW, Voice, and Video are combined by 1:1:1). It shows that the

connection request acceptance of LBH() is approximate to Opt EDFS, while the acceptance

of PCH() is much lower than LBH() due to its high sensitivity to delay prediction based

on router processing capacities, as displayed in Figure 4.3. In other words, PCH() could

not find feasible solutions any more for its unacceptable requests which, however, still are in

the range of the acceptance of Opt EDFS and LBH().

Contrary to PCH(), LBH() shows its more flexibility to estimate delay bound values

to adapt to the current traffic load. A series of values of π in range [0.1; 0.5] is tested

94

for LBH(). Fig.4.4 depicts a series of dynamic energy gain ratios (DEGRs) of LBH with

different π = 0.15, 0.25, 0.35, 0.45 for traffic Comb. The results show that energy saving

difference between Opt EDFS and LBH() is only within ±1.5%, whereby Opt EDFS,

especially π = 0.45, has slight larger energy saving than LBH() for higher traffic load

along the routing path with K routers, which have different minimum frequency values,

ψminr ∈ [0.6, 1.6]GHz(1 ≤ r ≤ K). Therefore, Opt EDFS is our focus for the rest of

experiments.

Figure 4.5: (a) Dynamic energy gains and (b) Power gains for the combination traffic source
under fixed ψmin = 1.6 GHz and randomly generated ψmin ∈ [0.6, 1.6] GHz.

4.6.2 Energy and Power Gain Evaluation of Opt EDFS

The objective of this set of experiments is to assess the performance of different classes

of traffic described in Table 4.1 through the same optimal algorithm Opt EDFS, in terms

of the energy and power gains metrics described in Table 4.3.

In these experiments different minimum frequency values, ψmin are used, where each

router, along the path, is randomly assigned a minimum frequency from the interval [0.6, 1.6] GHz.

Fig.4.5 shows the dynamic energy gain (DEG) and power gain (PG) for the simulated traffic.

The results also show that the variability of minimum frequency among the routers leads to

higher DEGs and PGs. The results show that the highest DEG and PG gains are achieved

when the router’s minimum frequency, ψminr (1 ≤ r ≤ K), varies along the path. In a ho-

mogeneous network, where the router’s minimum frequency is fixed, the DEG and PG gains

95

Figure 4.6: Dynamic energy gains and power gains for different traffic sources under (a,b) fixed
ψmin = 1.6 GHz and (c,d) randomly generated ψmin ∈ [0.6, 1.6] GHz.

are lower, than those obtained in a heterogeneous network. The number of accepted flows

for each class of traffic is depicted as Fig.4.2.

Fig.4.6(a) depicts the DEG as a function of the number of flow requests accepted by

the network, for a fixed minimum frequency across all routers. The minimum frequency

for a router is set to ψminr = 1.6 GHz (1 ≤ r ≤ K). In this case, the DEGs are up to

55.56%. The results show higher DEGs are achieved when the traffic load is low. In the

second experiment, the range of router’s minimum frequency, ψminr (1 ≤ r ≤ K), is set to

[0.6, 1.6] GHz (1 ≤ r ≤ K). The results, depicted in Figure 4.6(c), show that when the

routers’ minimum frequency varied along the routing path, the DEG gains can be as high as

83.33%. The results also show that the DEGs decrease as the network load increases along

the given path.

96

Figure 4.7: Power gains comparisons under different values of the static power ratio ω.

Similar behavior is observed with respect to PG gains. The results depicted in Fig-

ure 4.6(b) and Fig.4.6(d) show that PGs are achieved for all traffic classes. Furthermore, the

results show that as the number of accepted flows increases, the power saving decreases. It

is worth noting that higher PGs are achieved, when the value of the static power ratio, ω,

decreases. A decrease in ω results in an increase in the proportion of dynamic power.

The results in Figure 4.7 show when the minimum frequency, ψminr , is in the range

[0.6, 1.6] GHz, the maximum frequency is ψmaxr , is set to 2.4 GHz (1 ≤ r ≤ K) and ω is

set to 0.8, up to 17.84% PG can be achieved. When ω is set to 0.7, the PG can reach up to

26.76%.

4.7 Conclusions

The focus on this chapter is the development of an energy- and delay-aware flow control

and management framework to support the QoS requirements of delay-sensitive applica-

97

tions, while minimizing network energy consumption. Based on the flow traffic and QoS

specification, per-router delay budget and per-router execution rate are computed, so that

energy consumption is minimized without violating the flow’s end-to-end delay requirement.

A model to compute a path-based energy consumption, taking into consideration both the

static and dynamic energy components, is developed, and a methodology to compute feasi-

ble lower and upper bound delays of given flow, based on the router’s current traffic load,

is proposed. A simulation framework assesses the performance of the proposed strategy and

its two heuristics in terms of different energy-efficient metrics. The simulation results show

that the proposed delay-aware strategy, EDFS, achieves optimal energy and power saving,

without violating the QoS requirements of the underlying applications. The achieved gains

are higher when the network load is low. The results demonstrate that up to 83.33% dynamic

energy saving of total dynamic energy consumption and up to 26.76% power saving of total

power consumption can be achieved.

Generally, for optimal results, scheduling and speed scaling should be considered simulta-

neously. In many cases, the optimal combination of scheduling and speed scaling is NP-hard.

This follows from the fact that multiprocessor scheduling, which is already NP-hard, is a spe-

cial case of the generally combined speed scaling and scheduling problem of delay-sensitive

traffic load. Moreover, the energy saving through scaling speed is limited due to the load-

dependent power source percentage occupancy among the whole power consumption, that

is to say, the dynamic energy saving depends on the changes in the traffic load so that the

proposed DVFS-based techniques only can solve the problem of dynamic energy saving in

network components. However, another problem emerges that the energy consumption of

current IP networks is not proportional to the utilization level. Even in low or no usage

context, network equipment consumes energy at a high level. Therefore, compared to slow-

down approaches to save dynamical energy, shutdown approaches could achieve the goal of

saving more energy by shutting down network equipment or its components (i.e. put them

into sleep modes) when they are idle or low-demand. Therefore, seeking an intelligent sleep-

based power- or energy-aware strategy to save more power/energy consumption without QoS

violation becomes our next goal.

98

5.0 Sleep-based Power Management and a Traffic-aware Strategy

The power consumption of current network devices is not always proportional to their

utilization. Regardless of the traffic level, the network is constantly operating near maxi-

mum power. Furthermore, many related studies have shown that the base system (including

chassis, switch fabric, and router processor) of a network device is the major contributor to

its overall energy usage. Shutting down the routers, therefore, could save more energy than

slowing down the processor unit components such as the line cards. The latter strategies

are explored in Chapter 3 and Chapter 4, using DVFS-based, energy- and QoS-aware power

management. In this chapter, we investigate a new strategy to save the network power con-

sumption, focusing on sleep-based, traffic-aware power management. This proposed strategy

aims at adapting the whole network power consumption to the traffic levels by reconfigur-

ing the network and putting to sleep the lightly loaded network elements, while taking into

account network performance requirements. Moreover, sleep mode technique is considered

jointly with speed scaling technique to further tune power and energy consumption, while

adhering close to QoS requirements. The results show that applying this strategy can lead

to power savings of up to 62.58% of the total power consumption.

5.1 Introduction

Compared to speed scaling, switching off routers, when the network traffic is low, holds

great promise to achieve higher energy saving [Gupta and Singh, 2003]. As such, incorpo-

rating power control and energy-awareness into network management has become a critical

objective in the design of future networks, as it provides a viable solution to minimize power

and reduce energy consumption [Pierson, 2015]. The challenge is to develop an efficient

strategy that can dynamically adapt to the network traffic load to strike a balance between

minimizing power and energy consumption and adhering to QoS requirements of the network

supported applications. This challenge stems from the fact that switching off a router too

99

soon may lead to severe QoS degradation, if the traffic abruptly increases immediately after

a decision to move the router into sleep mode is made. This requires new insights on how

network traffic is dynamically and accurately predicted. Furthermore, scalable network con-

trol frameworks that effectively integrate power control and traffic management to minimize

energy consumption, while adhering to the QoS requirements of the underlying applications,

must be investigated [Addis et al., 2016].

To address this shortcoming, we propose a framework to explore the design and as-

sess the performance of a sleep-based, traffic-aware power management strategy, referred as

to STAPM. STAPM dynamically adapts network power consumption to network load and

uses agile network configuration to reroute traffic flows around switched off routers toward

their destinations, without severally degrading the network performance. To further achieve

higher levels of energy consumption, the proposed strategy will be seamlessly integrated

with a speed scaling based approach. Combined, the two approaches hold great potential to

achieve significant power saving, while supporting the QoS requirements of the underlying

applications. The main contributions of this chapter are: (i) the development of a model to

compute a network-based power consumption, taking into consideration both the static and

dynamic power components, (ii) the design of a traffic-aware power management strategy

to switch off lightly loaded network elements, based on the router’s current traffic load and

network congestion, and (iii) the development of agile network reconfiguration techniques to

ensure close adherence to applications’ QoS requirements. A simulation framework is devel-

oped to assess the performance of the proposed strategy, focusing on three power-efficient

green metrics, namely power gain (PG), dynamic power gain (DPG), and static power gain

(SPG).

The rest of this chapter is organized by sections as follows: the related work is reviewed

in Section 5.2. The sleep-based, traffic-aware power controller and its architecture design are

introduced in Section 5.3. Within this framework, a sleep-based, traffic-aware power control

and management strategy is discussed. The performance of the proposed strategy is assessed

in Section 5.4. Finally, Section 5.5 presents the conclusion of this chapter.

100

5.2 Related Work

Device sleeping represents a viable solution to energy saving because the consumption

of current network devices is not proportional to the utilization level. As such, when routers

are constantly active, the overall network consumption remains close to maximum power

consumption. As introduced in Chapter 2, since the consumption of the base system is

the major contributor to the overall network power consumption, shutting down the router,

therefore, could save more energy than only switching off its line cards. Despite its bene-

fits, switching off routers raise several network challenges, including rerouting potentially a

very large number of connections around switched off routers toward their destinations, the

likelihood of extended wake-up periods that leed to high levels of traffic congestion, espe-

cially in bursty network environments. Furthermore, the energy cost of switching off and

on routers may become prohibitive if these operations are undertaken frequently and the

network traffic is highly variable. Consequently, the decision to switch off a router to save

energy must be carefully weighted against the energy needed to reactive a sleeping router.

An important factor that impacts such a decision is the likelihood of traffic increase in the

immediate future.

