
FAST, ADAPTIVE ALGORITHMS FOR FLOW

PROBLEMS

by

Michael Edward McLaughlin

B.S. in Mathematics, Ohio University, 2014

M.A. in Mathematics, University of Pittsburgh, 2018

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Michael Edward McLaughlin

It was defended on

March 30th, 2020

and approved by

William Layton, Professor of Mathematics, University of Pittsburgh

Michael Neilan, Associate Professor of Mathematics, University of Pittsburgh

Catalin Trenchea, Associate Professor of Mathematics, University of Pittsburgh

Peyman Givi, Distinguished Professor of Mechanical Engineering, University of Pittsburgh

Dissertation Director: William Layton, Professor of Mathematics, University of Pittsburgh

ii



FAST, ADAPTIVE ALGORITHMS FOR FLOW PROBLEMS

Michael Edward McLaughlin, PhD

University of Pittsburgh, 2020

Time-accurate simulations of physical phenomena (e.g., ocean dynamics, weather, and

combustion) are essential to economic development and the well-being of humanity. For

example, the economic toll hurricanes wrought on the United States in 2017 exceeded $200

billon dollars. To mitigate the damage, the accurate and timely forecasting of hurricane

paths are essential. Ensemble simulations, used to calculate mean paths via multiple real-

izations, are an invaluable tool in estimating uncertainty, understanding rare events, and

improving forecasting. The main challenge in the simulation of fluid flow is the complexity

(runtime, memory requirements, and efficiency) of each realization. This work confronts

each of these challenges with several novel ensemble algorithms that allow for the fast, effi-

cient computation of flow problems, all while reducing memory requirements. The schemes

in question exploit the saddle-point structure of the incompressible Navier-Stokes (NSE)

and Boussinesq equations by relaxing incompressibility appropriately via artificial compress-

ibility (AC), yielding algorithms that require far fewer resources to solve while retaining

time-accuracy. Paired with an implicit-explicit (IMEX) ensemble method that employs a

shared coefficient matrix, we develop, analyze, and validate novel schemes that reduce run-

time and memory requirements. Using these methods as building blocks, we then consider

schemes that are time-adaptive, i.e., schemes that utilize varying timestep sizes.

The consideration of time-adaptive artficial compressibility methods, used in the algo-

rithms mentioned above, also leads to the study of a new slightly-compressible fluid flow

continuum model. This work demonstrates stability and weak convergence of the model

to the incompressible NSE, and examines two associated time-adaptive AC methods. We

show that these methods are unconditionally, nonlinearly, long-time stable and demonstrate

numerically their accuracy and efficiency.

The methods described above are designed for laminar flow; turbulent flow is addressed

with the introduction of a novel one-equation unsteady Reynolds-averaged Navier-Stokes
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(URANS) model with multiple improvements over the original model of Prandtl. This work

demonstrates analytically and numerically the advantages of the model over the original.
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1.0 INTRODUCTION

Simulations of physical phenomena, such as combustion, weather, and climate, have

been and are integral to economic development and human well-being. In particular, the

increased likelihood of extreme weather impacting human settlements and valuable natural

resources due to climate change makes accurate simulations of the weather and climate of the

utmost importance. The Navier-Stokes equations (NSE), a system of equations describing

conservation laws for linear momentum and mass applied to a fluid parcel, form the core

of numerical weather prediction (NWP) and climate codes, in one way or another. The

construction of numerical methods for this system suffer from two main challenges:

1. The prognostic variables u (velocity) and p (pressure) are coupled due to the incompress-

ibility constraint;

2. The convective term contains a nonlinearity.

The first issue, velocity/pressure coupling, arises due to the saddle-point structure of

the incompressible NSE and requires the satisfaction of an inf-sup condition. Furthermore,

if left coupled, the linear solves needed to solve the velocity and pressure concurrently can

overwhelm even the most advanced computer systems. For decades, numerical methods

that are used to appoximate flow problems have attempted to exploit the incompressibility

constraint in various ways to improve speed. One, the artificial compressibility (AC) method,

relaxes incompressibility appropriately, allowing for the velocity and pressure to be decoupled

and advanced in time explicitly. The method is fast and efficient at low-temporal orders and

allows for the rapid computation of the velocity and pressure.

However, one drawback of the method is its resistance to adapting in time in an efficient

manner. For long-time simulations, an algorithm allowing for the efficient use of time adap-

tivity can save orders of magnitude of runtime. A main contribution of this dissertation is

to tackle this challenge: We present mutiple AC methods that are able to adapt in time. We

first consider a new, slightly compressible continuum model and show that, under some con-

ditions, the model converges weakly to the NSE. Then, we construct, analyze, and validate

1



two unconditionally stable time-adaptive AC methods.

The second challenge, nonlinearity of the convective term, complicates the construction

of unconditionally stable and efficient methods. For example, the nonlinearity in a Back-

ward Euler solve can be treated implicitly (requiring the use of Newton’s method), explicitly

(requiring the satisfaction of a Courant-Friedrichs-Lewy (CFL) condition), or linearly im-

plicitly (equivalent to solving an Oseen problem at every timestep). The first treatment is

accurate but computationally expensive. The second allows for the movement of the nonlin-

ear term to the right-hand-side at the cost of unconditional stability. The third, wherein one

term in the nonlinearity is lagged while the other remains implicit, yields unconditionally

stable methods. However, the linear system that arises from the final treatment ceases to

be symmetric positive-definite (SPD), disallowing the use of efficient Krylov solvers, e.g.,

Conjugate Gradient. The presence of an implicit term also requires the update of the linear

system at every timestep. Thus, treating the nonlinearity with a linearly implicit approach

yields stability, but also tethers the nonlinearity to the solution of each realization. This fact

becomes crucial when considering ensemble methods.

In the 1960s, Lorenz [87, 88, 86] showed that even miniscule perturbations in initial

conditions yield flow simulations that output wildly different results. This fact, that minor

differences in initial conditions (or parameters, etc.) yield simulations that vary wildly,

imposes on the approximation of atmospheric flow a predictability horizon of about two

weeks. It was then understood, notably by Toth and Kalnay [133], that any meaningful model

that could reach this predictability horizon would have to incorporate ensemble averaging

in order to find the most likely forecasts. These ensemble models, used by NWP models

around the world and which are generated by considering multiple realizations of a flow

with different initial conditions and parameters, have been wildly successful in generating

accurate forecasts and extending the (reachable) predictability horizon.

The increased accuracy of ensemble methods comes at a cost: Due to their construction,

every realization needs to be solved on each time interval, limiting the number of ensembles

that can realistically be used, the underlying spatial accuracy of each realization, or both.

Furthermore, each realization needs to store a separate stiffness matrix when considering

ensemble flow problems that are at least semi-implicit in the nonlinearity, again limiting the

2



number of accurate realizations that can be realistically considered and therefore limiting

the predictability horizon.

The second main contribution of this dissertation is to resolve these challenges. Using

an implicit-explicit (IMEX) technique on the nonlinear term introduced by Layton and

Jiang [65], we construct a time-adaptive artificial compressibility ensemble method for the

Boussinesq equations that utilizes a shared coefficient matrix for each realization, increasing

speed, efficiency, and decreasing memory requirements, thus extending the predictability

horizon.

Ensemble schemes of this nature must satisfy a CFL-like condition that is inversely

dependent on the kinematic viscosity; hence, the results listed above are for laminar flow.

This CFL-like condition can be improved with the addition of an eddy-viscosity model; this

is not the focus of this work. We do however consider turbulence in the final contribution of

this dissertation: We develop, analyze, and test numerically a novel one-equation URANS

model of turbulence that shows multiple improvements over the original model by Prandtl

[100]. Specifically, we demonstrate that using a kinematic, as opposed to static, mixing length

offers many advantages over the original. We also consider an AC one-equation model in

the same framework, offering analysis and numerical tests. We believe this model can be

extended to the context of ensemble simulations; however, this is for a future work.

We consider notation and preliminaries in Chapter 2. In Chapter 3, we present a brief

overview of AC methods and demonstrate our results on time-adaptive AC methods. Then,

in Chapter 4, we construct constant and variable timestep artificial compressibility ensemble

schemes for the Boussinesq equations. We consider our kinematic one-equation model in

Chapter 5. Finally, conclusions and open problems are given in Chapter 6.
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2.0 THE EQUATIONS OF FLUID FLOW AND THEIR APPROXIMATION

We begin our preliminary chapter on a brief derivation of the incompressible Navier-

Stokes equations. Then, using the Boussinesq assumption, give the system describing

buoyancy-driven flow, otherwise known as the natural convection problem or the Boussi-

nesq equations. In Section 2.2, we provide common notation, function spaces, and results to

be used throughout the dissertation.

2.1 THE NAVIER-STOKES AND BOUSSINESQ EQUATIONS

The derivation of the Navier-Stokes equations has been covered in breathtaking detail

and much more effectively in works other than this one. We would refer the reader to [75,

67] for a more comprehensive treatment. The derivations herein are themselves derived from

these works.

2.1.1 THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Let Ω∗ be an open domain in R3 representing a small parcel of fluid with boundary ∂Ω∗.

We denote by x the spatial variable, t the temporal variable, ρ(x; t) the density of the fluid,

and ρu be the flux of mass, where u is the velocity field of the flow. We let then the mass of

the fluid equal

m(t) =
∫

Ω∗
ρdx.

If mass is to be conserved, then the change of mass of the fluid in Ω∗ must equal the flux of

the mass across ∂Ω∗. Thus, by the Divergence Theorem,

d

dt

∫
Ω∗
ρdx = dm

dt
= −

∫
∂Ω∗

(ρu) · ndS

= −
∫

Ω∗
∇ · (ρu)dx.

4



Pulling the temporal derivative on the left-hand-side into the integral and rewriting yields
∫

Ω∗
(∂tρ+∇ · (ρu)) dx = 0.

We chose Ω∗ to be an arbitrary domain in R3, so shrinking Ω∗ to a point yields

∂tρ+∇ · (ρu) = 0.

If the flow is incompressible, the density ρ(x; t) ≡ ρ a constant; thus,

∇ · u = 0. (2.1)

We call (2.1) the continuity equation, or refer to it as the incompressibility constraint. Unless

otherwise noted, we shall assume that all flows are incompressible.

Next, we shall consider the conservation of linear momentum. Let the linear momentum

p =
∫

Ω∗ ρudx, where ρ and u are constant density and velocity as before. Using Newton’s

Second Law (F = ma), the conseration of momentum states that the rate of change in linear

momentum in a fluid is equal to all forces acting upon the fluid. Let F be the net force vector

(both internal and external) acting on the fluid and ρuu be the momentum flux. Thus, by

the Divergence Theorem,

d

dt

∫
Ω∗
ρudx = dp

dt
=
∫

Ω∗
Fdx−

∫
∂Ω∗

(ρu)(u · n)dS

=
∫

Ω∗
Fdx−

∫
Ω∗
∇ · (ρuu)dx.

Note that the density is constant in an incompressible fluid; therefore, by (2.1) we can write

the divergence of momentum flux as

∇ · (ρuu) = ρ∇ · (uu) = ρ ((∇ · u)u+ (u · ∇)u)

= ρ(u · ∇)u.

Pulling the temporal derivative inside the integral on the left-hand-side of the momentum

equation gives
∫

Ω∗
ρ (∂tu+ (u · ∇)u) dx =

∫
Ω∗

Fdx.

5



Let now f be all external forces acting on the fluid, e.g., buoyancy. We wish now to model

all internal forces acting on the surface of a fluid, i.e., contact forces. To that end, we let

s be the Cauchy stress vector. It was shown by Cauchy that if the conservation of linear

momentum holds, then s is linear with respect to the normal vector n. A rigorous derivation

of this fact can be found in [67]. Hence, we write s = n · T, where T is called the Cauchy

stress tensor. It can also be shown that, under the conservation of angular momentum,

T is symmetric. We therefore write the momentum equation as, again by the Divergence

Theorem,
∫

Ω∗
[ρ (∂tu+ (u · ∇)u)−∇ · T] dx =

∫
Ω∗

fdx.

Shrinking Ω∗ to a point yields

ρ (∂tu+ (u · ∇)u)−∇ · T = f .

We now consider the components of T. The first is pressure, the force acting normal to

the surface of a fluid. We define the pressure to be P = 1
3trT, the average of the diagonal of

the Cauchy stress tensor. The pressure force we then define as −P In, where I is the identity

tensor. We then write the nonpressure terms of the Cauchy stress tensor as V = T + P I,

also called the tangential, or viscous, forces. For these, we assume the fluid is Newtonian,

that is, assume that there is a linear relation between stress and the deformation tensor

D = 1
2(∇u+∇uT ). For incompressible flows, the relation is given by

V = 2µD,

where we say that µ is the dynamic viscosity. Hence, we write T = 2µD − P I, and the

momentum equation becomes

ρ (∂tu+ (u · ∇)u)−∇ · (2µD− P I) = f .

We notice that ∇·P I = ∇P and ∇· (2µD) = µ∆u by incompressibility. Thus, after dividing

by ρ, we obtain the momentum equation

∂tu+ (u · ∇)u− µ

ρ
∆u+∇

(
P

ρ

)
= 1
ρ
f .
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After defining the pressure to be p = P
ρ

, the kinematic viscosity to be ν = µ
ρ
, and f = 1

ρ
f ,

we define the incompressible Navier-Stokes equations (NSE) to be

∂tu+ (u · ∇)u− ν∆u+∇p = f, (2.2)

∇ · u = 0. (2.3)

The system (2.2)–(2.3) characterizes the conservation of mass and linear momentum for a

Newtonian fluid subjected to an external body force f . Here, f is an arbitrary force, and

generally represents another physical action (e.g., temperature) acting on the fluid. The

system forms the core of the next system we will consider, the Boussinesq equations.

Remark 1. The incompressible NSE can be nondimensionalized in various ways by rescaling

the variables by characteristic values. A common (but not the only) way yields the nondi-

mensionalized system

∂tu+ (u · ∇)u− Re−1∆u+∇p = f,

∇ · u = 0,

where, if U and L are a characteristic velocity and length, respectively, then Re = UL
ν

the

Reynolds number. We refer to [75, 67] for more details.

Remark 2. Taking an inner product of (2.2) with u and integrating over Ω∗ yields

∫
Ω∗

(
1
2
d

dt
|u|2 + ν∆u · u+∇p · u

)
dx =

∫
Ω∗
f · udx.

Then, by 2.3 and integration by parts, we have the kinetic energy evolution over a volume

∫
Ω∗

(
1
2
d

dt
‖u‖2 + ν|∇u|

)
dx =

∫
Ω∗
f · udx.

By using the definition of the dual norm and Young’s inequality, we arrive at the kinetic

energy inequality

∫
Ω∗

1
2

(
d

dt
‖u‖2 + ν|∇u|

)
dx ≤

∫
Ω∗
f 2dx.
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2.1.2 THE BOUSSINESQ EQUATIONS

For flows with a nearly constant density, we can write ρ = ρ0 + ρ′, a constant and

fluctuation term where ρ′ � 1. The Boussinesq approximation states that the fluctuation in

density is proportional to the difference between observed and reference temperature values,

i.e., ρ′ = ρ0β(T −T0). We say that β is the coefficient of thermal expansion. Furthermore, in

our model we ignore all density variations that are not present in any buoyancy forces. We

let fg = ρ−ρ0
ρ0
g̃ξ be the force due to buoyancy, where g̃ is acceleration due to gravity and ξ is

the unit vector pointing in the upward direction. Then, we write f ⇐ f+fg = f+(ρ−ρ0)g̃ξ.

Noting that ρ− ρ0 = ρ0β(T − T0), we have by (2.2)

∂tu+ (u · ∇)u− ν∆u+∇p = f + g̃β(T − T0)ξ.

This gives the momentum equation from the Boussinesq system. Since we are assuming

there are no density variations in terms other than buoyancy, the continuity equation (2.3)

remains the same.

Finally, we consider the conservation of energy [97, 11]. We let ρE be the total energy

density in a fluid volume. Let cV T be the thermodynamic energy and 1
2‖u‖

2 the kinetic

energy, where cV is the specific heat of a fluid at a constant volume. We let ρE = ρ(cV T +
1
2‖u‖

2) and consider potential energy density elsewhere (in the terms of a forcing function).

The conservation of energy states that the rate of change of energy in the system equals the

rate at which the system receives transfers of heat and work, i.e.,
d

dt

∫
Ω∗
ρ(cV T + 1

2‖u‖
2)dx = d

dt

∫
Ω∗
ρEdx

= −
∫
∂Ω∗

Q · ndS +
∫

Ω∗
ρ(u · f + g)dx +

∫
∂Ω∗

(T · u) · ndS

−
∫
∂Ω∗

ρ(u(cV T + 1
2‖u‖

2)) · ndS,

where Q = −k∇T is the heat flux, k the (constant) thermal conductivity, and g a heat

source. By Remark 2, moving the temporal derivative in, and the Divergence Theorem, we

have ∫
Ω∗
ρ(cV ∂tT − ν∆u · u+∇p · u+ f · u)dx =

∫
Ω∗

(k∆T + ρ(u · f + g) +∇ · (T · u)

− ρ∇ · (u(cV T + 1
2‖u‖

2)))dx.

8



Now, we note that for incompressible flow, T = µ∇u − P I. Since ρν = µ, we have, by

cancellation ∫
Ω∗
ρ(cV ∂tT +∇ · (u(cV T + 1

2‖u‖
2)))− k∆Tdx =

∫
Ω∗
ρgdx.

We also have that ∇ · (u(cV T + 1
2‖u‖

2)) = cV ((u · ∇)T + (∇ · u)T ) + 1
2‖u‖

2(∇ · u) = (u · ∇)T

by incompressibility. Thus,∫
Ω∗
ρcV (∂tT + (u · ∇)T )− k∆Tdx =

∫
Ω∗
ρgdx.

Divide the equation by ρcV and define κ = k
ρcV

the thermal diffusivity and g = 1
cV

g the

scaled heat source. Shrinking then Ω∗ to a point yields the temperature equation

∂tT + (u · ∇)T − κ∆T = g.

Combining the momentum equation with buoyancy, the continuity equation (2.3), and the

temperature equation yields the Boussinesq equations

∂tu+ (u · ∇)u− ν∆u+∇p = f + g̃β(T − T0)ξ, (2.4)

∇ · u = 0, (2.5)

∂tT + (u · ∇)T − κ∆T = g. (2.6)

Remark 3. The Boussinesq equations can also be nondimensionalized in various ways by

rescaling the variables [39]. We will present two ways, including the formulation which will

be used in analyses later in this dissertation. One way is

∂tu+ (u · ∇)u− Pr∆u+∇p = f + PrRaTξ, (2.7)

∇ · u = 0, (2.8)

∂tT + (u · ∇)T −∆T = g, (2.9)

where Pr = ν
κ

is the Prandtl number and Ra = ρβ(T−T0)L3g̃
νκ

the Rayleigh number. Another

nondimensionalization, which will be used in numerical tests, is given by

∂tu+ (u · ∇)u− 1
Re∆u+∇p = f + RiTξ, (2.10)

∇ · u = 0, (2.11)

∂tT + (u · ∇)T − 1
ReRi∆T = g, (2.12)
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2.1.3 BOUNDARY AND INITIAL CONDITIONS

Different boundary conditions for the velocity and temperature can be used in the

NSE/Boussinesq systems. Our primary focus will be the so-called noslip boundary condi-

tion for the velocity, i.e., u = 0 on the boundary of our domain. Other boundary conditions

for the velocity, e.g., inhomogeneous Dirichlet, Neumann, etc., can be used; for a summary

of different velocity boundary conditions see [67]. The temperature boundary condition is

more varied depending on the context. We use domains that are perfectly insulated, i.e.,

T = 0 on the boundary and boundaries that are adiabatic, i.e., n · ∇T = 0. This is done

to simplify the analysis; inhomogeneous Dirichlet boundary conditions add technical details

to the proofs contained herein but no more difficulty. An example of using inhomogeneous

Dirichlet boundary conditions for the temperature lies in the so-called double-pane problem,

which is considered in our numerical tests. A full analysis of this problem in the context of

ensemble methods can be found in the works of Fiordilino [39].

For regularity purposes, the presence of temporal derivatives in the momentum and

temperature equations necessitates initial conditions for the velocity and temperature. We

typically write u(x; 0) = u0 and T (x; 0) = T0.

2.2 SPATIAL AND TEMPORAL PRELIMINARIES

In this section, we define Ω to be an open domain in Rd for d = 2, 3 with boundary ∂Ω.

We will primarily use as function spaces W k,p(Ω), the Sobolev space of functions in Lp whose

weak derivatives of order up to and including k are in Lp. An important class of Sobolev

space that we will consider is denoted Hk(Ω) := W k,2(Ω).

2.2.1 CONTINUOUS PRELIMINARIES

We define the Hilbert spaces Xk,d :=
(
Hk(Ω)

)d
with associated inner products and norms

(irrespective of dimension) (·, ·)k and ‖ · ‖k, respectively. In particular, we will consider

X0,d = (L2(Ω))d , X1,d = (H1(Ω))d, the notation for the L2 inner product and norm being
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changed to (·, ·) and ‖ · ‖, respectively. For all other Lp spaces, we let norms be given by

‖·‖Lp . Let the velocity and pressure spaces be defined by

X :=
(
H1

0 (Ω)
)d

= {v ∈ X1,d : v|∂Ω = 0}, Q := L2
0(Ω) = {q ∈ X0,1 : (1, q) = 0},

V := {v ∈ X : (q,∇ · v) = 0 ∀q ∈ Q}

and the temperature spaces (for the Boussinesq problem) be

W := H1(Ω) = X1,1, WΓD := {S ∈ W : S|ΓD = 0}.

The dual norm ‖ · ‖−1 is understood to correspond to either X or WΓD , e.g.,

‖u‖−1 = sup
v∈X

(u, v)
‖∇v‖

.

We describe the following inf-sup condition for the velocity and pressure spaces (also called

the Ladyzhenskaya-Babus̆ka-Brezzi (LBB) condition): For any v ∈ X, q ∈ Q, there is a

constant βLBB > 0 such that

inf
q∈Q

sup
v∈X

(q,∇ · v)
‖q‖‖∇v‖

≥ βLBB > 0. (2.13)

Letting u ∈ X, v, w ∈ X1,m for m ∈ {1, . . . , d}, we let the explicitly skew-symmetric

trilinear form be given as

bm(u, v, w) := 1
2(u · ∇v, w)− 1

2(u · ∇w, v).

It is easily shown (e.g., Lemma 1 from [41]) that

bm(u, v, w) = (u · ∇v, w) + 1
2 ((∇ · u) v, w) .

Using the techniques in Lemma 1 from [41], the following lemma can be proven and will be

used to bound the nonlinear terms:

Lemma 1. There exist constants C1, C2, C3 such that for all u ∈ X, v, w ∈ X1,m,

bm(u, v, w) ≤ C1‖∇u‖‖∇v‖‖∇w‖,

bm(u, v, w) ≤ C2

√
‖u‖‖∇u‖‖∇v‖‖∇w‖,

bm(u, v, w) ≤ C3‖∇u‖‖∇v‖
√
‖w‖‖∇w‖.
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Herein we consider the nonlinear terms for the momentum and temperature equations,

given by

bu(u, v, w) := bd(u, v, w), bT (u, T, S) := b1(u, T, S),

and where the constants from Lemma 1 are indexed Ci,u, Ci,T (i = 1, 2, 3) for the velocity

and temperature, respectively.

A result (e.g., [37]) that will be used in our analyses is the Poincaré-Friedrichs inequality:

For v ∈ X,S ∈ WΓD , there exist constants Cpf,1 > 0 and Cpf,2 > 0, independent of Ω, such

that ‖v‖2 ≤ Cpf,1‖∇u‖2 and ‖S‖2 ≤ Cpf,2‖∇S‖2.

We also require the definition of the temporally continuous norms

‖v‖LptLqx =
(∫ t∗

0
‖v‖pLqdt

) 1
p

, ‖v‖L∞t Lqx = sup
t∈[0,t∗]

‖v‖Lq .

Analogous definitions hold when the spatial Lq(Ω) is replaced with the spatial Hk(Ω), or the

more general Sobolev spaces W k,p(Ω).

2.2.2 DISCRETE PRELIMINARIES

First, let Xh ⊂ X, Qh ⊂ Q, Ŵh = (Wh,WΓD,h) ⊂ (W,WΓD) = Ŵ be conforming finite

element spaces on a regular, quasi-uniform discretization of Ω (with maximal mesh width h)

consisting of piecewise-continuous polynomials of degrees j, l, and j, respectively. We assume

that they satisfy the following approximation properties for any 1 ≤ j, l ≤ k,m:

inf
vh∈Xh

{
‖u− vh‖+ h‖∇(u− vh)‖

}
≤ Chk+1|u|k+1, (2.14)

inf
qh∈Qh

‖p− qh‖ ≤ Chm|p|m, (2.15)

inf
Sh∈Ŵh

{
‖T − Sh‖+ h‖∇(T − Sh)‖

}
≤ Chk+1|T |k+1, (2.16)

for all u ∈ X ∩Xk+1,d, p ∈ Q∩Xm,1, and T ∈ Ŵ ∩Xk+1,1. We further only consider spaces

for which the discrete inf-sup/LBB condition is satisfied,

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖‖∇vh‖

≥ βLBB,h > 0, (2.17)
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where βLBB,h is independent of h. We define the discrete dual norms in a similar way to the

continuous dual norms, i.e.,

‖uh‖−1 = sup
vh∈Xh

(uh, vh)
‖∇vh‖

.

We will also assume that the finite element spaces satisfy the standard inverse inequality

[36]:

‖∇φ1,2‖ ≤ Cinv,1,2h
−1‖φ1,2‖ ∀φ1 ∈ Xh, ∀φ2 ∈ WΓD,h,

where Cinv,1,2 depend on the minimum angle αmin in the triangulation.

The Cauchy-Schwarz-Young (CSY) inequality (u, v) ≤ ε
2‖u‖

2 + 1
2ε‖v‖

2 will be used ex-

tensively, as well the polarization identity 2(u, v) = ‖u‖2 + ‖v‖2 − ‖u− v‖2. The discrete

time analysis will utilize the following norms ∀ − 1 ≤ k <∞:

|||v|||∞,k := max
1≤n≤N

‖vn‖k, |||v|||p,k :=
(
∆t

N∑
n=1
‖vn‖pk

)1/p
.

The Stokes projection will be vital in the upcoming error analyses. Let IStokesh : V ×Q→

Xh ×Qh via IStokesh (u, p) = (U, P ) satisfy the discrete Stokes problem

Pr(∇(U − u),∇vh)− (P − p,∇ · vh) = 0 ∀ vh ∈ Xh,

(∇ · (U − u), qh) = 0 ∀ qh ∈ Qh.

There holds the following approximation error result.

Lemma 2. Assume the approximation properties 2.14-2.15 and associated regularity hold.

Then, there exists C > 0 such that

h−1‖u− U‖+ ‖∇(u− U)‖+ ‖p− P‖ ≤ C
{

inf
vh∈Xh

‖∇(u− vh)‖+ inf
qh∈Qh

‖p− qh‖
}
.

Proof. See Theorem 13 of [75] and apply the Aubin-Nitsche technique.

We will also require a Discrete Gronwall inequality, given below:
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Lemma 3. (Discrete Gronwall Lemma). Let ∆t, H, an, bn, cn, and dn be finite nonnegative

numbers for n ≥ 0 such that for N ≥ 1

aN + ∆t
N∑
0
bn ≤ ∆t

N−1∑
0
dnan + ∆t

N∑
0
cn +H,

then for all ∆t > 0 and N ≥ 1

aN + ∆t
N∑
0
bn ≤ exp

(
∆t

N−1∑
0
dn
)(

∆t
N∑
0
cn +H

)
.

Proof. See Lemma 5.1 on p. 369 of [56].
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3.0 TIME-ADAPTIVE ARTIFICIAL COMPRESSIBILITY METHODS

The coupling of velocity and pressure in flow problems creates inefficiencies and chal-

lenges when attempting to approximate the solutions numerically. Artificial compressibility

methods, like penalty and projection schemes, attempt to decouple the velocity and pressure

to make a numerical approximation feasible. These methods are most efficient when used

in low temporal order schemes and are extremely fast. However, they are not amenable to

time-adaptive stepping methods. This chapter develops, analyzes, and demonstrates multi-

ple time-adaptive AC methods. Section 3.1 gives a brief overview of AC methods. Next, a

slightly compressible continuum model is developed and explored in Section 3.2. Numerical

methods derived from this model, as well as another time-adaptive AC method are analyzed

and tested in Section 3.3. Concluding remarks are given in Section 3.4.

3.1 AN OVERVIEW OF ARTIFICIAL COMPRESSIBILITY METHODS

The numerical approximation of the incompressible NSE is made more difficult by the

coupling of the velocity and pressure variables. This challenge was identified early on in

the history of computational fluid dynamics, and in the late 1960s several new methods

were developed to tackle this difficulty. Temam, in 1968 [131], introduced the well-known

penalty method, which perturbs (2.3) by a weighted pressure term, replacing (2.2)–(2.3) by

the system

∂tu
ε + (uε · ∇)uε − ν∆uε +∇pε = f,

εpε +∇ · uε = 0.

One decouples the variables by noting that pε = −1
ε
∇ · uε, so that one may solve the

momentum equation for the velocity and then update the pressure. This method decouples

the variables, and is first-order in time for ε = O(∆t). However, the condition number of

the discrete viscous term, −ν∆ is approximately O(ν∆th−2). The new term arising from
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the variable separation, −1
ε
∇∇ · u, has condition number O(h−2) if the method is first-order

convergent. If the timestepping method is of order k ≥ 2, the condition number acts like

O(∆t1−kh−2), implying the condition number of the stiffness matrix blows up as ∆t→ 0.

Later, Chorin [14, 15], Oskolkov [95] and Temam [127, 128] developed artificial com-

pressibility (or artificial compression) methods to alleviate this issue. These methods use a

weighted stabilization to the continuity equation involving the temporal derivative of pres-

sure, i.e.,

∂tu
ε + (uε · ∇)uε − ν∆uε +∇pε = f, (3.1)

ε∂tp
ε +∇ · uε = 0.

The method decouples the velocity and pressure, eliminating the need for a mixed formula-

tion and linear solve. Indeed, the main solve is just for velocity (the pressure is an update),

and if a backward Euler time-discretization is used, then pn+1 = pn − ∆t
ε
∇ · un+1, implying

the condition number of the resulting matrix −∆t
ε
∇∇ · u is like the viscous term, O(h−2).

Remark 4. The term ε∂tp
ε implies a pseudo-density ρε = εpε from the compressible NSE

with wave speed c = 1√
ε
.

Remark 5. Convergence of the AC approximation (3.1) to a weak solution of the NSE (2.2)–

(2.3) as ε → 0 has been proven for bounded Ω ⊂ R2 by Temam [127, 128, 130] (using the

method of fractional derivatives of Lions [83]). Donatelli-Marcati [32, 33] extended ε → 0

convergence to the case of R3 and exterior domains and in [32] by using the dispersive

structure of the acoustic pressure equation. There is also a growing literature establishing

convergence of discretizations of AC models to NSE solutions including [48], [49], [68], [74],

and [108].

Clearly, serious advantages exist for AC methods. They are stable, time accurate, and

fast at low temporal orders. Furthermore, they do not require that velocity and pressure

spaces satisfy the discrete LBB condition (2.17). However, they begin to suffer from condition

number issues at higher orders (similarly to penalty methods). When using a conservative

timestepping method, nonphysical acoustics in the pressure appear due to the lack of numer-

ical dissipation (see [25, 26]). They also suffer from a so-called order barrier in the pressure,
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identified by Shen [106] and overcome by Guermond and Minev [48]. AC methods also suffer

from difficulties when using a variable timestep.

