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Abstract 

Exploiting Toxoplasma gondii MAF1 locus diversity to identify essential host proteins 

required for mitochondrial sequestration and manipulation 

 

Matthew L. Blank, Ph.D. 

 

University of Pittsburgh, 2020 

 

 

 

 

Recent genomic comparisons identified multiple expanded loci in Toxoplasma gondii that 

are unique compared to close Apicomplexan relatives. One of these loci, mitochondrial 

association factor 1 (MAF1), encodes distinct paralogs of secreted dense granule effector proteins, 

some of which mediate the host mitochondrial association (HMA) phenotype. MAF1b drives 

HMA, MAF1a does not. Through sequence and functional analysis of multiple MAF1 paralogs, 

we have identified regions of the protein that have undergone paralog-specific selection-driven 

diversification. Using structure and alignment-guided site-directed mutagenesis of MAF1b and 

MAF1a, we identified three critical residues in the C-terminal helix that are required for HMA. 

Using this MAF1b mutant as a new tool to probe the function of MAF1b and HMA in T. gondii 

interactions, we performed an unbiased quantitative mass spectrometry screen comparing co-IP 

samples of MAF1b, MAF1a, and MAF1b mutant parasite infections. Of the 1,360 proteins 

identified in all samples, 13 candidate proteins were uniquely enriched in the MAF1b samples 

compared to both MAF1a and MAF1b mutant samples. Of these 13 candidate host binding 

proteins, nine play roles in mitochondrial biology. RNAi knockdown of each of the nine candidates 

followed by either Type II:MAF1b infection or GFP-MAF1b expression identified TOM70 and 

its mitochondrial chaperone, HSPA9, as partners required for MAF1b-mediated HMA. TOM70 

enrichment at the T. gondii vacuolar membrane and parasite exclusion of the ER at this interface 
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illustrate an intricate manipulative strategy on the part of parasite. Both TOM70 and HSPA9 are 

implicated in specific ER-mitochondrial contact site functions like immune modulation, 

mitochondrial dynamics, autophagy, and calcium homeostasis. The requirement of both TOM70 

and HSPA9 could explain key phenotypes previously described in an HMA+ T. gondii infection 

such as an in vivo growth advantage, modulated immune response, and mitochondrial fusion 

around the vacuole. Taken together, the neofunctionalization of the MAF1 locus drove the 

evolution of an intermolecular network capable of mediating intimate interactions between host 

mitochondria and the T. gondii-containing vacuole.   
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1.0 Introduction: effector variation at tandem gene arrays in tissue-dwelling coccidia: who 

needs antigenic variation anyway? 

The contents of this chapter are derived from Blank, M.L., and Boyle, J.P. (2018). Effector 

variation at tandem gene arrays in tissue-dwelling coccidia: who needs antigenic variation 

anyway? Curr Opin Microbiol 46, 86-92. Additional introduction material is included. 

1.1 Summary 

Locus expansion and diversification is pervasive in apicomplexan genomes and is 

predominantly found in loci encoding secreted proteins that interact with factors outside of the 

parasite. In order to understand the impact of each of these loci on the host, it is critical to identify 

and functionally characterize their protein products, but multi-copy loci are often refractory to 

genome assembly. As a means to introduce the content in this volume, I will focus on Toxoplasma 

gondii and its nearest relatives to highlight the known impact of duplicated and diversified loci on 

the host-pathogen molecular arms race. I also describe current tools used for the identification and 

characterization of these loci, and discuss the most recent examples of how gene-expansion driven 

diversification can lead to novel gene function.   
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1.2 Background 

Locus duplication events are an essential driver of genetic innovation, particularly with 

respect to the emergence of novel traits [1-5]. In the event that a given gene is perfectly duplicated, 

the most common fate is maintenance at low allele frequency or loss on the population level due 

to neutral impact, depending on the effective population size [6, 7]. However, in cases where gene 

dosage leads to improved fitness, the altered allele can be maintained in the population as either 

standing genetic variation or become fixed via drift or selective sweep [5, 8, 9]. If increases in 

gene dosage remain advantageous, the additional gene copy can be maintained under the same 

selective constraints as the original copy [8, 9]. However, selection-driven diversification can 

result in more dramatic changes in gene function, including sub- and neo-functionalization [3, 4], 

where functions are distributed across distinct copies or new functions arise. While the importance 

of Gene Expansion-Driven Diversification (GEDD) was known long before complete genome 

sequences were made available for any organism, in the post-genomic era structural variation 

analysis forms a consistent part of any genome-wide analysis, and variations in copy number have 

been extensively linked to a variety of phenotypes in humans and other organisms [3, 9-12]. 

GEDD is an appealing mechanism for virulence factor evolution in pathogens, given that 

duplicate gene copies can be used as fodder in the molecular arms race to counter host evolutionary 

adaptations. In Apicomplexans like Plasmodium falciparum GEDD has clearly played a role in 

the emergence of the expanded var family of genes which are the primary loci mediating antigenic 

variation in this organism [13, 14]. Outside of the Apicomplexa, the T. brucei genome contains a 

vast pool of extensively duplicated variant surface glycoprotein (VSG) genes [15] that have 

emerged via GEDD and expression of single of a small number of VSG genes underlie the 

canonical waves of parasitemia associated with T. brucei infection [16]. These classic examples 
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demonstrate how GEDD can provide the tools required to avoid parasite clearance by host adaptive 

immune responses, promoting parasite survival and ultimately parasite transmission.   

We are very interested in the role that GEDD has played in the emergence of either refined 

or novel gene functions in apicomplexan parasites like Toxoplasma gondii, Hammondia 

hammondi, and Neospora caninum, tissue-dwelling coccidians responsible for billions of 

infections worldwide [17, 18]. In contrast to T. brucei and Plasmodium spp., tissue-dwelling 

coccidians like T. gondii do not appear to have a sophisticated means of antigenic variation. 

However, our work and that of others [10, 12, 19-21] has shown that these parasite species do have 

a large collection of effectors, many of which have undergone extensive GEDD. Our work has 

also shown that the impact of these loci on infection outcome is most often NOT due to changes 

in gene dosage or temporal variation in expression, but rather on selection-driven changes in 

protein function across individual gene paralogs that are all expressed simultaneously. Others have 

thoroughly examined the extent of gene family expansion in T. gondii and other organisms and we 

refer the reader to these excellent papers if they are interested in gene duplicates that are distributed 

throughout the genome (e.g., [19, 22]).  In this dissertation, I will discuss recent examples of the 

impact of GEDD on T. gondii interactions with its host, with an exclusive focus on local tandem 

gene expansions followed by diversification that have led to refined and/or completely distinct 

functions in individual paralogs. 

1.3 Genome-wide characterization of expanded loci in T. gondii and its relatives  

T. gondii genomics is very advanced. The genome for this parasite as well as many of its 

near and far relatives have been sequenced and extensively annotated, including the nearest extant 
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relative of T. gondii, Hammondia hammondi [19, 23], and the less-related cattle parasite Neospora 

caninum [22]. These annotated assemblies are available for download and query on ToxoDB.org 

[24]. We and others [10, 19] have used raw genome sequence data from these sequencing projects 

(mostly Sanger technology for T. gondii/N. caninum and a combination of 454 and Illumina short-

read data for others) to identify genomic regions likely to contain tandem gene expansions, as 

evidenced by increased sequence coverage. After removal of low complexity reads with short 

repeats, we are then able to identify tandem gene arrays in multiple genomes, as we did for T. 

gondii, N. caninum, and H. hammondi [10], exploiting the high level of gene-by-gene synteny in 

these organisms. This pipeline was crucial for identification of loci with increased coverage in T. 

gondii compared to N. caninum and H. hammondi, and facilitated downstream studies aimed at 

understanding the functional impact of GEDD on the evolution of novel traits in this organism 

[10].   