Some researches choose to switch off individual line cards and remap the links to other

ones. This avoids discontinuities and saves power when the traffic load is light. Fisher

et al. propose a form of infrastructure sleeping where they shut down the lightly loaded

cables and the line cards, instead of the whole router, during periods of low utilization

in [Fisher et al., 2010]. In [Idzikowski et al., 2010], routing reconfiguration at a different

layer, namely IP layer (the virtual layer) and WDM (the physical layer), for achieving energy

saving through switching off line cards, is compared. The scheme that rerouters demands

in the virtual layer achieves the best energy saving. Similarly, Shang, et al. also propose a

scheme to switch off line cards when traffic load is low in [Zhang et al., 2010b]. In order to

improve the energy efficiency of backbone networks by dynamically adjusting the number

of active links according to network load, Carpa et al. propose an intra-domain software-

defined network (SDN) approach in [Carpa et al., 2015], an energy-aware traffic engineering

technique, to select and turn off a subset of links. The implemented solution shows that as

101

much as 44% of links can be switched off to save energy in real backbone networks. Recently,

Virtualized Network Environment (VNE) has recently emerged as a solution to address the

challenges of the future Internet. It is essential to develop novel techniques to reduce VNEs

energy consumption. Ghazisaeedi et al. propose a novel optimization algorithm for VNE

in [Ghazisaeedi et al., 2012], by sleeping reconfiguration on the maximum number of physical

links during off-peak hours, while still guaranteeing the connectivity and off-peak bandwidth

availability for supporting parallel virtual networks over the top. Simulation results based

on the GANT network topology show this algorithm is able to put a notable number of

physical links to sleep during off-peak hours while still satisfying the bandwidth demands

requested by ongoing traffic sessions in the virtual networks. It, however, does not change

the mapping of VNs, this decreases the level of energy saving. The same authors propose

an energy saving method that optimizes VNEs energy consumption during the off-peak

time in [Ghazisaeedi and Huang, 2015]. This method reconfigures mapping for some of the

embedded virtual links in the off-peak period. The proposed strategy enables providers to

adjust the level of the reconfiguration, and accordingly control probable traffic disruptions

due to the reconfiguration. This problem is formulated as a Binary Integer Linear Program

(BILP). the defined BILP is NP-hard, a novel heuristic algorithm is also suggested. The

proposed energy saving methods are evaluated over random VNE scenarios. The results

confirm the defined solutions are able to save notable amounts of energy during off-peak

period, while still accommodating off-peak traffic demands of involved virtual networks.

Other researches, however, consider to put devices and their components into sleep mode

when they are not used, to save more energy. Gianoli and Giovanni propose an energy-aware

traffic engineering solution to minimize the energy consumption of the network through a

management strategy that selectively switches off devices according to the traffic level, and

model a set of traffic scenarios corresponding to different time periods and consider a set of

traffic scenarios and jointly optimize their energy consumption assuming a per-flow routing

in [Gianoli, 2014]. Chiaraviglio et al. propose an algorithm that can selectively turn off

some nodes and links of an IP-based backbone network during off-peak times in [Chiaraviglio

et al., 2009b]. They demonstrated that an energy saving of at least 23% is possible for the

total energy consumed by the backbone network. Chiaraviglio et al. model a network for

102

minimizing the energy consumption by switching off idle nodes (routers) and idle links, witch

subjects to flow conservation and maximum link utilization constraints in [Chiaraviglio et al.,

2008]. The problem is NP-hard, so in [Chiaraviglio et al., 2009a], several simple heuristic

algorithms are employed, which sort all the nodes depending on the number of links, the

number of flows they accommodate, or use a random strategy to switch off for saving energy.

In a simple network scenario, which includes core, edge, and aggregate networks, it is possible

to switch off 30% of links and 50% of nodes. But most of them do not consider some practical

problems of the on/on approach: switching on and off takes time, it leads to a network

reconfiguration because of topology change, and a wake-up method is required to determine

how and when nodes and links should be switched on again. Bianzino et al. extend their

work by considering a real-world case in [Bianzino et al., 2010]. The problem for minimizing

the number of nodes and links for saving energy, given a certain traffic demand, has been

solved by Integer Problem Formulation (ILP) for simple networks. The algorithm switches

off devices that consume power in descending order. The results show that it is possible to

reduce power consumption by more than 23%, that is, 3 GWh/year in real network scenario.

The proposed framework further addresses the shortcomings of the existing approaches

and proposes a sleep-based, traffic-aware power management strategy to significant reduce

network power consumption through reconfiguring the network and putting the lightly loaded

routers into sleep mode. In addition, sleep mode technique is considered jointly with speed

scaling technique to further adjust power and energy consumption, while adhering close to

QoS requirements.

5.3 Sleep-based Power Controller

In this section, we first present the basic sleep-based power controller architecture. We

then discuss a sleep-based traffic-aware power management strategy, which is used to op-

timize the network configuration and putting into sleep mode the lightly loaded network

elements, while taking into account network performance requirements.

103

5.3.1 Sleep-based Traffic-aware Power Controller Architecture

The proposed sleep-based power management framework assumes the existence of a sleep-

based, traffic-aware power controller that regulates access to the network. The controller

relies on the existing routing protocol infrastructure to compute routing paths between a

traffic source and destination. Furthermore, the controller uses a flow’s traffic specification

to verify the feasibility of network reconfiguration by shutting down the router with light

load along the computed routing path to accommodate the flow’s QoS requirements. If

successful, the new router path is reconfigured to route the traffic generated by QoS flows

to its destination. Otherwise, the routing rearrangement request is rejected.

The basic idea of sleep-based traffic-aware power controllers is to dynamically put into

sleep mode the lightly loaded network elements and reroute the traffic load to a new feasible

nearest path, based on the current state of the network, to reduce network power consump-

tion. To design an effective sleep-based traffic-aware power controller (STPC), several issues

must be addressed. First, a strategy must be in place to determine how traffic load im-

pacts sleep mode decisions. Second, appropriate levels of congestion granularity must be

taken into consideration when putting the router into sleep mode. Traffic load thresholds

and QoS requirements to model different levels of network congestion are considered in this

chapter, based on which a mechanism must be in place to predict traffic load at a router

along all incoming paths to decide when the device goes into sleep mode without violating

QoS performance.

Figure 5.1: Sleep-based traffic-aware power controller architecture.

To address the above issues, a sleep-based traffic-aware power controller architecture,

depicted in Figure 5.1, is proposed. The architecture has two main components: Traffic

104

Predictor (TP) and Sleep Decider (SD). The TP component monitors the bursts, predicts

the average traffic load, ρ(τ), over an interval τ , and gathers statics related to the state of the

network. The estimated average traffic load, ρ(τ), is used to adjust the Network Processor

Unit (NPU) speed to guarantee QoS performance along the new possible routing path, and,

when feasible, put the router into sleep mode.

The decision to transition a route into sleep mode is determined by a traffic load thresh-

old, ρth. If the router predicts that its load will decrease below ρth in the next time interval,

it issues a sleep request to its immediate neighbors, informing them of its intention to sleep.

Depending on the feasibility of rearranging all traffic routed through the sleeping candi-

date, the request is either approved or denied. The details of the sleep strategy, along with

supporting algorithms, are discussed next.

5.3.2 A Sleep-based, Traffic-aware Power Management Strategy

Based on the above architecture, a sleep-based traffic-aware power management strategy,

referred to as STAPM, is proposed, which uses predicted average traffic load to decide

whether a network device is eligible to be put into sleep mode. This strategy, including the

traffic load prediction mechanism and the related sleep-based algorithms are introduced in

the following.

STAPM is a strategy to shutdown under-utilized non-edge routers with the very light

load to save power. It begins by predicting the traffic load based on historical records. The

traffic load prediction mechanism uses the exponentially weighted moving average (EWMA)

algorithm to predict the average burst bandwidth, b(τk), over the kth time interval τ , where

k ≥ 1. Assume b(τk) represents the burst occupied bandwidth over the time interval τk.

b(τk) = (1− wa(τk)) · b(τk−1) + wa(τk) · b(τk) (5.1)

Let b(τk) and D(τk) denote the number of predicted burst arrivals and departures over

the interval τk, respectively. The predicted average traffic load ρ(τk) can be further expressed

as:

105

ρ(τk) =
b(τk)

D(τk)
(5.2)

The estimated average traffic load, ρ(τ), is not only used to adjust the network processor

unit (NPU) speed to guarantee QoS performance along the new possible routing path but

also used to decide, given a traffic load threshold, ρth, whether a lightly loaded network device

is eligible to move into sleep mode. If the condition, ρ(τ) ≤ ρth, is satisfied for all traffic

flows routed through the candidate router, the router becomes eligible to go to sleep. It then

starts the attempt to transition into sleep mode by informing its immediate neighbors. In

the following, we further discuss the algorithms used to migrate eligible routers into sleep

mode to achieve power saving.

5.3.3 Departure Handler Algorithm

Under-utilized routers are selected as candidates to move into sleep mode to reduce power

consumption for the network. If the traffic loads, passing through the candidate route, can

be rerouted, the most power-efficient combination paths is selected and all traffic is rerouted

to the appropriate destination. The router then moves into sleep mode. If the traffic can’t

be rerouted, the router’s attempt to sleep fails, and the router remains in its current state.

This is shown in Departure Handler Algorithm in Algorithm 5.5 in Section 5.4.1.2.

It is worth mentioning that it is a heuristics to determine the router to sleep by the traffic

prediction before the current departure event is handled. The traffic prediction might appear

to be higher than the actual load and is thus more likely to guarantee the low utilization

rate for a period.

It should be noted that the router will be directly put into sleep mode if there is no traffic

at the instant when the Departure Handler Algorithm is called. Shutting down the whole

router might cause the network to be disconnected after the removal of the links adjacent

to the sleep mode. The consequence is that the bursts arrived after this instant will be

automatically blocked. This case is extremely likely to happen if the traffic load is low.

The following provides more discussion on the sleep request/response procedure and the

related issues in detail.

106

Algorithm 5.1 SleepRequest().

1: Data: Network status NS, a candidate router r, neighbor routers, Nb(r)

2: Return: true/false

3: Initialization:

4: SleepF lag ← false, m← 1, k ← ||Nb(r)||
5: if r is NOT empty then

6: r sends sleep requests to all neighbors, Nb(r)

7: while m ≤ k do

8: for Each m ∈ Nb(r) do

9: r waits for the response from m

10: SleepResponse(NS, r, m)

11: if r gets an approval from m then

12: m+ +

13: else

14: r tries later

15: end if

16: end for

17: if m = k + 1 then

18: r is approved from all neighbors

19: SleepF lag ← true

20: r informs all neighbors the request is approved

21: r sets a wake-up time, min (I1, · · · , Ik)
22: r goes to sleep

23: else

24: SleepF lag ← false

25: r tries later

26: end if

27: Return: SleepFlag

28: end while

29: end if

30: SleepF lag ← false

107

Algorithm 5.2 SleepResponse().

1: Data: Network status NS, the neighbor router m of r

2: Return: yes/No

3: Dispatch message from sleep request queue in m

4: m wakes up to process request from r

5: while Sleep request queue is NOT empty do

6: Process the sleep request from r

7: if All flow at m routed through r are rearrangeable then

8: Return: yes

9: Send a wakeup time interval, Im, to r

10: Send a lease message

11: else

12: Return: no

13: end if

14: Process the next request in the queue after r’s request

15: end while

5.3.4 Sleep Control Algorithms

The network is defined as a graph N = (R,L), where R (||R|| = n, and R = Erouter ∪

Orouter) represents the set of routers, which is composed of tow sets: the set of edge routers,

Erouter and the set of non-edge routers, Orouter, and L = {(i, j)|i, j ∈ R&i 6= j} represents the

set of links between routers. In the network N = (R,L), when a non-edge router, r ∈ Orouter,

determines that it can go to sleep based on the predicted load and the related threshold, r

sends sleep request to all its neighbors, Nb(r). Nb(r) is the set of all neighbors of the router,

r, and ||Nb(r)|| = k (k < n). Then r waits for approvals from all its neighbors, meanwhile,

r continues to route traffic from all of its neighbors to their destinations. If r is approved

by all neighbors with ‘yes’, r goes to sleep, otherwise, r tries later. In other words, once r’s

sleep request is approved, r informs all of its neighbors that the request is approved, sets a

wake-up time, and then goes to sleep. The wake-up time is greater than and equal to the

sleep time to save energy, which is greater than the energy used to wake up. Every neighbor,

m ∈ Nb(r), where 1 ≤ m ≤ k, sends back a sleep time interval, Im, to predict when traffic

108

increases to exceed the traffic load threshold. The router sleep time is set to be equal to

the minimal value of Im (1 ≤ m ≤ k), i.e. min (I1, · · · , Ik). Sleep Request Algorithm in

Algorithm 5.1 and Sleep Response Algorithm in Algorithm 5.2 further describe the sleep

control algorithms from two sides: the router side with light traffic load and its neighbor

side responsible for dealing with sleep requests.