3.2 A NEW COMPRESSIBLE CONTINUUM MODEL

3.2.1 INTRODUCTION

Of the many methods for predicting incompressible flow, artificial compressibility (AC)

methods, based on replacing ∇ · u = 0 by ε∂tp + ∇ · u = 0 (0 < ε � 1) and advancing

the pressure explicitly in time, are among the most efficient. These methods also have a

reputation for low time accuracy. Herein we study one source of low accuracy, propose a

resolution, give analytical support for the corrected method and show some numerical com-

parisons of a common AC method and its proposed correction. Consider the incompressible

NSE (2.2)–(2.3) in a 3d domain Ω, here either a bounded open set or R3,

∂tu+ (u · ∇)u+∇p− ν∆u = f(t, x)

∇ · u = 0,

where (t, x) ∈ [0, t∗]×Ω, u ∈ R3 is the velocity, p ∈ R the pressure, ν the kinematic viscosity,

and f ∈ R3 the external force.

AC methods, e.g., [46], [101], [25], are based on approximating the solution of the slightly

compressible equations

∂tu
ε + (uε · ∇)uε + 1

2(∇ · uε)uε +∇pε − ν∆uε = f

ε∂tp
ε +∇ · uε = 0,

where 0 < ε is small. Here, uε is the approximate velocity, pε is the approximate pressure

and the nonlinearity has been explicitly skew-symmetrized. (This is a common formulation

but not the only one, see Section 3.2.1.2). Time accuracy is obtained by either using explicit

time discretization methods and small time steps for short time simulations, using high order

methods with moderate timesteps for longer time simulations or by adding time adaptivity
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to a low or high order implicit method. The first is not considered herein. The second leads

to highly ill-conditioned linear systems (Shen [107] also suggests that an accuracy barrier

exists in AC methods). The third, considered herein, has the possibility to both increase

efficiency and provide time accuracy. To our knowledge, the defect correction based scheme

of Guermond and Minev [47] is the only previous work in this direction.

Remark 6. The separate issue of pressure initialization, not addressed here, also exists. We

do note that for internal flows pressure data is often more reliable than velocity data.

Remark 7. For a 4th order time discretization, ε = O(∆t4) is necessary to retain accuracy.

This leads to a viscous term −ν∆uεn+1−∆t−3∇∇ · uεn+1 and a linear system to be solved at

each timestep with condition number O(∆t−2h−2).

To fix ideas, suppress the space discretization and consider a commonly used fully-implicit

time discretization

uεn+1 − uεn
∆t + (uεn+1 · ∇)uεn+1 + 1

2(∇ · uεn+1)uεn+1 +∇pεn+1

−ν∆uεn+1 = f(tn+1),

ε
pεn+1 − pεn

∆t +∇ · uεn+1 = 0.

For other time discretizations see, e.g., [69], [94], [25], [145]. Here ∆t is the timestep,

tn = n∆t, uεn, pεn are approximations to the velocity and pressure at t = tn. Since ∇pεn+1 =

∇pεn − (∆t/ε)∇∇ · uεn+1, this uncouples into

uεn+1 − uεn
∆t + (uεn+1 · ∇)uεn+1 + 1

2(∇ · uεn+1)uεn+1 +∇pεn −
∆t
ε
∇∇ · uεn+1

−ν∆uεn+1 = −∇pεn + fn+1, (3.2)

then given uεn+1: pεn+1 = pεn − (∆t/ε)∇ · uεn+1.

This method is unconditionally, nonlinearly, long-time stable, e.g., [46], [48]. It has consis-

tency error O(∆t + ε) and thus determines ε balancing errors by ε = ∆t. Time adaptivity

means decreasing or increasing the time step according to solution activity, [45]. Given the

O(∆t+ ε) consistency error, this means varying both ∆t = ∆tn and ε = εn. To our knowl-

edge, no long-time stability analysis of this method with variable ∆t = ∆tn and ε = εn
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is known or even possible at present, see Section 3.2.2. Peculiar solution behavior seen

in an adaptive simulation thus cannot be ascribed to either a flow phenomenon or to an

anomaly created by the numerical method. This is the problem we address herein for the

time discretized AC method (with ε = εn) and for the associated continuum AC model (with

ε = ε(t)).

In Section 3.2.2 we first show that the standard AC method, (3.2) above, is 0-stable for

variable ε,∆t provided ε,∆t are slowly varying (0-stability allows non-catastrophic exponen-

tial growth). Thus, (3.2) suffices for short time simulations with nearly constant timesteps.

The long time stability of (3.2) with variable-ε, k is analyzed in Section 3.2.2 as well. Some

preliminary conclusions are presented but then complete resolution of instability or stability

is an open problem for the standard method.

Section 3.2.2 presents a stable extension of AC methods to variable ε,∆t, one central

contribution of this dissertation. The proposed method is

uεn+1 − uεn
∆tn+1

+∇pεn+1 − ν∆uεn+1 + (uεn+1 · ∇)uεn+1

+1
2(∇ · uεn+1)uεn+1 = fn+1,

1
2
εn+1p

ε
n+1 − εnpεn
∆tn+1

+ εn
2
pεn+1 − pεn

∆tn+1
+∇ · uεn+1 = 0. (3.3)

This method reduces to the standard AC method (3.2) for constant ε,∆t. Section 3.2.2

shows that the new method (3.3) is unconditionally, nonlinearly, long time stable without

assumptions on εn,∆tn, Theorem 2. In numerical tests of (3.3), for problems on bounded

domains, in Section 3.2.5, the new method works well (as expected) when ∆tn+1 = εn+1 is

picked self adaptively to ensure ||∇ ·u|| is below a present tolerance. It also performs well in

tests where ∆tn = εn is pre-chosen to try to break the method’s stability or physical fidelity

by increasing or fluctuating ε or ∆t.

In support, we give an analysis of the physical fidelity of the non-autonomous continuum

model associated with (3.3):

∂tu
ε + (uε · ∇)uε + 1

2(∇ · uε)uε +∇pε − ν∆uε = f,

∂t(ε(t)pε)− 1
2∂tε(t)p

ε +∇ · uε = 0.
(3.4)
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Sections 3.2.3 and 3.2.4 address the question: Under what conditions on ε(t) do solutions to

the new AC model (1.3) converge to weak solutions of the incompressible NSE as ε → 0?

Convergence (modulo a subsequence) is proven for the pure Cauchy problem under the

assumption on the fluctuation εt(t) that

ε(t) ≤ Cε→ 0,
∣∣∣∣∣εt(t)ε(t)

∣∣∣∣∣ ≤ C, for t ∈ [0, t∗]. (3.5)

This extension of model convergence to the non-autonomous system is a second central

contribution herein. In self-adaptive simulations based on (3.3), this condition requires

smooth adjustment of timesteps and precludes a common strategy of timestep halving or

doubling. A similar smoothness condition on εt(t) recently arose in stability analysis of

other variable timestep methods in [115]. Weakening the condition (3.5) on ε(t) (which we

conjecture is possible) is an important open problem.

3.2.1.1 ANALYTICAL DIFFICULTIES OF THE ε(t) → 0 LIMIT For Ω = R3,

one difficulty in establishing convergence is the estimate for acoustic pressure waves. From

the acoustic pressure wave equation (3.25) for the new model (3.4), the pressure wave speed

is O(1/ε), suggesting only weak convergence of the velocity uε. Strong convergence of uε thus

hinges upon the dispersive behavior of these waves at infinity. In the case when ε is constant,

the classical Strichartz type estimates [43, 71, 120] together with a refined bilinear estimate

[72, 116] of the three-dimensional inhomogeneous wave equations can be directly applied to

infer (after some technical difficulties) sufficient control of the pressure waves. However, when

ε = ε(t), the resulting acoustic equation is non-autonomous. There are still results on the

space-time Strichartz estimates for variable-coefficient wave equations at our disposal; see,

e.g., [125]. However the refined bilinear estimates do not seem to be immediately available,

since these estimates are based on the explicit structure of the Kirchhoff’s formula for the

classical wave operator. To overcome this difficulty, we further introduce a scale change in

the time variable so that the resulting pressure wave equation becomes the classical wave

operator. This allows us to obtain the refined bilinear estimates, and therefore establish the

desired dispersive estimates for the pressure. Please refer to Section 3.2.3.3 for more details.
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3.2.1.2 OTHER AC FORMULATIONS Generally AC methods skew-symmetrize

the nonlinearity and include a term ε∂tp that uncouples pressure and velocity and lets the

pressure be explicitly advanced in time. There are several choices for the first and several

for the second. A few alternate possibilities are described next and combinations of these

are certainly possible.

Motivated by the equations of hyposonic flow [146], the material derivative can be used

for the artificial compressibility term, e.g., [95],

∂tu
ε + (uε · ∇)uε + 1

2(∇ · uε)uε +∇pε − ν∆uε = f,

ε (∂tpε + uε · ∇pε) +∇ · uε = 0.

Numerical dissipation can be incorporated into the pressure equation, e.g. [74], as in

∂tu
ε + (uε · ∇)uε + 1

2(∇ · uε)uε +∇pε − ν∆uε = f

ε (∂tpε + pε) +∇ · uε = 0.

A dispersive regularization has been included in the momentum equation in [25],

∂t

(
uε − 1

ε
∇∇ · uε

)
+ (uε · ∇)uε + 1

2(∇ · uε)uε +∇pε − ν∆uε = f,

ε∂tp
ε +∇ · uε = 0.

The nonlinearity can be skew symmetrized in various ways, replacing (u · ∇)u in the NSE

by one of the following

Standard skew-symmetrization : (uε · ∇)uε + 1
2(∇ · uε)uε

Rotational form : (∇× uε)× uε

EMA form [12] : (∇uε + (∇uε)T )uε + (∇ · uε)uε

The penalty model (not studied herein) where ∇ · u = 0 is replaced by ∇ · uε = −εpε,

is sometimes also viewed as an artificial compressibility model, [101]. Other artificial (or

pseudo) compressibility schemes have been constructed of varying orders, each with strengths

and weaknesses. We refer to Shen [112] for more details.
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3.2.2 STABILITY OF VARIABLE-ε AC METHODS

We begin by considering variable ε stability of the standard method under noslip bound-

ary conditions (here, we change notation so that (un, pn) = (uεn, pεn))

un+1 − un

∆tn+1
+∇pn+1 − ν∆un+1 + (un+1 · ∇)un+1

+1
2(∇ · un+1)un+1 = fn+1,

εn+1
pn+1 − pn

∆tn+1
+∇ · un+1 = 0, (3.6)

subject to initial and boundary conditions:

u0(x) = u0, p0(x) = p0, in Ω ,

un = 0 on ∂Ω for t > 0.

We first prove 0-stability, namely that un can grow no faster than exponential, when εn

is slowly varying. The case when f ≡ 0 is clearest since then any energy growth is then

incorrect.

Theorem 1. For the standard method (3.6), let fn = 0 for all n and suppose

εn+1 − εn
∆tn

≤ βεn for some β for all n.

Then

‖un‖2 + εn‖pn‖2 ≤
(
Πn−1
j=1 (1 + β∆tj)

) (
‖u0‖2 + ε0‖p0‖2

)
≤ eβtn

(
‖u0‖2 + ε0‖p0‖2

)
.

Proof. Take an inner product of the first equation with 2∆tn+1u
n+1, the second with

2∆tn+1p
n+1, integrate over Ω, integrate by parts, use skew-symmetry and add. This yields,

by the polarization identity,

‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2 + 2∆tn+1ν‖∇un+1‖2

+εn+1‖pn+1‖2 − εn+1‖pn‖2 + εn+1‖pn+1 − pn‖2 = 0.
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The pressure terms do not collapse into a telescoping sum upon adding due to the variability

of ε. Thus we correct for this effect, rearrange and adjust appropriately to yield

(
‖un+1‖2 + εn+1‖pn+1‖2

)
−
(
‖un‖2 + εn‖pn‖2

)
+ ‖un+1 − un‖2 + εn+1‖pn+1 − pn‖2

+2∆tn+1ν‖∇un+1‖2 = (εn+1 − εn) ‖pn‖2.

Note that (εn+1 − εn) ‖pn‖2 ≤ ∆tnβεn‖pn‖2. Dropping the (non-negative) dissipation terms

we have

En+1 − En ≤ β∆tnEn where En := ‖un‖2 + εn‖pn‖2,

from which the first result follows immediately. For the second inequality, note that since

1 + β∆tj ≤ eβ∆tj we have

Πn−1
j=1 (1 + β∆tj) ≤ Πn−1

j=1 e
β∆tj = e

β

[∑n−1
j=1 ∆tj

]
= eβtn

Since β (by assumption) is independent of the timestep ∆t, this implies 0-stability. For

short time simulations, 0-stability suffices, but is insufficient for simulations over longer time

intervals. The assumption that ε (and thus also the timestep) is slowly varying:

εn+1 − εn
∆tn

≤ βεn

precludes the common adaptive strategy of timestep halving and doubling. For example,

suppose

εn+1 = 2εn and ∆tn+1 = 2∆tn then
εn+1 − εn

∆tnεn
= 2εn − εn

∆tnεn
= 1

∆tn
→∞ as ∆t→ 0.
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3.2.2.1 THE CORRECTED, VARIABLE-ε AC METHOD The above proof indi-

cates that the problem arises from the fact that the discrete ε∂tp term is not a time difference

when multiplied by p. Under noslip boundary conditions, the standard method obeys the

discrete energy law

(
‖un+1‖2 + εn+1‖pn+1‖2

)
−
(
‖un‖2 + εn‖pn‖2

)
+ ‖un+1 − un‖2 + εn+1‖pn+1 − pn‖2 (3.7)

+2∆tn+1ν‖∇un+1‖2 = (εn+1 − εn) ‖pn‖2.

Since the variable-ε term (εn+1 − εn) ‖pn‖2 has two signs, depending only on whether the

timestep is increasing or decreasing, it can either dissipate energy or input energy. The sign

of the right-hand-side shows that if:

• ∆tn is decreasing the effect of changing the timestep is dissipative, while if

• ∆tn is increasing the effect of changing the timestep inputs energy into the approximate

solution.

In the second case, if the term (εn+1 − εn) ‖pn‖2 dominates in the aggregate the other

dissipative terms non-physical energy growth may be possible. However, we stress that we

have neither a proof of long time stability of the variable-ε standard method nor a convincing

example of instability. Resolving this is an open problem discussed in the next sub-section.

The practical question is how to adapt the AC method to variable-ε so as to ensure long

time stability. After testing a few natural alternatives we propose the new AC method

un+1 − un

∆tn+1
+ (un+1 · ∇)un+1 + 1

2(∇ · un+1)un+1

−ν∆un+1 +∇pn+1 = fn+1,

1
2
εn+1p

n+1 − εnpn

∆tn+1
+ εn

2
pn+1 − pn

∆tn+1
+∇ · un+1 = 0. (3.8)

When ε is constant the new method (3.8) reduces to the standard method (3.2).
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Remark 8 (Higher Order Methods). If a higher order time discretization such as BDF2 is

desired, the modification required is to use the higher order discretization for the momentum

equation, the same modification of the continuity equation and select εn = ∆tmethod order
n

to preserve higher order consistency error. For example, for variable step BDF2, let τ =

∆tn+1/∆tn. Then we have

2τ+1
τ+1 u

n+1 − (τ + 1)un + τ2

τ+1u
n−1

∆tn+1
+ (un+1 · ∇)un+1 + 1

2(∇ · un+1)un+1

+∇pn+1 − ν∆un+1 = f(tn+1),
1
2
εn+1p

n+1 − εnpn

∆tn+1
+ εn

2
pn+1 − pn

∆tn+1
+∇ · un+1 = 0 with εn+1 = ∆t2n+1.

This is easily proven A-stable for constant timesteps. Since BDF2 is not A-stable for increas-

ing timesteps, the above would also not be expected to be more than 0-stable for increasing

timesteps.

Theorem 2. The variable-ε,∆t method (3.8) under noslip boundary conditions is uncondi-

tionally, long time stable. For any N > 0 the energy equality holds:

‖uN‖2 + εN‖pN‖2 +
N−1∑
n=0

(
‖un+1 − un‖2 + εn‖pn+1 − pn‖2 + 2∆tn+1ν‖∇un+1‖2

)

= ‖u0‖2 + ε0‖p0‖2 +
N−1∑
n=0

2∆tn+1(fn+1, un+1)

and the stability bound holds:

‖uN‖2 + εN‖pN‖2 +
N−1∑
n=0

(
‖un+1 − un‖2 + εn‖pn+1 − pn‖2 + ∆tn+1ν‖∇un+1‖2

)

= ‖u0‖2 + ε0‖p0‖2 +
N−1∑
n=0

∆tn+1

ν
‖fn+1‖2

−1

Proof. We follow the stability analysis in the last proof. Take an inner product of the first

equation with 2∆tn+1u
n+1, the second with 2∆tn+1p

n+1, integrate over the flow domain,
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integrate by parts, use skew-symmetry, use the polarization identity twice, and add. This

yields

‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2 + 2∆tn+1ν‖∇un+1‖2

+εn+1‖pn+1‖2 − 2εn(pn, pn+1) + εn‖pn+1‖2

= 2∆tn+1(fn+1, un+1).

From the polarization identity on the pressure inner product, the energy equality becomes

(
‖un+1‖2 + εn+1‖pn+1‖2

)
−
(
‖un‖2 + εn‖pn‖2

)
2∆tn+1ν‖∇un+1‖2 + ‖un+1 − un‖2 + εn‖pn+1 − pn‖2

= 2∆tn+1(fn+1, un+1).

Upon summation the first two terms telescope, completing the proof of the energy equality.

The stability estimate follows from the energy equality, the definition of the dual norm, and

the Cauchy-Schwarz-Young inequality.

3.2.2.2 INSIGHT INTO A POSSIBLE VARIABLE-ε INSTABILITY The dif-

ficulty in ensuring long time stability when simply solving (3.6) for variable ε can be un-

derstood at the level of the continuum model. When f = 0 the NSE kinetic energy is

monotonically decreasing so any growth in model energy represents an instability. Dropping

the superscript ε for this sub-section, consider the kinetic energy evolution of

∂tu+∇p = ν∆u− (u · ∇)u− 1
2(∇ · u)u, (3.9)

ε(t)∂tp+∇ · u = 0,

subject to periodic or noslip boundary conditions. Computing the model’s kinetic energy by

taking the inner product with, respectively, u and p, integrating and then adding gives the

continuum equivalent of the kinetic energy law of the standard AC method (3.7) above:

d

dt

(
‖u(t)‖2 + ε(t)‖p(t)‖2

)
+ ν‖∇u(t)‖2 = εt(t)‖p(t)‖2.

The RHS suggests the following:
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Decreasing ε (εt(t) < 0) acts to decrease the L2 norm of u and p while increasing ε

(εt(t) > 0) acts to increase the L2 norm of u and p.

Thus, it seems like an example of instability would be simple to generate by taking a

solution with large pressure, small velocity, small ν and ∂tε(t) � ε(t). However, consider

next the equation for pressure fluctuations about a rest state. Beginning with

∂tu+∇p = 0 and ε(t)∂tp+∇ · u = 0, (3.10)

eliminate the velocity in the standard manner for deriving the acoustic equation. This yields

the induced equation for acoustic pressure oscillations (ε(t)∂tp)t −∆p = 0. Oddly, ε(t) = t

(increasing) occurs in [76]. Multiplying by ∂tp and integrating yields

d

dt

(
ε(t)‖∂tp(t)‖2 + ‖∇p(t)‖2

)
= −εt(t)‖∂tp(t)‖2. (3.11)

The RHS of (3.11) yields the nearly opposite prediction that

Decreasing ε (εt(t) < 0) acts to increase the L2 norm of ∂tp and ∇p while increasing ε

(εt(t) > 0) acts to increase the L2 norm of ∂tp and ∇p.

The analytical conclusion is that long time stability of the standard AC method with

variable-ε,∆t is a murky open problem.

3.2.3 ANALYSIS OF THE VARIABLE-ε CONTINUUM AC MODEL

The last subsection suggests that insight into the new model may be obtained through

analysis of its continuum analog without the assumption of small fluctuations about a rest

state. Accordingly, this section considers the pure Cauchy problem, Ω = R3, for

∂tu
ε +∇pε = ν∆uε − (uε · ∇)uε − 1

2(∇ · uε)uε + f ε

∂t(ε(t)pε)−
1
2εt(t)p

ε +∇ · uε = 0.

To explain the change of the pressure term in the continuity equation from εpεt to ∂t(ε(t)pε)−
1
2εt(t)p

ε, note that
(1

2ε(p
ε)2
)
t

= pε
[
(εpε)t −

1
2εtp

ε
]

= pε
[
εpεt + 1

2εtp
ε
]
.
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This can equivalently be formulated as 1
2(εpε)t + 1

2εp
ε
t since(1

2ε(p
ε)2
)
t

= pε
1
2 [(εpε)t + εpεt ] .

Recall from (3.5) that our assumptions on the relaxation parameter ε(t) are

ε(t) ∈ C1([0, T ]), 0 < cε ≤ ε(t) ≤ Cε,

∣∣∣∣∣εt(t)ε(t)

∣∣∣∣∣ ≤ C, (3.12)

for t ∈ [0, T ], c and C are some positive constants, and ε > 0 is some vanishing constant.

From the assumption (3.12) we may write

ε(t) = εA(t) (3.13)

for some function A(t) satisfying

A ∈ C1([0, t∗]), c ≤ A(t) ≤ C,

∣∣∣∣∣At(t)A(t)

∣∣∣∣∣ ≤ C. (3.14)

We will first recall the notion of Leray weak solution of the NS equation, and then derive

the basic energy estimate for the new AC system (3.4), which will lead to the appropriate

assumptions on initial conditions. We then use the assumption on the variable ε(t), and

perform a dispersive approach to obtain the Strichartz estimate for the pressure.

3.2.3.1 LERAY WEAK SOLUTION FOR THE NSE We analyze the ε→ 0 limit

of the continuum AC model (3.4). Since we will be focused on the convergence of the

approximated system to a weak solution of the NSE, from now on we will for simplicity

take ν = 1 and f = 0. The inclusion of a body force and a different value of the kinematic

viscosity adds no technical difficulty to the analysis.

Let us recall the notion of a Leray weak solution (see, for e.g. Lions [84] and Temam

[130]) of the NSE.

Definition 1. We say that u ∈ L∞([0, t∗];L2(R3)) ∩ L2([0, t∗]; Ḣ1(R3)) is a Leray weak

solution of the NS equation if it satisfies (2.2)–(2.3) in the sense of distribution for all test

functions ϕ ∈ C∞0 ([0, t∗]× R3) with ∇ · ϕ = 0 and moreover the following energy inequality

holds for every t ∈ [0, t∗]
1
2

∫
R3
|u(t, x)|2 dx+ ν

∫ t

0

∫
R3
|∇u(s, x)|2 dxds

≤ 1
2

∫
R3
|u(0, x)|2 dx.

(3.15)
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3.2.3.2 ENERGY ESTIMATES We can easily verify that system (3.4) obeys the

classical energy type estimate.

Theorem 3. Let (uε, pε) be a strong solution to (3.4) on [0, t∗]. Then it follows that for all

t ∈ [0, t∗]

E(t) +
∫ t

0

∫
R3
|∇uε(s, x)|2 dxds = E(0), (3.16)

where

E(t) = 1
2

∫
R3

(
|uε(t, x)|2 + ε(t)|pε(t, x)|2

)
dx. (3.17)

Since we expect the approximated solution (uε, pε) to converge to the Leray solution, we

require the finite energy constraint to be satisfied by (uε, pε). So following [32] we further

restrict the initial condition to system (3.4) (or (3.1)) to satisfy


uε0 := uε(0, ·)→ u0 strongly in L2(R3) as ε→ 0,√
ε(0)pε0 :=

√
ε(0)pε(0, ·)→ 0 strongly in L2(R3) as ε→ 0.

(3.18)

This way we can obtain the following uniform estimates which are similar to those in [32,

Corollary 4.2], except for (3.20), where we can use assumption (3.5) to conclude εt = O(ε),

and hence we omit the proof.

Corollary 1. Under the assumptions of Theorem 3, together with (3.18), it follows that

√
εpε is bounded in L∞([0, t∗];L2(R3)), (3.19)

εpεt is relatively compact in H−1([0, t∗]× R3), (3.20)

∇uε is bounded in L2([0, t∗]× R3), (3.21)

uε is bounded in L∞([0, t∗];L2(R3)) ∩ L2([0, t∗];L6(R3)), (3.22)

(uε · ∇)uε is bounded in L2([0, t∗];L1(R3)) ∩ L1([0, t∗];L3/2(R3)), (3.23)

(∇ · uε)uε is bounded in L2([0, t∗];L1(R3)) ∩ L1([0, t∗];L3/2(R3)). (3.24)
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3.2.3.3 ACOUSTIC PRESSURE WAVE AND STRICHARTZ ESTIMATES

Note that we can derive from system (3.4) that the pressure pε satisfies the following wave

equations

(εpε)tt −
(1

2εtp
ε
)
t
−∆pε = −∆(∇ · uε) +∇ ·

[
(uε · ∇)uε + 1

2(∇ · uε)uε
]
. (3.25)

Performing the following rescaling

τ = t√
ε
, p̊(τ, x) = pε(

√
ετ, x), ũ(τ, x) = uε(

√
ετ, x), Ã(τ) = A(

√
ετ), (3.26)

and plugging into (3.25) we obtain

(Ãp̊)ττ −∆p̊−
(1

2Ãτ p̊
)
τ

= −∆(∇ · ũ) +∇ ·
[
(ũ · ∇)ũ+ 1

2(∇ · ũ)ũ
]
.

Setting

p̃(τ) :=
√
Ã(τ)p̊(τ),

then the above acoustic equation becomes following second order hyperbolic equation

(
√
Ãp̃τ )τ −

1√
Ã

∆p̃ = −∆(∇ · ũ) +∇ ·
[
(ũ · ∇)ũ+ 1

2(∇ · ũ)ũ
]
. (3.27)

Note that here the wave operator contains time-dependent coefficients. The space-time

Strichartz estimates involving variable coefficients were established by Mockenhaupt et al.

[91] when the coefficients are smooth. Operators with C1,1 coefficients were first considered

by Smith [114] using wave packets. An alternative method based on the FBI transform was

later employed by Tataru [123, 124, 125] to prove the full range of Strichartz estimates under

weaker assumptions. It can be easily checked that the wave operator at the left-hand side

of (3.27) does satisfy those assumptions provided that, in addition to (3.14), A(t) enjoys

certain extra regularity, for e.g., Att ∈ L1([0, t∗]).

However, assuming that A is only C1, we can further introduce a time-scale change

τ = β(s), p̄(s, x) = p̃(β(s), x), ū(s, x) = ũ(β(s), x), a(s) = Ã(β(s)).
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From (3.26)–(3.27) we know that
√
a =

√
Ã(β) is Lipschitz in β. From standard ODE theory,

we can uniquely solve the following ODE for β:

β′(s) =
√
a(s) ≥

√
c > 0, β(0) = 0, (3.28)

which allows us to rewrite (3.27) as

p̄ss −∆p̄ =
√
a
{
−∆(∇ · ū) +∇ ·

[
(ū · ∇)ū+ 1

2(∇ · ū)ũ
]}
, (3.29)

which fits well in the classical framework of Strichartz estimates for wave equations, as given

in the following theorem.

Theorem 4. (see, e.g., [71]). Let w be a (weak) solution of the following wave equations

in [0, t∗]× Rn 
wtt −∆w = F (t, x),

w(0, ·) = w0, wt(0, ·) = w1.

(3.30)

Then the following Strichartz estimates hold

‖w‖LqtLrx + ‖wt‖LqtW−1,r
x

. ‖w0‖Ḣγ
x

+ ‖w1‖Ḣγ−1
x

+ ‖F‖
Lq̃
′
t L

r̃′
x
, (3.31)

where (q, r, γ) and (q̃′, r̃′) satisfy



2 ≤ q, r ≤ ∞,

(q, r, γ), (q̃′, r̃′, γ) 6= (2,∞, 1), when n = 3,

1
q

+ n

r
= n

2 − γ = 1
q̃′

+ n

r̃′
− 2,

2
q

+ n− 1
r
≤ n− 1

2 ,
2
q̃

+ n− 1
r̃
≤ n− 1

2 .

(3.32)
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For our purpose, n = 3, and we will take (q, r) = (4, 4), (q̃′, r̃′) = (1, 3/2), and γ = 1/2.

This way the above Strichartz estimate becomes

‖w||L4
t,x

+ ‖wt‖L4
tW
−1,4
x

. ‖w0‖
Ḣ

1
2
x

+ ‖w1‖
Ḣ
− 1

2
x

+ ‖F‖
L1
tL

3
2
x

. (3.33)

Moreover, in the case when n = 3, taking advantage of the explicit structure of the Kirch-

hoff’s formula for the classical wave operator, one may perform a refined bilinear estimates

as in [72, Theorem 2.2] in the weak solution setting to obtain (see also [32, (2.4)])

‖w||L4
t,x

+ ‖wt‖L4
tW
−1,4
x

. ‖w0‖
Ḣ

1
2
x

+ ‖w1‖
Ḣ
− 1

2
x

+ ‖F‖L1
tL

2
x
. (3.34)

Following [32], we decompose the pressure as p̄ = p̄1 + p̄2 where


∂ssp̄1 −∆p̄1 =

√
a∇ ·

[
(ū · ∇)ū+ 1

2(∇ · ū)ū
]

=: ∇ · F̄ ,

p̄1(x, 0) = p̄(x, 0), ∂sp̄1(x, 0) = p̄s(x, 0),
(3.35)


∂ssp̄2 −∆p̄2 = −

√
a∆(∇ · ū),

p̄2(x, 0) = ∂sp̄2(x, 0) = 0.
(3.36)

Applying Theorem 4 to the above two systems and unraveling the change-of-variables (3.26)

we obtain the following estimates.

Theorem 5. Let (uε, pε) be a strong solution of the Cauchy problem on [0, t∗] to system (3.4)

with initial data (uε0, pε0) satisfying (3.18). Assume also that ε(t) satisfies (3.5). Then for ε

small enough the following estimate holds.

ε
3
8‖pε‖L4

tW
−2,4
x

+ ε
7
8‖pεt‖L4

tW
−3,4
x

.
√
ε‖pε0‖L2

x
+ ‖∇ · uε0‖H−1

x

+
√
T‖∇ · uε‖L2

t,x
+
∥∥∥∥(uε · ∇)uε + 1

2(∇ · uε)uε
∥∥∥∥
L1
tL

3
2
x

.
(3.37)
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Proof. We first apply (3.33) with w = ∆−1/2p̄1 to obtain

‖p̄1‖L4
sW
−1,4
x

+ ‖∂sp̄1‖L4
sW
−2,4
x

. ‖p̄(x, 0)‖
Ḣ
− 1

2
x

+‖p̄s(x, 0)‖
Ḣ
− 3

2
x

+ ‖F̄‖
L1
sL

3
2
x

. (3.38)

Then we apply (3.34) to w = ∆p̄2 to obtain

‖p̄2‖L4
sW
−2,4
x

+ ‖∂sp̄2‖L4
sW
−3,4
x

. ‖
√
a(∇ · ū)‖L1

sL
2
x
. ‖(∇ · ū)‖L1

sL
2
x
. (3.39)

Unraveling notation, we have that

‖∇ · ū‖L1
s

=
∫ β−1(t∗/

√
ε)

0
|∇ · ū(s)| ds ≤

[
β−1

(
t∗√
ε

)]1/2

‖∇ · ū‖L2
s

≤
√
t∗

(cε)1/4‖∇ · ū‖L2
s
,

where the last inequality is due to the fact that (β−1)′ = 1/
√
a ≤ 1/

√
c. Moreover,

‖p̄‖Lrs = ε−1/2r‖A
r−1
2r pε‖Lrt ∼ ε−1/2r‖pε‖Lrt , p̄s =

√
εA(
√
Apε)t. (3.40)

Putting together (3.38) and (3.39) we have that

‖p̄‖L4
sW
−2,4
x

+ ‖p̄s‖L4
sW
−3,4
x

. ‖p̄(x, 0)‖
Ḣ
− 1

2
x

+ ‖p̄s(x, 0)‖
Ḣ
− 3

2
x

+
√
t∗

ε1/4
‖∇ · ū‖L2

sL
2
x

+ ‖F̄‖
L1
sL

3
2
x

.