Our work and that of others thus far clearly shows that tandemly expanded loci are quite 

common in T. gondii and its near relatives and enriched for genes with the capacity to encode 

factors that work outside of the parasite rather than within it [10, 19]. During and after host cell 

invasion (Fig 1-1), T. gondii and its relatives secrete a suite of effector proteins from specialized 

secretory organelles (Fig 1-1) [25, 26]. Forty-two of the 53 identified expanded loci identified in 

T. gondii were predicted secretory proteins and 29 contained an N-terminal signal sequence [10]. 

Some of these loci had been previously annotated and studied because of their significant impact 

on pathogen virulence and host interactions. Members of the ROP2 superfamily like ROP5, ROP2 

and ROP4/7 are tandemly expanded [25, 27-29]. In most cases the impact of diversification in 

individual paralogs is unclear, with the exception of ROP5 (discussed below), where there is clear 

evidence linking locus-specific diversification to gene function [29, 30]. T. gondii dense granule 
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proteins like Mitochondrial Association Factor 1a,b (MAF1a,b) mediate the bulk of their effects 

on the host-cytoplasmic side of the parasitophorous vacuole (Fig 1-1, green arrowheads) [12, 31]. 

The SAG1-related surface antigen family (SRS genes) are expressed at the parasite surface and 

have significant levels of local, tandem GEDD in both T. gondii and N. caninum.  Select members 

of this family are known to play a critical role in host immune evasion [10, 32], but little else is 

known about their contribution to host interactions and/or parasite biology. Even though the 

majority of these expanded loci do not have a predicted function, they provide a curated foundation 

to identify potential and exciting host-pathogen genes for study [10]. 

In contrast to extensive tandem locus expansion at host-interacting loci, examples of 

duplication of genes encoding cytoskeletal constituents or metabolic enzymes are more rare, likely 

due to tighter constraints on gene dose [19]. One exception to this can be found in two multicopy 

gene cassettes encoding inner membrane complex (IMC) proteins which localize to the apical 

complex of T. gondii and maintain rigidity of the conoid structure [26, 33, 34]. Two of these 

proteins (IMC4 and IMC1; TGME49_231630 and TGME49_231640, respectively) are derived 

from a gene duplication/inversion event on Chromosome VIII such that, unlike most tandem gene 

arrays they are found in a head-to-head orientation. Interestingly, the IMC8 and IMC5 genes are 

arranged in a perfectly analogous fashion on chromosome X (TGME49_224520 and 

TGME49_224530) suggesting that there was an ancestral duplication and translocation event at 

this locus that predated N. caninum, H. hammondi and T. gondii [19]. Absent their role in 

cytoskeletal rigidity the significance of the diversification across these IMC gene paralogs is 

unclear, although given their deep ancestry it is highly likely that they have evolved refined or 

even novel functions within the IMC. The NTPase locus is also characterized by a tandem 

duplication (TGME49_277240 and TGME49_277270) and the proteins encoded by these genes 
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(NTPases I and II) are 59% identical to one another [19]. This duplication is difficult to trace across 

other T. gondii strains and related species, likely due to issues with poor assembly. Interestingly, 

these NTPases are not cytoplasmic in the parasite but rather are secreted into the parasite-

containing vacuole. Their role in T. gondii biology is unclear, in that they do not affect virulence 

in mice and do not subvert the murine immune response [35].   

 

Figure 1-1 Events of T. gondii invasion and secretion of protein effectors.  

(1) T. gondii attaches to plasma membrane and secretes a suite of effector proteins some of which originate in the T. 

gondii rhoptry organelles (i.e. ROP5). (2) T. gondii continues to secrete effectors from secretory organelles including 

rhoptries and dense granules. The parasite gains entry by establishing a moving junction which allows for the 

invagination of the plasma membrane and exclusion of host cell membrane proteins. (3) After entry, the parasite-

containing vacuole (PV) associates with host mitochondria facilitated by the dense granule secretory protein, MAF1b 

(light green triangles), which is a predicted transmembrane protein. MAF1b binds to mitochondria via direct molecular 

interactions with mitochondrial proteins which were identified in the quantitative mass spectrometry screen (Chapter 

3). MAF1a (dark green triangles) also localizes to the PV membrane but does not drive association with host 
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mitochondria. Upon formation of the PV, ROP5 (purple circles) localizes to the cytosolic face of the PV membrane. 

(4) T. gondii replicates within the PV until the parasite responds to environmental or growth stressors and signals for 

parasite egress. Dotted line box in left panel refers to zoomed in panel on right to illustrate predicted MAF1b 

orientation in membrane and relation to mitochondrial proteins.  

1.4 Expanded loci in T. gondii and its close relatives are often found at the host-parasite 

interface 

Secreted proteins from the rhoptry organelles of T. gondii, N. caninum and H. hammondi 

have been extensively studied because this class of proteins play key roles in pathogen virulence, 

particularly ROP18 and ROP5 (both members of the ROP2 superfamily) [25, 27, 36]. ROP5 is a 

pseudokinase that traffics to the PVM (Fig 1-1, purple circles) [28, 29] and is critical for T. gondii 

virulence. T. gondii harbors a diverse and expanded ROP5 locus that has diverged both within and 

between strains [29], making it one of the more dramatic examples of tandem locus expansion 

followed by diversification. Within each strain, the ROP5 locus encodes three distinct isoform 

clades based on amino acid sequences: A, B, and C [28, 29], suggesting that duplication was 

followed by selection-driven diversification at this locus [29]. In support of this, ectopic expression 

of individual ROP5 paralogs in ROP5 null parasites and infection into mice show full recovery of 

the virulence phenotype only after complementation with both a ROP5A and B paralogs (but 

conversely not with two copies of paralog A) [29]. Based on quantitative genetic data the type I 

and III alleles are much more potent with respect to virulence in the mouse compared to the type 

II allele [29, 30, 37], although the root cause of this at the sequence level is unclear. Given the 

diversity present at this locus it is likely that multiple factors determine the phenotypic differences 
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between these loci, including the exact composition of the locus with respect to the A, B and C 

paralogs.   