Let Fr(m) be the set of traffic flows at neighbor router, m ∈ Nb(r), routed though router,

r, and Fm be set of traffic flows atm. Fr(m) = {f ∈ Fm (m ∈ Nb(r)) |f is routed through r},

where 1 ≤ m ≤ k. Before approving r’s sleep request, m makes sure that all f ∈ Fr(m) can

be rerouted to their destinations through alternative new paths without router r in network

N , while adhering to the QoS requirements.

The above description is the general sleep request/response procedure, the real situation

is more complex. For example, when multiple sleep requests are sent to the same neighbor

from different routers, this neighbor can not deal with multiple requests simultaneously.

Thus, it puts the received sleep requests into a queue according to the time sequence and

obeys with the first in first out (FIFO) policy to check the earliest one among the requests sent

by these different routers at first. Assuming that two routers, r1 and r2, where r1, r2 ∈ Orouter,

determine they can go to sleep according to the current network state. r1 and r2 send the

sleep requests to the same neighbor, m1, at t1 and t2, respectively, where t1 < t2. According

to the FIFO policy, it checks the earlier request from the router, r1, firstly. If r1’s request

is approved, r1 waits to go to sleep until all other neighbors also approve its request. But if

r1’s request to m1 is denied, r2’s request is checked by m1 in turn. In other words, no matter

that r1’s request is approved or denied, m1 gives a lease message, then moves to check r2’s

sleep request based on the queued order. Besides, another possible problem is that if there

exists the third router, r3, also sends a sleep request to another same neighbor, m2, with the

router, r1, at time t3. If t1 < t3, check r1’s request first according to the policy, otherwise,

r3’s request first, after it is responded by m2 , then r1’s turn. After that, repeat the above

described similar procedure of dealing with r1 and r2’s sleep requests at m1. The different

neighbor routers have their individual queue to store the received sleep requests following

the time order.

109

Figure 5.2: Traffic-aware power management simulation framework.

5.4 Performance Evaluation

In order to assess the performance of the proposed sleep-based traffic-aware power man-

agement strategy, STAPM, we develop a simulation framework to carry out a set of simulation-

based experiments. In this framework, we consider a set of sleep-enable routers and present a

detailed model to determine the router-based and network-based power consumption, taking

into consideration the QoS requirements.

5.4.1 A Traffic-aware Power Management Simulation Framework

To study the performance, a traffic-aware power management simulation framework,

depicted in Figure 5.2, is proposed in this section. It includes three components, namely

Initialization Module(IM), Event Processing Module (EPM), and Data Collection Module

(DCM). The IM component is used to set the network and traffic parameters along with

other network configurations. It also initializes all the traffic events. The EPM component

conducts an event by event simulation including traffic arrival, routing, bandwidth allocation

and free. The DCM component processes all the data depicting the process of the sleep-

based traffic-aware power management strategy, STAPM, which is generated in the EPM

component. The output of DCM, namely power gain (PG), is the statistics of the processed

data.

110

Table 5.1: Main simulation parameters and conditions.

Items Simulation Parameters Simulation Values

Network Topology N(R,L)

Erouter A set of integers representing the edge routers

Orouter A set of integers representing the non-edge routers

R Erouter ∪Orouter

L the set of links between routers

{(i, j)|i, j ∈ R&i 6= j}

n ||R||

Gb n× n bandwidth matrix

Gd n× n delay matrix

P er the power cost of router r at event e

Geb the available bandwidth in N(R,L) at event e

RoutingTable(e) a table records the path of the bursts currently being
served all over the network at event e based on the
time scale

Traffic Burst-based flow poisson distribution

ρth the lowest traffic load threshold to make router sleep

5.4.1.1 Initialization Module (IM) The Initialization Module component generates

traffic events and initializes network parameters. We begin by introducing the construction

process of a traffic burst along with its parameters. A traffic event is essentially a burst of

traffic between a source vertex and a destination vertex (s/d pair) in the network. It can be

represented with a tuple containing the following parameters (assume the current burst id

is k):

• sk: an integer representing the source vertex of burst, k,

• dk: an integer representing the destination vertex of burst, k,

• tka: a sequence number for the arrival time of burst, k,

• tkd: a sequence number for the departure time of burst, k,

111

• bk: the bandwidth of burst, k.

The arrival time and departure time of the bursts between the same s/d pair could be

generated using two distributions separately.

Assume that a series of bursts are generated from the same source/destination pair from

distributions f sda and f sdb . The bandwidth of a burst is fixed. Then there are three parameters

defined at the traffic level:

• f sda : Poisson distribution of burst arrival interval between an s/d pair.

• f sdd : Poisson distribution of burst service time between an s/d pair.

In IM component, the traffic events can be generated by sorting the tka and tkd for all bursts.

By walking through the sorted time array, mark the sequence of arrival and departure for

each burst. This sequence is used in the EPM component, which is introduced in the next

subsection.

The network parameters are a collection of data that describes the network. We be-

gin by the parameters depicting the property of a network defined as a graph N = (R,L),

where R (||R|| = n, and R = Erouter ∪ Orouter), represents the set of routers which in-

cludes edge routers, Erouter, and non-edge routers, Orouter, and L = {(i, j)|i, j ∈ R&i 6= j}

represents the set of links between routers. In this chapter, a random topology genera-

tor (RTG), as displayed in Figure 5.2, is designed to generate randomly topology Matrix

RTG(#Edge,#NonEdge,AvgDegree), where #Edge + #NonEdge = n, #Edge de-

notes the number of edge routers, #NonEdge denotes the number of routers other than edge

router and AvgDegree denotes the average degree of a network graph, which is a measure of

how many edges are in set compared to number of vertices in set. Accordingly, the associated

parameter matrices listed in Table 5.1 are defined as follows:

• Gb: A weighted graph to represent the bandwidth. It is an n× n matrix where Gb(i, j)

is the link bandwidth of link (i, j). It is a symmetric graph, i.e. Gb(i, j) = Gb(j, i).

• Gd: A weighted symmetric graph to represent the link delay. It is an n×n matrix where

Gd(i, j) is the link delay of link (i, j). The delay for the non-existent link is set to infinity.

• Erouter: A set of integers representing the edge routers in the network. Only edge routers

can send/receive traffic. Edge routers can’t be put into sleep mode for power saving.

112

• Orouter: A set of integers representing the non-edge routers in the network. They do not

generate traffic while only forward traffic from edge routers. They might be put into

sleep mode for power saving.

Given Gb and Gd, a delay-sensitive network can be initialized. Note that these two matrices

should be integrated to actually represent the same topology. Otherwise, the result may be

inconsistent.

In addition to the property parameters, a series of network status variables are also

defined to record the time-dependent status of the network at every event. Several typical

status parameters to record the status of the network at every event are listed as following.

• P e
r : The power cost of the router r at event e, where r ∈ R, and r : 1, ..., n.

• Ge
b: The available bandwidth in the graph at event e. It is an n × n symmetric matrix

in which Ge
b(i, j) is the available bandwidth in link (i, j) at event e.

• RoutingTable(e): This variable is a table recording the path of the bursts currently being

served all over the network at event e. Each row represents a burst and has five elements:

source, destination, bandwidth, burst id, and its routing path shown as a sequence of

vertices. It records the routing paths at the simulation timelines at the network.

5.4.1.2 Event Processing Module (EPM) The Event Processing Module component

takes the initialized network topology, traffic load, and event sequence as the input. It walks

through the events according to the sequence, and process the events by handling burst

arrival and burst departure. Its logic is shown in Event Sequence Handling Algorithm in

Algorithm 5.3.

Upon burst arrival, the K-shortest path algorithm [Eppstein, 1998; Hershberger et al.,

2007; Madkour et al., 2017] is conducted to find a pool with K paths. To conveniently

implement traffic-aware routing, we use Gd as the topology to the algorithm such that

the paths with low delays are preferred. Then we implement functions CheckDelay and

CheckBandwidth to filter the result paths by testing whether there is enough bandwidth

and whether the requirement of the en-to-end delay is satisfied. In this study, random

selection(function SelectPathRandom) is implemented to pick up an available path to route

113

the burst.

When the routing path is decided, it is added to the routing table and available bandwidth

value along the path in Ge
b at event e is decreased by the bandwidth of the burst. The traffic

information and the path is then added to the routing table. If there is no path left after the

filter functions, the burst will be marked blocked and no parameters are changed, as shown

in Burst Arrival Handler Algorithm in Algorithm 5.4.

According to the predicted traffic load discussed in Section 5.3.2, ρ(τk), whether the

utilized router that the traffic flow is traveling through, as a sleep candidate, could go to

sleep or not depends on whether a rerouting path to the destination could be found, without

violating QoS performance along the rerouting path. If the traffic can’t be rerouted, the

router will not be put into sleep mode, as shown in Burst Departure Handler Algorithm in

Algorithm 5.5.

5.4.1.3 Data Collection Module (DCM) The Data Collection Module component

processes all the data depicting the process of the power and traffic-aware events, which is

generated in the EPM component. The output of DCM is the statistics of the processed

data, such as predicted link utility rate, power consumption, power gain and so on. It is

capable to conduct a variety of analyses based on the status variables over the simulation

time scale pattern to better investigate the performance.

Based on the above architecture, a sleep-based, traffic-aware power management strategy

is presented, which uses predicted average traffic load to decide when to put the selected

router into sleep mode and achieve the traffic grooming without QoS violation.

114

Algorithm 5.3 Event Sequence Handling Algorithm.

1: Data: Network status NS, Event e

2: Return: N/A

3: Initialization:

4: Obtain NS, e from the initialization module.

5: Initialize status parameters for this event e

6: if e is an arrival event then

7: HandleArrival(NS, e)

8: else

9: HandleDeparture(NS, e)

10: end if

Algorithm 5.4 Burst Arrival Handler Algorithm.

1: Data: Network status NS, Event e, Delay Threshold δ0

2: Return: N/A

3: Initialization: K, Paths

4: From e, extract traffic information s(source), d(destination), b(bandwidth), burstid(burst

id)

5: From NS, extract Ge
b(current available bandwidth), Ge

d(delay graph)

6: Paths←KShortestPath(s,d,Ge
d,K)

7: CheckDelay(Paths, δ0)

8: CheckBandwidth(Paths, Ge
b)

9: if Paths is NOT empty then

10: path0 ← SelectPathRandom(Paths)

11: Decrease bandwidth in Ge
b by b along path0

12: Put s, d, burstid, b and path0 to the RoutingTable

13: Update other related parameters

14: end if

15: Mark this burst burstid

115

Algorithm 5.5 Burst Departure Handler Algorithm.