Note from the second equation in (3.4) and (3.13) that

√
εA(
√
Apε)t = −∇ · u√

ε
. (3.41)

Therefore from (3.40) and (3.41) we can estimate

‖p̄s(x, 0)‖
Ḣ
− 3

2
x

≤ ‖p̄s(x, 0)‖Ḣ−1
x

. ε−1/2‖∇ · uε0‖H−1
x
.

Putting all the above together we derive (3.37).

Given the á priori energy estimates Theorem 3 and the pressure estimates Theorem 5,

we can now obtain the global existence of weak solutions to system (3.4).
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Theorem 6. Let ε(t) > 0 and (uε0, pε0) satisfy condition (3.18). Then for any t∗ > 0, system

(3.4) admits a weak solution (uε, pε) with the following properties

(1) uε ∈ L∞([0, t∗];L2(R3)) ∩ L2([0, t∗]; Ḣ1(R3));

(2)
√
εpε ∈ L∞([0, t∗];L2(R3)).

Proof. We will prove the theorem using the classical Friedrich’s method (also called Galerkin

method in the periodic case) which consists of approximating the system (3.4) by a cutoff

in the frequency space. For this, we define the operator Jn as follows.

Jnf := F−1
(
1B(0,n)(ξ)f̂(ξ)

)
,

where F denotes the Fourier transform in the space variables. Let us consider the approxi-

mate system:

∂tu
ε
n + Jn (Jnuεn · ∇Jnuεn) + 1

2Jn [(∇ · Jnuεn)Jnuεn] +∇Jnpεn −∆Jnuεn = 0,

∂tp
ε
n + εt(t)

2ε(t)p
ε
n + 1

ε(t)∇ · Jnu
ε
n = 0

(3.42)

with initial data

uεn(0, ·) = Jnu
ε(0, ·), pεn(0, ·) = Jnp

ε(0, ·).

The above system appears as a system of ODEs on L2 in transform space, and hence the

standard Cauchy-Lipschitz theorem implies the existence of a strictly positive maximal time

t∗n > 0 such that a unique solution exists which is continuous in time with values in L2. On

the other hand, as J2
n = Jn, we claim that Jn(uεn, pεn) is also a solution. Therefore uniqueness

implies that Jn(uεn, pεn) = (uεn, pεn) and hence one can remove all the Jn in front of uεn and pεn
in (3.42) keeping only those in front of the nonlinear terms:

∂tu
ε
n + Jn (uεn · ∇uεn) + 1

2Jn [(∇ · uεn)uεn] +∇pεn −∆uεn = 0,

∂tp
ε
n + εt(t)

2ε(t)p
ε
n + 1

ε(t)∇ · u
ε
n = 0

(3.43)
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Since Jn is a Fourier multiplier, it commutes with constant coefficient differentiations

and hence, the energy estimate (3.16) still holds:

1
2
(
‖uεn‖2

L2 + ε‖pεn‖2
L2

)
(t) +

∫ t

0
‖∇uεn‖2

L2

= 1
2
(
‖Jnuε0‖2

L2 + ε(0)‖Jnpε0‖2
L2

)
≤ C.

This implies that the L2 norm of (uεn, pεn) is controlled and thus t∗n = +∞.

Moreover we also have that for any t∗ > 0, there exists some constant Ct∗ such that

‖∂tuεn‖L2(0,T ;H−1) ≤ Ct∗ .

Therefore, extracting a subsequence, standard compactness arguments allow us to pass to

the limit in (3.43), proving the theorem.

3.2.4 CONVERGENCE TO THE NSE

The goal of this section is to establish the convergence of the AC system (3.4) to the

NS system, cf. Theorem 7. The key step is to show the strong convergence of the gradient

part and the divergence-free part of the velocity field. For this, let us denote P the Leray

projection defined by

P = I −Q, where Q = ∇(∆−1∇·). (3.44)

Note that P and Q are both bounded linear operators on W k,q(R3) for any k and q ∈ (1,∞).

See, e.g., [119].

From Corollary 1 and Theorem 5 we easily obtain the following result.

Proposition 1. Let the assumptions in Theorem 5 hold. Then as ε→ 0 it follows that

εpε → 0 strongly in L∞([0, t∗];L2(R3)) ∩ L4([0, t∗];W−2,4(R3)), (3.45)

∇ · uε → 0 strongly in W−1,∞([0, t∗];L2(R3)) ∩ L4([0, t∗];W−3,4(R3)). (3.46)

Proof. It is easily seen that (3.45) follows from (3.19), (3.37). Further, (3.46) follows from

(3.37) and the second equation of (3.4).
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3.2.4.1 STRONG CONVERGENCE OF Quε We will first prove that Quε goes to

zero in some strong sense as ε→ 0.

Lemma 4. Let (uε, pε) be the solution of the Cauchy problem to system (3.4) with initial data

(uε0, pε0) satisfying (3.18). Assume also that ε(t) satisfies (3.12). Then for any 4 ≤ p < 6,

Quε → 0 in L2([0, t∗];Lp), as ε→ 0. (3.47)

Proof. We follow the idea from [32, Proposition 5.3]. Consider the standard mollifier

η ∈ C∞0 (R3), η ≥ 0,
∫
R3
η dx = 1; ηα(x) := α−3η(x/α), 0 < α < 1.

Set fα := f ∗ ηα. Then for any f ∈ Ḣ1(R3) it holds

‖f − fα‖Lp ≤ Cα1−3( 1
2−

1
p)‖∇f‖L2 , ‖fα‖Lr ≤ Cα−s−3( 1

q
− 1
r )‖f‖W−s,q (3.48)

where p ∈ [2, 6], 1 ≤ q ≤ r ≤ ∞, s ≥ 0.

With the above, we decompose Quε as

‖Quε‖L2
tL

p
x
≤ ‖Quε − (Quε)α‖L2

tL
p
x

+ ‖(Quε)α‖L2
tL

p
x

=: J1 + J2.

Applying (3.48) to J1 we have

J1 ≤ Cα1−3( 1
2−

1
p)
(∫ T

0
‖∇Quε‖2

L2
x
dt

)1/2

≤ Cα1−3( 1
2−

1
p)‖∇uε‖L2

tL
2
x
.

As for J2, from (3.41) we see that

Quε = ∇∆−1(∇ · uε) = −ε∇∆−1
(
Apεt + 1

2Atp
ε
)
.

Thus from (3.48) we have

J2 = ε
∥∥∥∥∇∆−1

(
Apεt + 1

2Atp
ε
)
∗ ψα

∥∥∥∥
L2
tL

p
x

. εα−
3
2−3( 1

4−
1
p)‖Apεt‖L2

tW
−3,4
x

+ εα−
1
2−3( 1

4−
1
p)‖Atpε‖L2

tW
−2,4
x

. T
1
4 ε

1
8α−

3
2−3( 1

4−
1
p)‖ε 7

8pεt‖L4
tW
−3,4
x

+ T
1
4 ε

5
8α−

1
2−3( 1

4−
1
p)‖ε 3

8pε‖L4
tW
−2,4
x

.
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Now summing up the estimates for J1 and J2 and using Corollary 1 and Theorem 5 we find

that for any 4 ≤ p < 6,

‖Quε‖L2
tL

p
x
. α1−3( 1

2−
1
p) + ε

1
8α−

3
2−3( 1

4−
1
p) + ε

5
8α−

1
2−3( 1

4−
1
p).

Therefore when choosing, e.g.,

α = ε
1
14 ,

the above estimate becomes

‖Quε‖L2
tL

p
x
. ε

6−p
28p + ε

6+15p
28p . ε

6−p
28p , for any 4 ≤ p < 6,

which implies (3.47).

3.2.4.2 STRONG CONVERGENCE OF Puε Let us first recall the celebrated Aubin-

Lions lemma [4, 82].

Lemma 5. Let X0, X and X1 be Banach spaces with X0 ⊂ X ⊂ X1. Suppose that X0 is

compactly embedded in X and that X is continuously embedded in X1. Suppose also that X0

and X1 are reflexive. For 1 < p, q <∞, let

W :=
{
u ∈ Lq([0, t∗];X0) : du

dt
∈ Lq([0, T ];X1)

}
.

Then the embedding of W into Lp([0, t∗];X) is compact.

Next we will apply the above lemma to establish the strong compactness of Puε, the

divergence-free part of the velocity field.

Lemma 6. Let (uε, pε) be the solution of the Cauchy problem to system (3.4) with initial data

(uε0, pε0) satisfying (3.18). Assume also that ε(t) satisfies (3.14). Then Puε is pre-compact in

L2([0, t∗];L2
loc(R3)).
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Proof. We follow the standard idea in treating the NS equation to show that

Puεt is uniformly bounded in L
4
3 ([0, t∗];H−1(R3)). (3.49)

To this end, we apply P to the first equation in (3.4) to obtain

Puεt = ∆(Puε)− P [(uε · ∇)uε]− P
[1
2(∇ · uε)uε

]
.

From Theorem 3 we know that uε is uniformly bounded in L2([0, t∗];H1(R3)), and hence

∆(Puε) is uniformly bounded in L2([0, t∗];H−1(R3)). The estimates for the second and the

third terms on the right-hand side of the above equation are quite similar. So we only

consider the second term. From [129, Lemma 2.1] we know that

‖(uε · ∇)uε‖H−1 ≤ ‖uε‖
1
2
L2‖uε‖

3
2
H1 .

Therefore

‖(uε · ∇)uε‖
L

4
3
t H
−1
x

≤ ‖uε‖
1
2
L∞t L

2
x
‖uε‖

3
2
L2
tH

1
x
,

which implies (3.49), and hence proves the lemma.

3.2.4.3 CONVERGENCE THEOREM We are now in a position to state and prove

the main theorem of this section.

Theorem 7. Let (uε, pε) be the solution of the Cauchy problem to system (3.4) with initial

data (uε0, pε0) satisfying (3.18). Assume also that ε(t) satisfies (3.12). Then it holds that

(1) there exists u ∈ L∞([0, t∗];L2(R3)) ∩ L2([0, t∗]; Ḣ1(R3)) such that

uε ⇀ u weakly in L2([0, t∗]; Ḣ1(R3)).

(2) the divergence-free part and the gradient part of uε satisfy

Puε → Pu = u strongly in L2([0, t∗];L2
loc(R3));

Quε → 0 strongly in L2([0, t∗];Lp(R3)), for any 4 ≤ p < 6.

(3) the pressure pε will converge in the sense of distribution. Indeed,

pε → p = ∆−1∇ · [(u · ∇)u] in D′.
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Moreover, u = Pu is a Leray weak solution to the incompressible NS equation

P [ut − ∆u + (u · ∇)u] = 0 in D′,

and the energy inequality (3.15) holds.

Proof. It is easily seen that (1) follows from Theorem 3 and Corollary 1, and (2) follows 

from Lemmas 4 and 6. The proof of (3) and the energy inequality follows the same way as 

in the proof of [32, Theorem 3.3], so we omit it here.

3.2.5 NUMERICAL TESTS OF THE NEW MODEL

To test the stability and accuracy of the new model, we perform numerical tests of 

the variable timestep algorithm for problems on bounded domains under noslip boundary 

conditions. The tests employ the finite e lement m ethod t o d iscretize s pace, w ith Taylor-

Hood (P2/P1) elements, [50]. The meshes used for both tests are generated using a 2d and 

3d Delaunay algorithms. Finally, the software package FEniCS is used for both experiments 

[1].

3.2.5.1 TEST 1:  OSCILLATING  ε(t) We  first  apply  the  method  to  a  three-

dimensional offset cylinder problem. LetΩ 1 = {(x, y, z) : x2 + y2 < 1, 0 < z < 2} and 

Ω2 = {(x, y, z) : (x − .5)2 + y2 ≤ .01, 0 ≤ z ≤ 2} be cylinders of radii 1 and .1 and height 

2, respectively. Let thenΩ =Ω 1 \Ω 2. Both cylinders and the top and bottom surfaces 

are fixed, so noslip boundary conditions are i mposed. A  rotational body force f  is imposed, 

where the Reynolds number Re = 1 and

f(x; t) := (−4y(1 − x2 − y2), 4x(1 − x2 − y2), 0)T .

For initial conditions, we let u(x; 0), p(x; 0) be the solutions to a stationary Stokes solve at 

t = 0. This does not yield a fully developed initial condition so damped pressure oscillations
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Figure 3.1: Velocity and pressure norms over time t.

at startup are expected and observed. For this test, we let ν = .001 and the final time t∗ = 5.

We let εn = ∆tn, where ∆tn changes according the function

ε(tn) = ∆t(tn) :=


.01 0 ≤ n ≤ 10

.01 + .002 sin (10tn) n > 10.

The first plots in Figure 3.1 below track the velocity and pressure L2 norms over the duration

of the simulation. After an initial spike (typical of artificial compressibility methods with

poorly initialized pressures), the velocity and pressure stabilize. The vertical axes of ||uh||

and ||ph|| are on a logarithmic scale. The variable ε, velocity, and pressure are all clearly

stable.

In Figure 3.2, we give plots of velocity magnitude at times t = 1, 2, 3, 4 on Ω at five

cross-sections of Ω.

3.2.5.2 TEST 2: ADAPTIVE, VARIABLE ε(t) The next test investigates self-

adaptive variation of εn and the resulting accuracy. We now consider a two-dimensional flow
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Figure 3.2: Velocity magnitude at different t.
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over Ω = ]0, 1[2 with the exact solution

u(x, y; t) := sin(t)(sin(2πx) sin2(2πx), sin(2πx) sin2(2πy))T ,

p(x, y; t) := cos(t) cos(πx) sin(πy)

and corresponding body force f . We let Re = 1000, the final time t∗ = 1, εn = ∆tn, and

∆t0 = .001. To adapt the timestep (and generate ∆tn), we employ a halving-and-doubling

technique using ‖∇ · uh‖ as the estimator. We let the tolerance interval be (.001, .01) (If

‖∇ · uh‖ < 0.001, ∆tn and εn are doubled, while if ‖∇ · uh‖ > 0.01, the two are halved and

the step is repeated). This procedure does not control the local truncation error, only the

violation of incompressibility.

The plots in Figure 3.3 show the velocity and pressure errors, as well as the fluctuation of

∆tn and ∇ · u, over time. We see that the errors of both the velocity and pressure fluctuate

with changes in the timestep, as does the divergence.

Figure 3.3a shows that the velocity error is reasonable but does grow (slowly), consistent

with separation of trajectories of the Navier-Stokes equations. Figure 3.3d shows ‖∇ · uh‖

is controlled. Figure 3.3b shows the pressure error actually decreases. Figure 3.3c shows

that the evolution of ∆tn, and therefore εn, is not as smooth as required by condition (3.12).

Nevertheless, the simulation produced approximations of reasonable accuracy.

3.2.6 CONCLUSIONS AND FUTURE PROSPECTS

Slightly compressible fluids models provide a basis for challenging numerical simulations.

Efficiency and especially time accuracy in such simulations require variable timestep and thus

variable ε = ε(t). Variable ε is beyond existing mathematical foundations for slightly com-

pressible models. The method and associated continuum model considered herein is modified

from the standard one for variable ε, has been proven to be stable and converge to a weak

solution of the incompressible Navier-Stokes equations as ε(t) → 0 and εt(t) → 0, provided

εt(t) ≤ Cε(t). The analysis of the long time stability of the standard method and model for

variable ε = ε(t) is an open problem with no clear entry point for its analysis (Section 2).
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Figure 3.3: Accuracy and adaptability results.
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Preliminary numerical tests in Section 3.2.5 with halving and doubling indicate a good agree-

ment with the analytical results under the fluctuation condition εt(t) ≤ Cε(t). Other open

questions include convergence of flow quantities (e.g., vorticity, lift, drag, energy dissipation

rates, Q-criterion values and so on) to their incompressible values as ε(t), εt(t), · · · → 0,

derivation of the rates of convergence for strong solutions and extension of the analysis

herein.

3.3 DOUBLY ADAPTIVE AC SCHEMES

3.3.1 INTRODUCTION

Artificial compressibility (AC) methods are based on replacing∇·u = 0 by ε∂tp+∇·u = 0

(0 < ε small), uncoupling velocity and pressure and advancing the pressure explicitly in time.

Their high speed and low storage requirements recommend them for complexity bound fluid

flow simulations. Unfortunately, time-accurate artificial compressibility approximations have

proven elusive. Time accuracy (along with increased efficiency and decreased memory) is

obtained by time-adaptive algorithms. To our knowledge, the defect correction based scheme

of Guermond and Minev [47] and the non-autonomous AC method in [13], presented in

Section 3.2, both adapting the timestep with ε = ∆t (timestep), are the only previous

implicit, time-adaptive AC methods.

This section presents time-adaptive AC algorithms based on an approach of independently

adapting the AC parameter ε and timestep ∆t. The methods proceed as follows: A standard,

first-order, implicit method, (1st Order) below, is used to advance the momentum equation in

the artificial compressibility equations. A second-order velocity approximation, (2nd Order)

below, is then computed at negligible cost using a time filter adapted from [53]. The difference

between the first-order and second-order approximations gives a reliable estimator, EST (1),

for the local error in the momentum equation for the first-order method and is used to adapt

the time step in Algorithm 2, Section 3.3.8.

Adapting the AC parameter ε is more challenging. Stability of the standard AC discrete
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continuity equation (ε∂tp + ∇ · u = 0) is unknown for variable ε, see Section 3.2 and [13].

We present two new, variable ε, discrete continuity equations in (3.53) below and prove

their unconditional, long-time stability in Theorems 8, 9 and 10. These results show that

adaptivity will respond to accuracy constraints rather than try to correct stability problems

with small time-steps. In these continuity equations, the size of ||∇ · u|| is monitored and

used to adapt the choice of the AC parameter ε (e.g., Algorithm 1, Section 3.3.6) whereupon

the calculation proceeds to the next time step. The self-adaptive strategy for independently

adapting ε also side steps the practical problem of how to pick ε in AC methods and related

penalty methods, even for constant time-steps. The new discrete continuity equations reduce

to the standard ε∂tp+∇ · u = 0 for constant ε, improve, through greater simplicity, a non-

autonomous (ε = ε(t)) AC formulation in [13] and yield now three proven stable extensions

of the discrete AC continuity equation to variable ε. A comparison of the three is presented

in Section 3.3.9. Determining if one or some combination of the three, or some other yet

undetermined possibility is an important open problem.

The second-order method. To obtain an O(∆t2) approximation of the momentum

equation (with embedded error estimator), Algorithms 2 and 3 incorporate a recent idea of

[53] of increasing accuracy and estimating errors by time filters. Theorem 10 of Section 3.3.6

gives a proof of unconditional, long-time stability of the second-order, constant timestep

but variable ε method. The resulting embedded structure of Algorithms 2 and 3 suggests

low-complexity, variable-order methods may be possible once an adaptive ε strategy is well

developed.

The second-order method is a one leg method. Reliable estimators of the local truncation

error (LTE) in one leg methods are expensive as detailed in [27]. An inexpensive estimator,

EST (2) in Algorithm 3, of the LTE in the method’s linear multistep twin, based on a second

time filter, is presented. For the one leg method, this estimator is inexpensive but heuristic.

The doubly adapted, second-order method in Algorithm 3 is tested in Section 3.3.9. The

embedded structure of the first and second-order method suggests that adapting the method

order in addition to the timestep and AC parameter ε may increase accuracy and efficiency

further (see Algorithm 4).

Three stable treatments of the momentum equation (first, second and even variable order)
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are possible. Three stable treatments of the variable ε continuity are now possible: two in

Section 3.3.2 below and one in Section 3.2 [13]. The results are nine adaptive AC methods

with computational complexity comparable to the common first-order method, described

herein.

3.3.2 REVIEW OF A COMMON AC METHOD

Denote by u the velocity, p the pressure, ν the kinematic viscosity, and f the external

force. Consider the slightly compressible/hyposonic [146] approximation to the incompress-

ible Navier-Stokes equations in a domain Ω in Rd, d = 2, 3

∂tu+ (u · ∇)u+ 1

2(∇ · u)u+∇p− ν∆u = f

ε∂tp+∇ · u = 0, where 0 < ε is small.
(3.50)

This is the most common of several possible formulations reviewed in Section 3.2. To present

methods herein we will consistently suppress the secondary spatial discretization.

Remark 9. All stability results proven herein hold, by the same proof, for standard varia-

tional spatial discretizations such as finite element methods with div-stable elements.

Let u∗ denote the standard (second-order) linear extrapolation of u from previous values

to tn+1

u∗ =
(

1 + ∆tn+1

∆tn

)
un − ∆tn+1

∆tn
un−1

(
= 2un − un−1 for constant timestep

)
.

Here, we note that Temperton and Staniforth [132] advocated even higher order extrapola-

tion. To fix ideas, among many possible, e.g., [46, 48, 49, 68, 74, 101, 25, 94, 145], consider

a common, constant timestep, semi-implicit time discretization of (3.50):

un+1 − un

∆t + (u∗ · ∇)un+1 + 1
2(∇ · u∗)un+1 +∇pn+1 − ν∆un+1 = f(tn+1), (3.51)

ε
pn+1 − pn

∆t +∇ · un+1 = 0.

Here ∆t is the timestep, tn = n∆t, un, pn are approximations to the velocity and pressure at

t = tn. This has consistency error O(∆t+ ε) leading to the most common choice of selecting
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ε = ∆t to balance errors. Since ∇pn+1 = ∇pn − (∆t/ε)∇∇ · un+1, this uncouples into a

velocity solve followed by an algebraic pressure update

un+1 − un

∆t + (u∗ · ∇)un+1 + 1
2(∇ · u∗)un+1 − ∆t

ε
∇∇ · un+1

−ν∆un+1 = −∇pn + fn+1,

then given un+1: pn+1 = pn − ∆t
ε
∇ · un+1. (3.52)

For constant ε,∆t, this method is unconditionally, nonlinearly, long-time stable, e.g., [46,

48, 109, 108]. Its long-time stability for variable ε,∆t is an open problem, see Section 3.2

and [13].

3.3.3 NEW METHODS FOR VARIABLE ε,∆t

Although well motivated, the choice ε = ∆t cannot be more than a step to a correct

choice. First, observe, for T∗ a time scale and L a length scale, that the units of ε scale like

T 2
∗ /L

3 while the units of ∆t scale like T∗. Thus, a correct choice of ε should be scaled to

be dimensionally consistent and afterwards the constant multiplier optimized. Aside from

dimensional inconsistency, the standard choice ε = ∆t ignores the different roles of ε and ∆t.

To leading orders, the consistency error in the continuity equation is O(ε), independent of

∆t, and the consistency error in the momentum equation is O(∆t), independent of ε. This

observation on the standard method (3.51), (3.52) motivates the development plan for the

doubly adaptive algorithms herein:

• Develop first (Section 3.3.5) and second (Section 3.3.6) order methods stable for variable

∆t, ε.

• Adapt εn to control the consistency error in the continuity equation by monitoring ||∇·u||,

Sections 3.3.6, 3.3.8.

• Develop inexpensive estimators for momentum equation consistency error and adapt

∆t = ∆tn for its control, Section 3.3.8.

• Use (Section 3.3.8) and test (Section 3.3.9) the estimators in a doubly adaptive, variable

ε,∆t, algorithm.
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In adaptive methods, strong stability is necessary, so εn,∆tn can be adapted for time-

accuracy rather than to correct instabilities. One key difficulty, resolved by the two methods

(3.53) below, is that useful stability is unknown for the common AC method (3.51) with

variable ε, see Section 3.2 and [13], and even for the continuum model (3.50) with ε = ε(t).

A second key difficulty is that (unconditional, nonlinear) G-stability for variable time-steps

is uncommon. For example, the popular BDF2 method loses A-stability for increasing time-

steps.

Remark 10. To our knowledge, the only such two-step method is the little explored one of

Dahlquist, Liniger, and Nevanlinna [20]. This second issue may be resolvable by a variable

(first and second) order implementation since it would include the A-stable, fully implicit

method.

The continuity equation is treated by either a geometric average (GA-Method) or a

minimum term (min-Method) as follows. Given un, pn, εn,∆tn, select εn+1,∆tn+1, calculate

un+1, then

GA-Method: εn+1pn+1−√εn+1εnpn

∆tn+1
+∇ · un+1 = 0, or

min-Method: εn+1pn+1−min{εn+1,εn}pn
∆tn+1

+∇ · un+1 = 0.

(3.53)

These methods are proven in Section 3.3.5 to be unconditionally, variable ε,∆t stable. For

the discrete momentum equation, recall u∗ is an extrapolated approximation to u(tn+1). The

first-order method’s momentum equation is the standard one (3.51) above given by

un+1 − un

∆tn+1
+ (u∗ · ∇)un+1 + 1

2(∇ · u∗)un+1 +∇pn+1 − ν∆un+1 = fn+1. (1st Order)

The (linearly-implicit) treatment of the nonlinear term is inspired by Baker [5]. The second

method, adapted from [53], adds a time filter to obtain O(∆t2) accuracy and automatic

error estimation as follows. Let the timestep ratio be denoted τ = ∆tn+1/∆tn. Call un+1
1

the solution obtained from the first-order method (1st Order) above. The second-order
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approximation un+1 is obtained by filtering un+1
1 :

un+1
1 − un

∆tn+1
+ (u∗ · ∇)un+1

1 + 1
2(∇ · u∗)un+1

1 +∇pn+1 − ν∆un+1
1 = fn+1,

For τ = ∆tn+1

∆tn
let α1 = τ(1 + τ)

(1 + 2τ) , then :

un+1 = un+1
1 − α1

2

{
2∆tn

∆tn + ∆tn+1
un+1

1 − 2un + 2∆tn+1

∆tn + ∆tn+1
un−1

}
.

(2nd Order)

Denote by D2(n+ 1) the quantity above in braces

D2(n+ 1) := 2∆tn
∆tn + ∆tn+1

un+1
1 − 2un + 2∆tn+1

∆tn + ∆tn+1
un−1.

Note that D2(n+ 1) is 2∆tn∆tn+1×(a second divided difference).

A simple estimate of the local error in the first-order approximation un+1
1 is given by a

measure (here the L2 norm) of the difference of the two approximations

EST (1) = ‖un+1 − un+1
1 ‖ = α1

2 ‖D2(n+ 1)‖.

3.3.3.1 ESTIMATING THE ERROR IN THE SECOND-ORDER APPROXI-

MATION Naturally one would like to use the second-order approximation for more than

an estimator. It is possible to use EST (1) above as a pessimistic estimator for un+1. In

Section 3.3.6 we show that, eliminating the intermediate step un+1
1 , the second-order method

is equivalent to the second-order, one leg method (3.61) below. Estimation of the LTE for

this OLM cannot be done by a simple time filter for reasons delineated in [27] and based on

classical analysis of the LTE in OLMs of Dahlquist. We test an inexpensive but heuristic

estimator that can be calculated by a second time filter. EST (2) below is an LTE estima-

tor for the OLMs linear multi-step twin. To estimate the local error in the second-order

approximation we use the third divided difference with multiplier chosen (by a lengthy but

elementary Taylor series calculation) to cancel the first term of the LTE of the methods

linear multi-step twin

EST (2) = α2

6

∥∥∥∥∥ 3∆tn−1

∆tn+1 + ∆tn + ∆tn−1
D2(n+ 1)− 3∆tn−1

∆tn+1 + ∆tn + ∆tn−1
D2(n)

∥∥∥∥∥
where

α2 = τn(τn+1τn + τn + 1)(4τ 3
n+1 + 5τ 2

n+1 + τn+1)
3(τnτ 2

n+1 + 4τnτn+1 + 2τn+1 + τn + 1) , and τn = ∆tn/∆tn−1.
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The resulting adaptive algorithm uncouples like (3.52) into a velocity update with a grad-div

term then an algebraic pressure update. More reliable but more expensive estimators are

possible. The above inexpensive but heuristic one is tested herein because the motivation

for AC methods is often based on the need for faster and reduced memory algorithms in

specific applications.

Section 3.3.5 presents the analysis of the two first-order methods, proving long-time,

unconditional stability for variable ε,∆t. This analysis develops the key treatment of the

discrete continuity equation necessary for stability. Section 3.3.6 gives a proof of uncondi-

tional, long time stability for the variable ε, constant ∆t second-order method. This proof

can be extended to decreasing time-steps but not increasing time-steps.

3.3.4 RELATED WORK

Artificial compressibility (AC) methods were introduced in the 1960’s by Chorin, Os-

kolkov and Temam. Their mathematical foundation has been extensively developed by Shen

[107, 108, 109, 111] and Prohl [101]. Recent work includes [74, 25, 48, 49, 68, 94, 145]. The

GA-method (geometric averaging method) herein is motivated by work in [18] for stably

uncoupling atmosphere-ocean problems.

There has been extensive development of adaptive methods for assured accuracy in fully

coupled, u-p discretizations, e.g., [57], and adaptive methods based on estimates of local

truncation errors including [54, 70, 136]. In complement, the work herein aims at methods

that use less expensive local (rather than global) error estimators, do not provide assured

time-accuracy but emphasize (consistent with the artificial compressibility methods) low

cognitive, computational, and space complexity. Aside from [13] and Guermond and Minev

[47], extension of implicit, time-adaptive methods to artificial compressibility discretizations

is undeveloped.

Herein accuracy is increased and local errors estimated by time filters. Other approaches

are clearly possible. Time filters are an important tool in GFD to correct weak instabilities

and extend forecast horizons, [3, 77, 102, 141, 142]. In [53], it was noticed that a time filter

can also increase the convergence rate of the Backward Euler method and estimate errors.
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G-stability of the resulting (constant timestep) time discretization was recently proven for

the fully-coupled, velocity-pressure Navier-Stokes equations in [24].

3.3.5 FIRST-ORDER, VARIABLE ∆t, ε METHODS

This section establishes unconditional, long-time, nonlinear stability of the two variable

∆t, ε first-order methods of Section 3.3.3 in the usual L2(Ω) norm. The methods differ in the

treatment of the discrete continuity equation and reduce to the standard AC method (3.51)

for constant ε,∆t. We prove that the first-order implicit discretization of the momentum

equation with both new methods (3.54), (3.55) are unconditionally, nonlinearly, long-time

stable without assumptions on εn,∆tn. We study these new methods in a bounded, regular

domain Ω subject to the initial and boundary conditions

u0 = u0(x) and p0 = p0(x), in Ω,

un = 0 on ∂Ω for t > 0.