It is not just T. gondii that has a set of species-specific GEDD loci that are involved in 

mediating interactions with the host. Our analysis on the N. caninum genome identified uniquely 

expanded loci in this species as well [10], and we observed a remarkable lack of overlap in the 

putative biological function of expanded loci in this species compared to T. gondii. Specifically, 

nearly half of the expanded loci predicted to encode secreted proteins were clear members of the 

SRS superfamily of surface antigens [10, 22]. SRS proteins play a major role in parasite attachment 

and invasion [38], they are developmentally expressed, often the target of host antibody responses, 

and in some cases are required for establishing latent infections in the host [32, 39]. While SRS 

subfamilies are scattered throughout the genome (similar to members of the ROP2 superfamily), 

in N. caninum they are extensively duplicated in tandem [10, 21]. For example, the NCLIV_002220 

locus has five tandemly duplicated and diversified copies (ranging from 57-88% similar identities) 

as compared to T. gondii maintaining only one copy [10, 22]. While N. caninum harbors clusters 

of expanded SRS genes throughout the genome, it is rare that each copy is expressed in comparison 

to T. gondii [22]. The significance of certain copies being on or off remains elusive, but a proposed 

hypothesis describes that this differential expression leads to the restricted host range of N. 

caninum [22]. 
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1.5 Neofunctionalization in the locus driving interactions between the parasite and host 

mitochondria 

The expanded and diversified gene, mitochondrial association factor 1 (MAF1), provides 

an example of the characterization of an expanded locus identified originally by QTL mapping 

and screening for expanded loci [10]. The MAF1 locus (TGME49_220950 and TGME49_279100) 

drives expression of unique classes of MAF1 paralogs ranging in 59% to 95% similar identity with 

one another.  

MAF1 copy number varies across strain and species [10]. It is estimated that N. caninum 

harbors 1 or 2 identical copies of MAF1 while H. hammondi has 2 diverse copies suggesting that 

a duplication and diversification event occurred during Hammondia speciation (Fig 1-2) [12]. T. 

gondii bears 6-10 copies of MAF1 depending on strain type (Fig 1-2) [12]. Some MAF1 copies 

mediate the characteristic phenotype of host mitochondrial association (HMA) [12]. HMA has 

been recognized for quite some time as the intimate association of the host mitochondria with the 

parasite-containing parasitophorous vacuole membrane (PVM) [31, 40-42]. Attachment of the 

vacuole to the mitochondria is most readily quantified using transmission electron microscopy 

(TEM) because the distance between the vacuole and mitochondria is 12.04 nm  3.05 nm and 

starkly different than unattached mitochondria, which can be more difficult to distinguish using 

epifluorescence microscopy [41]. T. gondii types I and III are HMA-competent while Type II is 

HMA-incompetent [12]. The MAF1a and MAF1b paralogs were assembled into clades based on 

the presence (MAF1b) or absence (MAF1a) of a proline rich region between the putative 

transmembrane domain and C-terminus of the protein [12]. Interestingly, paralogs belonging to 

the MAF1b paralog clade are solely capable of complementing HMA in Type II T. gondii to near 

wildtype Type I levels while MAF1a paralogs do not [12]. These data suggest the requirement of 
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only the MAF1b paralogs in driving HMA [12]. Important to this finding is that N. caninum is 

HMA-incompetent and harbors only a MAF1a copy while H. hammondi is HMA-competent and 

has both MAF1a and MAF1b. 

Crystallographic structures reveal that the MAF1a and MAF1b paralogs are highly similar 

to one another in their C-termini and adopt an / globular structure homologous to ADP-ribose 

(ADPr) binding macro-domains [11]. MAF1a and MAF1b bind ADPr with micromolar affinity, 

suggesting this site remains as a functional structure on both MAF1 paralogs (Fig 1-2) [11]. While 

the role of this macrodomain is unknown to date, there is no direct evidence linking HMA to ADPr 

coordination [11].  

In contrast to the macrodomain, there are other regions in the solved MAF1 structure that 

are divergent. One such region is a charged basic patch in the last 16 C-terminal residues of MAF1a 

(Fig 1-2) [11, 12]. Upon mutation of the aligned uncharged residues in MAF1b to the charged 

residues in MAF1a, HMA is completely lost (Fig 1-2) [11]. The C-terminus of MAF1 

encompassing these key residues has acquired significant diversity between the two paralog clades 

over time while the ADPr site has maintained somewhat similar binding pockets and is shared with 

the ancestral MAF1 paralog (Fig 1-2) [11]. This work suggests a modularity to MAF1 where only 

the components driving HMA were selected for over time, highlighting the significance of this 

neofunctionalized expanded locus and it evolutionary role in exploiting the host [11]. 
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Figure 1-2 Stepwise evolution and neofunctionalization of MAF1 locus in T. gondii and close relatives. 

Our model for the stepwise evolution of the MAF1 locus in T. gondii and its close relatives, N. caninum and H. 

hammondi. The MAF1a and MAF1b crystal structures [11] are in blue and orange, respectively. MAF1 maintains a 

vestigial ADPr binding macrodomain while duplication, expansion and GEDD events give rise to the 

neofunctionalized version of MAF1b driven at least in part by mutations of highly charged residues in the MAF1 C-

terminus. Each significant change to the locus is marked and numbers correspond to MAF1 protein products in the 

key. MAF1b paralogs undergo subsequent diversification events following step 3 leading to the diverse shades of 

orange/yellow in the final T. gondii MAF1 locus.  



 12 

1.6 Implications of the neofunctionalized MAF1 locus on host mitochondrial biology 

While recent work highlights the intricacies of the neofunctionalized MAF1 locus [11, 12], 

questions remain as to the physiological significance of this expanded and diversified gene. The 

selective pressure to maintain each of the MAF1 copies suggests that each copy plays a role in T. 

gondii pathogenicity through its interactions with the host mitochondria. Pathogens associating 

with host organelles, particularly the mitochondria, is a long recognized phenotype in 

microorganisms like Legionella pneumophila and Chlamydia psittaci [43-45]. In the case of L. 

pneumophila the recently identified secreted pathogen effector, MitF, drives the association 

between the Legionella-containing vacuole and the host mitochondria [44, 46]. While MitF 

facilitates the fragmentation of attached mitochondria, the exact molecular mechanism leading to 

fragmentation is unknown. Similar shifts in mitochondrial dynamics exist in a T. gondii Type I 

(RH) infection where the attached mitochondria fuse around the vacuole during the first 12 hours 

of infection, followed by fragmentation at 24 hours [47]. In the cases of L. pneumophila and T. 

gondii, the exact pathways leading to mitochondrial manipulation remain elusive. The multi-copy 

nature of the MAF1 locus provides an ideal system with built-in controls (MAF1b and MAF1a) to 

test hypotheses of what might be happening to elicit the phenotypic changes in mitochondrial 

biology leading to the observed alteration in parasite fitness.  

A growing body of research in the field of mitochondrial biology and cellular bioenergetics 

continues to add to the mounting list of mitochondrial functions in the eukaryotic cell. Aside from 

the more traditional metabolic roles, mitochondrial proteins are initiators of cellular apoptosis 

pathways and release cytochrome c from Bak/Bax oligomerized pores leading to the formation of 

the apoptosome and caspase activation [48-51]. Mitochondria also function as essential initiators 

of the innate immune response triggered by dimerization of the outer mitochondrial membrane 
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protein, MAVS,  and activation of downstream transcription factors, IRF3/7 and NF-B [49]. 

Additionally, mitochondria have long been recognized for their role in calcium storage and 

trafficking via the endoplasmic reticulum, thus direct regulators of cell autophagy [48, 51-54]. 

Interestingly, recent work focuses on the interconnectedness of these mitochondrial-initiated 

pathways at physical locations in the cell where the mitochondria and ER come in contact with 

one another. These ER-mitochondrial contact sites (formerly known as MAMs) are hotspots for 

mitochondrial-initiated immune signaling, apoptosis, calcium flux, and autophagy [48, 50, 55, 56]. 