1: Data: Network status NS, Event e, Traffic Load Threshold ρth

2: Return: N/A

3: Initialization:

4: From e, extract burstid(burst id)

5: From NS, extract Ge
b(current available bandwidth b)

6: PredictTraffic(NS)

7: if Burst id burstid is not blocked then

8: Extract path and b from Routing table from burstid

9: Increase Ge
b values along the path by b

10: Remove that entry in the Routing Table

11: end if

12: r ←FindSleepableRouter(NS)

13: if r is NOT empty then

14: if For all traffic routed by r then

15: Traffic Prediction

16: if all predicted load satisfy ρ(τk) ≤ ρth & their paths are rearrangeable then

17: r sends sleep requests to all of its neighbors, Nb(r)

18: SleepRequest(NS, r, Nb(r))

19: else

20: r tries later

21: end if

22: end if

23: r waits for all responses from the neighbors, Nb(r)

24: if r gets approvals from all of its neighbors then

25: Rearrange the paths

26: r goes to sleep

27: else

28: r tries later

29: end if

30: end if

116

5.4.2 Router-based Power Model and Network-based Energy-efficient Metrics

5.4.2.1 Power measurement When discussing the power issue of a router/switch, two

main aspects impacting power consumption need to be considered. The first, referred to as

static power, arises from the bias and leakage current to support control plane, environment

units, and load-independent data plane [Tucker et al., 2009; Vishwanath et al., 2014]. The

second, referred to as dynamic power, results from the charging and discharging of the voltage

saved in node capacitance of the circuit. Using ΦS and ΦD to denote static and dynamic

power, respectively, the power Φ consumed by a router can be expressed as follows:

Φ = ΦS + ΦD (5.3)

According to [Vishwanath et al., 2014], the power consumption of an IP router is the sum

of the power consumed by its three major subsystems, namely control plane, environmental

units and data plane. Assume that Φcontrol denotes the static power consumed by control

plane, Φenvironment denotes the static power consumed by environment units, ΦS
data denotes

the static power consumed by the constant baseline components in data plane, and ΦD
data

denotes the dynamic power consumed by the traffic load dependent components in data

plane. Accordingly, the above power components can be further expressed as:

ΦS = Φcontrol + Φenvironment + ΦS
data

ΦD = ΦD
data

(5.4)

5.4.2.2 A general power-aware model for router power consumption Joseph

Chabarek et al. in [Chabarek et al., 2008] performed several experiments to measure the

energy consumption of two different Cisco routers: GSR 12008 and 7507. Both of them

include their base systems (Chassis plus router processor) and line cards, based on which it

provides a generic model for router power consumption, as described in Eq. 5.5. In this model,

the power consumption Φ of a router is determined by its configuration and current use. The

vector X defines the chassis type of the device, the installed line cards and the configuration

and traffic profile of the device. The function ΦS(x0) returns the power consumption of a

117

particular chassis type, which is from control plan and environment unit, N is the number of

line cards that are active, ϕDdata(xi0) is the dynamic cost with a scaling factor corresponding

to the traffic utilization on the router, and ϕSdata(xi1) gives the cost of the line card in a base

configuration. The cost of traffic is dependent on the configuration of the router and the

amount of traffic. This model is used to formulate the optimization problem for power-aware

network design.

Φ(X) =ΦS(x0) +
N∑
i=0

(ϕDdata(xi0, xi1) + ϕSdata(xi1))

= ΦS(x0) +
N∑
i=0

ϕSdata(xi1)︸ ︷︷ ︸
ΦS(X)

+
N∑
i=0

ϕDdata(xi0, xi1)︸ ︷︷ ︸
ΦD(X)

(5.5)

Assume that there are N active linecards in the router and that the network processing

unit (NPU) of each linecard executes at speed, σi, where 1 ≤ i ≤ N , then its dynamic power

consumption can be roughly characterized as ϕD(σi) = γ · σ3
i . Define the static power as

a fixed fraction of the router power consumed when NPUs’ executing at maximum speeds,

referred to υ (i.e. static power ratio) [Cui et al., 2014; Yu et al., 2015b]. Let ~σ = (σ1, · · · , σN).

Hence, the power consumption of an active router in Eq. 5.5 can further be expressed as:

Φ(X) = Φ(~σ)

= ΦS(~σmax) + ΦD(~σ)

= υ · γ ·
N∑
i=0

(σmaxi)3 + (1− υ) · γ ·
N∑
i=0

σ3
i

(5.6)

where υ ≥ 0.7 [Yu et al., 2015b].

5.4.2.3 Network-based energy-efficient metrics We use power gain (PG), defined in

Eq. 5.7, as the energy-efficient metric to evaluate the performance of the proposed sleep-based

traffic-aware power management strategy, STAPM, in the given network topology. Assume

H and H
′

denotes the active number of routers in the initial configured and reconfigured

network, respectively. And assume X and X
′

define the chassis type of the device, the

installed line cards and the configuration and traffic profile of the device in each active

118

Figure 5.3: Random topology generator.

Figure 5.4: JPNAP daily traffic densities collected on (a) weekly days (Sept. 14th, Sept. 21st,
Sept. 28th, 2018); (b) weekend days (Sept. 15th, Sept. 22th, Sept. 29th, 2018) respectively.

router in the initial configured and reconfigured network, respectively.

PG =

∑H
i=0 Φi(X)−

∑H
′

i=0 Φi(X
′
)∑H

i=0 Φi(X)
(5.7)

Accordingly, another two energy-efficient metrics, namely dynamic power gain (DPG)

119

Figure 5.5: (a,b) Dynamic power gains, (c,d) Static power gains, and (e,f) Power gains of a
10-node network topology under different bandwidths on Sept. 28th, 2018 (a weekly day), and
Sept. 29th, 2018 (a weekend day) respectively.

and static power gain (SPG) are also discussed in this chapter, they are defined as:

DPG =

∑H
i=0 ΦD

i (X)−
∑H

′

i=0 ΦD
i (X

′
)∑H

i=0 ΦD
i (X)

(5.8)

SPG =

∑H
i=0 ΦS

i (X)−
∑H

′

i=0 ΦS
i (X

′
)∑H

i=0 ΦS
i (X)

(5.9)

5.4.3 JPNAP Daily Traffic Study

In recent years, the landscape of the Internet is fast changing with the introduction of

streaming content such as video, high definition television and Voice over IP (VoIP), with

more stringent QoS requirements. Given the ever-increasing importance of the Internet,

knowledge of its traffic has become increasingly critical. For instance, traffic properties are

highly dependent on a time scale, a long time scales (hours to days to weeks) traffic exhibits

strong periodicities: there are distinct diurnal and weekly cycles with traffic peaks occurring

120

around midday or in the evening and troughs in the early morning. This pattern correlates

to user behavior, where they access the Internet during the day for work or school and

sleep in the night. Thus it would be very difficult to simulate a 24-hour timeline due to the

difficulty of the automatic restart process. Alternatively, we collect a series of traffic densities

throughout a 24-hour from JPNAP Service [Co.], as shown in Figure 5.4. We evaluate the

average power costs under each of the densities (12 samples per 24-hour) when a sleep mode is

enabled. We then compare them to the power consumption at the same traffic densities when

the sleep mode is disabled through the above discussed energy-efficient metrics. For either

mode, the power consumption is obtained by a process simulating traffic routing throughout

the network. We assume that when the traffic density changes, the network administrator

will force all routing to restart and become awake.

A random topology generator is designed in this study as depicted in Figure 5.3. Each link

offers fine traffic granularity which enables us to fine tune the transmission power according

to the average throughput dynamically, to achieve energy-efficient burst handling. In the

simulation, denote each link has bandwidth normalized to 1 and the bandwidth of a burst

is typically represented by a fraction. The bandwidth usage of a link may be dynamically

adjusted up and down by green rerouting, according to traffic grooming states. The dynamic

power consumption of the router port connecting this link is computed by the amount of

occupied bandwidth in this link. That is, the two ports from the two routers at the end

of the same link should have the same dynamic power cost. Assume each link has its fixed

delay and each traffic burst has a required end-to-end delay as its QoS requirement. The

burst will only be routed to a routing path satisfying its delay requirement. In this chapter,

three randomly generated network topologies, namely 10-node topology, 20-node topology,

and 30-node topology, are discussed.

For the sleep mode simulations, it is a very hard study when a sleeping router should

automatically wake up because it requires precise traffic prediction and traffic monitoring

throughout the network, either of which is a complicated topic and beyond the scope of

this chapter. To make the simulation process simple, we alternatively set that turned down

router can not be restarted automatically, i.e. they are turned down till the end of the

simulation timeline. If the traffic density increases, the network would be congested as the

121

sleeping routers can not wake up by themselves. To be able to handle these issues, we

assume that network administrators can manually command all router back on. By setting

the all-awake initial state for all routers, a fair initial status is provided to evaluate and

average power consumption over the simulation timeline in different modes. By collecting

and comparing the average power consumption over a long simulation timeline, we can

obtain stable-state performances of our proposed power-aware mechanism at different traffic

densities. What’s more, this result could be applied to an arbitrary time scale and is not

confined to the length of the simulation timeline. Thus we could confirm the validity of the

result albeit the simulation process is not continuous over all the timelines in the experiment.

Table 5.1 describes the main simulation parameters used in this simulation study. In addition,

three different metrics are defined, namely dynamic power gain (DPG) , static power gain

(SPG) and power gain (PG). The first metric is to measure the relative dynamic power

gain according to the traffic grooming state after green routing. The second measures the

relative static power gain due to network reconfiguration. The third metric is to measure

the relative total power gain based on the former two metrics. These metrics are defined

in Eq. 5.8, Eq. 5.9 and Eq. 5.7.

We further assume that the system clock in the routers of the networks are perfectly

synchronized. Otherwise, the chronicle order of sleep requests in different routers may be

inconsistent and cause chaos when multiple routers are sending out sleep requests in a short

period of time.

5.4.4 Simulation-based Performance and Analysis

To decide whether a network router is set to sleep mode depends on how low the back-

ground traffic flow is during the given simulation timeline. Given a fixed ρth, the lowest

traffic load threshold to lead a router to sleep, the objective of a set of experiments is to

assess the performance of different adaptable bandwidth, such as 0.1, 0.2 and 0.3, according

to traffic session changes, depicted as Figure 5.5, through the strategy SPRAT , based on

three metrics, namely DPG, SPG, and total PG. In Figure 5.5, (a,b) shows dynamic power

gains (DPGs) of a randomly generated 10-node network topology under 12 average traffic

122

throughput densities in 24 hours of Sept. 28th, 2018 (a weekly day), and Sept. 29th, 2018 (a

weekend day) respectively. The traffic grooming due to green routing brings the changes of

dynamic power, it might increase dynamic consumption since the traffic loads increase along

the new routing paths, but the total network dynamic power might decrease due to router

sleeping. Once the router goes to sleep, no dynamic power consumption at it anymore. We

found DPG changes within the range of (−1.04% ∼ 2.94%) are small, the reason is assum-

ing that the green routing happens under the condition of the low traffic load in this chapter.