The two first-order methods are: Given un, pn, εn,∆tn, select εn+1,∆tn+1 and

un+1 − un

∆tn+1
+ (u∗ · ∇)un+1 + 1

2(∇ · u∗)un+1 +∇pn+1 − ν∆un+1 = fn+1,

εn+1p
n+1 − ε̂pn

∆tn+1
+∇ · un+1 = 0, where

ε̂ = min{εn+1, εn} for the min-Method and (3.54)

ε̂ = √εn+1εn for the GA-Method (3.55)

For constant ε both methods reduce to the standard method (3.51), (3.52) for which stability

is known. Thus, the interest is stability for variable ε.
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3.3.5.1 STABILITY OF THE MIN-METHOD It is useful to recall that

(εn+1 − εn)+ = max{0, εn+1 − εn} = εn+1 −min{0, εn+1 − εn}.

Theorem 8 (Stability of the min-Method). The variable ε,∆t min-Method is uncondition-

ally, long-time stable. For any N > 0 the energy equality holds:

‖uN‖2 + εN‖pN‖2 +
N−1∑
n=0

(
min {εn+1, εn}‖pn+1 − pn‖2 + (εn+1 − εn)+‖pn+1‖2

+(εn − εn+1)+‖pn‖2 + ‖un+1 − un‖2 + 2∆tn+1ν‖∇un+1‖2
)

= ‖u0‖2 + ε0‖p0‖2 +
N−1∑
n=0

2∆tn+1(fn+1, un+1).

Consequently, the stability bound holds:

‖uN‖2 + εN‖pN‖2 +
N−1∑
n=0

(
min {εn+1, εn}‖pn+1 − pn‖2 + (εn+1 − εn)+‖pn+1‖2

+(εn − εn+1)+‖pn‖2 + ‖un+1 − un‖2 + ∆tn+1ν‖∇un+1‖2
)

≤ ‖u0‖2 + ε0‖p0‖2 +
N−1∑
n=0

∆tn+1

ν
‖fn+1‖2

−1.

Proof. First we note that using the polarization identity, algebraic rearrangement and con-

sidering the cases εn+1 > εn and εn+1 < εn we have

(εn+1p
n+1 −min{εn+1, εn}pn, pn+1)

= εn+1‖pn+1‖2 −min{εn+1, εn}(pn, pn+1)

= εn+1‖pn+1‖2 −min{εn+1, εn}
{1

2‖p
n‖2 + 1

2‖p
n+1‖2 − 1

2‖p
n − pn+1‖2

}
=
(
εn+1 −

1
2 min{εn+1, εn}

)
‖pn+1‖2

−1
2 min{εn+1, εn}‖pn‖2 + 1

2 min{εn+1, εn}‖pn − pn+1‖2

= 1
2εn+1‖pn+1‖2 − 1

2εn‖p
n‖2 + 1

2 min{εn+1, εn}‖pn − pn+1‖2

+1
2 (εn+1 −min{εn+1, εn}) ‖pn+1‖2 + 1

2 (εn −min{εn+1, εn}) ‖pn‖2.
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We have εn+1−min{εn+1, εn} = (εn+1 − εn)+ and εn−min{εn+1, εn} = (εn − εn+1)+ . Thus,

because ‖pn − pn+1‖2 = ‖pn+1 − pn‖2,

(εn+1p
n+1 −min{εn+1, εn}pn, pn+1) = (3.56)

= 1
2εn+1‖pn+1‖2 − 1

2εn‖p
n‖2 + 1

2 min{εn+1, εn}‖pn+1 − pn‖2

+1
2 (εn+1 − εn)+ ‖pn+1‖2 + 1

2 (εn − εn+1)+ ‖pn‖2.

With this identity, take the inner product of the first equation with 2∆tn+1u
n+1, the second

with 2∆tn+1p
n+1, integrate over the flow domain, integrate by parts, use skew-symmetry,

use the polarization identity twice and add. This yields

‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2 + 2∆tn+1ν‖∇un+1‖2

(εn+1p
n+1 −min{εn+1, εn}pn, pn+1) = 2∆tn+1(fn+1, un+1).

From (3.56) the energy equality becomes

(
‖un+1‖2 + εn+1‖pn+1‖2

)
−
(
‖un‖2 + εn‖pn‖2

)
+2∆tn+1ν‖∇un+1‖2 + ‖un+1 − un‖2 + min{εn+1, εn}‖pn+1 − pn‖2

+(εn+1 − εn)+‖pn+1‖2 + (εn − εn+1)+‖pn‖2 = 2∆tn+1(fn+1, un+1).

Upon rearrangements and summation, the first two terms telescope, completing the proof of

the energy equality. The stability estimate follows from the energy equality, the definition

of the dual norm, and the Cauchy-Schwarz-Young inequality.

The stability analysis shows that the numerical dissipation Dn+1
min at tn+1 in the min-

Method is

Dn+1
min = ‖un+1 − un‖2 + min{εn+1, εn}‖pn+1 − pn‖2

+(εn+1 − εn)+‖pn+1‖2 + (εn − εn+1)+‖pn‖2.
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3.3.5.2 STABILITY OF THE GA-METHOD The proof of stability of the GA-

method differs from the last proof only in the treatment of the variable ε term, resulting is

a different numerical dissipation for the method.

Theorem 9 (Stability of GA-Method). The variable ε,∆t, first-order GA-Method is uncon-

ditionally, long-time stable. For any N > 0 the energy equality holds:

‖uN‖2 + εN‖pN‖2 +
N−1∑
n=0

(
‖un+1 − un‖2 + ‖√εn+1p

n+1 −
√
εnp

n‖2 + 2∆tn+1ν‖∇un+1‖2
)

= ‖u0‖2 + ε0‖p0‖2 +
N−1∑
n=0

2∆tn+1(fn+1, un+1).

and the stability bound holds:

‖uN‖2 + εN‖pN‖2 +
N−1∑
n=0

(
‖un+1 − un‖2 + ‖√εn+1p

n+1 −
√
εnp

n‖2 + ∆tn+1ν‖∇un+1‖2
)

≤ ‖u0‖2 + ε0‖p0‖2 +
N−1∑
n=0

∆tn+1

ν
‖fn+1‖2

−1.

Proof. First we note that using the polarization identity we have

(εn+1p
n+1 −√εn+1εnp

n, pn+1) =

= εn+1‖pn+1‖2 − (√εnpn,
√
εn+1p

n+1)

= εn+1‖pn+1‖2 −
{1

2εn‖p
n‖2 + 1

2εn+1‖pn+1‖2 − 1
2‖
√
εnp

n −√εn+1p
n+1‖2

}
= 1

2εn+1‖pn+1‖2 − 1
2εn‖p

n‖2 + 1
2‖
√
εn+1p

n+1 −
√
εnp

n‖2.

The remainder of the proof is the same as for the min-Method.

The stability analysis shows that the numerical dissipation Dn+1
GA at tn+1 in the GA-

Method is

Dn+1
GA = ‖un+1 − un‖2 + ‖√εn+1p

n+1 −
√
εnp

n‖2.

There is no obvious way to tell á priori which method’s numerical dissipation is larger or to

be preferred. A numerical comparison is thus presented in Section 5.
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Remark 11 (The Continuum Analogues). It is natural to ask if there is a non-autonomous

continuum AC model associated with each method. The momentum equation for each con-

tinuum model is the standard

∂tu+ (u · ∇)u+ 1
2(∇ · u)u− ν∆u+∇p = f.

The associated continuum continuity equation for the min-Method is

ε(t)∂tp+ ε+
t p+∇ · u = 0, (3.57)

whereas the continuum continuity equation for the GA-method is

√
ε∂t(
√
εp) +∇ · u = 0.

Analyzing convergence of (3.57) to a weak solution of the incompressible NSE as the non-

autonomous ε(t)→ 0 is a significant open problem. The convergence of the GA-method can

be inferred from the results in Section 3.2.

3.3.6 SECOND-ORDER, VARIABLE ε METHODS

The first-order methods are now extended to embedded first and second-order methods

adapting [53] from ODEs to the NSE. First we review the idea of extension used.
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3.3.6.1 REVIEW OF THE ODE ALGORITHM Consider the initial value problem

y′(t) = f(t, y(t)), y(0) = y0.

Recall τ = ∆tn+1/∆tn is the timestep ratio. The second-order accurate, variable timestep

method of [53] is the standard backward Euler (fully-implicit) method followed by a time

filter:

Step 1 yn+1
1 −yn
∆tn+1

= f(tn+1, y
n+1
1 ),

pick filter parameter α(1) = τ(1+τ)
(1+2τ) , then

Step 2 yn+1 = yn+1
1 − α1

2

{
2∆tn

∆tn+∆tn+1
yn+1

1 − 2yn + 2∆tn+1
∆tn+∆tn+1

yn−1
}
.

(3.58)

The combination is second-order accurate, A-stable for constant or decreasing time-steps

and a measure of the pre- and post-filter difference

EST (1) = |yn+1 − yn+1
1 | (3.59)

can be used in a standard way as a local error estimator for the lower order approximation

yn+1
1 or a (pessimistic) estimator for the higher order approximation yn+1.

3.3.6.2 A SIMPLE, ADAPTIVE-ε, SECOND-ORDER AC ALGORITHM The

continuity equation for both methods can be written

εn+1p
n+1 − ε̂pn

∆tn+1
+∇ · un+1 = 0 where ε̂ = √εn+1εn or min{εn+1, εn}.

This can be used to uncouple velocity and pressure using

∇pn+1 = ε̂

εn+1
∇pn − ∆tn+1

εn+1
∇∇ · un+1.

The discrete momentum equation for either first-order method is then

un+1
1 − un

∆tn+1
+ (u∗ · ∇)un+1

1 + 1
2(∇ · u∗)un+1

1 − ∆tn+1

εn+1
∇∇ · un+1

1

−ν∆un+1
1 = fn+1 − ε̂

εn+1
∇pn.

Applying the time filter of (3.58) to the velocity approximation increases the methods ac-

curacy to O(∆t2). This combination yields a simple, second-order, constant timestep but

adaptive ε algorithm. In the algorithm below the change in ε is restricted to be between

halving and doubling the previous ε value.
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Algorithm 1 (Simple, adaptive ε, constant timestep, second-order AC method). Given

un, un−1, pn,∆t, εn+1, εn, and tolerance TOLc, perform the following steps:

Step 1: Select ε̂ = √εn+1εn or ε̂ = min{εn+1, εn}, set u∗ = 2un − un−1, and solve for un+1
1

satisfying

un+1
1 − un

∆t + (u∗ · ∇)un+1
1 + 1

2(∇ · u∗)un+1
1 − ∆t

εn+1
∇∇ · un+1

1

−ν∆un+1
1 = fn+1 − ε̂

εn+1
∇pn.

Step 2: Filter un+1
1 and compute the estimator ESTc:

un+1 = un+1
1 − 1

3
{
un+1

1 − 2un + un−1
}
,

ESTc = ‖∇ · un+1‖ = 1
3‖u

n+1
1 − 2un + un−1‖.

Step 3: Adapt ε : If ESTc > TOLc, then repeat Steps 1 and 2 after resetting εn+1 by

εn+1 = max{0.9εn+1
TOLc
ESTc

, 0.5εn+1}

Otherwise, adapt by

εn+2 = max{min{0.9εn+1
TOLc
ESTc

, 2εn+1}, .5εn+1}.

Step 4: Update the pressure

pn+1 = ε̂

εn+1
pn − ∆tn+1

εn+1
∇ · un+1

and proceed to the next time, repeating the steps listed above.
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3.3.7 STABILITY OF THE SECOND-ORDER METHOD FOR VARIABLE ε,

CONSTANT ∆t

This section establishes unconditional, nonlinear, long-time stability of the second-order

GA-method for constant timesteps but variable ε. The proof addresses the interaction be-

tween the filter step with the continuity equation. It is adapted to the min-Method following

ideas in the proof of Theorem 8. For constant time-steps and variable ε the GA-method is

as follows. Given un, un−1, pn, pn−1, εn, select εn+1 and u∗ = 2un − un−1 (since the timestep

is here constant). Then,

un+1
1 − un

∆t + (u∗ · ∇)un+1
1 + 1

2(∇ · u∗)un+1
1 +∇pn+1 − ν∆un+1

1 = fn+1,

Filter: un+1 = un+1
1 − 1

3
{
un+1

1 − 2un + un−1
}

(3.60)

Find pn+1 :
εn+1p

n+1 −√εn+1εnp
n

∆t +∇ · un+1
1 = 0 & proceed to next step.

We now prove an energy equality for the method which implies stability.

Theorem 10. The method (3.60) satisfies the following discrete energy equality (from which

stability follows). For any N > 1

‖uN‖2 + ‖2uN − uN−1‖2 + ‖uN − uN−1‖2 + 2εN‖pN‖2

N−1∑
n=1

(
3‖un+1 − 2un + un−1‖2 + 2‖√εn+1p

n+1 −
√
εnp

n‖2 + ∆tν‖∇(3un+1 − 2un + un−1)‖2
)

= ‖u1‖2 + ‖2u1 − u0‖2 + ‖u1 − u0‖2 + 2ε1‖p1‖2 +
N−1∑
n=1

2∆t(fn+1, 3un+1 − 2un + un−1).

Proof. To prove stability, we eliminate the intermediate value un+1
1 in the momentum equa-

tion. From the filter step un+1 = un+1
1 − 1

3

{
un+1

1 − 2un + un−1
}

we have

un+1
1 = 3

2u
n+1 − un + 1

2u
n−1.

Replacing un+1
1 by 3

2u
n+1 − un + 1

2u
n−1 yields the equivalent discrete momentum equation:

3un+1 − 4un + un−1

2∆t + 1
2(u∗ · ∇)(3un+1 − 2un + un−1) (3.61)

+1
4(∇ · u∗)(3un+1 − 2un + un−1) +∇pn+1 − ν

2∆(3un+1 − 2un + un−1) = fn+1.
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Multiply by the timestep ∆t, take the L2 inner product of the momentum equation (3.61)

with 2∆t(3un+1− 2un +un−1), the L2 inner product of the discrete continuity equation with

4∆tpn+1 and add. Two pressure terms cancel since un+1
1 = 1

2(3un+1 − 2un + un−1)and the

nonlinear terms vanish due to skew-symmetry. Thus, we obtain

(3un+1 − 4un + un−1, 3un+1 − 2un + un−1) + (εn+1p
n+1 −√εn+1εnp

n, pn+1)

+∆tν‖∇(3un+1 − 2un + un−1)‖2 = ∆t(fn+1, 3un+1 − 2un + un−1).

The key terms are the first two. For the first term, apply the following identity from [24]:

(
‖un+1‖2 + ‖2un+1 − un‖2 + ‖un+1 − un‖2

)
−
(
‖un‖2 + ‖2un − un−1‖2 + ‖un − un−1‖2

)
+3‖un+1 − 2un + un−1‖2 = (3un+1 − 4un + un−1, 3un+1 − 2un + un−1).

For the pressure term (√εn+1εnp
n, pn+1) the polarization identity, suitably applied, yields

(√εn+1εnp
n, pn+1) = (√εnpn,

√
εn+1p

n+1) =

= 1
2
(
εn+1‖pn+1‖2 + εn‖pn‖2 − ‖√εn+1p

n+1 −
√
εnp

n‖2
)
.

Thus,

(εn+1p
n+1 −√εn+1εnp

n, pn+1) = 1
2εn+1‖pn+1‖2 − 1

2εn‖p
n‖2 + 1

2‖
√
εn+1p

n+1 −
√
εnp

n‖2.

Combining the pressure and velocity identities, we have

(
‖un+1‖2 + ‖2un+1 − un‖2 + ‖un+1 − un‖2 + 2εn+1‖pn+1‖2

)
−
(
‖un‖2 + ‖2un − un−1‖2 + ‖un − un−1‖2 + 2εn‖pn‖2

)
+3‖un+1 − 2un−1 + un−1‖2 + 2‖√εn+1p

n+1 −
√
εnp

n‖2

+∆tν‖∇(3un+1 − 2un + un−1)‖2 = 2∆t(fn+1, 3un+1 − 2un + un−1).

Summing from n = 1 to N proves unconditional, long-time stability.
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3.3.8 DOUBLY ∆t, ε ADAPTIVE ALGORITHMS

We present three doubly adaptive AC algorithms: first-order, second-order, and a third

that adapts the method order. The first two are tested in Section 3.3.9. While not tested

herein, we include the variable order adaptive algorithm for its clear interest. In the first

algorithm, the error is estimated by a time filter and the next timestep and next ε are

adapted based on first-order prediction:

∆tnew = ∆told
(
TOLm
EST (1)

)1/2

and εnew = εold
TOLc

‖∇ · un+1‖
,

where TOLm and TOLc are tolerances for the error in the momentum and continuity equa-

tions, respectively. In our implementation, a safety factor of 0.9 is used and the maximum

change in both is (additionally) restricted to be between 0.5 and 2.0.

Algorithm 2 (Doubly ∆t, ε Adaptive, First-Order Method). Given TOLm,TOLc, un, un−1,

kn+1, kn, kn−1, and εn, perform the following steps:

Step 1: Compute τ = ∆tn+1
∆tn and α1 = τ(1.0+τ)

1.0+2.0τ , select ε̂ = √εn+1εn or ε̂ = min{εn+1, εn}, and

set u∗ = (1 + τ)un − τun−1.

Step 2: Find BE approximation un+1 satisfying

un+1 − un

∆tn+1
+ (u∗ · ∇)un+1 + 1

2(∇ · u∗)un+1 − ∆tn+1

εn+1
∇∇ · un+1 − ν∆un+1 = fn+1 − ε̂

εn+1
∇pn.

Step 3: Compute the difference D2 and estimators:

D2 = 2∆tn
∆tn + ∆tn+1

un+1 − 2un + 2∆tn+1

∆tn + ∆tn+1
un−1

EST (1) = α1

2 ‖D2‖,

ESTc = ‖∇ · un+1
1 ‖.

Step 4: If ESTc > TOLc or EST (1) > TOLm, then repeat Steps 1–3 after resetting εn+1,

∆tn+1 by

εn+1 = max{0.9εn+1
TOLc
ESTc

, 0.5εn+1},

∆tn+1 = 0.9
(
TOLm
EST (1)

)1/2

max

0.9∆tn
(
TOLm
EST (1)

)1/2

, 0.5∆tn+1

 .

60



Otherwise, predict the best next step for each approximation:

εn+2 = max{min{0.9εn+1
TOLc
ESTc

, 2εn+1}, 0.5εn+1},

∆tn+2 = max

min

0.9∆tn+1

(
TOLm
EST (1)

)1/2

, 2∆tn+1

 , 0.5∆tn+1

 .
Step 5: Update the pressure

pn+1 = ε̂

εn+1
pn − ∆tn+1

εn+1
∇ · un+1

and proceed to the next timestep, repeating the steps listed above.

3.3.8.1 THE SECOND-ORDER, DOUBLY ADAPTIVE ALGORITHM For

the second-order, doubly adaptive method, we predict the next ε value in the same way

as in the first-order method and predict the next timestep based on the second-order pre-

diction

∆tnew = ∆told
(
TOLm
EST (2)

)1/3

.

Next, we calculate EST (2). The second-order method is equivalent, after elimination of

the intermediate (first-order) approximation, to a one leg method exactly as in (3.60) in

the constant timestep case. The one leg method’s linear multistep twin has local error

proportionate to ∆t3∂3
t u + O(∆t4). Thus, an estimate of ∂3

t u is computed using difference

of D2. Write

D2(n+ 1) = 2∆tn
∆tn + ∆tn+1

un+1
1 − 2un + 2∆tn+1

∆tn + ∆tn+1
un−1.

From differences of D2(n+ 1), D2(n) we obtain the estimator

EST (2) = α2

6

∥∥∥∥∥ 3∆tn−1

∆tn+1 + ∆tn + ∆tn−1
D2(n+ 1)− 3∆tn−1

∆tn+1 + ∆tn + ∆tn−1
D2(n)

∥∥∥∥∥ ,
where the coefficient α2 is determined through a Taylor series calculation to be

α2 = τn(τn+1τn + τn + 1)(4τ 3
n+1 + 5τ 2

n+1 + τn+1)
3(τnτ 2

n+1 + 4τnτn+1 + 2τn+1 + τn + 1)
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Algorithm 3 (Doubly ∆t, ε Adaptive, Second-Order Method). Given TOLm, TOLc, un,

un−1, un−2, D2(n), ∆tn+1, ∆tn, ∆tn−1, and εn, perform the following steps:

Step 1: Compute

τn+1 = ∆tn+1

∆tn
, τn = ∆tn

∆tn−1
, α1 = τn+1(1.0 + τn+1)

1.0 + 2.0τn+1
,

α2 = τn(τn+1τn + τn + 1)(4τ 3
n+1 + 5τ 2

n+1 + τn+1)
3(τnτ 2

n+1 + 4τnτn+1 + 2τn+1 + τn + 1) ,

select ε̂ = √εn+1εn or ε̂ = min{εn+1, εn}, and set u∗ = (1 + τn+1)un − τn+1u
n−1.

Step 2: Find BE approximation un+1
1

un+1
1 − un

∆tn+1
+ (u∗ · ∇)un+1

1 + 1
2(∇ · u∗)un+1

1 − ∆tn+1

εn+1
∇∇ · un+1

1 − ν∆un+1
1 = fn+1 − ε̂

εn+1
∇pn.

Step 3: Compute the difference D2(n+ 1), update the velocity, and compute the estimators

D2(n+ 1) = 2∆tn
∆tn + ∆tn+1

un+1
1 − 2un + 2∆tn+1

∆tn + ∆tn+1
un−1, un+1 = un+1

1 − α1

2 D2(n+ 1),

EST (2) = α2

6

∥∥∥∥∥ 3∆tn−1

∆tn+1 + ∆tn + ∆tn−1
D2(n+ 1)− 3∆tn−1

∆tn+1 + ∆tn + ∆tn−1
D2(n)

∥∥∥∥∥ ,
ESTc = ‖∇ · un+1‖.

Step 4: If ESTc > TOLc or EST (2) > TOLm then repeat Steps 1–3 after resetting εn+1,

∆tn+1 by

εn+1 = max{0.9εn+1
TOLc
ESTc

, 0.5εn+1}

∆tn+1 = max

min

0.9∆tn+1

(
TOLm
EST (2)

)1/3

, 2∆tn+1

 , 0.5∆tn+1

 .
Otherwise predict the best next step for each approximation:

εn+2 = max{min{0.9εn+1
TOLc
ESTc

, 2εn+1}, 0.5εn+1},

∆tn+2 = max

min

0.9∆tn+1

(
TOLm
EST (2)

)1/3

, 2∆tn+1

 , 0.5∆tn+1

 .
Step 5: Update the pressure

pn+1 = ε̂

εn+1
pn − ∆tn+1

εn+1
∇ · un+1.

and proceed to next timestep, repeating the steps listed above.
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3.3.8.2 THE ADAPTIVE ORDER, TIMESTEP AND ε ALGORITHM To

adapt ε,∆t, and the method order we use the local truncation error indicators for the

momentum and continuity equations, respectively,

Adapt ∆t for u1 using : EST (1)

Adapt ∆t for u using : EST (2)

Adapt ε for p using : ESTc := ||∇ · un+1||.

The algorithm computes two velocity approximations. The first, u1, is first-order and A-

stable for all combinations of timestep and ε. The second u is second-order and A-stable for

constant (or decreasing) timestep but only 0−stable for increasing time-steps. Variable (1

or 2) order is introduced as follows. The local error in each approximation is estimated. If

both are above the tolerance, the step is repeated. Otherwise, the optimal next timestep is

predicted for each method by the following first- and second-order predictions:

∆tn+1 = ∆tn
(
TOLm
EST (1)

)1/2

,

∆tn+1 = ∆tn
(
TOLm
EST (2)

)1/3

.

The actual ∆tn+1 presented below and in the tests in Section 3.3.9 is restricted to be 0.5 to

2.0 times ∆tn and includes a safety factor of 0.9.

Algorithm 4 (Adaptive order, k, ε Method). Given TOLm, TOLc, un, un−1, un−2, D2(n),

∆tn+1, ∆tn, ∆tn−1, and εn, perform the following steps:

Step 1: Compute

τn+1 = ∆tn+1

∆tn
, τn = ∆tn

∆tn−1
, α1 = τn+1(1.0 + τn+1)

1.0 + 2.0τn+1
,

α2 = τn(τn+1τn + τn + 1)(4τ 3
n+1 + 5τ 2

n+1 + τn+1)
3(τnτ 2

n+1 + 4τnτn+1 + 2τn+1 + τn + 1) ,

select ε̂ = √εn+1εn or ε̂ = min{εn+1, εn}, and set u∗ = (1 + τn+1)un − τn+1u
n−1.

Step 2: Find BE approximation un+1
1

un+1
1 − un

∆tn+1
+ (u∗ · ∇)un+1

1 + 1
2(∇ · u∗)un+1

1 − ∆tn+1

εn+1
∇∇ · un+1

1 − ν∆un+1
1 = fn+1 − ε̂

εn+1
∇pn.
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Step 3: Compute the difference D2(n+ 1), update the velocity, and compute the estimators

D2(n+ 1) = 2∆tn
∆tn + ∆tn+1

un+1
1 − 2un + 2∆tn+1

∆tn + ∆tn+1
un−1, un+1 = un+1

1 − α1

2 D2(n+ 1),

EST (1) = α1

2 ‖D2(n+ 1)‖ ,

EST (2) = α2

6

∥∥∥∥∥ 3∆tn−1

∆tn+1 + ∆tn + ∆tn−1
D2(n+ 1)− 3∆tn−1

∆tn+1 + ∆tn + ∆tn−1
D2(n)

∥∥∥∥∥ ,
ESTc = ‖∇ · un+1‖.

Step 4: If ESTc > TOLc or min{EST (1), EST (2)} > TOLm, then repeat Steps 1–3, reset-

ting εn+1,∆tn+1 by

εn+1 = max{0.9εn+1
TOLc
ESTc

, 0.5εn+1},

∆tBE = 0.9
(
TOLm
EST (1)

)1/2

max

0.9∆tn
(
TOLm
EST (1)

)1/2

, 0.5∆tn+1

 ,
∆tFilter = 0.9

(
TOLm
EST (2)

)1/3

max

0.9∆tn
(
TOLm
EST (2)

)1/3

0.5∆tn+1

 ,
∆tn+1 = max{∆tBE,∆tFilter}.

Otherwise predict ε,∆t for each approximation:

εn+2 = max{min{0.9εn+1
TOLc
ESTc

, 2εn+1}, 0.5εn+1},

∆tBE = max

min

0.9∆tn+1

(
TOLm
EST (1)

)1/2

, 2∆tn+1

 , 0.5∆tn+1

 ,
∆tFilter = max

min

0.9∆tn+1

(
TOLm
EST (2)

)1/3

, 2∆tn+1

 , 0.5∆tn+1

 .
Step 5: Select the method order with larger next timestep, i.e., if ∆tBE > ∆tFilter, then

∆tn+2 = ∆tBE and un+1 = un+1
1 . Otherwise, ∆tn+2 = ∆tFilter and un+1 = un+1.

Step 6: Update the pressure

pn+1 = ε̂

εn+1
pn − ∆tn+1

εn+1
∇ · un+1

and proceed to next timestep, repeating the steps listed above.

The fixed order methods can, if desired, be implemented by commenting out parts of the

variable order Algorithm 4.
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3.3.9 THREE NUMERICAL TESTS

The stability and accuracy of the new methods are interrogated in two numerical tests

and the three discrete continuity equations are compared in our third test. The tests employ

the finite element method to discretize space, with Taylor-Hood (P2/P1) elements, [50]. All

the stability results proven herein hold for this spatial discretization by essentially the same

proofs. The meshes used for both tests are generated using a Delaunay triangulation. The

software package FEniCS is used for both experiments [1].

We begin with comparative tests of the adaptive ∆t, ε, first and second-order method.

Both adapt ε based on ||∇·u||. The first-order method accepts the first-order approximation

un+1
1 and adapts the timestep based on EST (1). The second-order method accepts un+1 as

the approximation and adapts the time step based on EST (2).

3.3.9.1 TEST 1: FLOW BETWEEN OFFSET CIRCLES To interrogate stability

and accuracy of the GA-method, we present the results of two numerical tests. Pick

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x− c1)2 + (y − c2)2 ≥ r2

2},

r1 = 1.0, r2 = 0.1, c = (c1, c2) = (0.5, 0.0),

f = min{t, 1}(−4y(1− x2 − y2), 4x(1− x2 − y2))T , for 0 ≤ t ≤ 10.

with no-slip boundary conditions on both circles and ν = 0.001. The finite element dis-

cretization has a maximal mesh width of hmax = 0.0133, and the flow was solved using the

direct solver UMFPACK [23]. For this test, we use fixed tolerances TOLm = TOLc = 0.001.

The flow (inspired by the extensive work on variants of Couette flow, [34]), driven by a

counterclockwise force (with f ≡ 0 at the outer circle), rotates about (0, 0) and interacts

with the immersed circle. This induces a von Kármán vortex street which re-interacts with

the immersed circle creating more complex structures. There is also a central (polar) vortex

that alternately self-organizes then breaks down. Each of these events includes a significant

pressure response.

For both approximations we track the evolution of ∆tn and εn, the pressure at the

origin, the violation of incompressibility, and the algorithmic energy ‖un+1
h ‖2 + εn+1‖pn+1

h ‖2.
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Figure 3.4: Stability and adaptability results for AC methods.
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These are all depicted in Figure 3.4 below. Figure 3.4a shows that the second-order scheme

consistently chooses larger time-steps than the first-order method. The evolution of ε, in

Figure 3.4b, behaves similarly for both methods once the flow evolves. In testing AC methods

pressure initialization often causes irregular, transient spiky behavior near t = 0 such as in

Figures 3.4a, 3.4b, 3.4d.

The behavior of the pressure at the origin, p(0, 0; t) vs. t, is depicted in Figure 3.4c. To our

knowledge, there is no convergence theory for AC methods (or even fully coupled methods)

which implies maximum norm convergence for the pressure over significant time intervals

and for larger Reynolds numbers. Still, the irregular behavior observed in approximate

solutions, while not conforming to a convergence theory, reflects vortex events across the

whole domain and is interesting to compare. The profiles of the pressure at the origin are

similar for both methods over 0 ≤ t ≤ 4. For t > 4, p(0, 0; t) for the second-order scheme

is less oscillatory. This is surprising because the first-order scheme has more numerical

dissipation. The divergence evolution of the schemes also differ in the initial transient of

||∇ · u(t)||. After the initial transient, the divergence behavior is similar. It is also possible

that the difference in ||∇ · u|| transients is due to the strategy of ε-adaptation being sub-

optimal. The model energy of both methods is largely comparable. We note that the model

energy depends on the choices of ε made. Thus model energy is not expected to coincide

exactly. Generally, Figures 3.4d–3.4e behave similarly for both algorithms.

3.3.9.2 TEST 2: CONVERGENCE AND ADAPTIVITY The second numerical

test concerns the accuracy and adaptivity of the GA-method. Let Ω =]0, 1[2, with ν = 1.