Key proteins at these sites include voltage dependent anion channel 1 (VDAC1), heat shock protein 

family A member 9 (HSPA9), inositol tri-phosphate receptor 3 (IP3R3), and translocase of the 

outer mitochondrial membrane receptor 70 (TOM70) [50, 51]. Each of these proteins is highly 

enriched at the ER-mitochondria contact sites and all are shown to interact with one another to 

maintain appropriate calcium flux [50]. Cells lacking the TOM70 receptor exhibit a significant 

decrease in division rate, decrease in mitochondrial activity, and increase in autophagy [50]. 

Additionally, MAVS clusters at these ER-mitochondrial contact sites in response to viral infection 

and triggers TOM70 recruitment and downstream cytokine production [54, 57, 58]. Needless to 

say, the ER-mitochondrial contact sites are hubs for mitochondria-initiated processes paramount 

for overall cellular health. Therefore, it is not surprising that parasites like L. pneumophila and T. 

gondii can interact with and manipulate host mitochondria. Specifically, gene expansion-driven 

diversification of the MAF1 locus in T. gondii provides the perfect model to answer consequential 

questions surrounding intricate host-pathogen interactions through the lens of evolutionary 

biology. 
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1.7 Conclusion and perspective 

The examples above highlight a large body of work describing GEDD-driven protein 

products involved in the host-pathogen molecular arms race. The MAF1 locus is an excellent 

example of the importance of GEDD, in that it harbors paralogs that have maintained an ancestral 

macro domain while only certain paralogs are endowed with the ability to mediate host 

mitochondrial association (HMA) [11, 12]. In this case, GEDD led to the emergence of a novel 

function [12]. Similarly, the ROP5 locus harbors 3 broad classes of paralogs which are synergistic 

in their impact on T. gondii virulence in mice [20].  Whether this is due to novel functions in each 

of the paralog families is unknown, but the impact of GEDD in the emergence of these paralog 

families within the tandem gene cluster is quite clear. The total number of loci that have undergone 

GEDD is difficult to determine since tandem gene arrays are almost always poorly assembled, but 

there are likely between 20-30 in the T. gondii genome alone [10]. The emergence of single 

molecule long read technologies such as PacBio SMRT cells and Oxford Nanopore DNA 

sequencing holds great promise to determine the exact sequences of these tandem gene arrays so 

that the precise amount of sequence variation between paralogs can be determined. As these 

methods are applied we anticipate refining our understanding of the extent of GEDD at loci like 

MAF1 and ROP5, and also that GEDD is equally pervasive at other loci. This will greatly facilitate 

our efforts at better understanding the role of such loci in tissue dwelling coccidians like T. gondii 

and its near relatives, specifically with respect to how individual paralogs might differ in their 

interactions with the host. 
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2.0 A Toxoplasma gondii locus required for the direct manipulation of host mitochondria 

has maintained multiple ancestral functions 

The contents of this chapter are taken from Blank ML, Parker ML, Ramaswamy R, Powell 

CJ, English ED, Adomako-Ankomah Y, et al. A Toxoplasma gondii locus required for the direct 

manipulation of host mitochondria has maintained multiple ancestral functions. Mol Microbiol. 

2018. I performed all experiments and writing for sections 2.3.1, 2.3.4, 2.3.5, 2.3.6, 2.3.7, 2.4.1, 

2.4.2, 2.4.3, 2.4.4, and 2.5.5-2.5.12. I am including sections 2.3.2, 2.3.3, and 2.5.1-2.5.4 to provide 

clarity and illustrate the complete narrative.  

2.1 Summary 

The Toxoplasma gondii locus mitochondrial association factor 1 (MAF1) encodes multiple 

paralogs, some of which mediate host mitochondrial association (HMA).  Previous work showed 

that HMA was a trait that arose in T. gondii through neofunctionalization of an ancestral MAF1 

ortholog. Structural analysis of HMA-competent and incompetent MAF1 paralogs (MAF1b and 

MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro domain, 

with comparatively low (micromolar) affinity for ADP ribose.  Replacing the 16 C-terminal 

residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three 

residues in the C-terminal helix are required for MAF1-mediated HMA. Importantly these same 

three residues are also required for the in vivo growth advantage conferred by MAF1b, providing 

a definitive link between in vivo proliferation and manipulation of host mitochondria.  Co-
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immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS 

complex is shared by HMA-competent and incompetent MAF1 paralogs and mutants. The weak 

ADPr coordination and ability to interact with the MICOS complex shared between divergent 

paralogs may represent modular ancestral functions for this tandemly expanded and diversified T. 

gondii locus.   

2.2 Introduction 

Tight associations between pathogen-containing vacuoles and host organelles such as 

mitochondria have been described in a variety of intracellular pathogens, including Chlamydia 

psittaci [45], Legionella pneumophila [43], Hammondia hammondi [12] and Toxoplasma gondii 

[31, 40, 41]. While these phenotypes have been known for decades, the underlying molecular 

mechanisms are poorly understood. In most cases the pathogen molecules required for organellar 

association have not been identified, nor have their cognate binding partners in the host. This has 

hindered our ability to understand the relevance of this intimate association between the pathogen-

containing vacuole and the host mitochondrion to infection outcome.   

In T. gondii, we and others have identified the parasite locus that is required for HMA, 

Mitochondrial Association Factor 1B (MAF1b), and shown that expression of MAF1b increases 

cytokine signaling [31] during the acute phase of in vivo infections. In infected cell lysates and 

cells expressing MAF1b ectopically, MAF1b protein interacts with host mitochondrial outer 

membrane proteins belonging to the MICOS complex, which may be involved in the ability of 

MAF1b to mediate HMA [59]. During the acute phase of mouse infections, MAF1b-expressing 
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parasites outcompete their MAF1b-null counterparts [12], implying that MAF1b plays an 

important role in determining infection outcome.   

The T. gondii MAF1 locus encodes multiple tandemly duplicated paralogs that vary both 

in sequence and copy number across T. gondii strains [10, 12]. TgMAF1 paralogs fall into two 

broad groups, which we have defined as ‘A’ and ‘B’ based on residue percent identity [12]. All 

non-pseudogenized MAF1 genes sequenced to date contain a signal peptide, a transmembrane 

(TM) domain and a large C-terminal region that lacks identifiable sequence homology to any 

known proteins ([12, 31] and Fig 2-1A). MAF1 paralogs harbor a repetitive, proline-rich region 

between the putative TM and C-terminal region that broadly distinguishes the ‘A’ and ‘B’ paralog 

groups. In genetic complementation experiments, only MAF1b paralogs are capable of 

complementing HMA- Type II strains, while complementation with MAF1a has no effect on HMA 

[12]. Numerous polymorphisms further distinguish TgMAF1RHa1 and TgMAF1RHb1, including 

in the C-terminus, which is more divergent across paralogs compared to the N-terminus [12]. Since 

MAF1b paralogs are present only in those species that are capable of mediating HMA and all other 

strains only harbor MAF1 paralogs most similar to the non-functional “A” copies, we hypothesized 

that the ability of MAF1b to intimately interact with host mitochondria evolved by 

neofunctionalization of an ancestral version of MAF1. While the ancestral role of MAF1a has yet 

to be determined, these non-functional (with respect to HMA) ancestral paralogs represent a robust 

comparative tool to further probe the mechanism, and ultimately the function, of HMA in T. gondii.   