(c,d) shows static power gains (SPGs) of this 10-node network topology, the highest SPGs

are up to 62.82% and 62.77% based on the traffic densities of 6 am on Sept. 28th, 2018 (a

weekly day), and Sept. 29th, 2018 (a weekend day) respectively. Accordingly, the highest

PG is up to 62.50% and 62.39%. The more routers could be considered to be asleep from

midnight to early morning, no matter whether it is a weekly day or a weekend day. Besides,

we also test the blocking rates among these three bandwidth settings, the blocking rates

for the bursts with fixed BW of 0.1 (normalized value as using 1
10

of the link bandwidth)

are less than 3% for two different days, as described in Figure 5.6, however, the other two

settings lead to blocking rates exceed 20%, which are suggested not to make green routing.

For all experiments are make delay filtering, once delay performance requirement is broken,

the green routing is denied. Therefore, a conclusion can be drawn that the lower bandwidth

setting controls lower traffic with ρ ≤ ρth to sleep the routers without a higher blocking rate,

thereby achieving higher power saving through sleeping more routers.

Based on the above discussion, the following experiments are based on BW = 0.1.

Figure 5.6 further shows DPGs, SPGs and PGs of the 10-node network topology on weekly

days, three Fridays such as Sept. 14th, Sept. 21st, Sept. 28th, 2018, and weekend days, three

Saturdays such as Sept. 15th, Sept. 22th, Sept. 29th, 2018 respectively. It shows the same

trends among DPGs, SPGs, and PGs. We found the number of sleeping routers is higher

around the time session of 4 am to 8 am, no matter whether it is a weekly day or a weekend

day. The highest power savings are up to 62.58%, 62.50%, and 62.50% for three Fridays,

and 62.43%, 62.43%, and 62.39% for three Saturdays, with the blocking rates less than 3%,

respectively.

We further observe the power gains of bigger size network topologies such as 20-node

123

network topology and 30-node network topology on Sept. 28th, 2018 (a weekly day), and

Sept. 29th, 2018 (a weekend day) respectively, as depicted in Figure 5.7. Figure 5.7(a,b)

shows that the power gains of bigger size network topologies are lower than smaller size

topologies because of networks’ larger scale bases, and the randomly generated 20-node

network topology and 30-node network topology have their power gains of up to 56.18% and

39.92% under the acceptable blocking rates, as displayed in Figure 5.7(c,d), respectively.

5.5 Conclusions

In this chapter, we proposed and developed a sleep-based, traffic-aware power manage-

ment framework to save network power consumption through network reconfiguration by

putting the lightly loaded network components into sleep modes, while meeting the QoS

delay and the network blocking rate requirements. To this end, a simulation framework is

used to assess the performance of this proposed strategy in terms of different power-efficient

metrics. The simulation results show that up to 62.58% power saving of total power con-

sumed by standard network configuration when no element is put into sleep mode can be

achieved, without violating the QoS requirements. In comparison, the DVFS-based, delay-

aware strategy, EDFS, discussed in Chapter 4, only achieves up to 26.76% power saving of

total power consumption. While the sleep-based traffic-aware power management strategy

proposed in this chapter, STAPM, has more significant power saving.

Typically, the challenge for DVFS techniques is to preserve the feasibility of the schedule

and provide performance guarantees, while the challenges for the inconvenience with sleep

mode techniques are that once in a power-efficient state, bringing a component back to the

active or running state requires additional energy and/or delay to serve incoming traffic load,

and that constantly switching network devices or their components off and on might lead to

more energy consumption than keeping them on all the time. Consequently, how to more

efficiently use these two DPM techniques to sufficiently reduce and even minimize network

energy consumption, while adhering to QoS requirements, continues to be the goal of our

further research.

124

Figure 5.6: (a,b) Dynamic power gains, (c,d) Static power Gains, (e,f) Power gains, and (g,h)
Blocking rates of a 10-node network topology on weekly days such as Sept. 14th, Sept. 21st,
Sept. 28th, 2018, and weekend days such as Sept. 15th, Sept. 22th, Sept. 29th, 2018 respectively.

125

Figure 5.7: (a,b) Power gains and (c,d) Blocking rates of 10-node, 20-node, and 30-node network
topologies on Sept. 28th,2018 (a weekly day) and Sept. 29th, 2018 (a weekend day).

126

6.0 Conclusions and Future Work Directions

This chapter summarizes the results presented in this dissertation (Section 6.1), gives

some answers to the research questions from Chapter 1 and analyzes the related limitations

(Section 6.2). Finally it proposes directions for future research (Section 6.3).

6.1 Summary

In last years, the issue of energy efficiency has become of paramount importance for

both the industrial and the research community, because of its potential economical benefits

and expected environmental impact. Although the green networking field is still in its

infancy, different research directions are already being explored. In this dissertation, we

investigated and studied solutions to push energy- and QoS-awareness into wired networks,

following the resource consolidation principle. During the development and implementation

of the energy- and QoS-aware power management strategies, as shown in Figure 6.1, the

tradeoff issue between energy saving and network performance is discussed. The topic of

this dissertation is sufficient energy saving or energy minimization under QoS requirements

for wired communication networks. Both experimental and algorithmic power management

makes it possible for network designers and developers to significantly reduce the energy

consumption of network devices. Software with various strategies can be used to decrease

the speed of network elements to lower their energy consumption (speed scaling), or it can

put the lightly loaded network elements in a low power sleep mode to save energy (sleep

mode).

In Chapter 2, we studied the current two prominent dynamic power management tech-

niques. Speed scaling techniques are used to modulate energy absorption according to the

actual workload by slowing down network components. Sleep mode techniques can further

cut the power consumption of lightly loaded devices (or parts of them) by putting these net-

127

Figure 6.1: Research work.

work devices into sleep modes. These techniques may eventually impact the next-generation

network devices by providing “energy-aware” profiles. As a result, seeking intelligent energy-

aware strategies to make optimal decisions to switch different power-saving modes, while

taking into account the tradeoff between energy saving and network performance, becomes

our motivation for this research work.

In Chapter 3, we explored how to design effective QoS-aware, DVFS-based packet sched-

ulers, based on link utilization, queue length(QL) and packet delay. And we proposed three

families of DVFS-based, QoS-aware (including QL-aware and Load-aware) packet scheduling

schemes [Yu et al., 2015a,b]. The best one, the QL-based, delay-aware scheme, QLDA, can

achieve up to 10% dynamic energy saving of the total energy consumption in high-speed

networks [Yu et al., 2015b].

In addition to DVFS-based experimental power management, we also explored dynamic

power solutions based on speed scaling by algorithmic power management in Chapter 4.

We studied how to formulate the energy optimization problem by using a mathematical

programming model, which combines the DVFS technique with a given traffic scheduling

policy. The simulation results show that minimizing energy consumption can be achieved up

to 26.76% power saving of the total power consumption by using the proposed DVFS-based,

delay-aware optimal energy strategy, EDFS, compared to another two heuristic methods,

128

under QoS constraints [Yu and Znati, 2017].

Moreover, considering the potential higher energy saving by using sleep mode approaches

compared to speed scaling ones, we further explored sleep-based power management in Chap-

ter 5. In general, many related studies have shown that the base system (including chassis,

switch fabric, and router processor) consumes more than half of the whole power consump-

tion of a network router. Therefore, switching off the whole router could save more energy

than slowing down its components over the low-demand or idle periods. We focus our efforts

to explore the sleep-based, energy-aware issues under QoS constraints, and proposed a sleep-

based, traffic-aware power management strategy, STAPM, which focuses on how to achieve

network energy maximal saving by putting lightly loaded network equipment into a low

power sleep mode, thereby placing network resources in a more power- and energy-efficient

way. We simultaneously considered a speed scaling technique to modulate energy absorp-

tion without damaging the QoS performance when the traffic obtain a rerouting opportunity.

The results have shown that up to 62.58% (more than half) power saving of the total power

consumption can be achieved by this strategy without violating the QoS requirements.

In this dissertation, our main contribution to the green networking field regards the

energy- and QoS-awareness, which represented a marginally explored paradigm, while being

promising in terms of achievable energy savings. Since energy savings are achieved at the

price of a reduction of the redundancy level, and the offered QoS, seeking a fine tradeoff

is a real challenge. To target energy-performance challenges and address the energy-QoS

dichotomy, we studied different metrics, such as link utilization, queue length, packet delay,

and bandwidth, and tried to strike a fine balance among performance, energy, and accuracy

in Chapter 3, Chapter 4, and Chapter 5. In this dissertation, the related holistic simulation

frameworks, including energy consumption models, are proposed to evaluate and compare

the performance of each scheme in different networking environments and traffic models.

129

6.2 Conclusions

In the introduction (Chapter 1), several research questions were presented. The research

in the subsequent chapters have provided answers to these questions. In the following, some

main answers and limitations are summarized.

• What characteristics does a DVFS-based, QoS-aware scheduler have?

The DVFS-Scheduler dynamically adjusts processor frequency, based on the current state

of the network, to reduce energy while meeting QoS performance. To design a QoS-

aware, energy-efficient strategy for speed-scaling, several issues must be addressed. The

first issue is related to monitoring network traffic to determine current network conges-

tion. This information is used to adjust processor frequency. When the congestion is

high, the frequency must be scaled up to meet the QoS requirements of the application.

When the network congestion is low, however, the frequency is scaled down to reduce

energy consumption, without violating QoS performance. The second issue deals with

accurately determining the congestion granularity and time scale needed to effectively

manage frequency scaling. A finer congestion granularity measured over a short time

scale leads to higher accuracy, but at the expense of additional overhead. Therefore,

a tradeoff among granularity, time scale, and overhead must be worked out to achieve

accuracy while maintaining a low overhead. The third issue deals with the scheduler’s

aggressivity when scaling the processor’s frequency up or down. An aggressive strategy

to lower the processor speed to save energy, when the network congestion is low, may

lead to a violation of QoS performance. Similarly, an aggressive strategy to increase the

processor speed in response to a high burst of traffic may lead to energy waste. The

strategy must, therefore, achieve the right balance between saving energy and adhering

to QoS performance.

• What characteristics does a DVFS-based, delay-aware energy minimizing schedule have?

For DVFS-enabled network components, the key issue is how to build up their energy

optimization problem, related to speed scaling, to subject to the conflicting dual objec-

tives of speed scaling and QoS requirements. Our proposed DVFS-based algorithmic

power management techniques explored this issue. To characterize the energy minimiz-

130

ing schedule for a given traffic flow, each router along the path must determine the node

execution speed at which it processes traffic to minimize energy consumption under the

QoS constraints. The energy consumption is influenced by both the schedule and the

chosen speeds. In order to minimize energy consumption, both problems have to be

solved simultaneously (this problem is NP-hard in most cases). In summary, to design

an effective delay-aware optimal energy scheme given a scheduling policy, several issues

must be addressed: (i) the development of a model to compute a path-based dynamic

energy consumption; (ii) a methodology to compute feasible lower and upper bound de-

lays of a flow, based on the router’s current traffic load; and (iii) a strategy to compute

feasible per-router execution rates and per-router delays that meet the end-to-end delay

requirements and minimize energy consumption across the path.

• What characteristics does a sleep-based, traffic-aware power controller have? And how

a sleep-based power management strategy is designed?