Consider the exact solution (obtained from [46] and applied to the Navier-Stokes equations)

u = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy)

p = cos t cosπx sin πy,

and consider a discretization of Ω obtained by 300 nodes on each edge of the square. We

proceed by running five experiments, adapting both the first- and second-order schemes using

the algorithms above, where the tolerance for the continuity and momentum equations is

10−(.25i+3) for i = 0, 1, 2, 3, 4. To control the size of the timesteps, we require ∆tn to be chosen
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such that EST (1) ∈ (TOLm/10, TOLm). The solutions were obtained in parallel, utilizing

the MUMPS direct solver [2]. To examine convergence, we present in Figure 3.5 log-log plots

of the errors of the pressure and the velocity against the average timestep taken during the

test. We also present semilog plots of the evolution of the pressure error and timestep during

the final test below. The plots show that the timestep adaptation is working as expected

and reducing the velocity error, Figure 3.5c. Our intuition is that the pressure error is linked

to satisfaction of incompressibility; however, Figure 3.5d indicates convergence with respect

to the timestep. In our calculations we did observe the following: If ‖∇ · u‖ is, e.g., two

orders of magnitude smaller then the tolerance, ε is rapidly increased to be even O(1). At

this point the pressure error and violation of incompressibility spike upward and ε is then

cut rapidly. This behavior suggests that a band of acceptable ε-values should be imposed in

the adaptive algorithm.

To compare the GA-, Min-method and the scheme introduced in Section 3.2 and [13], we

use the test problem given above in this section with a known exact solution. The results are

given in Figure 3.6 below. Here, we use a mesh with the same density and final time t∗ = 1.

A timestep ∆tn = 10−2 is kept constant in this run to highlight differences in the evolution

of the variable εn, which has an initial value ε0 = 10−4. These tests are preliminary: In

them, the min-Method seems preferable in error behavior but yields smaller values and thus

less well-conditioned systems. In the evolution of all four quantities, the GA- and the CLM

[13] method exhibit near identical behavior. The min-Method, however, forces ε to be an

order of magnitude lower than the values obtained by the other two schemes. This, in turn,

forces the divergence to be reduced. Furthermore, both the velocity and pressure errors for

the min-Method are smaller than those of the GA- and CLM-methods.

3.3.10 CONCLUSIONS, OPEN PROBLEMS AND FUTURE PROSPECTS

There are many open problems and algorithmic improvements possible. The doubly

adaptive algorithm selected smaller values of ε than ∆t in our tests with the same tolerance

for both. A further synthesis of the methods herein with the modular grad-div algorithm of

[38] would eliminate any conditioning issues in the linear system arising. Developing doubly
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Figure 3.5: Accuracy and adaptability results for AC methods.
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Figure 3.6: Comparison between GA, Min, and CLM methods.
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adaptive methods of order greater than two (with modular grad-div) is an important step

to greater time accuracy. We mention in particular the new embedded family of orders 2,3,4

of [27] as a natural extension. The method of Dahlquist, Liniger and Nevanlinna [20] is

unexplored for PDEs, but has promise in CFD because it is A-stable for both increasing and

decreasing time-steps. Improved error estimators for the second-order method herein would

increase reliability. For AC methods, pressure initialization and damping of nonphysical

acoustics are important problems where further progress would be useful.

Open problems. The idea of adapting independently ∆t and ε is promising but new

so there are many open problems. These include:

• Is the ε-adaptation formula εnew = εold(TOL/‖∇ · u‖) improvable? Perhaps the quotient

should be to some fractional power. Perhaps adapting ε should be based of a relative

error in ‖∇ · u‖, such as ‖∇ · u‖/‖∇u‖. Analysis of the local (in time) error in ‖∇ · u‖

is needed to support an improvement.

• The ε-adaptation strategy seems to need preset limits, εmin, εmax, to enforce εmin ≤ ε ≤

εmax. The preset of εmin is needed because ∇ · u = 0 cannot be enforced pointwise in

many finite element spaces. Finding a reasonable strategy for these presets is an open

problem. Similarly, it would be useful to develop a coherent strategy for relating the two

tolerances rather than simply picking them to be equal (as herein).

• Proving convergence to a weak solution of the incompressible NSE of solutions to the

continuum analogue of the min-Method for variable ε is an important open problem.

In this analysis it is generally assumed that ε(t) → 0 in an arbitrary fashion. A more

interesting problem is to link ε(t) and ‖∇ · u‖ in the analysis. Similarly, an á priori error

analysis for variable ε is an open problem and may yield insights on how the variance of

ε(t) should be controlled within an adaptive algorithm. The consistency error of the two

methods are O(∆t + ε) and O(∆t2 + ε), respectively. Energy stability has been proven

herein for the first order method and for the constant timestep, second order method.

Thus, error estimation while technical, should be achievable.

• Comprehensive testing of the variable (first or second) order method is an open problem.

VSVO methods are the most effective for systems of ODEs but have little penetration in
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CFD. Testing the relative costs and accuracy of VSVO in CFD is an important problem.

3.4 CONCLUSIONS

The approximation of flow problems is made challenging by the coupling of the velocity

and pressure variables. For decades, numerical methods have been developed to exploit the

saddle-point structure of the NSE. The method of artificial compressibility, developed in the

late 1960s, decouples velocity and pressure and suffers no condition number penalty at low-

temporal orders. However, these methods as originally constructed are not amenable to time

adaptivity. In this chapter, we considered a standard time adaptive AC method and showed

its limitations. To overcome these limitations, we constructed a new, unconditionally stable

time adaptive AC method and demonstrated its efficacy via numerical tests. Furthermore,

we considered its continuum analogue, and showed, under conditions on the transient AC

parameter ε(t), its weak convergence to the NSE.

Next, we observed that the local truncation error of adaptive AC methods allows for

the timestep and AC parameter to vary independently. Thus, we constructed two new time

adaptive AC methods and showed their unconditional stability. To verify the properties of

the methods, we compared them, as well as the scheme introduced in Section 3.2, in a suite

of numerical tests. In particular, we demonstrated that the methods are stable and that the

GA method is time-accurate.

72



4.0 ENSEMBLE METHODS FOR BOUSSINESQ FLOWS

In Chapter 1, we listed two main challenges that one faces when attempting to approxi-

mate flow problems. One challenge was velocity/pressure coupling, addressed in Chapter 3

via artificial compressibility methods and continued in this chapter. The other challenge was

the nonlinear convective term, and how its treatment affects solution quality. This treatment

becomes much more important when considering ensemble simulations, i.e., the running of

multiple flow realizations (with different initial conditions, parameters, etc.) to approximate

a mean flow. The focus of this chapter is to use a technique from [65] to ensure that all

realizations have a shared coefficient matrix, reducing the amount of memory needed for

each realization. This, coupled with static and adaptive AC methods, yields fast, memory

efficient algorithms.

We present an introduction to ensemble schemes in Section 4.1, giving motivation and

notation. In Section 4.2, we present artificial compressibility ensemble (ACE) schemes with

constant and variable timesteps for use in naturally convected, or Boussinesq, flows. Section

4.2 contains stability analyses for constant and variable timestep ACE schemes, a fully dis-

crete error analysis for the constant stepsize case, and numerical tests. Finally, conclusions

are given in Section 4.3.

4.1 INTRODUCTION

Data in physical applications, initial conditions, forcing, parameters, etc. are never

known exactly due to fundamental uncertainty in measurement devices. The growth of

this uncertainty degrades solution quality, leading to a suboptimal predictability horizon.

Ensemble calculations, i.e., the consideration of multiple physical realizations with varying

data, extend predictability horizons [133]. The ensemble average is the most likely solution

and its variance quantifies uncertainty in the solution. Typically, computing a solution en-

semble involves either J sequential, fine mesh runs or J parallel, coarse mesh runs of a given
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code (subject to perturbed data). In both situations, high storage costs and long runtimes

are barriers to a more accurate ensemble average and an extended predictability horizon,

i.e., simulations using more ensemble members. This leads to the fundamental question ad-

dressed herein: Can we increase the number of ensemble members without decreasing mesh

density (and vice versa) on a fully utilized computer system?

Recent breakthroughs in ensemble timestepping algorithms [41, 40, 52, 51, 65, 61, 63,

64, 93, 122] reduce memory requirements and computational costs for ensemble simulations

through the following procedure: Decomposition of parameters and/or convective velocity

into ensemble mean and fluctuating components is followed by an implicit-explicit (IMEX)

time discretization. The resulting linear systems share the same coefficient matrix, dra-

matically reducing storage costs and, when paired with an efficient iterative block solver,

computation time. These works represent a significant advance in the reduction of memory

requirements, extending the feasible ensemble size to a new upper limit.

For motivation, we look to the pioneering works of Lorenz. In [87, 88, 86], Lorenz discov-

ered and relayed the fact that physical systems (in his case, atmospheric flow) with slightly

perturbed initial conditions with evolve to a point that the solutions obtained appear to be

randomly chosen states. Thus, when approximating physical phenomena with any uncer-

tainties present, the approximate solutions have a predictability horizon of two weeks. It was

then realized that, if meaningful results were to be extracted from numerical methods, inher-

ent uncertainty would have to be addressed. Since initial conditions, parameters, and even

physical data all carry uncertainties, the most robust and physically realistic approximations

should be in some sense an average of realizations, not just a single simulation corresponding

to one set of parameters.

Toth and Kalnay [133], among others, proved that this idea was feasible. Now, the idea

of ensemble averaging forms the basis for numerical weather and climate prediction systems

around the world. To wit, suppose that we have J realizations of a physical process, i.e.,

there exist vj for j ∈ {1, . . . , J} satisfying, e.g., the Boussinesq equations (2.7)–(2.9) with

different initial conditions, parameters, etc. As was argued, the examination of any single

realization is unlikely to yield reliable results due to the predictability horizon. Hence, we

proceed in the context of ensemble simulations. We define the ensemble mean, or ensemble
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average, by

〈v〉 := 1
J

J∑
j=1

vj,

and the jth-fluctuation about the mean as

v′j := vj − 〈v〉.

Below we list some elementary properties of the ensemble mean and fluctuations [61].

Lemma 7. Let v and w be realizations of a physical process. Then,

〈v′〉 = 0,

〈(〈v〉, w′)〉 = 0

and

〈〈v〉〉 = 〈v〉,

〈(〈v〉, w)〉 = (〈v〉, 〈w〉).

Proof. The third equality is immediate since 〈v〉 is independent of j. The first equality

comes from the definitions and the third equality, i.e.,

〈v′〉 = 〈v − 〈v〉〉

= 〈v〉 − 〈v〉

= 0.

The fourth equality is also immediate by bilinearity of the inner product and the fact that

〈v〉 is independent of j. Thus, the second equality can be proven by the first equality:

〈(〈v〉, w′)〉 = (〈v〉, 〈w′〉)

= 0.
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Let Ω ⊂ Rd (d=2,3) be a convex polyhedral domain with boundary ∂Ω. We partition the

boundary as a union of closed sets with disjoint interior, i.e., ∂Ω = ΓD ∪ΓN , a Dirichlet part

ΓD of positive measure and a Neumann part ΓN . Suppose for ensemble members indexed by

j ∈ {1, . . . , J}, we have the initial conditions u(x, 0;ωj) = u0
j and T (x, t;ωj) = T 0

j , as well

as fj a body force and gj a heat source. Let the velocity uj := u(x, t;ωj) : Ω× (0, t∗]→ Rd,

pressure pj := p(x, t;ωj) : Ω×(0, t∗]→ R, and temperature Tj := T (x, t;ωj) : Ω×(0, t∗]→ R

satisfy the Boussinesq equations

∂tuj + (uj · ∇)uj + 1
2 (∇ · uj)uj − Pr∆uj +∇pj = PrRaξTj + fj in Ω, (4.1)

∇ · uj = 0 in Ω, (4.2)

∂tTj + (uj · ∇Tj) + 1
2 (∇ · uj)Tj −∆Tj = gj in Ω, (4.3)

uj|∂Ω = 0, Tj|ΓD = 0, (n · ∇Tj)|ΓN = 0. (4.4)

Here, we let n be the outward normal on ∂Ω, ξ the unit vector in the direction of gravity,

Pr the Prandtl number, and Ra the Rayleigh number. We have also explicitly made the

nonlinear term skew-symmetric. Note that the boundary conditions are selected for simplic-

ity; the results presented below extend to inhomogeneous Dirichlet boundary conditions for

the velocity and temperature using techniques introduced in [41]. Suppressing the spatial

discretization for the moment, we discretize the system (4.1) – (4.4) using linearly-implicit

backward Euler (sans the temperature term in the momentum equation), i.e.,

un+1
j − unj

∆t + (unj · ∇)un+1
j + 1

2
(
∇ · unj

)
un+1
j − Pr∆un+1

j +∇pn+1
j = PrRaξT nj + fn+1

j ,

∇ · un+1
j = 0,

T n+1
j − T nj

∆t + (unj · ∇)T n+1
j + 1

2
(
∇ · unj

)
T n+1
j −∆T n+1

j = gn+1
j .

Putting all of the data on the right-hand-side, using incompressibility, and factoring yields

the linear solves for any j

[ 1
∆tI + (unj · ∇) + 1

2
(
∇ · unj

)
− Pr∆

]
un+1
j = PrRaξT nj + fn+1

j ,[ 1
∆tI + (unj · ∇) + 1

2
(
∇ · unj

)
−∆

]
T n+1
j = gn+1

j .
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A cursory glance at the linear systems above shows that they are dependent on the

realization j. Hence, for each realization, separate linear operators Aj and Bj must be

stored to solve

Aju
n+1
j = RHSu,j,

BjT
n+1
j = RHST,j.

The need to store these matrices in memory for each realization taxes computational re-

sources and thus reduces the number of realizations that can be considered (limiting the

predictability horizon as well). However, note that, e.g.,

(unj · ∇)un+1
j + 1

2
(
∇ · unj

)
un+1
j = (〈u〉n · ∇)un+1

j + 1
2 (∇ · 〈u〉n)un+1

j

+(u′nj · ∇)un+1
j + 1

2
(
∇ · u′nj

)
un+1
j .

Here, we have rewritten the lagged component in the nonlinear into a sum of ensemble means

and fluctuations. Notice that the dependence on the realization in the lagged terms is only

present in the third and fourth terms on the right-hand-side. Lagging these terms fully, we

arrive at the scheme [ 1
∆tI + (〈u〉n · ∇) + 1

2 (∇ · 〈u〉n)− Pr∆
]
un+1
j

=
[
(u′nj · ∇) + 1

2
(
∇ · u′nj

)]
unj + PrRaξT nj + fn+1

j ,[ 1
∆tI + (〈u〉n · ∇) + 1

2 (∇ · 〈u〉n)−∆
]
T n+1
j =

[
(u′nj · ∇) + 1

2
(
∇ · u′nj

)]
T nj + gn+1

j .

The matrices on the left-hand-sides are now independent of the realization, i.e., the

realizations share the same coefficient matrix. This means that only two matrices, instead of

2J , will have to be loaded and stored in memory, releasing valuable computational resources.

Furthermore, the linear systems can be viewed as block systems

A[un+1
1 |un+1

2 | . . . |un+1
J ] = [RHSu,1|RHSu,2| . . . |RHSu,J ],

B[T n+1
1 |T n+1

2 | . . . |T n+1
J ] = [RHST,1|RHST,2| . . . |RHST,J ],

allowing the use of efficient block iterative solvers such as block LU factorizations [28], block

GMRES [59], and block BiCGSTAB [35], among others.
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4.2 AC SCHEMES FOR BOUSSINESQ FLOWS

4.2.1 AN AC ENSEMBLE SCHEME FOR CONSTANT TIMESTEPS

The final algorithm presented in Section 4.1 successfully treats the nonlinearity and

reduces the amount of memory required for each realization. Herein, we combine this tactic

with those delineated in Chapter 3 to increase efficiency and reduce storage requirements

and computation time: decoupling velocity, pressure, and temperature solves by artificial

compressibility and keeping the coefficient matrix, at each timestep, shared by each ensemble

member. Furthermore, we extend our results for variable timesteps. A CFL-type condition

is introduced, which causes breakdown near and into turbulent flow regimes. Consequently,

the focus of this chapter is on laminar flow. Section 4.2.7 presents numerical tests reinforcing

this extension. Let 〈u〉n := 1
J

∑J
j=1 u(x, tn;ωj) and u′nj = unj − 〈u〉n be the ensemble average

and the jth fluctuation about the mean, respectively. Suppressing the spatial discretization

for the moment, we apply an IMEX time discretization to the system (4.1) – (4.4) such that

the resulting coefficient matrix is independent of the ensemble members. Moreover, we relax

mass conservation by adding a discretized version of the artificial compressibility term εpt.

This leads to the artificial compressibility ensemble (ACE) timestepping method:

un+1
j − unj

∆t + (〈u〉n · ∇)un+1
j + 1

2 (∇ · 〈u〉n)un+1
j (4.5)

+(u′nj · ∇)unj + 1
2
(
∇ · u′nj

)
unj − Pr∆un+1

j +∇pn+1
j = PrRaξT nj + fn+1

j ,

ε
pn+1
j − pnj

∆t +∇ · un+1
j = 0, (4.6)

T n+1
j − T nj

∆t + (〈u〉n · ∇)T n+1
j + 1

2 (∇ · 〈u〉n)T n+1
j (4.7)

+(u′nj · ∇)T nj + 1
2
(
∇ · u′nj

)
T nj −∆T n+1

j = gn+1
j .

The treatment of the nonlinear terms, (u · ∇)u+ 1
2 (∇ · u)u and (u · ∇)T + 1

2 (∇ · u)T , leads

to a shared coefficient matrix, in the above, independent of the ensemble members. The

nonlinear term is the source of ensemble dependence in the coefficient matrix. In particular,
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using (4.6) in (4.5) and rearranging, the following system must be solved:
( 1

∆tI + (〈u〉n · ∇) + 1
2 (∇ · 〈u〉n) I − Pr∆− ∆t

ε
∇∇ ·

)
un+1
j = RHSu,j,

pn+1
j = ∆t

ε
∇ · un+1

j + pnj ,( 1
∆tI + (〈u〉n · ∇) + 1

2 (∇ · 〈u〉n) I −∆
)
T n+1
j = RHST,j.

It is clear that the velocity, pressure, and temperature solves are fully decoupled. The

use of AC changes the saddle-point system with a convection-diffusion problem with grad-div

stabilization followed by algebraic pressure update at each timestep, replacing a much larger

coupled solve. This decoupling allows the pressure and velocity to be advanced explicitly

(and cheaply; our tests indicate a speedup of 3–8 times when compared to a coupled system),

and, while not explored herein, allows for the use of non inf-sup stable finite elements. After

a finite element spatial discretization, the matrix associated with the nonlinear terms is

independent of the ensemble member due to using the ensemble average as the convective

velocity.

In Section 4.2.3, we present a fully discrete algorithm based on (4.5) - (4.7) in the context

of the finite element method. Stability (Theorem 11) and error analysis (Theorem 12) of

the algorithm follow in Section 4.2.4 by using a CFL-type condition. Numerical experiments

follow in Section 4.2.7 illustrating first-order convergence, speed advantages, and usefulness

of ensembles in the context of naturally convected fluid flow problems. We then present a

stability result for the time adaptive ACE scheme.

4.2.2 RELATED WORK

Operator splitting [44, 90, 58], artificial compressibility [16, 25, 48, 103, 110, 112, 127],

and projection methods [46, 101], among others, exploit the saddle point structure to de-

couple the solves for velocity and pressure. Recently, [62] introduced a pressure-correction

(a subclass of projection methods) ensemble algorithm for the Boussinesq equations. This

approach transforms a coupled Navier-Stokes solve into one velocity solve and a Poisson

solve for the pressure, which requires boundary conditions for the pressure. Artificial com-

pressibility decouples the velocity and pressure solves in a similar manner, but requires no
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boundary conditions for the pressure and allows for the explicit calculation of the pressure

at each timestep. Artificial compressibility methods decrease storage and complexity while

increasing speed of computation, can be used to construct schemes of arbitrary temporal

order [48], and can even be adapted in time [13, 78, 47].

Artificial (or pseudo-) compressibility methods have been used in a similar manner for the

Boussinesq system throughout the literature. The Klemp–Wilhemson time-splitting scheme

is used to approximate the compressible Boussinesq equations, where the continuity equation

reads Dtp + c2∇ · u = 0 for c a wave speed and where Dtp is the material derivative of the

pressure [73, 113]. By letting ε = 1
c2

, we arrive at εDtp +∇ · u = 0, a pseudo-compressible

model explored in [95].

4.2.3 A FULLY DISCRETE ACE SCHEME

For j ∈ {1, . . . , J}, taking inner products and using the definition of the trilinear forms

from Chapter 2 yields the corresponding weak form of (4.1) - (4.4):

(∂tuj, v) + bu(uj, uj, v) + Pr(∇uj,∇v)− (pj,∇ · v) = PrRa(ξTj, v) + (fj, v) ∀v ∈ X,

(∇ · uj, q) = 0 ∀q ∈ Q,

(∂tTj, S) + bT (uj, Tj, S) + (∇Tj,∇S) = (gj, S) ∀S ∈ WΓD .

Denote the J fully discrete solutions by unj,h, pnj,h, and T nj,h at time levels tn = n∆t, n ∈

{0, 1, . . . , N}, and t∗ = N∆t. For every n = 0, 1, ..., N − 1, the fully discrete approximation

of (4.1) - (4.4) is:

Algorithm 5 (Artificial Compressibility Ensemble Method). Given unj,h ∈ Xh, pnj,h ∈ Qh,

and T nj,h ∈ Wh, perform the following steps:

Step 1: Find (un+1
j,h , T

n+1
j,h ) ∈ (Xh,Wh) satisfying

1
∆t(u

n+1
j,h − unj,h, vh) + bu(〈uh〉n, un+1

j,h , vh) + bu(u′nj,h, unj,h, vh) + Pr(∇un+1
j,h ,∇vh) (4.8)

+∆t
ε

(∇ · un+1
j,h ,∇ · vh)− (pnj,h,∇ · vh) = PrRa(ξT nj,h, vh) + (fn+1

j , vh) ∀vh ∈ Xh,

80



1
∆t(T

n+1
j,h − T nj,h, Sh) + bT (〈uh〉n, T n+1

j,h , Sh) + bT (u′nj,h, T nj,h, Sh) (4.9)

+(∇T n+1
j,h ,∇Sh) = (gn+1

j , Sh) ∀Sh ∈ WΓ1,h.

Step 2: Given pnj,h ∈ Qh, find pn+1
j,h ∈ Qh satisfying

pn+1
j,h = pnj,h −

∆t
ε
∇ · un+1

j,h . (4.10)

Remark 12. This is a consistent first-order approximation provided ε = O(∆tl+1) for l ≥ 0.

However, the condition number of the resulting system grows without bound as ∆t→ 0 when

l ≥ 1.

4.2.4 NUMERICAL ANALYSIS OF THE ENSEMBLE ALGORITHM

In this section, stability and error results are presented given the timestep condition
C†∆t
h

max
1≤j≤J

‖∇u′nj,h‖2 ≤ 1, (4.11)

is satisfied. Here, C† ≡ C†(Ω, αmin,Pr).

Remark 13. For laminar flow, the CFL-type condition (4.11) is less onerous than condi-

tions appearing in typical explicit methods, e.g., conditions containing a ‖∇unj,h‖ term, as

‖∇u′nj,h‖ ≤ ‖∇unj,h‖.

For the artificial compressibility parameter, we prescribe the following O(∆t) relation-

ship, for clarity:

ε = γ−1∆t, (4.12)

where γ > 0 is an arbitrary parameter. Consequently, we have ∆t
ε

(∇ · un+1
h ,∇ · vh) =

γ(∇ · un+1
h ,∇ · vh) in equation (4.8). Evidently, the ACE algorithm introduces grad-div sta-

bilization, which is known to have a positive impact on solution quality. Proper selection of

the grad-div parameter γ can vary wildly; see e.g. [60] and references therein. Further, mod-

est to large values of γ are known to dramatically slow down iterative solvers. Consequently,

appropriate choice of ε will vary with application and should be chosen with care.

The remainder of Section 4.2.4 is as follows. Under condition (4.11), ACE (4.8) - (4.9) is

proven to be convergent with first-order accuracy in Theorem 12. Nonlinear, energy stability

of the velocity, temperature, and pressure approximations are proven in Theorem 11.

81



4.2.5 STABILITY ANALYSIS

Theorem 11. Let fj ∈ L2(0, t∗;H−1(Ω)d), gj ∈ L2(0, t∗;H−1(Ω)) with appropriate initial

conditions for the velocity, pressure, and temperature. If the scheme (4.8) - (4.9) satisfies

condition (4.11), then

‖uNj,h‖2 + ‖TNj,h‖2 + ε‖pNj,h‖2 + 1
2

N−1∑
n=0

(
‖un+1

j,h − unj,h‖2 + ‖T n+1
j,h − T nj,h‖2 + ε‖pn+1

j,h − pnj,h‖2
)

+Pr
2 |||∇uj,h|||

2
2,0 + 1

2 |||∇Tj,h|||
2
2,0 ≤ ‖u

0
j,h‖2 + ‖T 0

j,h‖2 + ε‖p0
j,h‖2

+ 2
Pr |||fj|||

2
2,−1 + 2PrRa2Cpf,1CT .

Proof. We begin by finding bounds for the temperature equation. Taking Sh = 2∆tT n+1
j,h in

(4.9) gives, by skew-symmetry and the polarization identity,

‖T n+1
j,h ‖2 − ‖T nj,h‖2 + ‖T n+1

j,h − T nj,h‖2 + 2∆t‖∇T n+1
j,h ‖2

= 2∆t(gn+1
j , T n+1

j,h )− 2∆tbT (u′nj,h, T nj,h, T n+1
j,h ).

By definition of the dual norm and Young’s inequality,

2∆t(gn+1
j , T n+1

j,h ) ≤ ∆t‖gn+1
j ‖2

−1 + ∆t‖∇T n+1
j,h ‖2.

The bound for the nonlinear term is obtained via skew-symmetry, Lemma 1, the inverse

inequality, and the Cauchy-Schwarz-Young inequality:

−2∆tbT (u′nj,h, T nj,h, T n+1
j,h ) = −2∆tbT (u′nj,h, T n+1

j,h , T n+1
j,h − T nj,h)

≤ 2∆tC3,T‖∇u′nj,h‖‖∇T n+1
j,h ‖

√
‖T n+1

j,h − T nj,h‖‖∇(T n+1
j,h − T nj,h)‖

≤
2∆tC3,T

√
Cinv,2√

h
‖∇u′nj,h‖‖∇T n+1

j,h ‖‖T n+1
j,h − T nj,h‖

≤
2∆t2C2

3,TCinv,2

h
‖∇u′nj,h‖2‖∇T n+1

j,h ‖2 + 1
2‖T

n+1
j,h − T nj,h‖2.

Thus,

‖T n+1
j,h ‖2 − ‖T nj,h‖2 + 1

2‖T
n+1
j,h − T nj,h‖2 (4.13)

+∆t
(

1−
2∆tC2

3,TCinv,2

h
‖∇u′nj,h‖2

)
‖∇T n+1

j,h ‖2 ≤ ∆t‖gn+1
j ‖2

−1. (4.14)
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A telescoping sum, (4.14) implies, after summing from n = 0 to m ≤ N − 1, a bound for

the temperature of the form ‖Tmj,h‖2 ≤ CT for all m ∈ {1, . . . , N} provided condition (4.11)

is satisfied.

We continue with bounds for the momentum and continuity equations. We will need the

following variational form of equation (4.10),

ε(
pn+1
j,h − pnj,h

∆t , qh) + (∇ · un+1
j,h , qh) = 0 ∀qh ∈ Qh. (4.15)

Use equation (4.10) in equation (4.8) and add equations (4.8) and (4.15). Let (vh, qh) =

(2∆tun+1
j,h , 2∆tpn+1

j,h ) ∈ (Vh, Qh) and use the polarization identity. Rearranging and skew-

symmetry yields(
‖un+1

j,h ‖2 + ε‖pn+1
j,h ‖2

)
−
(
‖unj,h‖2 + ε‖pnj,h‖2

)
+ ‖un+1

j,h − unj,h‖2 + ε‖pn+1
j,h − pnj,h‖2 (4.16)

+2∆tPr‖∇un+1
j,h ‖2 = 2∆tPrRa(ξT nj,h, un+1

j,h ) + 2∆t(fn+1
j , un+1

j,h )− 2∆tbu(u′nj,h, unj,h, un+1
j,h )

By the Poincaré-Friedrichs inequality, the Cauchy-Schwarz-Young inequality, and the tem-

perature bound (4.14), we have

2∆tPrRa(ξT nj,h, un+1
j,h ) ≤ 2∆tPrRa2C2

pf,1CT + ∆tPr
2 ‖∇un+1

j,h ‖2.

The forcing and nonlinear terms are treated in a similar manner to the temperature case,

giving the bounds

2∆t(fn+1
j , un+1

j,h ) ≤ 2∆t
Pr ‖f

n+1
j,h ‖2

−1 + ∆tPr
2 ‖∇un+1

j,h ‖2,

−2∆tbu(u′nj,h, unj,h, un+1
j,h ) ≤

2∆t2C2
3,uCinv,1

h
‖∇u′nj,h‖2‖∇un+1

j,h ‖2 + 1
2‖u

n+1
j,h − unj,h‖2.

Adding (4.14) to (4.16) and using the bounds, we arrive at(
‖un+1

j,h ‖2 + ‖T n+1
j,h ‖2 + ε‖pn+1

j,h ‖2
)
−
(
‖unj,h‖2 + ‖T nj,h‖2 + ε‖pnj,h‖2

)
+ 1

2‖u
n+1
j,h − unj,h‖2

+1
2‖T

n+1
j,h − T nj,h‖2 + ε

2‖p
n+1
j,h − pnj,h‖2 + 1

2‖T
n+1
j,h − T nj,h‖2

+∆t
(

Pr−
2∆tC2

3,uCinv,1

h
‖∇u′nj,h‖2

)
‖∇un+1

j,h ‖2

+∆t
(

1−
2∆tC2

3,TCinv,2

h
‖∇u′nj,h‖2

)
‖∇T n+1

j,h ‖2 ≤ 2∆t
Pr ‖f

n+1
j ‖2

−1 + 2∆tPrRa2Cpf,1CT .
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Set now C† = min{4C2
3,uCinv,1

Pr , 4C2
3,TCinv,2}. Then, condition (4.11) is satisfied. Summing from

n = 0 to N − 1 gives the bound

‖uNj,h‖2 + ‖TNj,h‖2 + ε‖pNj,h‖2 + 1
2

N−1∑
n=0

(
‖un+1

j,h − unj,h‖2 + ‖T n+1
j,h − T nj,h‖2 + ε‖pn+1

j,h − pnj,h‖2
)

+Pr
2 |||∇uj,h|||

2
2,0 + 1

2 |||∇Tj,h|||
2
2,0 ≤ ‖u

0
j,h‖2 + ‖T 0

j,h‖2 + ε‖p0
j,h‖2

+ 2
Pr |||fj|||

2
2,−1 + 2PrRa2Cpf,1CT ,

proving nonlinear stability.

4.2.6 ERROR ANALYSIS

Denote unj , pnj , and T nj as the true solutions at time tn = n∆t. Assume the solutions

satisfy the following regularity assumptions:

uj ∈ L∞([0, t∗];X ∩Hk+1(Ω)), Tj ∈ L∞([0, t∗];W ∩Hk+1(Ω)),

∂tuj, ∂tTj ∈ L2([0, t∗];Hk+1(Ω)), ∂ttuj, ∂ttTj ∈ L2([0, t∗];Hk+1(Ω)), (4.17)

pj ∈ L2([0, t∗];Q ∩Hm(Ω)), ∂tpj ∈ L∞([0, t∗];Q(Ω)).

The errors for the solution variables are denoted

enu,j = (unj − Un
j )− (unj,h − Un

j ) = ηnj − ϕnj,h,

enT,j = (T nj − IhT nj )− (T nj,h − IhT nj ) = ζnj − ψnj,h,

enp,j = (pnj − P n
j )− (pnj,h − P n

j ) = λnj − πnj,h.