In the present study we first determined the overall structures of representative members 

of the A and B paralog groups using X-ray crystallography. These data allowed us to map the 

detailed structural differences between the A and B paralogs and identify specific residues within 

the C-terminal helix of MAF1a and MAF1b, that through mutagenesis studies, we showed are 
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required for MAF1b to mediate HMA. We further leveraged these mutants to provide the first 

direct evidence that the C-terminus of a MAF1b paralog is essential, not only to HMA itself, but 

to the in vivo selective advantage conferred by HMA+ T. gondii. We have also uncovered two 

putative ancestral functions for the MAF1 gene family that are shared by MAF1a and MAF1b 

paralogs, providing further support for the theory that mitochondrial association arose in T. gondii 

via neofunctionalization of an ancestral version of MAF1. 

2.3 Results 

2.3.1 The TgMAF1RHb1-specific proline-rich domain is dispensable for MAF1 function in 

HMA 

Type II T. gondii strains (including TgME49 and PRU) are HMA-negative and express 

undetectable levels of TgMAF1RHb1 [12]. Complementation of TgME49 and the near relative 

Neospora caninum, with TgMAF1RHb1 but not TgMAF1RHa1, confers the HMA phenotype [12]. 

To identify regions of TgMAF1RHb1 that are required for HMA we compared all sequenced 

MAF1 paralogs [12]. Sequences were aligned using Clustal-Omega and visualized in JalView (Fig 

2-1A). Consistent with previous observations, the sequences cluster into two main groups [12], 

distinguished by the absence (‘A’ group) or presence (‘B’ group) of a proline-rich stretch between 

the putative transmembrane and the C-terminal region. To investigate the significance of the 

prolines in this region of TgMAF1RHb1, prolines 152-157 and 159-164 were mutated to alanine 

residues. However, these mutant paralogs were still capable of complementing HMA in TgMe49 

parasites (Fig 2-1B). In an effort to disrupt the proline-rich region using an alignment-guided 
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approach, separate mutations were made to the region flanking either side of the proline-rich 

region. Additionally, a third construct was made where the entirety of the proline-rich region, 

residues 131-174, were replaced with the aligned sequence in TgMAF1RHb0 (HMA-) which is 

nearly identical to TgMAF1RHa1 in this region (Fig 2-1A). Consistent with our point mutation 

analyses, this particular chimeric construct was still capable of mediating HMA in T. gondii strain 

TgME49 (Fig 2-1C). Additionally, work investigating the phosphoproteome following T. gondii 

infection identified significant MAF1 phosphorylation after secretion into the host cell [60]. To 

test the role of possible phosphorylation of the serines found within the MAF1b-specific proline-

rich region, we mutated TgMAF1RHb1 serine 158 to alanine. This mutation did not disrupt the 

ability of TgMAF1RHb1 to confer HMA in TgMe49 parasites (Fig 2-1B). Overall, these data 

demonstrate that the proline-rich region is dispensable for HMA, despite its presence in all 

functional MAF1b paralogs.  
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Figure 2-1 Proline-rich region of TgMAF1RHb1 is not required for HMA. 

(A) Alignment of MAF1 isoforms from T. gondii and H. hammondi based on percent identity. Dark blue and white 

indicate 100% and 0% percent identity, respectively.  Alignments were visualized in JalView after alignment using 

ClustalOmega. Bold sequences refer to isoforms utilized for mutational analysis. Colored boxes correspond to the 

boundaries of the indicated mutation. Domain architecture is indicated above alignment and corresponds to Figure 2-

2B. (B) HFFs were labeled with MitoTracker and infected with TgMe49 parasites expressing an HA epitope tagged 

TgMAF1RHb1 isoform with a disrupted proline-rich domain through replacement of prolines (P) or serines (S) with 

alanines (A). Cells were fixed at 18 hpi and visualized by confocal microscopy. (C) HFFs were infected with TgMe49 

parasites expressing an HA tagged mutated TgMAF1RHb1 isoform. Site-directed mutations were made to the 

HMA(+), TgMAF1RHb1 isoform to the aligned sequence in the HMA(-) paralog TgMAF1RHa1 and TgMAF1RHb0. 

Cells were fixed at 18 hpi and visualized with confocal microscopy. Immunofluorescence staining was performed 

with antibodies against both the HA epitope tag and the mitochondrial protein, cytochrome c oxidase II (MTCO2). 

All mutations to the proline-rich and flanking region were unable to disrupt TgMAF1RHb1-driven HMA. 

2.3.2 The C-terminal regions of both TgMAF1Rha1 and b1 adopt an α/β globular structure 

with homology to ADP-ribose binding macro-domains 

Aside from the proline-rich region characteristic of TgMAF1RHb paralogs, there are no 

other N-terminal regions in the TgMAF1 ectodomain with significant levels of polymorphism. We 

therefore turned our focus to the C-terminal region of the TgMAF1 ectodomain, which harbors 

numerous amino acid polymorphisms between the ‘A’ and ‘B’ paralog groups (e.g. TgMAF1RHb1 

and TgMAF1RHa1 are 57% identical in the C-terminal region) (Fig 2-1A). To best guide our 

approach of correlating sequence differences between TgMAF1RHa1 and TgMAF1RHb1 to their 

functional differences in genetic complementation, we determined the X-ray crystal structures of 

the C-terminal domains of TgMAF1RHa1 and TgMAF1RHb1 [12]. Constructs encoding the 

predicted C-terminal domain of TgMAF1RHa1 (residues 159-435) and TgMAF1RHb1 (residues 
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173-443: note, the C-terminal Met444, Leu445 and Asp446 residues are not included in the 

crystallization construct due to protein stability problems) (Genbank Accession numbers 

SCA78655 and AMN92247, respectively) were recombinantly produced in E. coli, purified to 

homogeneity and crystallized for X-ray diffraction experiments (Fig 2-2A). The structure of 

TgMAF1RHb1 was phased by bromide single wavelength anomalous dispersion and refined to a 

resolution of 1.60 Å. Overall, the structure is well ordered with clear electron density extending 

from the Ser173 through Ser443 and including two C-terminal alanine residues derived from the 

expression vector. The 2.10 Å resolution structure of TgMAF1RHa1 was solved by molecular 

replacement using TgMAF1RHb1 as the search model with all three molecules in the asymmetric 

unit well-ordered. Despite possessing only 57% sequence identity within the C-terminal domain, 

structural overlays clearly showed that TgMAF1RHa1 and TgMAF1RHb1 adopt an overall similar 

architecture, with a rmsd of 0.6 Å over 240 Cα atoms (Fig 2-2B). Notably, these are the first 

structures of a MAF1 protein from any apicomplexan parasite.  

Structural analysis of TgMAF1RHa1 and TgMAF1RHb1 revealed a compact, single 

domain with mixed α/β structure with a central, slightly curved 8-stranded β-sheet of mixed 

parallel and anti-parallel strands bound on one side by a 3 helical bundle and on the other side by 

a pair of helices (Fig 2-2B). Intriguingly, a DALI [61] structural homology search revealed 

significant similarity to macroH2A non-histone domains (also known as macro-domains) with the 

macro-domain from Archaeoglobulus fulgidus 1521 (Af1521) [62] identified as the most closely 

related structure (Z-score of 16; rmsd of 2.5 Å over 180 aligned Cα positions) (Fig 2-2C). A central 

feature of macro-domains is their ability to coordinate ADP-ribose (ADPr) and its derivatives 

through a surface cleft [63-65] that is conserved in both TgMAF1RHa1 and TgMAF1RHb1. In 

fact, sequences of all apicomplexan MAF1 homologs mapped onto the TgMAF1RHb1 core 
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structure revealed the cleft as one of the most evolutionary conserved regions, supporting that this 

cleft is performing an important function (Fig 2-2D). 