To design an effective sleep-based, traffic-aware power controller, several issues must be

addressed. First, a strategy must be in place to determine how traffic load impacts sleep

mode decisions. Second, the routers in the network should support network granularity,

such as bandwidth granularity used in the proposed strategy, in order to enable traffic

estimation and power saving in sleep mode. Traffic load thresholds and QoS require-

ments to model different levels of network congestion are considered, based on which the

designed mechanism must be in place to predict traffic load at a router along the routing

path to decide when the device goes into sleep mode without violating QoS performance.

The clocks in the router should be synchoronized to properly handle sleep requests in a

distributed manner.

In our research, we explored and developed several energy- and QoS-aware strategies to

achieve significant energy saving under QoS constraints for wired communication networks.

These strategies mainly involve either reducing the transmission rate of network devices

according to the load or putting unneeded network elements into sleep modes. During

the development and implementation of these energy- and QoS-aware strategies, we also

encountered some limitations for each scheme, which can be summarized as follows:

131

In experimental power management, various DVFS-based techniques are used to exploit

the variations in the actual workload for dynamically adjusting the voltage and frequency

of processors to achieve energy saving. In addition to the challenge for these DVFS-based

techniques to preserve the feasibility of the schedule and provide performance guarantees,

another challenge for these DVFS techniques is overhead issues. Energy- and QoS-awareness

is imperative for green Internet design, subsequently, the low hardware HW overhead energy-

awareness is becoming more and more critical. In Chapter 3, we discussed the different

energy saving levels caused by different interval options, but we did not go into much depth

on the overhead issue. We only analyzed two simple dumbbell and parking lot network

topology models. In the real world, however, there are more realistic and complex network

topologies. Therefore, given the QoS requirements, the network model, the routing path,

and the character of traffic load could be important factors that impact the upper bound of

some energy aggressivity parameters and could lead to more complex computing overhead

issues, which should be considered in future work.

On the other hand, although algorithmic power management is a less expensive one to

use mathematical models to formulate the energy minimization problem, the energy con-

sumption, however, is influenced by both the schedule and the chosen speeds. To minimize

energy consumption under QoS constraints, both problems have to be solved simultaneously

(this problem is NP-hard in most cases). In Chapter 4, we only discussed the dynamic energy

minimization problem, given a routing path. In the future, we will consider whether it could

be a global DVFS-based energy minimization problem for a whole network.

For all DVFS-based power management techniques discussed in this dissertation, the en-

ergy saving through scaling speed is limited due to the load-dependent power source percent-

age occupancy among the whole power consumption. Another problem is that the energy

consumption of current IP networks is not proportional to the utilization level. There-

fore, even in low or no usage context, network equipment consumes energy at a high level.

Compared to slowdown approaches to save energy during low-demand periods, shutdown

approaches could achieve the goal of saving more energy by putting network equipment or

their components into sleep mode when they are in idle states or low-demand. Thus, we pro-

vided another effective sleep-based, traffic-aware strategy to save more power consumption

132

without QoS violation in Chapter 5. Typically, the challenge for DVFS-based techniques

is to preserve the feasibility of schedule and provide performance guarantees, while the in-

convenience with sleep mode techniques is that once in a power-efficient state, bringing a

component back to the active or running state requires additional energy and/or delay to

serve incoming traffic load and that constantly switching network devices or their compo-

nents off and on might lead to more energy consumption than keeping them on all the time.

In Chapter 5, we did not delve into the disconnection issues when putting a network device

into a low power sleep mode or focus on the power consumed by reacting device back from

a sleep state. Our further work will involve these issues. Furthermore, whether a sleep-

based, power-aware routing problem could be mathematically modeled as a global power

minimization problem for a whole network will also be in our future research.

6.3 Recommendations for Future Research

With the dramatic increase in energy expenditures of the Internet, the power consump-

tion of routers is becoming a bottleneck. Minimizing energy consumption under QoS require-

ments is a major concern, which has not been well-studied. The explored existing dynamic

power management techniques and solutions have the potential to save significant energy,

they, however, also face a drawback of the increased network latency. Speed scaling causes

the stretching of packet service times because of slowing-down, while sleep mode introduces

an additional delay due to wake-up times. These issues and challenges need to be overcome to

establish more eco-friendly and eco-sustainable solutions. In order to improve environmental

and economical sustainability, seeking intelligent strategies incorporating energy-awareness

into network control and management becomes more and more critical for green Internet

design. Based on the exploration of the current solutions and new research trends for future

green wired networks, the conclusions indicate that research on dynamic power manage-

ment for next-generation wired networks should primarily address the following aspects: (i)

an effective power- or energy-aware architecture design; (ii) intelligent energy management

strategies to adapt the power consumption of networks to current traffic load; (iii) accurate

133

energy-efficient metrics; and (iv) a fine balance in the tradeoffs between performance and

energy.

Now, new algorithms for network-wide control, both distributed and centralized, are

starting to take green metrics, which determine how energy efficiency will be defined, into

account. For example, a possible distributed solution currently builds upon link-state pro-

tocols and puts links in an Internet protocol-based network into sleep mode at appropriate

times. This method limits the amount of shared information, avoiding explicit coordination

among nodes, and reducing the problem complexity. Thus, the switch-off decision considers

the current workload and the history of past decisions. Furthermore, according to a green

metric, energy performance thresholds, requirements or targets can be measured for defined

equipment, such as energy consumption watt-hour (Wh) in relation to the delivered quality

of service over defined time intervals, and energy consumption (Wh) or power requirement

(W) in relation to performed traffic over defined time intervals.

Moreover, the fundamental problem of greening the Internet is to strike a fine balance

between the demands of performance and the limitations of energy usage. New research

initiatives in energy optimization have revealed several aspects of the Internet that can

be streamlined. Addressing the issues of energy efficiency will allow us to draw deeper

conclusions on how new network systems can be smarter and more effective. The solutions

enable energy awareness in the Internet architecture by slowing down the speed of network

elements according to the load or shutting down network elements when not in use, taking

into account the tradeoff between energy saving and network performance.

134

Appendix

Bibliography

http://www.voip-info.org/wiki/view/Codecs.

Bernardetta Addis, Antonio Capone, Giuliana Carello, Luca G Gianoli, and Brunilde Sansò. Energy man-
agement in communication networks: a journey through modelling and optimization glasses. Computer
Communications, 2016.

Marina Alonso, Juan Miguel Martinez, Vicente Santonja, and Pedro Lopez. Reducing power consumption
in interconnection networks by dynamically adjusting link width. In Euro-Par 2004 Parallel Processing,
pages 882–890. Springer, 2004.

Theodore P Baker. Multiprocessor edf and deadline monotonic schedulability analysis. In RTSS 2003. 24th
IEEE Real-Time Systems Symposium, 2003, pages 120–129. IEEE, 2003.

Aruna Prem Bianzino, Claude Chaudet, Federico Larroca, Dario Rossi, and Jean-Louis Rougier. Energy-
aware routing: a reality check. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pages 1422–1427.
IEEE, 2010.

Aruna Prem Bianzino, Claude Chaudet, Dario Rossi, and Jean-Louis Rougier. A survey of green networking
research. Communications Surveys & Tutorials, IEEE, 14(1):3–20, 2012.

Raffaele Bolla, Roberto Bruschi, and Andrea Ranieri. Performance and power consumption modeling for
green cots software router. In Communication Systems and Networks and Workshops, 2009. COMSNETS
2009. First International, pages 1–8. IEEE, 2009.

Raffaele Bolla, Roberto Bruschi, Antonio Cianfrani, and Marco Listanti. Enabling backbone networks to
sleep. Network, IEEE, 25(2):26–31, 2011a.

Raffaele Bolla, Roberto Bruschi, Franco Davoli, and Flavio Cucchietti. Energy efficiency in the future
internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. Com-
munications Surveys & Tutorials, IEEE, 13(2):223–244, 2011b.

Raffaele Bolla, Franco Davoli, Roberto Bruschi, Ken Christensen, Flavio Cucchietti, and Suresh Singh. The
potential impact of green technologies in next-generation wireline networks: Is there room for energy
saving optimization? Communications Magazine, IEEE, 49(8):80–86, 2011c.

Raffaele Bolla, Roberto Bruschi, Alessandro Carrega, Franco Davoli, Diego Suino, Constantinos Vassilakis,
and Anastasios Zafeiropoulos. Cutting the energy bills of internet service providers and telecoms through
power management: An impact analysis. Computer Networks, 56(10):2320–2342, 2012.

Radu Carpa, Olivier Gluck, Laurent Lefevre, and Jean-Christophe Mignot. Improving the energy efficiency
of software-defined backbone networks. Photonic Network Communications, 30(3):337–347, 2015.

Joseph Chabarek, Joel Sommers, Paul Barford, Cristian Estan, David Tsiang, and Steve Wright. Power
awareness in network design and routing. In INFOCOM 2008. The 27th Conference on Computer Com-
munications. IEEE, pages 1130–1138, 2008.

K Chan, R Sahita, S Hahn, and K McCloghrie. Rfc3317: Differentiated services quality of service policy
information base,? Internet Engineering Task Force, 2003.

135

http://www.voip-info.org/wiki/view/Codecs

Xi Chen, Xue Liu, Shengquan Wang, and Xiao-Wen Chang. Tailcon: Power-minimizing tail percentile
control of response time in server clusters. In SRDS, pages 61–70, 2012.

Luca Chiaraviglio, Marco Mellia, and Fabio Neri. Energy-aware networks: Reducing power consumption by
switching off network elements. In FEDERICA-Phosphorus tutorial and workshop (TNC2008), 2008.

Luca Chiaraviglio, Marco Mellia, and Fabio Neri. Reducing power consumption in backbone networks. In
Communications, 2009. ICC’09. IEEE International Conference on, pages 1–6. IEEE, 2009a.

Luca Chiaraviglio, Marco Mellia, and Fabio Neri. Energy-aware backbone networks: a case study. In
Communications Workshops, 2009. ICC Workshops 2009. IEEE International Conference on, pages 1–5.
IEEE, 2009b.

Cisco. http://www.ici-cn.com/download/brochure/convergeIn Converge IP and DWDM Layers in the Core
Network. White paper, 2007.

Internet Multifeed Co. Jpnap service. http://www.jpnap.net/english/service/traffic.html.

Xiaolong Cui, Bryan N Mills, Taieb Znati, and Rami G Melhem. Shadows on the cloud: An energy-aware,
profit maximizing resilience framework for cloud computing. In CLOSER, pages 15–26, 2014.

Juanita Ellis, Charles Pursell, and Joy Rahman. Voice, video, and data network convergence: architecture
and design, from VoIP to wireless. Academic Press, 2003.

David Eppstein. Finding the k shortest paths. SIAM Journal on computing, 28(2):652–673, 1998.

Minoru Etoh, Tomoyuki Ohya, and Yuji Nakayama. Energy consumption issues on mobile network systems.
In Applications and the Internet, 2008. SAINT 2008. International Symposium on, pages 365–368. IEEE,
2008.

Brian Field, Taieb F Znati, and Daniel Mosse. V-net: A framework for a versatile network architecture
to support real-time communication performance guarantees. In INFOCOM’95., pages 1188–1196. IEEE,
1995.

Will Fisher, Martin Suchara, and Jennifer Rexford. Greening backbone networks: reducing energy con-
sumption by shutting off cables in bundled links. In Proceedings of the first ACM SIGCOMM workshop
on Green networking, pages 29–34. ACM, 2010.