Definition 2. (Consistency error). The consistency errors are denoted

ςu(unj ; vh) =
(unj − un−1

j

∆t − ∂tunj , vh
)
− bu(unj − un−1, unj , vh) + PrRa(ξ(T nj − T n−1

j ), vh),

ςp(pnj ; qh) = ε
( 1

∆t

∫ tn

tn−1
∂tpj(s)ds, qh

)
,

ςT (T nj ;Sh) =
(T nj − T n−1

j

∆t − ∂tT nj , Sh
)
− bT (unj − un−1

j , T nj , Sh).
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Lemma 8. Provided uj and Tj satisfy the regularity assumptions 4.17, then there exists a

C > 0 such that for all ε, r > 0

|ςu(unj ; vh)| ≤
CC2

pf,1Cr∆t
δ

‖∂ttuj‖2
L2(tn−1,tn;L2(Ω)) + C2

1Cr∆t
δ

‖∇unj ‖2‖∇ (∂tuj) ‖2
L2(tn−1,tn;L2(Ω))

+
C2

pf,1Cr∆t
δ

‖∂tTj‖2
L2(tn−1,tn;L2(Ω)) + δ

r
‖∇vh‖2,

|ςT (T nj ;Sh)| ≤
CC2

pf,2Cr∆t
δ

‖∂ttTj‖2
L2(tn−1,tn;L2(Ω)) + C2

3Cr∆t
δ

‖∇T nj ‖2‖∇ (∂tuj) ‖2
L2(tn−1,tn;L2(Ω))

+ δ

r
‖∇Sh‖2.

Proof. These follow from the Cauchy-Schwarz-Young inequality, Poincaré-Friedrichs in-

equality, and Taylor’s Theorem with integral remainder.

Theorem 12. For (uj, pj, Tj) satisfying the Boussinesq equations (4.1)–(4.4), suppose that

(u0
j,h, p

0
j,h, T

0
j,h) ∈ (Xh, Qh,Wh) are approximations of (u0

j , p
0
j , T

0
j ). Further, suppose that con-

dition (4.11) holds. Then there exists a constant C > 0 such that

1
2‖e

N
T,j‖2 + ‖eNu,j‖2 + ε‖eNp,j‖2 + 1

2

N−1∑
n=0

{
‖en+1

T,j − enT,j‖2 + ‖en+1
u,j − enu,j‖2 + ε‖en+1

p,j − enp,j‖2
}

+Pr∆t
4 ‖∇eNu,j‖2 + 1

4 |||∇eT,j|||
2
2,0 + Pr

2 |||∇eu,j|||
2
2,0

≤ C exp(C?t∗) inf
vh∈Xh
qh∈Qh
Sh∈Ŵh

{
‖∂t(Tj − Sh)‖2

L2(0,t∗;L2(Ω)) + ‖∂t(uj − vh)‖2
L2(0,t∗;L2(Ω))

+∆t2‖∂t(pj − qh)‖2
L2(0,t∗;L2(Ω)) + h∆t‖∇(∂t(Tj − Sh))‖2

L2(0,t∗;L2(Ω))

+h∆t‖∇(∂t(uj − vh))‖2
L2(0,t∗;L2(Ω)) + |||Tj − Sh|||22,0

+|||∇(Tj − Sh)|||22,0 + |||Tj − Sh|||2,0|||∇(Tj − Sh)|||2,0 + |||uj − vh|||2,0|||∇(uj − vh)|||2,0

+∆t2 + h∆t+ 2‖e0
T,j‖2 + ‖e0

u,j‖2 + ε‖e0
p,j‖2 + Pr∆t

4 ‖∇e0
u,j‖2

}
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Proof. The true solutions to (4.1)–(4.4) satisfy for all n ∈ {0, . . . , N − 1}:

(
un+1
j − unj

∆t , vh) + bu(unj , un+1
j , vh) + Pr(∇un+1

j ,∇vh)− (pn+1
j ,∇ · vh) (4.18)

= PrRa(ξT nj , vh) + (fn+1
j , vh) + ςu(un+1

j ; vh) ∀vh ∈ Xh,

ε(
pn+1
j − pnj

∆t ) + (∇ · un+1
j , qh) = ςp(pn+1

j ; qh) ∀qh ∈ Qh, (4.19)

(
T n+1
j − T nj

∆t , Sh) + bT (unj , T n+1
j , Sh) + (∇T n+1

j ,∇Sh) (4.20)

= (gn+1
j , Sh) + ςT (T n+1

j ;Sh) ∀Sh ∈ WΓD,h.

Subtract (4.9) from (4.20), then the error equation for temperature is

(
en+1
T,j − enT,j

∆t , Sh) + bT (unj , T n+1
j , Sh)− bT (〈uh〉n, T n+1

j,h , Sh)− bT (u′nj,h, T nj,h, Sh) (4.21)

+(∇en+1
T,j ,∇Sh) = ςT (θn+1

j , Sh) ∀Sh ∈ WΓD,h.

Decomposing the error terms and rearranging gives,

(
ψn+1
j,h − ψnj,h

∆t , Sh) + (∇ψn+1
j,h ,∇Sh) = (

ζn+1
j − ζnj

∆t , Sh) + (∇ζn+1
j ,∇Sh) + bT (unj , T n+1

j , Sh)

−bT (unj,h, T n+1
j,h , Sh) + bT (u′nj,h, T n+1

j,h − T nj,h, Sh)− ςT (T n+1
j , Sh) ∀Sh ∈ WΓD,h.

Setting Sh = 2∆tψn+1
j,h ∈ WΓD,h yields

{
‖ψn+1

j,h ‖2 − ‖ψnj,h‖2 + ‖ψn+1
j,h − ψnj,h‖2

}
+ 2∆t‖∇ψn+1

j,h ‖2 = (ζn+1
j − ζnj , ψn+1

j,h )

+2∆t(∇ζn+1
j ,∇ψn+1

j,h ) + 2∆tbT (unj , T n+1
j , ψn+1

j,h )− 2∆tbT (unj,h, T n+1
j,h , ψn+1

j,h )

+2∆tbT (u′nj,h, T n+1
j,h − T nj,h, ψn+1

j,h )− 2∆tςT (T n+1
j , ψn+1

j,h ).

Add and subtract 2∆tbT (unj , T n+1
j,h , ψn+1

j,h ) and 2∆tbT (u′nj,h, T n+1
j −T nj , ψn+1

j,h ) to the right-hand-

side. Rearrange and use skew-symmetry, then
{
‖ψn+1

j,h ‖2 − ‖ψnj,h‖2 + ‖ψn+1
j,h − ψnj,h‖2

}
+ 2∆t‖∇ψn+1

j,h ‖2 = 2(ζn+1
j − ζnj , ψn+1

j,h )

+2∆t(∇ζn+1
j ,∇ψn+1

j,h ) + 2∆tbT (unj , ζn+1
j , ψn+1

j,h ) + 2∆tbT (ηnj , T n+1
j,h , ψn+1

j,h ) (4.22)

−2∆tbT (φnj,h, T n+1
j,h , ψn+1

j,h )− 2∆tbT (u′nj,h, ζn+1
j − ζnj , ψn+1

j,h )− 2∆tbT (u′nj,h, ψnj,h, ψn+1
j,h )

+2∆tbT (u′nj,h, T n+1
j − T nj , ψn+1

j,h )− 2∆tςT (θn+1
j , ψn+1

j,h ).
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Follow analogously for the velocity error equation. Subtract (4.8) from (4.18). Let vh =

2∆tφn+1
j,h ∈ Xh, add and subtract bu(unj , un+1

j,h , φ
n+1
j,h ) and bu(u′nj,h, un+1

j − unj , φn+1
j,h ), rearrange

and use skew-symmetry. Then,

{
‖ϕn+1

j,h ‖2 − ‖ϕnj,h‖2 + ‖ϕn+1
j,h − ϕnj,h‖2

}
+ 2Pr∆t‖∇ϕn+1

j,h ‖2 − 2∆t(πn+1
j,h ,∇ · ϕn+1

j,h )

= 2(ηn+1
j − ηnj , ϕn+1

j,h )− 2PrRa∆t(ξζnj , ϕn+1
j,h ) + 2PrRa∆t(ξψnj,h, ϕn+1

j,h ) (4.23)

+2∆tbu(unj , ηn+1
j , ϕn+1

j,h ) + 2∆tbu(ηnj , un+1
j,h , ϕ

n+1
j,h )− 2∆tbu(ϕnj,h, un+1

j,h , ϕ
n+1
j,h )

−2∆tbu(u′nj,h, ηn+1
j − ηnj , ϕn+1

j,h )− 2∆tb(u′nj,h, ϕnj,h, ϕn+1
j,h ) + 2∆tbu(u′nj,h, un+1

j − unj , ϕn+1
j,h )

−2∆tςu(un+1
j , ϕn+1

j,h ).

Similarly, for the pressure equation, subtract (4.15) from (4.19). Let qh = 2∆tπn+1
j,h ∈ Qh

and rearrange, then

ε
{
‖πn+1

j,h ‖2 − ‖πnj,h‖2 + ‖πn+1
j,h − πnj,h‖2

}
+ 2∆t(∇ · ϕn+1

j,h , π
n+1
j,h ) (4.24)

= 2ε(λn+1
j − λnj , πn+1

j,h )− 2∆tςp(pn+1
j , πn+1

j,h ).

We seek to now estimate all terms on the right-hand-side in such a way that we may subsume

the terms involving unknown pieces ψkj,h, ϕkj,h, and πkj,h into the left-hand-side. The follow-

ing estimates are formed using skew-symmetry, Lemma 1, and the Cauchy-Schwarz-Young

inequality;

2∆tbT (unj , ζn+1
j , ψn+1

j,h ) ≤ 2∆tC3,T‖∇unj ‖‖∇ψn+1
j,h ‖

√
‖ζn+1

j ‖‖∇ζn+1
j ‖ (4.25)

≤
4Cr∆tC2

3,T

δ4
‖∇unj ‖2‖‖ζn+1

j ‖‖∇ζn+1
j ‖+ δ4∆t

r
‖∇ψn+1

j,h ‖2,

2∆tbT (ηnj , T n+1
j,h , ψn+1

j,h ) ≤
4CrC2

2,T

δ5
‖∇T n+1

j,h ‖2‖ηnj ‖‖∇ηnj ‖+ δ5

r
‖∇ψn+1

j,h ‖2.
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Applying Lemma 1, the Cauchy-Schwarz-Young inequality, Taylor’s theorem, and condition

4.11 yields,

−2∆tbT (u′nj,h, ζn+1
j − ζnj , ψn+1

j,h ) ≤ C1,T‖∇u′nj,h‖‖∇ψn+1
j,h ‖‖∇(ζn+1

j − ζnj )‖ (4.26)

≤
4CrC2

1,T∆t2

δ7
‖∇u′nj,h‖2‖∇(∂tζj)‖2

L2(tn,tn+1;L2(Ω))

+ δ7∆t
r
‖∇ψn+1

j,h ‖2,

≤
4CrC2

1,Th∆t
C†δ7

‖∇(∂tζj)‖2
L2(tn,tn+1;L2(Ω)) + δ7∆t

r
‖∇ψn+1

j,h ‖2,

2∆tbT (u′nj,h, T n+1
j − T nj , ψn+1

j,h ) ≤ C1,T‖∇u′nj,h‖‖∇(T n+1
j − T nj )‖‖∇ψn+1

j,h ‖ (4.27)

≤
4CrC2

1,Th∆t
C†δ9

‖∇(∂tTj)‖2
L2(tn,tn+1;L2(Ω)) + δ9∆t

r
‖∇ψn+1

j,h ‖2.

Apply the triangle inequality, Lemma 1 and the Cauchy-Schwarz-Young inequality twice.

This yields

−2∆tbT (φnj,h, T n+1
j,h , ψn+1

j,h ) ≤ 2C2,T∆t‖∇T n+1
j,h ‖‖∇ψn+1

j,h ‖
√
‖φnj,h‖‖∇φnj,h‖ (4.28)

≤ 2C2,TCT,j∆t‖∇ψn+1
j,h ‖

√
‖φnj,h‖‖∇φnj,h‖

≤ δ6∆t‖∇ψn+1
j,h ‖2 +

C2
2,TC

2
T,j∆t
δ6

‖φnj,h‖‖∇φnj,h‖

≤ δ6∆t‖∇ψn+1
j,h ‖2 +

C2
2,TC

2
T,j∆t

2δ6σ6
‖φnj,h‖2 +

C2
2,TC

2
T,jσ6∆t

2δ6
‖∇φnj,h‖2.

Use Lemma 1, the inverse inequality, and the Cauchy-Schwarz-Young inequality yielding

2∆tbT (u′nj,h, ψnj,h, ψn+1
j,h ) ≤

2C3,T
√
Cinv,2∆t
√
h

‖∇u′nj,h‖‖∇ψn+1
j,h ‖‖ψn+1

j,h − ψnj,h‖ (4.29)

≤
2C2

3,TCinv,2∆t2

h
‖∇u′nj,h‖2‖∇ψn+1

j,h ‖2 + 1
2‖ψ

n+1
j,h − ψnj,h‖2.

The Cauchy-Schwarz-Young inequality, Poincaré-Friedrichs inequality and Taylor’s theorem

yield

2(ζn+1
j − ζnj , ψn+1

j,h ) ≤
4C2

pf,2Cr

δ1
‖∂tζj‖2

L2(tn,tn+1;L2(Ω)) + δ1∆t
r
‖∇ψn+1

j,h ‖2. (4.30)

Lastly, use the Cauchy-Schwarz-Young inequality,

2∆t(∇ζn+1
j ,∇ψn+1

j,h ) ≤ 4Cr∆t
δ2
‖∇ζn+1

j ‖2 + δ2∆t
r
‖∇ψn+1

j,h ‖2. (4.31)
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Similar estimates follow for the right-hand-side terms in (4.2.6);

−2PrRa∆t(ξζnj , ϕn+1
j,h ) ≤

4Pr2Ra2C2
pf,1Cr∆t

δ16
‖ζnj ‖2 + δ16∆t

r
‖∇ϕn+1

j,h ‖2, (4.32)

2PrRa∆t(ξψnj,h, ϕn+1
j,h ) ≤

4Pr2Ra2C2
pf,1Cr∆t

δ17
‖ψnj,h‖2 + δ17∆t

r
‖∇ϕn+1

j,h ‖2. (4.33)

Next, consider equation (4.24). Add and subtract 2ε(λn+1
j −λnj , πnj,h) and −2∆tςp(pn+1

j , πnj,h).

Use Taylor’s theorem and the Cauchy-Schwarz-Young inequality. This leads to

2ε(λn+1
j − λnj , πn+1

j,h ) = 2ε(λn+1
j − λnj , πn+1

j,h − πnj,h) + 2ε(λn+1
j − λnj , πnj,h) (4.34)

≤ 4εCr∆t2
δ26

‖∂tλj‖2
L2(tn,tn+1;L2(Ω)) + εδ26

r
‖πn+1

j,h − πnj,h‖2

+ 4εCr∆t
δ27

‖∂tλj‖2
L2(tn,tn+1;L2(Ω)) + εδ27∆t

r
‖πnj,h‖2,

−2∆tςp(pn+1
j , πn+1

j,h ) ≤ 4εCr∆t2
δ28

‖∂tpj‖2
L2(tn,tn+1;L2(Ω)) + εδ28

r
‖πn+1

j,h − πnj,h‖2 (4.35)

+ 4εCr∆t
δ29

‖∂tpj‖2
L∞(tn,tn+1;L2(Ω)) + εδ29∆t

r
‖πnj,h‖2.

Add equations (4.2.6) - (4.24) together. Apply the above estimates and Lemma 8. Let r = 40

and choose ∑14
i 6=6,12 δi = 10, δ6 = δ12 = 1/8, ∑25

i 6=21 δi = 10, δ21 = 1/8, and δ26 = δ28 = 10.

Moreover, let σ6 = δ6
12C2

3,TC
2
T,j

and σ21 = δ21
12C2

2C
2
u,j

. Reorganize, use condition (4.11), relation

(4.12), and Theorem 11. Take the maximum over all constants associated with ‖ψnj,h‖, ‖ϕnj,h‖,

and ‖πnj,h‖ on the right-hand-side. Lastly, take the maximum over all remaining constants
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on the right-hand-side. Then,

{
‖ψn+1

j,h ‖2 − ‖ψnj,h‖2
}

+
{
‖ϕn+1

j,h ‖2 − ‖ϕnj,h‖2
}

+ ε
{
‖πn+1

j,h ‖2 − ‖πnj,h‖2
}

(4.36)

+1
2

{
‖ψn+1

j,h − ψnj,h‖2 + ‖ϕn+1
j,h − ϕnj,h‖2 + ε‖πn+1

j,h − πnj,h‖2
}

+ ∆t
2

{
‖∇ψn+1

j,h ‖2 + Pr‖∇ϕn+1
j,h ‖2

}
+Pr∆t

4

{
‖∇ϕn+1

j,h ‖2 − ‖∇ϕnj,h‖2
}
≤ C?∆t

{
‖ψnj,h‖+ ‖φnj,h‖+ ε‖πnj,h‖

}
+C∆t

{ 1
∆t‖∂tζj‖

2
L2(tn,tn+1;L2(Ω)) + 1

∆t‖∂tηj‖
2
L2(tn,tn+1;L2(Ω)) + ∆t‖∂tλj‖2

L2(tn,tn+1;L2(Ω))

+h‖∇(∂tζj)‖2
L2(tn,tn+1;L2(Ω)) + h‖∇(∂tηj)‖2

L2(tn,tn+1;L2(Ω)) + ‖ζnj ‖2 + ‖∇ζn+1
j ‖2

+‖ζn+1
j ‖‖∇ζn+1

j ‖+ ‖ηnj ‖‖∇ηnj ‖+ ‖ηn+1
j ‖‖∇ηn+1

j ‖+ ∆t‖∂tTj‖2
L2(tn,tn+1;L2(Ω))

+∆t2‖∂tpj‖2
L2(tn,tn+1;L2(Ω)) + ∆t‖∂tpj‖2

L∞(tn,tn+1;L2(Ω)) + ∆t‖∂ttTj‖2
L2(tn,tn+1;L2(Ω))

+∆t‖∂ttuj‖2
L2(tn,tn+1;L2(Ω)) + (h+ ∆t)‖∇(∂tTj)‖2

L2(tn,tn+1;L2(Ω))

+(h+ ∆t)‖∇(∂tuj)‖2
L2(tn,tn+1;L2(Ω))‖

}
.

Sum from n = 0 to n = N − 1, apply Lemmas 3 and 2, take infimums over Xh, Qh, and Ŵh,

and renorm. Then,

‖ψNj,h‖2 + ‖ϕNj,h‖2 + ε‖πNj,h‖2 + 1
2

N−1∑
n=0

{
‖ψn+1

j,h − ψnj,h‖2 + ‖ϕn+1
j,h − ϕnj,h‖2 + ε‖πn+1

j,h − πnj,h‖2
}

+Pr∆t
4 ‖∇ϕNj,h‖2 + 1

2 |||∇ψj,h|||
2
2,0 + Pr

2 |||∇ϕj,h|||
2
2,0 ≤ C exp(C?t∗) inf

vh∈Xh
qh∈Qh
Sh∈Ŵh

{
‖∂tζj‖2

L2(0,t∗;L2(Ω))

+‖∂tηj‖2
L2(0,t∗;L2(Ω)) + ∆t2‖∂tλj‖2

L2(0,t∗;L2(Ω)) + h∆t‖∇(∂tζj)‖2
L2(0,t∗;L2(Ω))

+h∆t‖∇(∂tηj)‖2
L2(0,t∗;L2(Ω)) + |||ζj|||22,0 + |||∇ζj|||22,0 + |||ζj|||2,0|||∇ζj|||2,0 + |||ηj|||2,0|||∇ηj|||2,0

+∆t2‖∂tTj‖2
L2(0,t∗;L2(Ω)) + ∆t2‖∂tpj‖2

L2(0,t∗;L2(Ω)) + ∆t2‖∂tpj‖2
L∞(0,t∗;L2(Ω))

+∆t2‖∂ttTj‖2
L2(0,t∗;L2(Ω)) + ∆t2‖∂ttuj‖2

L2(0,t∗;L2(Ω)) + (h+ ∆t)∆t‖∇(∂tTj)‖2
L2(0,t∗;L2(Ω))

+(h+ ∆t)∆t‖∇(∂tuj)‖2
L2(0,t∗;L2(Ω)) + ‖ψ0

j,h‖2 + ‖ϕ0
j,h‖2 + ε‖π0

j,h‖2

+Pr∆t
4 ‖∇ϕ0

j,h‖2
}
.

Assuming ‖ψ0
j,h‖ = ‖ϕ0

j,h‖ = ‖π0
j,h‖ = ‖∇φ0

j,h‖ = 0, the result follows by the error equations,

the triangle inequality, and absorbing constants.

90



4.2.7 NUMERICAL EXPERIMENTS

In this section, we illustrate the convergence, speed, stability, and predictability of ACE

described by (4.8) - (4.10) using Taylor-Hood (P2-P1-P2) elements to approximate the aver-

age velocity, pressure, and temperature. First-order accuracy is observed in Section 4.2.7.1

using homogeneous boundary conditions for the temperature and an analytical solution de-

vised through the method of manufactured solutions. The bred vector algorithm, used to

generate ensemble members with maximal separation from the mean flow, is described in

Section 4.2.7.3. Sections 4.2.7.2–4.2.7.5 illustrate the stability, speed, and predictability

properties of the ACE scheme for inhomogeneous temperature boundary conditions. In par-

ticular, the double pane window benchmark [134] is considered for Sections 4.2.7.2 (stability)

and 4.2.7.4 (speed and benchmark values). In Section 4.2.7.4, ACE is shown to be 3 to 8

times faster than linearly implicit BDF1 in Section 4.2.7.4. Lastly, in Section 4.2.7.5, we

calculate average effective Lyapunov exponents and variance to study the predictability of a

Marsigli flow for varying Reynolds numbers. The software platform used for tests in Sections

4.2.7.2 and 4.2.7.4 is FreeFem++ [55], whereas FEniCS [1] is used for Sections 4.2.7.1 and

4.2.7.5.

4.2.7.1 NUMERICAL CONVERGENCE STUDY We now illustrate convergence

rates for ACE (4.8) – (4.9). The domain and parameters are Ω = (0, 1)2, Pr = 1.0, and

Ra = 100. The unperturbed solution is given by

u(x, y, t) = A(t)(x2(x− 1)2y(y − 1)(2y − 1),−x(x− 1)(2x− 1)y2(y − 1)2)T , (4.37)

T (x, y, t) = u1(x, y, t) + u2(x, y, t), (4.38)

p(x, y, t) = A(t)(2x− 1)(2y − 1), (4.39)

with A(t) = 10 cos (t). Perturbed solutions are given by

u(x, y, t;ω1,2) = (1 + δ1,2)u(x, y, t),

T (x, y, t;ω1,2) = (1 + δ1,2)T (x, y, t),

p(x, y, t;ω1,2) = (1 + δ1,2)p(x, y, t),
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Table 4.1: Errors and rates for 〈u〉, 〈T 〉, and 〈p〉 in corresponding norms.

m |||〈uh〉n − u|||∞,0 Rate |||〈Th〉 − T |||∞,0 Rate |||〈ph〉 − p|||∞,0 Rate |||〈uh〉n − u|||2,1 Rate |||〈Th〉 − T |||2,1 Rate |||〈ph〉 − p|||1,0 Rate

10 6.70E-3 - 1.32E-5 - 1.17E-1 - 3.18E-2 - 4.05E-4 - 6.06E-2 -

20 3.42E-3 0.97 3.35E-6 1.98 5.71E-2 1.04 1.64E-2 0.95 6.43E-5 2.66 3.07E-2 0.98

30 2.30E-3 0.98 2.11E-6 1.14 3.80E-2 1.01 1.11E-2 0.96 2.58E-5 2.25 2.07E-2 0.97

40 1.73E-3 0.99 1.56E-6 1.04 2.84E-2 1.01 8.38E-3 0.99 1.59E-5 1.69 1.56E-2 0.99

50 1.38E-3 1.00 1.25E-6 1.01 2.27E-2 1.01 6.70E-3 1.00 1.18E-5 1.34 1.25E-2 1.01

where δ1 = 0.001 = −δ2, and satisfy the following relations

〈u〉 = 0.5
(
u(x, y, t;ω1) + u(x, y, t;ω2)

)
= u(x, y, t),

〈T 〉 = 0.5
(
T (x, y, t;ω1) + T (x, y, t;ω2)

)
= T (x, y, t),

〈p〉 = 0.5
(
p(x, y, t;ω1) + p(x, y, t;ω2)

)
= p(x, y, t).

External forces, heat sources, and boundary conditions are adjusted appropriately. The

mesh is constructed via Delaunay triangulation generated from m points on each side of the

boundary. We calculate errors in the approximations of the average velocity, temperature,

and pressure with the L∞(0, t∗;L2(Ω)) norm, as well as the L2(0, t∗;H1(Ω)) norm for the ve-

locity and temperature, and the L1(0, t∗;L2(Ω)) norm for the pressure. Rates are calculated

from the errors at two successive ∆t1,2 via

log(eχ(∆t1)/eχ(∆t2))
log(∆t1/∆t2) ,

respectively, with χ = u, T, p. We set ∆t = 1
10m and vary m between 10, 20, 30, 40, and

50. Results are presented in Table 4.1. First-order convergence is observed for each solution

variable. The results for velocity and temperature are predicted by our theory; however,

pressure is a half-power better than predicted.
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4.2.7.2 STABILITY CONDITION Recall that ACE is stable provided condition

(4.11) holds:

C†∆t
h

max
1≤j≤J

‖∇u′nj,h‖2 ≤ 1.

The stability constant C† is determined via pre-computations for the double pane window

benchmark; it is set to 0.35. Condition (4.11) is checked at each timestep. The timestep is

halved and the timestep is repeated if (4.11) violated. The timestep is never increased. The

condition is violated three times in Section 4.2.7.4 for Ra = 106.

Remark 14. Although C† is estimated to be 1, it is set to 0.35. This is done to reduce the

timestep when Ra = 106. At this value of Ra, the stopping condition is not met unless the

timestep is reduced. Instead, the solution appears to reach a false quasi-periodic solution.

This occurs for linearly implicit BDF1 and variants and may be related to the conditional

Lyapunov stability of these methods [121]. This is currently under investigation.

4.2.7.3 PERTURBATION GENERATION In Section 4.2.7.1, a positive and nega-

tive perturbation pair is chosen to manufacture a solution with certain properties. The bred

vector (BV) algorithm [133] is used to generate perturbations in Sections 4.2.7.4 and 4.2.7.5.

The BV algorithm simulates growth errors due to uncertainty in the initial conditions; this

is necessary because random perturbations are not sufficient [133]. As a consequence, the

nonlinear error growth in the ensemble average is reduced, which is witnessed in Section

4.2.7.5. Our experimental results are drastically different when using BVs compared to

random perturbations, consistent with the above.

To begin, an initial random positive and negative perturbation pair is generated, ±ε =

±(δ1, δ2, δ3, δ4) with δi ∈ (0, 0.01) ∀1 ≤ i ≤ 4. Denoting the control and perturbed numerical

approximations χnh and χnp,h, respectively, a bred vector bv(χ; δi) is generated via:

Algorithm 6 (Bred Vectors (BV)). Perform the following steps:

Step 1: Given χ0
h and δi, put χ0

p,h = χ0
h+ δi. Select time reinitialization interval δt ≥ ∆t and

let tk = kδt with 0 ≤ k ≤ k∗ ≤ N .

Step 2: Compute χkh and χkp,h. Calculate bv(χk; δi) = δi
‖χk
p,h
−χk

h
‖(χ

k
p,h − χkh).
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Figure 4.1: BV (bv(T ; +δ3)): Ra = 103, 104, 105, and 106, left to right.

Step 3: Put χkp,h = χkh + bv(χk; δi).

Step 4: Repeat from Step 2 with k = k + 1.

Step 5: Put bv(χ; δi) = bv(χk∗ ; δi).

The bred vector pair generates a pair of initial conditions via χ± = χ0 + bv(χ;±δi). We

let k∗ = 5 and choose δt = ∆t = 0.001 for all tests.

4.2.7.4 THE DOUBLE PANE WINDOW PROBLEM This is a classic test prob-

lem for natural convection. The problem is the flow of air, Pr = 0.71, in a unit square cavity

subject to no-slip boundary conditions. The horizontal walls are adiabatic and vertical wall

temperature is maintained at constant temperature [134]. We set ε = 0.01∆t.

We first validate our code. We set J = 2 and vary Ra ∈ {103, 104, 105, 106}. The finite

element mesh is a division of (0, 1)2 into 642 squares with diagonals connected with a line

within each square in the same direction. The initial timestep ∆t = 0.001; it is halved three

times for Ra = 106 to 0.000125. The initial conditions are generated via the BV algorithm,

u±(x, y, 0) := u(x, y, 0;ω1,2) = (uprev1 + bv(u1;±δ1), uprev2 + bv(u2;±δ2))T ,

T±(x, y, 0) := T (x, y, 0;ω1,2) = T prev + bv(T ;±δ3),

p±(x, y, 0) := p(x, y, 0;ω1,2) = pprev + bv(p;±δ4),

where the subscript prev denotes the solution from the previous value of Ra; for Ra = 103,

the previous values are all set to 1. The BV, bv(T ; +δ3), is presented in Figure 4.1. Forcings
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are identically zero for j = 1, 2. The stopping condition is

max
0≤n≤N−1

{‖un+1
h − unh‖
‖un+1

h ‖
,
‖T n+1

h − T nh ‖
‖T n+1

h ‖
}
≤ 10−5.

The quantities of interest are: maxy∈Ωh u1(0.5, y, t∗), maxx∈Ωh u2(x, 0.5, t∗), the local Nusselt

number at vertical walls, and average Nusselt number at the hot wall. The latter two are

given by

Nulocal = ±∂T
∂x

,

Nuavg =
∫ 1

0
Nulocaldy,

where ± corresponds to the cold and hot walls, respectively.

Plots of Nulocal at the hot and cold walls are presented in Figure 4.3. Computed values

of the remaining quantities are presented, alongside several of those seen in the literature,

in Tables 4.2 – 4.4. Figures 4.2a and 4.2b present the velocity streamlines and temperature

isotherms for the averages. All results are consistent with benchmark values in the literature

[134, 89, 19, 17, 147].

The second test is a timing test comparing ACE vs. linearly implicit BDF1. Standard

GMRES is used for the velocity and temperature solves.. We set J = 1 and vary 103 ≤

Ra ≤ 106. The timestep is chosen to be ∆t = 0.001 for 103 ≤ Ra ≤ 105 and ∆t = 0.0001

for Ra = 5 × 105 and 106. The initial conditions are prescribed as in the above. Results

are presented in Figure 4.4. We see that for Ra = 103, both algorithms have increased

runtimes relative to all other cases. This is due to the relatively poor choice of initial

condition. Moreover, linearly implicit BDF1 suffers from increased runtime with increasing

Ra. However, ACE runtimes remain relatively constant. Overall, ACE is 3 to 8 times faster

for this test problem.
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(a) Streamlines: Ra = 103, 104, 105, and 106, left to right.

(b) Isotherms: Ra = 103, 104, 105, and 106, left to right.

Figure 4.2: Streamlines and isotherms for the double pane problem.