 

Figure 2-2 The C-terminal region of TgMAF1 proteins adopts a conserved, well-ordered globular domain. 

(A) Predicted domain architecture of TgMAF1RHa1 and TgMAF1RHb1. SP, signal peptide; TM, transmembrane. 

Colored boxes (TgMAF1RHa1- deep purple; TgMAF1RHb1- lime green) indicate C-terminal region with strongly 
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predicted secondary structure elements. Numbers correspond to amino acid positions. (B) Top: Tertiary structure of 

TgMAF1RHa1 and TgMAF1RHb1 colored based on secondary structure elements, with helices in cyan, strands in 

dark blue and loops colored as in (A). Dotted lines indicate unmolded regions and predicted features. The orientation 

of the proteins with respect to the parasitophorous vacuole membrane is shown. Bottom: Topology diagram of 

TgMAF1RHa1 and TgMAF1RHb1 colored as in Top. (C) Overlay of TgMAF1RHb1 (cyan) with Af1521 (dark grey; 

PDB ID 1HJZ) showing conservation of the core macro-domain architecture. (D) Mapping of conserved (burgundy) 

and variable (cyan) residues of TgMAF1RHa1 and TgMAF1RHb1 homologs onto the TgMAF1RHb1 surface using 

ConSurf [66]. The conserved cleft region is indicated in yellow. 

 

2.3.3 ADP-ribose forms a low affinity complex with TgMAF1RHa1 and TgMAF1RHb1 

The striking resemblance to a canonical macro-domain and the presence of a well 

conserved surface cleft led us to hypothesize that TgMAF1s may be able to accommodate ADPr 

or a similar small molecule. Further support for this hypothesis was based on the observation that 

the structural homolog Af1521 was able to form a stable complex with ADPr (Figs 2-3A and B).   

To investigate the ability of the TgMAF1 macro-domain to bind adenine nucleotide 

derivatives, we first determined co-structures of ADPr bound to TgMAF1RHa1 and 

TgMAF1RHb1 to 2.7 Å and 1.65 Å resolution, respectively. Stabilizing ADPr in the surface cleft 

is a Phe198 (TgMAF1RHb1) or Phe187 (TgMAF1RHa1) that stacks onto one side of the ADPr 

adenine ring and the side chains of Leu227 (TgMAF1RHb1) or Met216 (TgMAF1RHa1) that pack 

against the opposite side (Fig 2-3B). In addition, the second phosphate fits into a specific pocket 

formed by Ile388 and Phe389 (TgMAF1RHb1) or His377 and Phe378 (TgMAF1RHa1) (Fig 2-

3B). Structural overlays revealed that residues in Af1521 known to be crucial for ADPr binding 

are not conserved in the TgMAF1 proteins; specifically, the strongly conserved Asp (labeled red 
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in Fig 2-3B) for selectivity of adenine-based nucleotides [63, 67], and the Asn (labeled red in Fig 

2-3B) shown to be critical for phosphatase activity on ADP-ribose-1”-phosphate [67, 68] are not 

conserved (Fig 2-3B). Thus, it appears that both TgMAF1RHa1 and TgMAF1RHb1 have lost key 

residues involved in coordinating ADPr suggesting, at minimum, a weaker binding affinity, which 

we next measured by isothermal titration calorimetry (ITC). Binding data was only obtained for 

TgMAF1RHa1, since the high salt required for TgMAF1RHb1 stability obscured complex 

formation. A Kd of approximately 400 µM was measured for TgMAF1RHa1 (Fig 2-3C), which is 

far weaker than the 130 nM Kd measured between ADPr and Af1521 [64]. It is worth noting that 

poly(ADPr) or poly-A binding does not necessarily require ADPr to bind with high affinity to form 

a functional complex [67, 69]. Thus, we cannot rule out the possibility that TgMAF1RHa1 and/or 

TgMAF1RHb1 are capable of binding these anionic polymers in a biologically relevant setting. 

Nor can we rule out that TgMAF1RHb1 may be capable of binding other nucleotides or even 

oligonucleotides such as poly(A) or poly(ADP-ribose), as has been shown for other Macro-domain 

containing proteins [64, 69]. However, the low affinity complexes observed here in both MAF1a 

and MAF1b paralog classes are consistent with the hypothesis that ADPr binding is not relevant 

to HMA. 
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Figure 2-3 Structural characterization of TgMAF1RHa1/b1 reveals that ADP-ribose coordination by the 

macro-domains may be vestigial.  

(A) Co-structures of TgMAF1RHa1, TgMAF1RHb1 (grey surface) and ADP-ribose (ADPr) (wheat ball-and-stick 

colored by element), and Af1521 (PDB id- 1HJZ), highlighting the surface cleft of TgMAF1RHa1 (Left- colored deep 

purple), TgMAF1RHb1 (Right- colored lime green) and Af1521 (Left- colored light blue). (B) The residues 

coordinating ADPr in Af1521, TgMAF1RHa1 and TgMAF1RHb1 is shown based on the overlay of TgMAF1RHa1 

(deep purple), TgMAF1RHb1 (lime green), and Af1521 (light blue) with ADPr (shown as wheat stick colored by 

element). (C) Representative ITC binding isotherm of ADPr titrating into   TgMAF1RHa1. The ITC clearly shows a 

low affinity binding with a Kd of ~400μM. 
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2.3.4 Unique TgMAF1RHb1 C-terminal residues are required for HMA 

The structures of TgMAF1RHa1/b1 allowed us to identify additional residues for 

mutational studies by interrogating differences between the C- termini of both paralogs. We chose 

candidate residues by identifying residues that were 1) outward facing based on structural analysis 

and 2) consistently polymorphic among all members of the ‘A’ and ‘B’ groups.  We first mutated 

peripheral TgMAF1RHb1-specific -sheet (residues 174-187) to their aligned sequence in 

TgMAF1RHb0. Additionally, we mutated the outward-facing Ser339 to the aligned 

TgMAF1RHa1 phenylalanine residue. Both mutant constructs sufficiently conferred HMA when 

expressed in TgMe49 parasites (Fig 2-4A), indicating that these residues were not required for 

HMA.  

We then focused on the 16 C-terminal residues of cloned MAF1b paralogs that are 94% 

similar to one another, but harbor multiple polymorphisms that distinguish the A and B lineages 

(Fig 2-4B). To investigate the significance of the C-terminus in MAF1-mediated HMA, we 

mutated the 16 C-terminal residues of TgMAF1RHb1 to those found in TgMAF1RHa1 to create a 

chimeric construct. Excitingly, the TgMAF1RHb1 16 C-terminal chimera was incapable of 

conferring HMA in TgME49, indicating a central role for the C-terminus in HMA (Fig 2-4C). 