Jaime Galan-Jimenez and Alfonso Gazo-Cervero. Elee: Energy levels-energy efficiency tradeoff in wired
communication networks. Communications Letters, IEEE, 17(1):166–168, 2013.

Marco Egbertus Theodorus Gerards. Algorithmic power management: Energy minimisation under real-time
constraints. PhD thesis, Centre for Telematics and Information Technology, University of Twente, 2014.

Ebrahim Ghazisaeedi and Changcheng Huang. Energy-efficient virtual link reconfiguration for off-peak time.
In 2015 IEEE Global Communications Conference (GLOBECOM), pages 1–7. IEEE, 2015.

Ebrahim Ghazisaeedi, Ning Wang, and Rahim Tafazolli. Chapter5:link sleeping optimization for green virtual
network infrastructures. In 2012 IEEE Globecom Workshops, pages 842–846. IEEE, 2012.

Luca Giovanni Gianoli. Energy-aware traffic engineering for wired ip networks. 2014.

Nature Publishing Group. Nature photonics. In Nature Photonics Technology Conference 2007, pages 1–8.
Tokyo, Japan, 2007.

Chamara Gunaratne, Ken Christensen, and Bruce Nordman. Managing energy consumption costs in desktop
pcs and lan switches with proxying, split tcp connections, and scaling of link speed. International Journal
of Network Management, 15(5):297–310, 2005.

Madhu Gupta and Sushil Singh. Dynamic ethernet link shutdown for energy conservation on ethernet links.
In Communications, 2007. ICC’07. IEEE International Conference on, pages 6156–6161. IEEE, 2007a.

136

http://www.jpnap.net/english/service/traffic.html

Maruti Gupta and Suresh Singh. Greening of the internet. In Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communications, pages 19–26. ACM,
2003.

Maruti Gupta and Suresh Singh. Using low-power modes for energy conservation in ethernet lans. In
INFOCOM, volume 7, pages 2451–2455, 2007b.

Maruti Gupta, Satyajit Grover, and Suresh Singh. A feasibility study for power management in lan switches.
In Network Protocols, 2004. ICNP 2004. Proceedings of the 12th IEEE International Conference on, pages
361–371. IEEE, 2004.

D. Hayes, D. Ros, L. Andrew, and S. Floyd. Common tcp evaluation suite, 2014. URL https://tools.

ietf.org/html/draft-irtf-iccrg-tcpeval-01.

Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet Sharma, Sujata
Banerjee, and Nick McKeown. Elastictree: Saving energy in data center networks. In NSDI, volume 10,
pages 249–264, 2010.

John Hershberger, Matthew Maxel, and Subhash Suri. Finding the k shortest simple paths: A new algorithm
and its implementation. ACM Transactions on Algorithms (TALG), 3(4):45, 2007.

Kerry Hinton, Jayant Baliga, Michael Feng, Robert Ayre, and Rodney S Tucker. Power consumption and
energy efficiency in the internet. IEEE Network, 25(2):6–12, 2011.

Filip Idzikowski, Sebastian Orlowski, Christian Raack, Hagen Woesner, and Adam Wolisz. Saving energy
in ip-over-wdm networks by switching off line cards in low-demand scenarios. In Optical Network Design
and Modeling (ONDM), 2010 14th Conference on, pages 1–6. IEEE, 2010.

Hideaki Imaizumi and Hiroyuki Morikawa. Directions towards future green internet. In Towards Green Ict,
volume 9, pages 37–53. River Publishers, Niels Jernes Vej 10, 9220 Aalborg, Denmark, 2010.

Intel. Data plane development kit overview, 2012. URL http://www.intel.com/content/dam/www/public/

us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf.

ITU-T. Recommendation g. 114. One-Way Transmission Time, Standard G, 114, 2003.

Rodger J. Energy efficient ethernet: Technology, application and why you should care, 2014. URL https:

//communities.intel.com/community/wired/blog/2011/05/05/.

E Jonckheere, K Shah, and S Bohacek. Dynamic modeling of internet traffic for intrusion detection. In
American Control Conference, 2002. Proceedings of the 2002, volume 3, pages 2436–2442. IEEE, 2002.

Jonathan G Koomey et al. Estimating total power consumption by servers in the us and the world, 2007.

Sofie Lambert, Ward Van Heddeghem, Willem Vereecken, Bart Lannoo, Didier Colle, and Mario Pickavet.
Worldwide electricity consumption of communication networks. Optics express, 20(26):B513–B524, 2012.

Christoph Lange, Dirk Kosiankowski, Christoph Gerlach, Fritz-Joachim Westphal, and Andreas Gladisch.
Energy consumption of telecommunication networks. ECOC 2009, 2009.

Christoph Lange, Dirk Kosiankowski, Rainer Weidmann, and Andreas Gladisch. Energy consumption of
telecommunication networks and related improvement options. Selected Topics in Quantum Electronics,
IEEE Journal of, 17(2):285–295, 2011.

Sungjin Lee and Jihong Kim. Using dynamic voltage scaling for energy-efficient flash-based storage devices.
In 2010 International SoC Design Conference, pages 63–66. IEEE, 2010.

Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

C Lubritto, A Petraglia, C Vetromile, F Caterina, A D’Onofrio, M Logorelli, G Marsico, and S Curcuruto.
Telecommunication power systems: energy saving, renewable sources and environmental monitoring. In

137

https://tools.ietf.org/html/draft-irtf-iccrg-tcpeval-01
https://tools.ietf.org/html/draft-irtf-iccrg-tcpeval-01
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf
https://communities.intel.com/community/wired/blog/2011/05/05/
https://communities.intel.com/community/wired/blog/2011/05/05/

INTELEC 2008-2008 IEEE 30th International Telecommunications Energy Conference, pages 1–4. IEEE,
2008.

Amgad Madkour, Walid G Aref, Faizan Ur Rehman, Mohamed Abdur Rahman, and Saleh Basalamah. A
survey of shortest-path algorithms. arXiv preprint arXiv:1705.02044, 2017.

Malcolm Mandviwalla and Nian-Feng Tzeng. Energy-efficient scheme for multiprocessor-based router
linecards. In Applications and the Internet, 2006. SAINT 2006. International Symposium on, pages 8–pp.
IEEE, 2006.

Zoltán Móczár, Stephen Molnar, and Balázs Sonkoly. Multi-platform performance evaluation of digital
fountain based transport. In Science and Information Conference (SAI), 2014, pages 690–697. IEEE,
2014.

Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and David Wetherall. Reducing
network energy consumption via sleeping and rate-adaptation. In NSDI, volume 8, pages 323–336, 2008.

Bruce Nordman and Ken Christensen. Proxying: The next step in reducing it energy use. Computer, 43(1):
91–93, 2010.

Anne-Cecile Orgerie, Marcos Dias de Assuncao, and Laurent Lefevre. A survey on techniques for improving
the energy efficiency of large-scale distributed systems. ACM Computing Surveys (CSUR), 46(4):47, 2014.

Michael J Panik. Classical optimization: foundations and extensions. North-Holland Pub. Co., 1976.

Jean-Marc Pierson. Large-scale Distributed Systems and Energy Efficiency: A Holistic View. John Wiley &
Sons, 111 River Street, Permissions Department, Hoboken, NJ 07030, USA, 2015.

Bart Puype, Willem Vereecken, Didier Colle, Mario Pickavet, and Piet Demeester. Power reduction tech-
niques in multilayer traffic engineering. In Transparent Optical Networks, 2009. ICTON’09. 11th Interna-
tional Conference on, pages 1–4. IEEE, 2009.

Ravishankar Rao and Sarma Vrudhula. Energy optimal speed control of devices with discrete speed sets. In
Proceedings of the 42nd annual Design Automation Conference, pages 901–904. ACM, 2005.

Diego Reforgiato Recupero et al. Toward a green internet. Science, 339(6127):1533–1534, 2013.

Karthikeyan Sabhanatarajan, Ann Gordon-Ross, Mark Oden, Mukund Navada, and Alan George. Smart-
nics: Power proxying for reduced power consumption in network edge devices. In Symposium on VLSI,
2008. ISVLSI’08. IEEE Computer Society Annual, pages 75–80. IEEE, 2008.

Khushboo Shah, Stephan Bohacek, and Edmond A Jonckheere. On the predictability of data network traffic.
In Proceedings of the American Control Conference, volume 2, pages 1619–1624, 2003.

Wes Simpson. Video over IP: a practical guide to technology and applications. Taylor & Francis, 2006.

Tim Szigeti and Christina Hattingh. End-to-end qos network design. Cisco press, 800 East 96th Street,
Indianapolis, Indiana 46240, USA, 2005.

Rodney S Tucker, Rajendran Parthiban, Jayant Baliga, Kerry Hinton, Robert WA Ayre, and Wayne V Sorin.
Evolution of wdm optical ip networks: A cost and energy perspective. Journal of Lightwave Technology,
27(3):243–252, 2009.

Giorgio Luigi Valentini, Walter Lassonde, Samee Ullah Khan, Nasro Min-Allah, Sajjad A Madani, Juan
Li, Limin Zhang, Lizhe Wang, Nasir Ghani, Joanna Kolodziej, et al. An overview of energy efficiency
techniques in cluster computing systems. Cluster Computing, 16(1):3–15, 2013.

Nedeljko Vasić and Dejan Kostić. Energy-aware traffic engineering. In Proceedings of the 1st International
Conference on Energy-Efficient Computing and Networking, pages 169–178. ACM, 2010.

C Vassilakis. Towards energy efficient internet service providers econet perspective. In GN3 Green Net-
working Workshop: Advances in Environmental Policy and Practice, Utrecht, Netherlands, 2012.

138

Willem Vereecken, Lien Deboosere, Didier Colle, Brecht Vermeulen, Mario Pickavet, Bart Dhoedt, and
Piet Demeester. Energy efficiency in telecommunication networks. In Proceedings of NOC2008, the 13th
European Conference on Networks and Optical Communications, pages 44–51, 2008.

Arun Vishwanath, Kerry Hinton, Robert WA Ayre, and Rodney S Tucker. Modeling energy consumption in
high-capacity routers and switches. IEEE JSAC, 32(8):1524–1532, 2014.

Arun Vishwanath Member, Kerry Hinton, Rob Ayre, and Rodney Tucker. Modeling energy consumption in
high-capacity routers and switches. Selected Areas in Communications, IEEE Journal on, 32(8):1524–1532,
2014.

Lawrence J. Wobker. Power consumption in high-end routing systems, 2012. URL https://www.nanog.

org/meetings/nanog54/presentations/Wednesday/Wobker.pdf.

Qun Yu and Taieb Znati. Energy and delay-aware traffic control and management in large scale networks.
In Computer Communication and Networks (ICCCN), 2017 26th International Conference on, pages 1–8.
IEEE, 2017.

Qun Yu, Taieb Znati, and Wang Yang. Energy-efficient, qos-aware packet scheduling in high-speed networks.
Selected Areas in Communications, IEEE Journal on, 33(12):2789–2800, 2015a.

Qun Yu, Taieb Znati, and Wang Yang. Energy-efficient, delay-aware packet scheduling in high-speed net-
works. In Computing and Communications Conference (IPCCC), 2015 IEEE 34th International Perfor-
mance, pages 1–8. IEEE, 2015b.