Table 4.2: Comparison: maximum u1 at x = 0.5 & mesh size, double pane problem.

Ra Present study Ref. [134] Ref. [89] Ref. [19] Ref. [17] Ref. [147]

104 16.16 (64×64) 16.18 (41×41) 16.10 (71×71) 16.10 (101×101) 15.90 (11×11) 16.18 (64×64)

105 34.65 (64×64) 34.81 (81×81) 34 (71×71) 34 (101×101) 33.51 (21×21) 34.74 (64×64)

106 65.48 (64×64) 65.33 (81×81) 65.40 (71×71) 65.40 (101×101) 65.52 (32×32) 64.81 (64×64)

Table 4.3: Comparison: maximum u2 at y = 0.5 & mesh size, double pane problem.

Ra Present study Ref. [134] Ref. [89] Ref. [19] Ref. [17] Ref. [147]

104 19.65 (64×64) 19.51 (41×41) 19.90 (71×71) 19.79 (101×101) 19.91 (11×11) 19.62 (64×64)

105 68.88 (64×64) 68.22 (81×81) 70 (71×71) 70.63 (101×101) 70.60 (21×21) 68.48 (64×64)

106 218.63 (64×64) 216.75 (81×81) 228 (71×71) 227.11 (101×101) 228.12 (32×32) 220.44 (64×64)
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Table 4.4: Comparison: Nuavg on vertical boundary x = 0 & mesh size.

Ra Present study Ref. [134] Ref. [89] Ref. [19] Ref. [17] Ref. [147]

104 2.24 (64×64) 2.24 (41×41) 2.08 (71×71) 2.25 (101×101) 2.15 (11×11) 2.25 (64×64)

105 4.50 (64×64) 4.52 (81×81) 4.30 (71×71) 4.59 (101×101) 4.35 (21×21) 4.53 (64×64)

106 8.77 (64×64) 8.92 (81×81) 8.74 (71×71) 8.97 (101×101) 8.83 (32×32) 8.87 (64×64)

Figure 4.3: Variation of the local Nu at the hot (left) and cold walls (right).

Figure 4.4: Time: ACE vs. linearly implicit BDF1, double pane problem.
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4.2.7.5 EXPLORATION OF PREDICTABILITY We now illustrate the usefulness

of ensembles regarding the predictability of buoyancy-driven flows. Marsigli flow (or the lock-

exchange problem), considered in [85, 6, 105], is generated by the force due to gravity acting

on a domain containing fluids of varying density (and hence, by the Boussinesq assumption,

temperature). The mixture of the hot and cold fluids exhibits a shear flow resulting in a

Kelvin-Helmholtz instability. For this test problem, we rewrite the Boussinesq system as

∂tuj + (uj · ∇)uj + 1
2 (∇ · uj)uj −

1
Re∆uj +∇pj = RiξTj + fj

∇ · uj = 0

∂tTj + (uj · ∇)Tj + 1
2 (∇ · uj)Tj −

1
ReRi∆Tj = gj,

where Re,Ri are the Reynolds and Richardson numbers, respectively. Let Ω = (0, 8)× (0, 1)

and Ri = 4.0. Plots of the flow for Re = 5000 at two second intervals (over eight seconds)

at a resolution of 2048× 256 are given in Figure 4.5. We let the timestep in this simulation

be ∆t = 0.0005. Note the similarity of the plots with those in the literature.

We choose a timestep of ∆t = 0.005 and a final time of t∗ = 8. Correspondingly, we let

ε = ∆t. We assume the flow starts at rest (u0 = 0) and that the velocity is endowed with

noslip boundary conditions. To create the shear flow, we define the temperature T ≡ 1.5 for

x ≤ 4 and T ≡ 1.0 for x > 4 at t = 0. As the flow is buoyancy-driven, there are no external

forces or heat sources. Using the initial condition for the temperature, we also calculate p0.

The test below is run for Re = {1000, 5000, 10000}, each on a Delaunay triangulation of

Ω with resolution 1024 × 128. We also generate two ensemble members for each Reynolds

number via the BV algorithm. Finally, we utilize the following definitions of energy, variance,

and average effective Lyapunov exponent [7]: The energy is given by

E := ‖T‖+ 1
2‖u‖

2;

the variance of χ is

Var(χ) := 〈‖χ‖2〉 − ‖〈χ〉‖2 = 〈‖χ′‖2〉;
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(a) t = 2

(b) t = 4

(c) t = 6

(d) t = 8

Figure 4.5: Marsigli flow at Re = 5000.
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the relative energy fluctuation is

r(t) := ‖χ+ − χ−‖2

‖χ+‖‖χ−‖
,

and the average effective Lyapunov exponent over 0 < τ ≤ t∗ is

γτ (t) := 1
2τ log

(r(t+ τ)
r(t)

)
,

with 0 < t+ τ ≤ t∗.

Figure 4.6 presents the energy of the approximate solutions with varying Re and the

unperturbed solution at the same resolution. Variance is presented in Figure 4.8, and the

relative energy fluctuation is given in Figure 4.7. In all cases, the ensemble average and

unperturbed energy are in close agreement. Figures 4.8 and 4.7 show that the perturbed

velocity and temperature solutions deviate significantly from the unperturbed solution with

increasing Re, whereas the pressure solutions seem to be in close agreement. Moreover, the

figure indicates that small perturbations in the initial conditions yield unreliable velocity

and temperature distributions near the end of the simulation.

The average effective Lyapunov exponents are presented in Figure 4.9. We see that

γτ is positive for the temperature (indicating finite time flow predictability), whereas the

situation complicates for the velocity and pressure. The velocity appears predictable over

the first four seconds for all but large enough τ in the simulation. The Lyapunov exponents

of the pressure, however, exhibit periodic behavior that indicates predictability for some

values of τ and unpredictability for others. For all three solutions, the exponents become

increasingly larger (reduced predictability) with increasing Ra. These exponents are in line

with the plots for variance, see Figure 4.8.

To see whether the timestep size can improve the fidelity and predictability of the en-

semble average, we next present plots of the flow at Re = 5000 in two second intervals for

∆t = 0.005 against ∆t = 0.0005 in Figure 4.10. There are differences in the plots: symmetry

of the flow appears to break between t = 4 and t = 6 for the larger timestep; however, the

run with the smaller timestep seems to be in line with the simulation given in Figure 4.5.

Figures 4.11–4.13 show the energy, energy fluctuation, variance, and Lyapunov exponent

comparison between the flow run for Re = 5000 and ∆t = 0.0005. The plots are similar to
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(a) Average energy (2 ensemble members)
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(b) Energy for unperturbed solution

Figure 4.6: Energy in the system for varying Re.

those in Figures 4.6–4.9. Figure 4.11 shows the energy profile of the ensemble average versus

the unperturbed solution are almost identical, and the energy fluctuation profiles are very

similar to those in Figure 4.7. Figure 4.12 shows variance profiles also similar to those in

Figure 4.8; interestingly, the velocity variance appears much more oscillatory in this case.

Finally, the average Lyapunov exponent plots are given in Figure 4.13. They appear to be

in agreement with the plots in Figure 4.9.

4.2.8 AN AC ENSEMBLE SCHEME FOR VARIABLE TIMESTEPS

In the previous section, we constructed, analyzed, and tested an artificial compressibility

ensemble (ACE) scheme for constant timesteps. Now, we extend the analysis for variable

timesteps. Let [0, t∗] be a time interval, and consider a partition 0 = t0 < t1 < · · · < tN−1 <

tN = t∗ with nth timestep ∆tn = tn − tn−1. Further, consider a transient AC parameter

ε = ε(t), and let εn := ε(tn). We consider an adaptive artificial compressility ensemble

method for the Boussinesq equations (4.1)–(4.3), given by

un+1
j − unj
∆tn+1

+ (〈u〉n · ∇)un+1
j + 1

2 (∇ · 〈u〉n)un+1
j
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Figure 4.7: Energy fluctuation of u, p, and T for varying Re.

102



0 1 2 3 4 5 6 7 8

0.000

0.005

0.010

0.015

0.020

Var(u) :Re=1000
Var(u) :Re=5000
Var(u) :Re=10000

(a) Velocity

0 1 2 3 4 5 6 7 8

0.00

0.02

0.04

0.06

0.08

0.10

0.12 Var(p) :Re=1000
Var(p) :Re=5000
Var(p) :Re=10000

(b) Pressure

0 1 2 3 4 5 6 7 8

0.001

0.002

0.003

0.004

0.005
Var(T) :Re=1000
Var(T) :Re=5000
Var(T) :Re=10000

(c) Temperature

Figure 4.8: Variance of u, p, and T for varying Re.

(a) Velocity (b) Pressure (c) Temperature

Figure 4.9: γτ (t) of u, p, and T for varying Re.
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(a) t = 2,∆t = 0.005 (b) t = 2,∆t = 0.0005

(c) t = 4,∆t = 0.005 (d) t = 4,∆t = 0.0005

(e) t = 6,∆t = 0.005 (f) t = 6,∆t = 0.0005

(g) t = 8,∆t = 0.005 (h) t = 8,∆t = 0.0005

Figure 4.10: Marsigli flow at Re = 5000 for different ∆t.

+(u′nj · ∇)unj + 1
2
(
∇ · u′nj

)
unj − Pr∆un+1

j +∇pn+1
j = PrRaξT nj + fn+1

j ,

εn+1p
n+1
j − ε̂pnj

∆tn+1
+∇ · un+1

j = 0, (4.40)

T n+1
j − T nj
∆tn+1

+ (〈u〉n · ∇)T n+1
j + 1

2 (∇ · 〈u〉n)T n+1
j

+(u′nj · ∇)T nj + 1
2
(
∇ · u′nj

)
T nj −∆T n+1

j = gn+1
j ,

where ε̂ = √εn+1εn or ε̂ = min{εn+1, εn}. We present a stability result for the fully discrete

adaptive ACE scheme.

Theorem 13. Let fj ∈ L2(0, t∗;H−1(Ω)d), gj ∈ L2(0, t∗;H−1(Ω)) with appropriate initial

conditions for the velocity, pressure, and temperature. If the scheme (4.40) satisfies the

condition

C†
h

max
n

∆tn max
1≤j≤J

‖∇u′nj,h‖2 ≤ 1, (4.41)
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Figure 4.11: Energy and fluctuation in the system for Re = 5000,∆t = 0.0005.
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Figure 4.12: Variance of u, p, and T for Re = 5000,∆t = 0.0005.

(a) Velocity (b) Pressure (c) Temperature

Figure 4.13: Average effective Lyapunov exponents of u, p, and T for Re = 5000,∆t = 1
2000 .
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then the stability bounds for the min-Method

‖uNj,h‖2 + ‖TNj,h‖2 + εN‖pNj,h‖2 + 1
2

N−1∑
n=0

(
‖un+1

j,h − unj,h‖2 + ‖T n+1
j,h − T nj,h‖2

+ min{εn+1, εn}‖pn+1
j,h − pnj,h‖2 + (εn+1 − εn)+ ‖pn+1

j,h ‖2 + (εn − εn+1)+ ‖pnj,h‖2
)

+Pr
2 |||∇uj,h|||

2
2,0 + 1

2 |||∇Tj,h|||
2
2,0 ≤ ‖u

0
j,h‖2 + ‖T 0

j,h‖2 + ε0‖p0
j,h‖2

+ 2
Pr |||fj|||

2
2,−1 + 2PrRa2Cpf,1CT

and the GA-Method

‖uNj,h‖2 + ‖TNj,h‖2 + εN‖pNj,h‖2 + 1
2

N−1∑
n=0

(
‖un+1

j,h − unj,h‖2 + ‖T n+1
j,h − T nj,h‖2

+‖√εn+1p
n+1
j,h −

√
εnp

n
j,h‖2

)
+ Pr

2 |||∇uj,h|||
2
2,0 + 1

2 |||∇Tj,h|||
2
2,0

≤ ‖u0
j,h‖2 + ‖T 0

j,h‖2 + ε0‖p0
j,h‖2 + 2

Pr |||fj|||
2
2,−1 + 2PrRa2Cpf,1CT

hold.

Proof. The proof of stability follows in much the same way as the constant timestep case.

We take an inner product of the temperature equation with Sh = 2∆tn+1T
n+1
j,h in (4.9) and

get

‖T n+1
j,h ‖2 − ‖T nj,h‖2 + ‖T n+1

j,h − T nj,h‖2 + 2∆tn+1‖∇T n+1
j,h ‖2

= 2∆tn+1(gn+1
j , T n+1

j,h )− 2∆tn+1bT (u′nj,h, T nj,h, T n+1
j,h ).

We have, by the definition of the dual norm, Cauchy-Schwarz-Young inequality, and the

estimates for the nonlinear term (see Lemma 1 and the inverse inequality)

2∆tn+1(gn+1
j , T n+1

j,h ) ≤ ∆tn+1‖gn+1
j ‖2

−1 + ∆tn+1‖∇T n+1
j,h ‖2,

−2∆tn+1bT (u′nj,h, T nj,h, T n+1
j,h ) = −2∆tn+1bT (u′nj,h, T n+1

j,h , T n+1
j,h − T nj,h)

≤ 2∆tn+1C3,T‖∇u′nj,h‖‖∇T n+1
j,h ‖

√
‖T n+1

j,h − T nj,h‖‖∇(T n+1
j,h − T nj,h)‖

≤
2∆tn+1C3,T

√
Cinv,2√

h
‖∇u′nj,h‖‖∇T n+1

j,h ‖‖T n+1
j,h − T nj,h‖

≤
2∆t2n+1C

2
3,TCinv,2

h
‖∇u′nj,h‖2‖∇T n+1

j,h ‖2 + 1
2‖T

n+1
j,h − T nj,h‖2.
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Therefore, we have the bound

‖T n+1
j,h ‖2 − ‖T nj,h‖2 + 1

2‖T
n+1
j,h − T nj,h‖2

+∆tn+1

(
1−

2∆tn+1C
2
3,TCinv,2

h
‖∇u′nj,h‖2

)
‖∇T n+1

j,h ‖2 ≤ ∆t‖gn+1
j ‖2

−1.

We get a bound of the type ‖Tmj,h‖2 ≤ CT after summing from n = 0 to N − 1 and using

condition (4.41).

We continue by using the results from Chapter 3: By (3.56) and the estimate for the

GA-method, we have

(εn+1p
n+1
j,h −min{εn+1, εn}pnj,h, pn+1

j,h ) =

= 1
2εn+1‖pn+1

j,h ‖2 − 1
2εn‖p

n
j,h‖2 + 1

2 min{εn+1, εn}‖pn+1
j,h − pnj,h‖2

+1
2 (εn+1 − εn)+ ‖pn+1

j,h ‖2 + 1
2 (εn − εn+1)+ ‖pnj,h‖2,

(εn+1p
n+1
j,h −

√
εn+1εnp

n
j,h, p

n+1
j,h )

= 1
2εn+1‖pn+1

j,h ‖2 − 1
2εn‖p

n
j,h‖2 + 1

2‖
√
εn+1p

n+1
j,h −

√
εnp

n
j,h‖2.

Clearly, these telescope and contribute numerical dissipation to the method. Letting (vh, qh)

= (2∆tn+1u
n+1
j,h , 2∆tn+1p

n+1
j,h ) ∈ (Vh, Qh) gives, for the min-Method

(
‖un+1

j,h ‖2 + εn+1‖pn+1
j,h ‖2

)
−
(
‖unj,h‖2 + εn‖pnj,h‖2

)
+ ‖un+1

j,h − unj,h‖2

+ min{εn+1, εn}‖pn+1
j,h − pnj,h‖2 + (εn+1 − εn)+ ‖pn+1

j,h ‖2 + (εn − εn+1)+ ‖pnj,h‖2

+2∆tn+1Pr‖∇un+1
j,h ‖2 = 2∆tn+1PrRa(ξT nj,h, un+1

j,h ) + 2∆tn+1(fn+1
j , un+1

j,h )

−2∆tn+1bu(u′nj,h, unj,h, un+1
j,h ).

and, for the GA-Method,

(
‖un+1

j,h ‖2 + εn+1‖pn+1
j,h ‖2

)
−
(
‖unj,h‖2 + εn‖pnj,h‖2

)
+ ‖un+1

j,h − unj,h‖2

+‖√εn+1p
n+1
j,h −

√
εnp

n
j,h‖2 + 2∆tn+1Pr‖∇un+1

j,h ‖2 = 2∆tn+1PrRa(ξT nj,h, un+1
j,h )

+2∆tn+1(fn+1
j , un+1

j,h )− 2∆tn+1bu(u′nj,h, unj,h, un+1
j,h ).
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By the Poincaré-Friedrichs inequality, the Cauchy-Schwarz-Young inequality, and the tem-

perature bound (4.14), we have

2∆tn+1PrRa(ξT nj,h, un+1
j,h ) ≤ 2∆tn+1PrRa2C2

pf,1CT + ∆tn+1Pr
2 ‖∇un+1

j,h ‖2.

The forcing and nonlinear terms are treated in a similar manner to the temperature case,

giving the bounds

2∆tn+1(fn+1
j , un+1

j,h ) ≤ 2∆tn+1

Pr ‖fn+1
j,h ‖2

−1 + ∆tn+1Pr
2 ‖∇un+1

j,h ‖2,

−2∆tn+1bu(u′nj,h, unj,h, un+1
j,h ) ≤

2∆t2n+1C
2
3,uCinv,1

h
‖∇u′nj,h‖2‖∇un+1

j,h ‖2 + 1
2‖u

n+1
j,h − unj,h‖2.

Adding and using the bounds yields, for the min-Method,

(
‖un+1

j,h ‖2 + ‖T n+1
j,h ‖2 + εn+1‖pn+1

j,h ‖2
)
−
(
‖unj,h‖2 + ‖T nj,h‖2 + εn‖pnj,h‖2

)
+ 1

2‖u
n+1
j,h − unj,h‖2

+1
2‖T

n+1
j,h − T nj,h‖2 + min{εn+1, εn}‖pn+1

j,h − pnj,h‖2 + 1
2‖T

n+1
j,h − T nj,h‖2

+ (εn+1 − εn)+ ‖pn+1
j,h ‖2 + (εn − εn+1)+ ‖pnj,h‖2

+∆tn+1

(
Pr−

2∆tn+1C
2
3,uCinv,1

h
‖∇u′nj,h‖2

)
‖∇un+1

j,h ‖2

+∆tn+1

(
1−

2∆tn+1C
2
3,TCinv,2

h
‖∇u′nj,h‖2

)
‖∇T n+1

j,h ‖2

≤ 2∆tn+1

Pr ‖fn+1
j ‖2

−1 + 2∆tn+1PrRa2Cpf,1CT

and, for the GA-Method,

(
‖un+1

j,h ‖2 + ‖T n+1
j,h ‖2 + εn+1‖pn+1

j,h ‖2
)
−
(
‖unj,h‖2 + ‖T nj,h‖2 + εn‖pnj,h‖2

)
+ 1

2‖u
n+1
j,h − unj,h‖2

+1
2‖T

n+1
j,h − T nj,h‖2 + ‖√εn+1p

n+1
j,h −

√
εnp

n
j,h‖2 + 1

2‖T
n+1
j,h − T nj,h‖2

+∆tn+1

(
Pr−

2∆tn+1C
2
3,uCinv,1

h
‖∇u′nj,h‖2

)
‖∇un+1

j,h ‖2

+∆tn+1

(
1−

2∆tn+1C
2
3,TCinv,2

h
‖∇u′nj,h‖2

)
‖∇T n+1

j,h ‖2

≤ 2∆tn+1

Pr ‖fn+1
j ‖2

−1 + 2∆tn+1PrRa2Cpf,1CT .
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Set now C† = min{4C2
3,uCinv,1

Pr , 4C2
3,TCinv,2}. Then, condition (4.41) is satisfied. Summing

from n = 0 to N − 1 gives the bound

‖uNj,h‖2 + ‖TNj,h‖2 + εN‖pNj,h‖2 + 1
2

N−1∑
n=0

(
‖un+1

j,h − unj,h‖2 + ‖T n+1
j,h − T nj,h‖2

+ min{εn+1, εn}‖pn+1
j,h − pnj,h‖2 + (εn+1 − εn)+ ‖pn+1

j,h ‖2 + (εn − εn+1)+ ‖pnj,h‖2
)

+Pr
2 |||∇uj,h|||

2
2,0 + 1

2 |||∇Tj,h|||
2
2,0 ≤ ‖u

0
j,h‖2 + ‖T 0

j,h‖2 + ε0‖p0
j,h‖2

+ 2
Pr |||fj|||

2
2,−1 + 2PrRa2Cpf,1CT

for the min-Method, and

‖uNj,h‖2 + ‖TNj,h‖2 + εN‖pNj,h‖2 + 1
2

N−1∑
n=0

(
‖un+1

j,h − unj,h‖2 + ‖T n+1
j,h − T nj,h‖2

+‖√εn+1p
n+1
j,h −

√
εnp

n
j,h‖2

)
+ Pr

2 |||∇uj,h|||
2
2,0 + 1

2 |||∇Tj,h|||
2
2,0

≤ ‖u0
j,h‖2 + ‖T 0

j,h‖2 + ε0‖p0
j,h‖2 + 2

Pr |||fj|||
2
2,−1 + 2PrRa2Cpf,1CT

for the GA-Method.

4.3 CONCLUSIONS

For physical phenomena with inherent uncertainties, e.g., atmospheric flow, ensemble

simulations are essential to glean valuable statistics from the numerical experiments and to

extend the predictability horizon. Due to computational constraints, e.g., memory restric-

tions, the number of realizations that can be considered is limited. Thus, methods that

are fast and save memory are essential to extending the predictability horizon. Further-

more, time adaptive algorithms are efficient and easily programmable, making the numerical

schemes even faster. In this chapter, we have constructed ensemble schemes that solve all

three problems: they are fast, efficient, and save memory.

The methods use a nonlinear splitting technique that results in a shared coefficient matrix

for each realization solved, reducing the number of matrices that need to loaded and stored in

RAM from J to 1. Furthermore, the fact that the coefficient matrix is shared allows the use
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of efficient block solvers. To speed up the computations and circumvent the velocity/pressure

coupling, we employ for use in our schemes artificial compressibility. Our numerical tests,

summarized in Section 4.2.7, show a speed increase factor of 3–8 times versus a typical

coupled numerical method. The constant timestep method is also robust, and can be used

for predictability studies (see Section 4.2.7). Finally, we extend our method to the variable

timestep case and prove stability of the algorithm.
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5.0 ONE-EQUATION URANS MODELS WITH KINEMATIC MIXING

LENGTH

5.1 INTRODUCTION

URANS (unsteady Reynolds averaged Navier-Stokes) models of turbulence are derived

commonly to produce a velocity, v(x, t) ' u(x, t), that approximates a finite time window

average of the Navier-Stokes velocity u(x, t)

u(x, t) = 1
τ

∫ t

t−τ
u(x, t′)dt′. (5.1)

We note that URANS models are also constructed ad hoc simply by adding ∂v
∂t

to a RANS

model without regard to where the term originates. Formulation via averaging over a finite

time window is a coherent source for the term. From this connection flows 5 fundamental

conditions (listed below) that a coherent URANS model should satisfy and that few do.

Herein we delineate these conditions and show that, for the standard 1-equation model, a

new kinematic turbulence length scale results in a simpler model satisfying 4 of the 5.

The first condition is a simple observation that the time window τ should influence the

model, as τ → 0 the model should revert to the NSE (Navier-Stokes equations) and as τ

increases, more time scales are filtered and thus the eddy viscosity should increase.

Condition 1: The filter window τ should appear as a model parameter. As τ → 0 the

model reverts to the NSE. As τ increases, the model eddy viscosity νT (·) increases.

We consider herein 1-equation models of turbulence. These have deficiencies but never-

theless include models considered to have good predictive accuracy and low cost, e.g., Spalart

[117] and Figure 2 p.8 in Xiao and Cinnella [144]. The standard 1-equation model (from

which all have evolved), introduced by Prandtl [99], is

vt + v · ∇v −∇ ·
([

2ν + µl
√
k
]
∇sv

)
+∇p = f(x),

∇ · v = 0, (5.2)

kt + v · ∇k −∇ ·
([
ν + µl

√
k
]
∇k

)
+ 1
l
k
√
k = µl

√
k|∇sv|2.
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Briefly, p(x, t) is a pressure, f(x) is a smooth, divergence free (∇·f = 0) body force, µ ' 0.55

is a calibration parameter, ∇sv = (∇v+∇Tv)/2 is the deformation tensor, and k(x, t) is the

model approximation to the fluctuations’ kinetic energy distribution, 1
2 |(u− u)(x, t)|2. Pope

[98] calculates the value µ = 0.55 from the (3d) law of the wall. An analogy with the kinetic

theory of gasses (for which νT = 1
3 lU) yields the value µ = 1

3

√
2/d which gives µ ' 0.33 in

2d and µ ' 0.27 in 3d, Davidson [22] p. 114, eqn. (4.11a). The eddy viscosity coefficient

νT (·) = µl
√
k

(the Prandtl-Kolmogorov formula) is a dimensionally consistent expression of the observed

increase of mixing with turbulence and of the physical idea of Saint-Venant [104] that this

mixing increases with “the intensity of the whirling agitation,” [21], p.235. The k-equation

describes the turbulent kinetic energy evolution; see [10] p.99, Section 4.4, [22], [92] p.60,

Section 5.3 or [98] p.369, Section 10.3, for a derivation. The model (5.2) holds in a flow

domain Ω with initial conditions, v(x, 0) and k(x, 0), and (here L−periodic or no-slip) v, k

boundary conditions on the boundary ∂Ω.

The parameter of interest herein is the turbulence length-scale l = l(x), first postulated

by Taylor in 1915 [126]. It varies from model to model, flow subregion to subregion (requiring

fore knowledge of their locations, [117]) and must be specified by the user; see [140] for many

examples of how l(x) is chosen in various subregions. The simplest case is channel flow for

which

l0(x) = min{0.41y, 0.082Re−1/2}

where y is the wall normal distance, Wilcox [140] Ch. 3, eqn. (3.99) p.76.

Model solutions are approximations to averages of velocities of the incompressible Navier-

Stokes equations. Other fundamental physical properties of NSE solutions (inherited by

averages) should also be preserved by the model. These properties include:

Condition 2: The turbulence length-scale l(x) must l(x)→ 0 as x→ walls.

Condition 2 follows since the eddy viscosity term approximates the Reynolds stresses

and

µl
√
k∇sv ' u′u′ which → 0 at walls like O(wall-distance2).
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Specifications of l(x) violating this are often observed to over-dissipate solutions (in many

tests and now with mathematical support [96]).

Condition 3: (Finite kinetic energy) The model’s representation of the total kinetic

energy in the fluid must be uniformly bounded in time:

∫
Ω

1
2 |v(x, t)|2 + k(x, t)dx ≤ C <∞ uniformly in time.

The kinetic energy (per unit volume) 1
|Ω|
∫ 1

2 |u|
2dx, is distributed between means and fluctu-

ations in the model as

1
|Ω|

∫
Ω

1
2 |v(x, t)|2 + k(x, t)dx ' 1

|Ω|

∫
Ω

1
2 |u(x, t)|2dx <∞.

This property for the NSE represents the physical fact that bounded energy input does not

grow to unbounded energy solutions.

Condition 4: (Time-averaged statistical equilibrium) The time average of the model’s

total energy dissipation rate, εmodel (5.4) below, should be at most the time average energy

input rate:

lim sup
t∗→∞

1
t∗

∫ t∗

0
εmodel(t)dt ≤ C

U3

L
, uniformly in Re.

The most common failure model for turbulence models is over-dissipation. Condition 4 ex-

presses aggregate non-over-dissipation. The energy dissipation rate is a fundamental statistic

of turbulence, e.g., [98, 135]. This balance is observed in physical experiments [42, 135] and

has been proven for the NSE, [31, 29, 30].

The fifth condition is that the model allows an intermittent flow of energy from fluctua-

tions back to means. This energy flow is important, e.g. [118, 137], less well understood and

not addressed herein; for background see [64].

Condition 5: The model allows flow of energy from fluctuations back to means without

negative eddy viscosities. This energy flow has space time average zero.
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To develop Conditions 3 and 4, multiple the v-equation (5.2) by v and integrate over Ω.

Add to this the k-equation integrated over Ω. After standard manipulations and cancellations

of terms there follows the model’s global energy balance

d

dt

∫
Ω

1
2 |v(x, t)|2 + k(x, t)dx+

∫
Ω

2ν|∇sv(x, t)|2 + 1
l(x)k

3/2(x, t)dx (5.3)

=
∫

Ω
f(x) · v(x, t)dx.

Thus, for the 1-equation model we have (per unit volume)

Kinetic energy = 1
|Ω|

∫
Ω

1
2 |v(x, t)|2 + k(x, t)dx,

Dissipation rate εmodel(t) = 1
|Ω|

∫
Ω

2ν|∇sv(x, t)|2 + 1
l(x)k

3/2(x, t)dx (5.4)

The standard 1-equation model has difficulties with all 5 conditions. Conditions 1 and

5 are clearly violated. The second, l(x) → 0 at walls, is not easily enforced for complex

boundaries; it is further complicated in current models, e.g., Spalart [117], Wilcox [140], by

requiring user input of (unknown) subregion locations where different formulas for l(x) are

used. Conditions 3 and 4 also seem to be unknown for the standard model; they do not

follow from standard differential inequalities due to the mismatch of the powers of k in the

energy term and the dissipation term.

The correction herein is a kinematic l(x, t). We prove herein that a kinematic turbulence

length-scale enforces Conditions 1, 2, 3 and 4 as well as simplifying the model. This can

also be argued to be a dynamic choice since the estimate of |u′| in l(x, t) is calculated from

an (approximate) causal law. In its origin, the turbulence length-scale (then called a mixing

length) was an analog to the mean free pass in the kinetic theory of gases. It represented

the distance two fluctuating structures must traverse to interact. Prandtl [100] in 1926 also

mentioned a second possibility: “...the distance traversed by a mass of this type before it

becomes blended in with neighboring masses...”.

The idea expressed by Prandtl above is ambiguous but can be interpreted as suggesting

l = |u′(x, t)|τ , i.e., the distance a fluctuating eddy travels in one time unit. This choice means
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to select a turbulence time scale τ (e.g., from (5.1)) and, as |u′| '
√

2k(x, t)1/2, define l(x, t)

kinematically by

l(x, t) =
√

2k(x, t)1/2τ. (5.5)

The k-equation and a weak maximum principle imply k(x, t) ≥ 0, following [143], [81].

Thus, k1/2 is well defined. With this choice the time window τ enters into the model. To our

knowledge, (5.5) is little developed. Recently in [66] the idea of l = |u′|τ has been shown to

have positive features in ensemble simulations. With (5.5), the model (5.2) is modified to

vt + v · ∇v −∇ ·
([

2ν +
√

2µkτ
]
∇sv

)
+∇p = f(x),

∇ · v = 0, (5.6)

kt + v · ∇k −∇ ·
([
ν +
√

2µkτ
]
∇k

)
+
√

2
2 τ−1k =

√
2µkτ |∇sv|2.

Let L,U denote large length and velocity scales, equation (5.9), Re = LU/ν the usual

Reynolds number, and let T ∗ = L/U denote the large scale turnover time. The main result

herein is that with the kinematic length scale selection (5.5) Conditions 1–4 are now satisfied.

Theorem 14. Let µ, τ be positive and Ω a bounded regular domain. Let

l(x, t) =
√

2k(x, t)1/2τ.

Then, Condition 1 holds.

Suppose the boundary conditions are noslip (v = 0, k = 0 on ∂Ω). Then, Condition 2 is

satisfied. At walls

l(x)→ 0 as x→ walls.