When we examined TgME49 expressing the TgMAF1RHb1 16 C-terminal chimera, we found that, 

as for the WT TgMe49, there was no significant HMA based on quantification of % vacuole 

coverage using EM (Fig 2-4D and E). The TgMAF1RHb1 16 C-terminal chimera shows similar 

vacuole coverage to an TgMe49 empty vector control further confirming the requirement of this 

region for HMA (Fig 2-4E). We then investigated the sufficiency of the C-terminus of 

TgMAF1RHb1 in driving HMA. Using site-directed mutagenesis we created a TgMAF1RHa1 

chimeric construct with the 16 C-terminal residues of TgMAF1RHb1. The TgMAF1RHa1 16 C-
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terminal chimera did not drive HMA upon expression in TgMe49 parasites (Fig 2-4F), showing 

that while the 16 C-terminal residues of TgMAF1RHb1 are necessary for HMA, when expressed 

in a Type II genetic background they are not sufficient. 

 

Figure 2-4 TgMAF1RHb1 16 C-terminal residues are required for HMA. 

(A) HFFs were infected with TgMe49 parasites expressing an HA tagged mutated TgMAF1RHb1 isoform. Mutations 

were introduced using site-directed mutagenesis in an effort to disrupt key outward facing amino acids. Cells were 
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fixed at 18 hpi and visualized using confocal microscopy. Immunofluorescence staining was performed with 

antibodies against the HA epitope tag and the mitochondrial protein, cytochrome c oxidase II (MTCO2). Symbols on 

mutation titles correspond to mutations in the structural overlay of both MAF1a and MAF1b generated in UCSF 

Chimera. (B) Alignment of the 16 C-terminal residues of MAF1 isoforms. Dark blue and white indicate 100% and 

0% percent identity, respectively.  Alignments were visualized in JalView after alignment using Clustal-Omega. 

Yellow bars below alignment show residue conservation across MAF1 isoforms. (C) HFFs were infected with TgMe49 

parasites expressing either a WT HA-TgMAF1RHb1 isoform or a TgMAF1THb1 16 C-terminal chimeric form. The 

C-terminal chimera contained TgMAF1RHb1 residues 1-430 and TgMAF1RHa1 residues 420-435. Cells were fixed 

and treated with the same conditions outlined in 4A. (D) HFFs were infected with isolated TgMe49 clones transfected 

with either HA-TgMAF1RHb1, TgMAF1RHb1-C-term chimera or empty vector. Cells were fixed 18 hpi and 

processed for transmission electron microscopy. Mitochondria (M) are labeled. (E) Quantification of percent vacuole 

coverage determined by electron microscopy. ****p<0.0001, one-way ANOVA. (F) Normal rat kidney epithelial cells 

expressing RFP in the mitochondrial matrix (NRK mitoRFPs) were infected with TgMe49 parasites expressing either 

a WT HA-TgMAF1RHb1 isoform or a TgMAF1RHa1 16 C-terminal chimeric form. The C-terminal chimera is 

TgMAF1RHa1 residues 1-419 and TgMAF1RHb1 residues 431-446. Cells were fixed 18 hpi and visualized using epi-

fluorescent microscopy. Immunofluorescence staining was performed with antibodies against the HA epitope tag. 

2.3.5 Three C-terminal residues in TgMAF1RHb1 are required for HMA 

As described above and shown in Figure 2-1A, the 16 C-terminal residues of 

TgMAF1RHb1 and TgMAF1RHa1 form the 5 helix that is unique to each TgMAF1RHb1 and 

TgMAF1RHa1 paralog. To further interrogate this region, truncation mutations were made to the 

C-terminus of TgMAF1RHb1 in an effort to abrogate HMA without disrupting proper MAF1 

localization. Truncation of both the 16 and 8 C-terminal residues resulted in TgMAF1RHb1 

products that did not confer HMA in TgMe49 parasites, confirming the requirement of these 

residues (Fig 2-5A and C). The structural differences of both the TgMAF1RHb1 and 
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TgMAF1RHa1 helices and their opposing HMA phenotypes suggests residue-specific function 

within this region. Ten of the 16 C-terminal residues of this helix are polymorphic between the A 

and B paralogs, making it difficult to determine which residues to investigate based on primary 

sequence alone. However, when we examined the structure of the α5 helix, we identified a trio of 

basic residues unique to the C-terminus of TgMAF1RHa1, specifically Arg427, Lys428 and 

Lys430 (Fig 2-5B). These are strikingly different than their uncharged counterparts in 

TgMAF1RHb1 (Ser438, Thr439, and Leu441) (Fig 2-5B). To investigate the importance of these 

residues in HMA we mutated the STL residues in TgMAF1RHb1 to RKK, and this mutant was 

completely unable to mediate HMA when expressed in Type II T. gondii (Fig 2-5A and C). Using 

electron microscopy, we found that the percentage of the vacuole with interacting mitochondria in 

parasites expressing the RKK mutant is nearly indistinguishable from wild type Type II T. gondii 

(Fig 2-5D). When we mutated each residue individually (Ser→Arg, Thr→Lys and Leu→Lys), all 

3 constructs could still mediate HMA when expressed in Type II T. gondii (Fig 2-5A). 

Additionally, mutation of both the Ser438 and Leu441 to Arg427 and Lys430 which lie on the 

same face of the C-terminal alpha helix also mediated HMA when expressed in Type II parasites 

(Fig 2-5A), suggesting the collective requirement of all three uncharged MAF1b residues (Ser438, 

Thr439 and Leu441) for HMA to occur. 
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Figure 2-5 Three residues in the C-terminus of TgMAF1RHb1 are required for HMA. 

(A) NRK mitoRFP cells were infected with TgMe49 parasites expressing HA-TgMAF1RHb1 16 C-terminal mutant 

variants. Cells were fixed 18 hpi and visualized using epi-fluorescent microscopy. Immunofluorescence staining was 

performed with antibodies against the HA epitope tag. (B) TgMAF1RHa1 and TgMAF1RHb1 are highlighted in blue 

and red respectively which correspond to the color in the ribbon rendering of the C-terminal structures. Structure was 

visualized in UCSF chimera. (C) HFFs were infected with isolated TgMe49 clones transfected with each of the HA-

TgMAF1RHb1 16 C-terminal mutants. Cells were fixed 18 hpi and processed for transmission electron microscopy. 

Mitochondria are labeled. (D) Quantification of percent vacuole coverage determined by electron microscopy. 

****p<0.0001, one-way ANOVA (“all comparisons” means each comparison of TgMAF1RHb1 C-terminal mutant 

and TgMAF1RHa1 to TgMAF1RHb1 is significant) 

2.3.6 TgMAF1RHb1 mutants retain binding to SAM50  

TgMAF1RHb1 has recently been shown to interact with the mitochondrial intermembrane 

space bridging (MIB) complex which consists of proteins spanning both the outer and inner 

mitochondrial membranes. One MIB component on the cytosolic face of the outer mitochondrial 

membrane interacting, directly or indirectly, with TgMAF1RHb1 is SAM50 [70]. These data 

suggest SAM50 might function as the protein TgMAF1RHb1 uses to anchor itself to the 

mitochondria. If interactions with SAM50 are the sole basis for mediating HMA, neither 

TgMAF1RHa1 nor our TgMAF1RHb1 with the chimeric C-terminus should interact with SAM50. 

To investigate the ability of each of the C-terminal mutants and TgMAF1RHa1 to interact with 

SAM50, we conducted co-immunoprecipitations using HA conjugated beads. Consistent with 

published data we found that HA pulldowns from TgME49 clones expressing N-terminally HA-

tagged TgMAF1RHb1 co-precipitated SAM50, while cytosolic host protein (Tubulin) showed 

no evidence for association with TgMAF1RHb1 (Fig 2-6A and B). Interestingly, however, we 
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found that immunoprecipitations of TgMAF1RHa1, the TgMAF1RHb1 C-terminal truncation 

mutant, and the TgMAF1RHb1:STL→RKK mutant also specifically pulled down SAM50 (Fig 2-

6A). Together, these data demonstrate that the specificity of the interaction between MAF1 and 

SAM50 is not dependent on the 16 C-terminal residues, and that MAF1-SAM50 interactions are 

not sufficient to mediate HMA. 