Sherali Zeadally, Samee Ullah Khan, and Naveen Chilamkurti. Energy-efficient networking: past, present,
and future. The Journal of Supercomputing, 62(3):1093–1118, 2012.

Baoke Zhang, Karthikeyan Sabhanatarajan, Ann Gordon-Ross, and Alan George. Real-time performance
analysis of adaptive link rate. In Local Computer Networks, 2008. LCN 2008. 33rd IEEE Conference on,
pages 282–288. IEEE, 2008a.

Guo-Qing Zhang, Guo-Qiang Zhang, Qing-Feng Yang, Su-Qi Cheng, and Tao Zhou. Evolution of the internet
and its cores. New Journal of Physics, 10(12):123027, 2008b.

Mingui Zhang, Cheng Yi, Bin Liu, and Beichuan Zhang. Greente: Power-aware traffic engineering. In
Network Protocols (ICNP), 2010 18th IEEE International Conference on, pages 21–30. IEEE, 2010a.

Yi Zhang, Massimo Tornatore, Pulak Chowdhury, and Biswanath Mukherjee. Time-aware energy conser-
vation in ip-over-wdm networks. In Photonics in Switching, page PTuB2. Optical Society of America,
2010b.

Taieb F Znati and Rami Melhem. Node delay assignment strategies to support end-to-end delay requirements
in heterogeneous networks. Networking, IEEE/ACM Transactions on, 12(5):879–892, 2004.

139

https://www.nanog.org/meetings/nanog54/presentations/Wednesday/Wobker.pdf
https://www.nanog.org/meetings/nanog54/presentations/Wednesday/Wobker.pdf

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	3.1. Three families of DVFS-based, QoS-aware packet scheduling schemes.
	3.2. Main simulation parameters and conditions.
	3.3. Traffic source models and specifications.
	3.4. Speed scaling schedulers.
	3.5. Impact of on ESP, AED, DJB and PLR of sQLA and mQLA (ql:qh=4%: 80%) under traffic load =0.9 and =1 ms.
	3.6. Four combinations of (ql,qh) in the mQLA scheme.
	3.7. Impact of ql:qh on ESP and AED in mQLA scheme.
	3.8. Impact of on ESP, AED, DJB and PDMRT of QLDA scheme with ql:qh=4%:80%.
	3.9. Impact of ql:qh on ESP and AED in the QLDA scheme under dumbbell model.
	4.1. Traffic source models and specifications.
	4.2. Main simulation parameters and conditions.
	4.3. Energy-efficient Metrics.
	5.1. Main simulation parameters and conditions.

	List of Figures
	2.1. Estimation of power consumption sources in a generic platform of high-end IP router ref13.
	2.2. Energy-aware Profiles ref74.
	3.1. DVFS-Scheduler basic architecture.
	3.2. Packet buffer.
	3.3. Delay-aware DVFS-enabled scheduling architecture.
	3.4. Two network topology models: (a) dumbbell, and (b) parking lot.
	3.5. ESP and AED comparisons for (a) Load-aware schemes with different , and (b) LA scheme with different ca.
	3.6. ESP comparisons for (a) sQLA/sQLA schemes with =0.05, and (b) mQLA/mQLA schemes with =0.15 under different .
	3.7. ESP and AED comparisons for two Load-aware schemes.
	3.8. ESP comparison for four QL-aware schemes.
	3.9. ESP and AED comparisons between mQLA (=0.15, ql:qh=4%:80%) and LA (ca=0.03) for (a) dumbbell model, (b) parking lot model.
	3.10. ESP and AED comparisons between mQLA (=0.15, ql:qh=4%:80%) and EWMAP (wa=0.2) for (a) dumbbell model, (b) parking lot model.
	3.11. The aggressivity factor ().
	3.12. ESP comparisons for QLDA with different in (a) dumbbell model, and (b) parking lot model.
	3.13. ESP and AED comparisons between QLDA (ql:qh=4%:80%) and EWMAP (=0.2) for (a) dumbbell model, (b) parking lot model.
	4.1. A new connection request along a path, p, in a network topology, N.
	4.2. Connection request acceptance.
	4.3. DPR comparison between PCH and LBH.
	4.4. DEGR for LBH with different .
	4.5. (a) Dynamic energy gains and (b) Power gains for the combination traffic source under fixed min=1.6 GHz and randomly generated min[0.6,1.6] GHz.
	4.6. Dynamic energy gains and power gains for different traffic sources under (a,b) fixed min=1.6 GHz and (c,d) randomly generated min[0.6,1.6] GHz.
	4.7. Power gains comparisons under different values of the static power ratio .
	5.1. Sleep-based traffic-aware power controller architecture.
	5.2. Traffic-aware power management simulation framework.
	5.3. Random topology generator.
	5.4. JPNAP daily traffic densities collected on (a) weekly days (Sept. 14th, Sept. 21st, Sept. 28th, 2018); (b) weekend days (Sept. 15th, Sept. 22th, Sept. 29th, 2018) respectively.
	5.5. (a,b) Dynamic power gains, (c,d) Static power gains, and (e,f) Power gains of a 10-node network topology under different bandwidths on Sept. 28th, 2018 (a weekly day), and Sept. 29th, 2018 (a weekend day) respectively.
	5.6. (a,b) Dynamic power gains, (c,d) Static power Gains, (e,f) Power gains, and (g,h) Blocking rates of a 10-node network topology on weekly days such as Sept. 14th, Sept. 21st, Sept. 28th, 2018, and weekend days such as Sept. 15th, Sept. 22th, Sept. 29th, 2018 respectively.
	5.7. (a,b) Power gains and (c,d) Blocking rates of 10-node, 20-node, and 30-node network topologies on Sept. 28th,2018 (a weekly day) and Sept. 29th, 2018 (a weekend day).
	6.1. Research work.

	Preface
	1.0 INTRODUCTION
	1.1 Problem Statement
	1.2 Research Overview
	1.2.1 DVFS-based Power Management and QoS-aware Scheduling Strategies
	1.2.2 DVFS-based Power Management and Delay-aware, Optimal Energy Strategies
	1.2.3 Sleep-based Power Management and a Traffic-aware Strategy

	1.3 Claims and Contributions
	1.4 Structure of this Dissertation

	2.0 BACKGROUND
	2.1 Characteristics of Power Consumption in Wired IP Networks
	2.2 Toward Energy- and QoS-aware Network Devices
	2.3 Dynamic Power Management Techniques for Wired Network Resources
	2.3.1 Power Scaling Techniques
	2.3.1.1 Current Approaches and Concepts
	2.3.1.2 Dynamic Voltage/Frequency Scaling

	2.3.2 Power/Energy Measuring Techniques
	2.3.2.1 Power measurement
	2.3.2.2 A general power-aware model for router power consumption

	2.4 Conclusions

	3.0 DVFS-based Power Management and QoS-aware Scheduling Strategies
	3.1 Introduction
	3.2 Related Work
	3.3 DVFS-Scheduler Design and Architecture
	3.4 Load-aware DVFS-Schedulers
	3.4.1 Load-aware Scheduler (LA)
	3.4.2 Predicted Load-aware Scheduler (LA)

	3.5 QL-aware DVFS-Schedulers
	3.5.1 Single-threshold, QL-aware Scheduler (sQLA)
	3.5.2 Multi-threshold, QL-aware Scheduler (mQLA)
	3.5.3 Single-threshold Average QL-aware Scheduler (sQLA)
	3.5.4 Multi-threshold Average QL-aware Scheduler (mQLA)

	3.6 Delay-aware DVFS-Scheduler
	3.6.1 Delay-aware DVFS-Scheduler Design and Architecture
	3.6.2 QL-based Delay-Aware Packet Scheduler (QLDA)

	3.7 Evaluation
	3.7.1 Packet- and Router-based Energy Consumption Models
	3.7.1.1 Packet-based Energy Model
	3.7.1.2 Router-based Energy Model

	3.7.2 Simulation Setup
	3.7.3 Sensitivity to the main parameters of Load-aware Schemes
	3.7.3.1 Sensitivity to
	3.7.3.2 Sensitivity to ca

	3.7.4 Sensitivity to the main parameters of QL-aware Schemes
	3.7.4.1 Sensitivity to
	3.7.4.2 Sensitivity to
	3.7.4.3 Sensitivity to cq
	3.7.4.4 Sensitivity to ql and qh

	3.7.5 Comparative analysis
	3.7.5.1 The class of Load-aware schemes
	3.7.5.2 The class of QL-aware schemes
	3.7.5.3 Cross class comparative analysis
	3.7.5.4 Comparison with the related work

	3.7.6 Sensitivity to the main parameters of QLDA
	3.7.6.1 Sensitivity to
	3.7.6.2 Sensitivity to
	3.7.6.3 Sensitivity to cq
	3.7.6.4 Sensitivity to cd
	3.7.6.5 Sensitivity to ql and qh

	3.7.7 Comparative analysis

	3.8 Conclusions

	4.0 DVFS-based Power Management and Delay-aware, Optimal Energy Strategies
	4.1 Introduction
	4.2 Related Work
	4.3 Periodic task scheduling
	4.3.1 Utilization factor
	4.3.2 Rate Monotonic scheduling

	4.4 Network and Flow Specification
	4.5 The General Problem Formulation
	4.5.1 Delay-based Packet Scheduling Policy
	4.5.2 Per-router Delay Computation
	4.5.2.1 Smallest Feasible Delay
	4.5.2.2 Largest Feasible Delay

	4.5.3 Power Model
	4.5.4 Router-based Energy Consumption Model
	4.5.5 Path-based Energy Consumption Model
	4.5.6 Energy- and Delay-aware Flow Scheduling
	4.5.6.1 Opt_ED Solution
	4.5.6.2 Opt_LD Solution
	4.5.6.3 Opt_EDFS Solution

	4.5.7 Delay Assignment Heuristics
	4.5.7.1 Processing-capability based heuristic, PCH()
	4.5.7.2 Load-balancing based heuristic, LBH()

	4.6 Performance Evaluation
	4.6.1 Comparison with Two Heuristics
	4.6.2 Energy and Power Gain Evaluation of Opt_EDFS

	4.7 Conclusions

	5.0 Sleep-based Power Management and a Traffic-aware Strategy
	5.1 Introduction
	5.2 Related Work
	5.3 Sleep-based Power Controller
	5.3.1 Sleep-based Traffic-aware Power Controller Architecture
	5.3.2 A Sleep-based, Traffic-aware Power Management Strategy
	5.3.3 Departure Handler Algorithm
	5.3.4 Sleep Control Algorithms

	5.4 Performance Evaluation
	5.4.1 A Traffic-aware Power Management Simulation Framework
	5.4.1.1 Initialization Module (IM)
	5.4.1.2 Event Processing Module (EPM)
	5.4.1.3 Data Collection Module (DCM)

	5.4.2 Router-based Power Model and Network-based Energy-efficient Metrics
	5.4.2.1 Power measurement
	5.4.2.2 A general power-aware model for router power consumption
	5.4.2.3 Network-based energy-efficient metrics

	5.4.3 JPNAP Daily Traffic Study
	5.4.4 Simulation-based Performance and Analysis

	5.5 Conclusions

	6.0 Conclusions and Future Work Directions
	6.1 Summary
	6.2 Conclusions
	6.3 Recommendations for Future Research

	Appendix. Bibliography