Suppose the model’s energy inequality, equation (5.11) below, holds. If the boundary

conditions are either noslip or periodic with zero mean for v and periodic for k, (5.8) below,

Condition 3 also holds:
∫

Ω

1
2 |v(x, t)|2 + k(x, t)dx ≤ C <∞ uniformly in time.

The model’s energy dissipation rate is

εmodel(t) = 1
|Ω|

∫
Ω

2ν|∇sv(x, t)|2 +
√

2
2 τ−1k(x, t)dx.

116



Time averages of the model’s energy dissipation rate are finite:

lim sup
t∗→∞

1
t∗

∫ t∗

0
εmodel(t)dt <∞.

Suppose the boundary conditions are either periodic with zero mean for v and periodic for

k, (5.8) below, or noslip (v = 0, k = 0 on the boundary) and the body force satisfies f(x) = 0

on the boundary. If the selected time averaging window satisfies

τ

T ∗
≤ 1
√
µ

(' 1.35 for µ = 0.55)

then Condition 4 holds uniformly in the Reynolds number

lim sup
t∗→∞

1
t∗

∫ t∗

0
εmodel(t)dt ≤ 4

(
1 + Re−1

) U3

L
.

Proof. The proof that Condition 4 holds will be presented in Section 5.3. The remainder is

proven as follows. Condition 1 is obvious. Since l(x, t) =
√

2k(x, t)1/2τ and k(x, t) vanishes

at walls it follows that so does l(x, t) so Condition 2 holds.

In the energy inequality (5.11), l(x, t) =
√

2k(x, t)1/2τ yields

d

dt

∫
Ω

1
2 |v(x, t)|2 + k(x, t)dx+

∫
Ω

2ν|∇sv(x, t)|2 +
√

2
2 τ−1k(x, t)dx

≤
∫

Ω
f(x) · v(x, t)dx. (5.7)

By Korn’s inequality and the Poincaré-Friedrichs inequality

α
∫

Ω

1
2 |v(x, t)|2 + k(x, t)dx ≤

∫
Ω

2ν|∇sv(x, t)|2 +
√

2
2 τ−1k(x, t)dx,

where α = α(CPF , ν, τ) > 0.

Let y(t) =
∫ 1

2 |v(x, t)|2 + k(x, t)dx. Thus, y(t) satisfies

y′(t) + αy(t) ≤
∫

Ω
f(x) · v(x, t)dx ≤ α

2 y(t) + C(α)
∫

Ω
|f |2dx.

An integrating factor then implies

y(t) ≤ e−
α
2 ty(0) +

(
C(α)

∫
Ω
|f |2dx

) ∫ t

0
e−

α
2 (t−s)ds

which is uniformly bounded in time, verifying Condition 3.
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For the last claim, time average the energy balance (5.7). The result can be compressed

to read

y(t∗)− y(0)
t∗

+ 1
t∗

∫ t∗

0
εmodel(t)dt = 1

t∗

∫ t∗

0

(∫
Ω
f(x) · v(x, t)dx

)
dt

The first term on the left hand side is O( 1
t∗

) since y(t) is uniformly bounded. The RHS is also

uniformly in t∗ bounded (again since y(t) is uniformly bounded). Thus so is 1
t∗

∫ t∗
0 εmodel(t)dt.

The estimate ε ' U3/L in Theorem 14 is consistent as Re→∞ with both phenomenol-

ogy, [98], and the rate proven for the Navier-Stokes equations in [139, 29, 31]. Building on

this work, the proof consists of estimating 4 key terms. The first 3 are a close parallel to the

NSE analysis in these papers and the fourth is model specific.

The main contribution herein is then recognition that several flaws of the model (5.2)

originate in the turbulence length-scale specification. These are corrected by the kinematic

choice (5.5) rather than by calibrating l with increased complexity. The second main con-

tribution is the proof in Section 5.3 that the kinematic choice does not over dissipate, i.e.,

Condition 4 holds.

Model existence is an open problem. The proof of Theorem 14 requires assuming weak so-

lutions of the model exist and satisfy an energy inequality (i.e., (5.3) with = replaced by ≤),

k(x, t) ≥ 0 and that in the model’s weak formulation the test function may be chosen to be

the (smooth) body force f(x). Such a theory for the standard model (with static l = l(x))

has been developed over 20+ years of difficult progress from intense effort including [80],

with positivity of k established in [81], see also [143], existence of suitable weak solutions in

[8], culminating in Chapter 8 of [10] and [9] including an energy inequality (with equality

an open problem) and uniqueness under restrictive conditions. Conditions 3 and 4 are open

problems for the standard model. Based on this work we conjecture that an existence theory,

while not the topic of this chapter, may be possible for the (related) 1-equation model with

kinematic length scale (5.6).
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5.2 PRELIMINARIES AND NOTATION

This section will develop Condition 4, that after time averaging εmodel ' U3/L, and

present notation and preliminaries needed for the proof in Section 5.3. We impose peri-

odic boundary conditions on k(x, t) and periodic with zero mean boundary conditions on

v, p, v0, f . Periodicity and zero mean denote respectively

Periodic: φ(x+ LΩej, t) = φ(x, t) and Zero mean:
∫

Ω
φdx = 0 . (5.8)

The proof when the boundary conditions are noslip, v = 0, k = 0 on ∂Ω, and f(x) = 0 on

∂Ω will be omitted. It is exactly the same as in the periodic case.

The long time average of a function φ(t) is

〈φ〉 = lim sup
t∗→∞

1
t∗

∫ t∗

0
φ(t)dt and satisfies

〈φψ〉 ≤
〈
|φ|2

〉1/2 〈
|ψ|2

〉1/2
and 〈〈φ〉〉 = 〈φ〉 .

Define the global velocity scale U , the body force scale F and large length scale L by

F =
(

1
|Ω|
∫

Ω |f(x)|2dx
)1/2

,

L = min
[
LΩ,

F
supx∈Ω |∇sf(x)| ,

F

( 1
|Ω|

∫
Ω |∇

sf(x)|2dx)1/2

]
U =

(
lim supt∗→∞ 1

t∗

∫ t∗
0

1
|Ω|
∫

Ω |v(x, t)|2dxdt
)1/2

.


(5.9)

L has units of length and satisfies

||∇sf ||∞ ≤
F

L
and 1

|Ω| ||∇
sf ||2 ≤ F 2

L2 . (5.10)

We assume that weak solutions of the system satisfy the following energy inequality.

d

dt

(1
2 ||v||

2 +
∫

Ω
kdx

)
+ 2ν||∇sv||2 +

√
2

2τ

∫
Ω
kdx ≤ (f, v). (5.11)

This is unproven for the new model but consistent with what is known for the standard

model, e.g., [10]. We assume the following energy equality for the separate k-equation.

d

dt

∫
Ω
kdx+

√
2

2τ

∫
Ω
kdx =

∫
Ω

√
2µkτ |∇sv|2dx. (5.12)

This follows from the definition of a distributional solution by taking the test function to be

φ(x) ≡ 1.
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5.3 PROOF THAT CONDITION 4 HOLDS

This section presents a proof that Condition 4 holds for the model (5.6). The first steps of

the proof parallel the estimates in the NSE case in, e.g., [31, 29]. With the above compressed

notation, the assumed model energy inequality, motivated by (5.11), can be written

d

dt

(
1

2|Ω| ||v||
2 + 1
|Ω|

∫
Ω
kdx

)
+ 1
|Ω|

∫
Ω

2ν|∇sv|2 +
√

2
2τ kdx ≤

1
|Ω|(f, v(t)).

In the introduction the following uniform in t∗ bounds were proven

1
2 ||v(t∗)||2 +

∫
Ω k(t∗)dx ≤ C <∞ ,

1
t∗

∫ t∗
0
∫
Ω

(
2ν|∇sv|2 +

√
2

2τ k
)
dxdt ≤ C <∞.

 (5.13)

Time averaging over 0 < t < t∗ gives

1
t∗

(1
2 ||v(t∗)||2 +

∫
Ω
k(x, t∗)dx− 1

2 ||v(0)||2 −
∫

Ω
k(x, 0)dx

)
+

+ 1
t∗

∫ t∗

0

∫
Ω

(
2ν|∇sv|2 +

√
2

2τ k
)
dxdt = 1

t∗

∫ t∗

0
(f, v(t))dt.

In view of the á priori bounds (5.13) and the Cauchy-Schwarz inequality, this implies

O
( 1
t∗

)
+ 1
t∗

∫ t∗

0
εmodel(t)dt ≤ F

(
1
t∗

∫ t∗

0

1
|Ω| ||v||

2dt

) 1
2

. (5.14)

To bound F in terms of flow quantities, take the L2(Ω) inner product of (5.6) with f(x),

integrate by parts (i.e., select the test function to be f(x) in the variational formulation)

and average over [0, t∗]. This gives

F 2 = 1
t∗

1
|Ω|(v(t∗)− v0, f)− 1

t∗

∫ t∗

0

1
|Ω|(vv,∇

sf)dt+ (5.15)

+ 1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

2ν∇sv : ∇sf +
√

2µkτ∇sv : ∇sfdxdt.

The first term on the RHS is O(1/t∗) as above. The second term is bounded by the

Cauchy-Schwarz inequality and (5.10). For any 0 < β < 1

Second:
∣∣∣∣∣ 1
t∗

∫ t∗

0

1
|Ω|(vv,∇

sf)dt
∣∣∣∣∣ ≤ 1

t∗

∫ t∗

0
||∇sf(·)||∞

1
|Ω| ||vv||

2dt

≤ ||∇sf(·)||∞
1
t∗

∫ t∗

0

1
|Ω| ||v(·, t)||2dt ≤ F

L

1
t∗

∫ t∗

0

1
|Ω| ||v(·, t)||2dt.
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The third term is bounded by analogous steps to the second term. For any 0 < β < 1

Third:
1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

2ν∇sv(x, t) : ∇sf(x)dxdt

≤
(

1
t∗

∫ t∗

0

4ν2

|Ω| ||∇
sv||2dt

) 1
2
(

1
t∗

∫ t∗

0

1
|Ω| ||∇

sf ||2dt
) 1

2

≤
(

1
t∗

∫ t∗

0

2ν
|Ω| ||∇

sv||2dt
) 1

2
√

2νF
L

≤ βF

2U
1
t∗

∫ t∗

0

2ν
|Ω| ||∇

sv||2dt+ 1
β

νUF

L2 .

The fourth term is model specific. Its estimation begins by successive applications of the

space then time Cauchy-Schwarz inequality as follows

Fourth:
∣∣∣∣∣ 1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτ∇sv(x, t) : ∇sf(x)dxdt

∣∣∣∣∣
≤ 1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

(√√
2µkτ

)(√√
2µkτ |∇sv|

)
|∇sf |dxdt

≤ ||∇sf ||∞
1
t∗

∫ t∗

0

(
1
|Ω|

∫
Ω

√
2µkτdx

) 1
2
(

1
|Ω|

∫
Ω

√
2µkτ |∇sv|2dx

) 1
2

dxdt

≤ F

L

(
U

Ft∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτdxdt

) 1
2
(
F

Ut∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτ |∇sv|2dxdt

) 1
2

.

The arithmetic-geometric mean inequality then implies

Fourth:
∣∣∣∣∣ 1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτ∇sv(x, t) : ∇sf(x)dxdt

∣∣∣∣∣
≤ β

2
F

Ut∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτ |∇sv|2dxdt+ U

2βF
F 2

L2
1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτdxdt

≤ β

2
F

Ut∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτ |∇sv|2dxdt+ 1

2β
UF

L2t∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτdxdt.

Using these four estimates in the bound for F 2 yields

F 2 ≤ O
( 1
t∗

)
+ F

L

1
t∗

∫ t∗

0

1
|Ω| ||v||

2dt+ 1
2β

UF

L2
1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτdxdt

+ 1
β

νUF

L2 + βF

2U
1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

[
2ν +

√
2µkτ

]
|∇sv|2dxdt.
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Thus, we have an estimate for F
(

1
t∗

∫ t∗
0

1
|Ω| ||v||

2dt
) 1

2 :

F

(
1
t∗

∫ t∗

0

1
|Ω| ||v||

2dt

) 1
2

≤ O
( 1
t∗

)
+ 1
L

(
1
t∗

∫ t∗

0

1
|Ω| ||v||

2dt

) 3
2

+

+β2

(
1
t∗

∫ t∗
0

1
|Ω| ||v||

2dt
) 1

2

U

1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

[
2ν +

√
2µkτ

]
|∇sv|2dxdt+

+ 1
2β

(
1
t∗

∫ t∗

0

1
|Ω| ||v||

2dt

) 1
2 2νU
L2 +

+ 1
2β

(
1
t∗

∫ t∗

0

1
|Ω| ||v||

2dt

) 1
2 U

L2
1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτdxdt.

Inserting this on the RHS of (5.14) yields

1
t∗

∫ t∗

0
εmodeldt ≤ O

( 1
t∗

)
+ 1
L

(
1
t∗

∫ t∗

0

1
|Ω| ||v||

2dt

) 3
2

+ (5.16)

+β2

(
1
t∗

∫ t∗
0

1
|Ω| ||v||

2dt
) 1

2

U

1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

[
2ν +

√
2µkτ

]
|∇sv|2dxdt+

+ 1
2β

(
1
t∗

∫ t∗

0

1
|Ω| ||v||

2dt

) 1
2

U
2ν
L2 +

+ 1
2β

(
1
t∗

∫ t∗

0

1
|Ω| ||v||

2dt

) 1
2 U

L2

(
1
t∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτdxdt

)
.

We prove in the next lemma an estimate for the last, model specific, term
∫ √

2µkτdx on

the RHS. This estimate has the interpretation that, on time average, the decay (relaxation)

rate of k(x, t) balances the transfer rate of kinetic energy from means to fluctuations.

Lemma 9. For weak solutions of the k-equation we have

〈
1
|Ω|

∫
Ω

√
2µk(x, t)τdx

〉
= 2µτ 2

〈
1
|Ω|

∫
Ω

√
2µkτ |∇sv|2dx

〉
.

Proof. Integrating the k-equation (i.e., choosing φ(x) ≡ 1 in the equation’s distributional

formulation) yields

d

dt

1
|Ω|

∫
Ω
kdx+

√
2

2τ
1
|Ω|

∫
Ω
kdx = 1

|Ω|

∫
Ω

√
2µkτ |∇sv|2dx.
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From Theorem 14,
∫
kdx (and thus its time averages) is uniformly bounded in time. Thus,

we can time average the above. This gives

O
( 1
t∗

)
+
√

2
2τ

1
t∗

∫ t∗

0

1
|Ω|

∫
Ω
kdxdt = 1

t∗

∫ t∗

0

1
|Ω|

∫
Ω

√
2µkτ |∇sv|2dxdt,

and thus〈
1
|Ω|

∫
Ω

√
2µk(x, t)τdx

〉
= 2µτ 2

〈
1
|Ω|

∫
Ω

√
2µkτ |∇sv|2dx

〉
,

proving the lemma.

To continue the proof of Theorem 14, this lemma is now used to replace terms on the

RHS of (5.16) involving
√

2µkτ |∇sv|2 by terms with
√

2µk(x, t)τ . Let t∗ → ∞ in (5.16),

recalling the definition of εmodel and inserting the above relation for the last term yields
〈

1
|Ω|

∫
Ω

[
2ν|∇sv(x, t)|2 +

√
2

2 τ−1k(x, t)
]
dx

〉
≤ U3

L
(5.17)

+β2

〈
1
|Ω|

∫
Ω

2ν|∇sv|2 + 1
2µτ 2

√
2µk(x, t)τdx

〉
+

+ 1
β
U2 ν

L2 + 1
2β

U2

L2

〈
1
|Ω|

∫
Ω

√
2µk(x, t)τdx

〉
.

Collecting terms gives
〈

1
|Ω|

∫
Ω

[
2ν|∇sv(x, t)|2 +

√
2

2 τ−1k(x, t)
]
dx

〉
≤ 1
L
U3 + 1

β
U2 ν

L2 (5.18)

+β2

〈
1
|Ω|

∫
Ω

2ν|∇sv|2 +
(

1
2µτ 2 + 1

2β
U2

L2

)√
2µk(x, t)τdx

〉
.

The multiplier of
√

2µk(x, t)τ simplifies to

β

2

(
1

2µτ 2 + 1
2β

U2

L2

)√
2µτ =

√
2

2 τ−1
[
β

2 + 1
2µ

U2

L2 τ
2
]
.

Thus, rearrange the above inequality to read
〈

1
|Ω|

∫
Ω

[(
1− β

2

)
ν|∇sv|2 +

(
1−

{
β

2 + µ

2
U2

L2 τ
2
}) √

2
2 τ−1k

]
dx

〉

≤ U3

L
+ 1
β
U2 ν

L2 =
(

1 + 1
β

Re−1
)
U3

L
.
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Pick (without optimizing) β = 1. This yields

〈
1
|Ω|

∫
Ω

[
ν|∇sv(x, t)|2 +

√
2

2 τ−1k(x, t)
]
dx

〉

≤ 2
min{1, 1− µU2

L2 τ 2}

{
U3

L
+ Re−1U

3

L

}
.

We clearly desire

1− µU
2

L2 τ
2 = 1− µ

(
τ

T ∗

)2
≥ 1

2 .

This holds if the time cutoff τ is chosen with respect to the global turnover time T ∗ = L/U

so that
τ

T ∗
≤
√

1
µ
' 1.35, for µ = 0.55.

Then we have, as claimed,

〈
1
|Ω|

∫
Ω

[
ν|∇sv|2 +

√
2

2 τ−1k

]
dx

〉
≤ 4

(
1 + Re−1

) U3

L
.

5.4 NUMERICAL ILLUSTRATIONS IN 2D AND 3D

This section shows that the static and kinematic turbulence length scales produces flows

with different statistics. We use the simplest reasonable choices

l0(x) = min{0.41y, 0.41 · 0.2Re−1/2} and lK(x, t) =
√

2k(x, t)1/2τ.

All numerical experiments were performed using the package FEniCS [1]. We consider

several normalized, space-averaged statistics. Recall that the turbulence intensity is I =

〈||u′||2〉 / 〈||u||2〉. An approximation to the (time) evolution of this is calculable from the

model

Imodel(t) :=
2
|Ω|
∫

Ω k(x, t)dx
1
|Ω|
∫

Ω |v(x, t)|2dx.
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Next we consider the effective viscosity coefficient for the two methods. The effective

viscosity is a useful statistic to quantify the aggregate, space averaged effect of fluctuating

eddy viscosity terms. It is

νeffective(t) :=
1
|Ω|
∫

Ω

[
ν + µl

√
k
]
|∇sv|2dx

1
|Ω|
∫

Ω |∇sv|2dx
.

We also consider the related statistic of the viscosity ratio of turbulent viscosity to molecular

viscosity

V R(t) :=
1
|Ω|
∫

Ω µl
√
k|∇sv|2dx

1
|Ω|
∫

Ω 2ν|∇sv|2dx
.

We also calculate the evolution of the Taylor microscale of each model’s solution:

λTaylor(t) :=
(∫

Ω |∇sv|2dt∫
Ω |v|2dt

)−1/2

.

The time evolution of the scaled averaged turbulence length scale and turbulent viscosity are

also of interest:

avg(l)
L

:= 1
L

(
1
|Ω|

∫
Ω
l(x, t)2dx

)1/2

avg(νT )
LU

:= 1
LU

1
|Ω|

∫
Ω
µl(x, t)

√
k(x, t)dx.

5.4.1 TEST 1: FLOW BETWEEN 2D OFFSET CIRCLES

For the first test, we consider a two-dimensional rotational flow obstructed by a circular

obstacle with no-slip boundary conditions. Let Ω1 ⊂ R2, where

Ω1 = {(x, y) ∈ R2 : x2 + y2 < 1} \ {(x, y) ∈ R2 : (x− .5)2 + y2 ≤ .01}.

The domain Ω1 is discretized via a Delaunay triangulation with a maximal mesh width of

.01; a plot is given below. From the plot in Figure 1 of the model’s Taylor microscale this

mesh fully resolves the model solution.

We start the test at rest, i.e., v0 = (0, 0)T , and let the fluid have kinematic viscosity

ν = 0.0001. We take the final time t∗ = 10 and averaging window τ = 1. Rather than

give an interpretation of the time average for 0 ≤ t < 1 we harvest flow statistics for t ≥ 1
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Figure 5.1: Discretization of Ω.
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after a cold start and ramping up the body force with a multiplier min{t, 1}. To generate

counter-clockwise motion we impose the body force

f(x, y; t) = min{t, 1}(−4y(1− x2 − y2), 4x(1− x2 − y2))T .

Initial Conditions. An initial condition for the velocity, v(x, 0), and for the TKE k(x, 0)

must be specified. For some flows, standard choices are known. For example, for turbulent

flow in a square duct, a choice is

k(x, 0) = 1.5|u0(x)|2I2 where

I = turbulent intensity ' 0.16Re−1/8 .

We use a different and systematic approach to the initial condition k(x, 0) as follows. From

l(x, t) =
√

2k1/2τ we set at t = 0, l = l0(x) and solve for k(x, 0). This yields the initial

condition

k(x, 0) = 1
2τ 2 l

2
0(x) where l0(x) = min{0.41y, 0.082Re−1/2}.

This choice means that l0(x) = lK(x, 0).

To compare the models, we plot the temporal evolution of the above statistics. For both

models, we let µ = 0.55 and timestep ∆t = .01. To let the flow develop, we first activate

both models when t = 1. In the test, the model’s estimate of the turbulent intensity for

both is similar, as shown in Figure 5.2a. In [66] the turbulent intensity was estimated by an

ensemble simulation. For ensemble averaging I was significantly larger than calculated here

by time averaging and with the 1-equation model. Either intensities by time and ensemble

averaging do not coincide or Imodel is not an accurate turbulent intensity. Figure 5.2b shows

that the effective viscosity for the kinematic length scale is significantly smaller than for

the standard model. This is consistent with Figure 5.2c, 5.2e and 5.2f. In Figure 5.2d

the Taylor microscale is larger than expected, possibly due to numerical dissipation in the

linearly-implicit time discretization used.

The statistics considered reveal differences in the two models. Figure 5.2b shows that

the kinematic model has an effective viscosity that decays to νeffective = 0.0001 more rapidly

than does the static model. More evidence of this fact is given in Figure 5.2c, which shows
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Figure 5.2: 2d flow statistics for both models.
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Figure 5.3: Average mixing length comparison.

the turbulent-to-molecular viscosity ratio. The comparison of the evolution of the Taylor 

microscale, given in Figure 5.2d, shows similar profiles until t ≈ 5. Figure 5.2e, which 

compares the evolution of the average mixing length, shows that the kinematic mixing length 

model decreases the turbulence length scale over the course of the simulation. Finally, Figure 

5.2f shows that the average turbulent viscosity for the kinematic model is consistently smaller 

than that of the static model. Statistical comparisons of both of these models with different 

parameters (in particular, the turbulent time scale τ) are also of interest. Below, we give 

semilog (in the vertical axis) plots of the average mixing length with different values of τ .

Figure 5.3 shows that decreasing values of τ lead to a vanishing average mixing length, 

whereas increasing τ yields average mixing lengths that appear to converge to the static 

mixing length.

Next, we give plots of the velocity magnitude and squared vorticity for the kinematic 

model at t = 1, 5, and 10.

129



(a) Velocity (t = 1) (b) Squared vorticity (t = 1)

(c) Velocity (t = 5) (d) Squared vorticity (t = 5)
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(e) Velocity (t = 10) (f) Squared vorticity (t = 10)

Figure 5.4: Kinematic mixing length model velocity and vorticity.

5.4.2 TEST 2: FLOW BETWEEN 3D OFFSET CYLINDERS

The second test is a 3d analogue of the first. It shows similar differences in the two

models. Taking Ω1 to be the domain given in the first test, we define Ω = Ω1 × (0, 1),

a cylinder of radius and height one with a cylindrical obstacle removed. The domain Ω

was discretized with Delaunay tetrahedrons with a maximal mesh width of approximately

0.1. As before, we start the flow from rest (v0 = (0, 0, 0)T ) and let the kinematic viscosity

ν = 0.0001. The flow evolves via the body force

f(x, y, z; t) = min{t, 1}(−4y(1− x2 − y2), 4x(1− x2 − y2), 0)T ,

and is observed over the time interval (0, 10], with ∆t = .05 and the initial conditions for k

being set in the same way as the first test. Below, we present the evolution of the statistics

introduced above.

The statistics shown in Figure 5.5 exhibit similar differences between the 2 models as in

the 2d case, Figs. 5.5a–5.5c, 5.5e–5.5f. As before, the evolution of the Taylor microscale in

Figure 5.5d is similar in both models, with slight differences appearing as the flow evolves.
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Figure 5.5: Flow statistics for the 3d offset cylinder problem.
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Here the Taylor microscale is much smaller for the 3d test than the previous 2d test (even

though the mesh is coarser).

To conclude, we present streamline plots of the offset cylinder simulation as viewed from

above. In the figures, color signifies the magnitude of velocity. At t = 1, the flow appears

laminar, and over the course of the simulation becomes turbulent, as evidenced by the plots

at t = 5, 10. This behavior can be seen in Figure 5.7, which views the domain from the

positive y direction and considers a slice at z = .1.

5.5 CONCLUSIONS

Predictive simulation of turbulent flows using a URANS model requires some prior knowl-

edge of the flow to calibrate the model and side conditions. Our intuition is that the better

the model represents flow physics the less complex this calibration will be. To this end we

have suggested a simple modification of the standard 1-equation model that analysis shows

better represents flow physics.

In turbulence, it is of course easier to list open problems than known facts. However,

there are a few within current technique for the modified model herein.

• Extension of estimates of 〈εmodel〉 to turbulent shear flows is open and would give insight

into near wall behavior. Various methods for reducing the turbulent viscosity locally in

regions of persistent, coherent structures have been proposed, e.g., [138], [79] . Sharp-

ening the (global) analysis of 〈εmodel〉 for these (local) schemes would be a significant

breakthrough.

• Extension of an existence theory to the modified model is another important open prob-

lem. Our intuition is that existence will hold but there may always occur hidden diffi-

culties.

• The estimate in Theorem 14 requires an upper limit on the time average’s window of

τ/T ∗ ≤ µ−1/2. We do not know if a restriction of this type can be removed through

sharper analysis or if there exists a fundamental barrier on the time average’s window.

Connected with this question, the behavior of the model as τ →∞ is an open problem.
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• Eddy viscosity models do not permit transfer of energy from fluctuations back to means.

Recently in [64] an idea for correcting these features of eddy viscosity models was de-

veloped. Extension to the present context would be a significant step forward in model

accuracy.

• Various averages of the classic turbulence length scale with the kinematic one proposed

herein are possible, such as the geometric average

lθ(x, t) = lθ0(x)l1−θK (x, t).

It is possible that such a weighted combination will perform better than either alone.

For example, for decaying turbulence when v = 0,∇v = 0 the k−equation reduces to

kt + 1
lθ
k
√
k = 0.

Decaying turbulence experiments in 1966 of Compte-Bellot-Corsin, e.g., p.56-57 in [92],

suggest polynomial decay as k(t) = k(0) (1 + λt)−1.3. Neither mixing length formula

replicates this decay. But choosing θ = 2
1.3 ' 1.54 yields polynomial decay with exponent

−1.3. The effect of this data-fitting on the predictive power of the model and on the

Conditions 1-4 are an open problem.

• Our intuition is that for many tests numerical dissipation is greater than model dissipa-

tion (and acts on different features and scales of those features). Thus the analysis of

numerical dissipation including time discretizations is an important open problems.

• Comparative tests on problems known to be challenging for RANS and URANS models

is an important assessment step.

134



(a) t = 1 (b) t = 5

(c) t = 10

Figure 5.6: Streamlines for the 3d offset cylinder problem.
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(a) t = 1

(b) t = 5 (c) t = 10

Figure 5.7: Velocity magnitude for the 3d offset cylinder problem.
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6.0 CONCLUSIONS AND OPEN PROBLEMS

With the rapid warming of the planet comes the need for time-accurate simulations

of fluid flow. Accurate approximations are essential to the forecasting of weather systems

across the planet. Due to uncertainties in initial conditions, data, etc., ensemble simulations

are used to glean statistics and better approximate the chaotic nature of the atmosphere.

However, these simulations are computationally intensive, limiting the length of the pre-

dictability horizon. Thus, fast, efficient numerical methods are of the utmost importance,

as they allow for the use of more realizations in ensemble schemes, lengthening the pre-

dictability horizon. Inherent also in fluid problems is the coupling of velocity and pressure.

Artificial compressibility methods exploit this structure, yielding robust numerical schemes

that are time-accurate and fast at low-temporal orders. However, they prove resistant to

timestepping schemes using a variable timestep.

The main focus of this dissertation is the construction, analysis, and validation of fast,

efficient, adaptive ensemble methods for the NSE and Boussinesq equations. In Chapter 2,

we recognize the difficulties in adapting AC methods in time. To overcome these challenges,

we construct an adaptive AC method for the NSE based on a new slightly compressible

continuum model. We show the method is unconditionally, nonlinearly, longtime stable, and

validate the model via numerical experiments. Chapter 2 also analyzes the new continuum

model: We show, under some conditions on the evolution of the AC parameter ε, that the

new model converges weakly to the incompressible NSE. Following on the theme of adaptive

AC methods, we develop, analyze, and test two new adaptive AC methods at the end of

Chapter 2.

Chapter 3 is concerned with the development of AC ensemble methods for the Boussinesq

equations. In this chapter, we show stability and error results for the fully-discrete ACE

scheme. We follow up on the analysis with a suite of numerical tests, culminating in a

predictability study of the lock-exchange problem, otherwise known as Marsigli flow. Finally,

we show the stability of a new adaptive ACE algorithm based on the work presented in

Chapter 2. Error analyses and numerical tests for the novel adaptive artificial compressibility
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ensemble scheme are an open problem.

In Chapter 4, we present work on a novel one-equation model that utilizes a kinematic

mixing length. We present five conditions that URANS models should satisfy, and argue that

the original model of Prandtl can be vastly improved. The new model, based on specifying

a mixing length that is a function of the time-averaged kinetic energy, satisfies four of the

five conditions. Chapter 4 presents a proof that these conditions are met, and the model is

numerically validated and compared with the original via tests in two and three dimensions.

There is much work to be done on the development of adaptive AC methods, and AC

methods in general. The original adaptive method, which is only proven stable under a

stringent condition, has proven itself in numerical tests. We conjecture that an ease on the

stringent condition is possible, which would make adaptive AC methods much more efficient.

Another open problem comes from the decoupled form of AC methods. Since a grad-

div term appears in the momentum equation, an application of a modular grad-div method

could make AC methods more robust, especially at higher orders. There are many ways

to formulate a modular grad-div AC method, with advantages and disadvantages in each

formulation. Analysis and numerical tests are needed for these methods, and we believe

they are attainable. Another application, which needs numerical tests and analysis, is the

application of modular grad-div to improve mass conservation in AC methods.

Ensemble methods have seen an enormous development in the past five years. Due to

their importance, that development will continue into the future. An interesting extension

of this work will be to extend the stability and error analyses to the stochastic case, as well

as validate the schemes with numerical tests. Another application will be to extend these

ensemble methods to other equation sets; in particular, the hydrostatic primitive equations.

We conjecture this is possible, at least for vertically structured meshes.

Finally, much work remains on the one-equation model presented in Chapter 4. At the

end of the chapter, we presented a list of open problems and refer the reader there.
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