 

Figure 2-6 TgMAF1RHb1 mutants bind to SAM50. 

(A) Immunoprecipitation of lysed HFFs infected with cloned TgMe49: TgMAF1RHb1 16 C-terminal mutants, 

TgMe49:TgMAF1RHb1 and TgMe49:EV. Lysates were incubated with HA-conjugated beads and eluted with LDS 

sample buffer. Western blotting analysis was performed with the listed primary antibodies and HRP-conjugated 

secondary antibodies. Each 16 C-terminal mutant is able to bind to SAM50 (B) Densitometric input/eluate 

quantification of SAM50 western blot in panel A using ImageJ (NIH). Pulldowns of TgMAF1RHb1 C-terminal mutant 

infections have been repeated three times. Pulldowns of TgMAF1RHa1 infection was only performed once. 
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2.3.7 HMA-functional paralogs confer in vivo competitive advantage, but TgMAF1RHb1 C-

terminal mutants do not  

Previous work found that expression of TgMAF1RHb1 and not TgMAF1RHa1 in a Type 

II T. gondii strain provides a competitive advantage in an in vivo infection [12]. This growth 

advantage is not present during growth in vitro [3]. To test the in vivo selective advantage of 

expressing the C-terminal mutants, we performed in vivo competition assays by infecting mice 

with clonal lines expressing different HA-tagged WT and mutant TgMAF1RHa1 and 

TgMAF1RHb1 constructs with the same standard reference strain expressing only the empty 

vector (TgME49:EV). Mice were infected with total of 105 tachyzoites and the initial percent of 

parasites expressing HA-tagged MAF1 was quantified by immunofluorescence assay (IFA). 

Consistent with previous results [12], TgMAF1RHb1-expressing parasites competed effectively 

with the reference strain (Fig 2-7A and B), while parasites expressing the TgMAF1RHb1 16 amino 

acid truncation (Fig 2-7B), 16 amino acid C-terminal chimera (Figs 2-7A and B) or the 3 amino 

acid C-terminal chimera (STL→RKK; Fig 2-7A and B), competed less effectively with the 

reference strain. In contrast, one of the single amino acid mutants (Leu441Lys), that is HMA+ (see 

Fig 2-5A) had a competitive index similar to parasites expressing WT TgMAF1RHb1 (Fig 2-7A, 

far right). It should be noted that in vivo competition assays are sensitive to parasite passage 

history, and we used a generic reference strain that was not passage matched to the strains 

expressing mutant MAF1b genes (although all of the HA-tagged lines were carefully passage 

matched). To further validate the competitive advantage of this mutant, a mixed, non-clonal 

population of Type II parasites expressing TgMAF1RHb1:Leu441Lys (HMA+) was injected into 

three Balb/C mice and the Leu441Lys expressing parasites were found to have a significant in vivo 

growth rate as compared to their WT TgMe49 counterparts (Fig 2-7C). Additionally, TgMe49 
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parasites expressing TgMAF1RHb1:SL(438/441)RK also outcompeted their passage-matched 

TgMe49:EV clone (Fig 2-7D). These data show that the in vivo competitive advantage conferred 

by expressing TgMAF1RHb1 in Type II T. gondii is almost certainly due to its impact on HMA, 

rather than the introduction of an additional copy of MAF1b. 
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Figure 2-7 HMA-functional paralog, TgMAF1RHb1 confers in vivo competitive advantage but TgMAF1RHb1 

C-terminal mutants do not. 

(A) Three mice per control or mutant were infected intraperitoneally (IP) with 50/50 mix of TgMe49 parasites 

expressing either WT or C-terminal TgMAF1RHb1 mutants and TgMe49:EV parasites (i.e. 50% TgMe49:TgMAF1 

16 C-terminal chimera vs. 50% TgMe49 empty vector). HFFs were also infected with each input mixed population, 

fixed at 18 hpi and visualized utilizing epi-fluorescent microscopy. Immunofluorescence staining was performed with 

antibodies against the HA epitope tag. Following a five-day in vivo infection, extracted peritoneal content was used 

to infect a monolayer of HFFs. Cells were fixed at 18 hpi and visualized utilizing epi-fluorescent microscopy. 

Immunofluorescence staining was performed with antibodies against the HA epitope tag. Both input (0 dpi) and output 

(5 dpi) populations were quantified by measuring the percent of MAF1-HA expressing parasites. **p=0.0038, 

****p<0.0001 two-way ANOVA (Sidak test). (B) Similar procedure as A, however input parasites populations were 

mixes of 25/75, 50/50, and 75/25 and only one mouse was infected for each of the mixes. (C) Similar procedure to A 

and B. Three mice were IP infected with a natural mixed population of TgMe49:TgMAF1RHb1:L(441)K parasites. 

HFFs were infected with both input populations and peritoneal population after a five day infection. Cells were fixed 

and probed for parasites expressing HA-epitope tag by IFA (Paired t-test, *p=0.0174). (D) Similar procedure to A and 

B. Three mice were IP infected with a 50/50 mixture of TgMe49:EV and TgMe49:TgMAF1RHb1:SL(438/441)RK 

clones. HFFs were infected with both input populations and peritoneal population after a five-day infection. Cells 

were fixed and probed for parasites expressing HA-epitope tag by IFA (Paired t-test, **p=0.0014). 

2.4 Discussion 

The ability to closely associate with host cell mitochondria has evolved independently in 

multiple intracellular pathogens including Legionella pneumophila, Chlamydia psittaci, and T. 

gondii [31, 40, 41, 43, 45]. However, in most organisms the importance of this phenotype is 

unknown. In the case of T. gondii, the pathogen gene product required for this phenomenon has 

been identified as MAF1b, a gene present in multiple copies within a tandemly expanded locus 
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bearing extensive intra-strain and species sequence variation [10, 12]. In previous work we have 

shown that this variation has phenotypic consequences both with respect to HMA and infectivity 

in vivo [12]. In the present study we have exploited MAF1 locus diversity by using comparative 

structural biology and genetic complementation to identify regions of MAF1b required to mediate 

HMA.   

2.4.1 Both MAF1 paralogs harbor vestigial ADP-ribose binding domains in their C-termini 

Paramount to our interrogation of the MAF1 locus was firstly characterizing two distinct 

MAF1 paralogs with opposing HMA phenotypes through crystallographic and in vitro mutational 

studies: TgMAF1RHa1 (TgMAF1RHa1; “HMA-”) and TgMAF1RHb1 (TgMAF1RHb1; 

“HMA+”) [12]. Given the fact that this domain binds ADPr with comparatively low affinity [64], 

it is likely that this domain is a pseudo ADPr binding domain. ADP-ribosylation is an essential 

post translational modification (PTM) that regulates a wide range of cellular processes including 

host immune pathways [13]. Pathogens such as the hepatitis E virus (HEV) and SARS evolved an 

antagonistic ADPr binding macrodomain which reverses ADP-ribosylation events in order to 

subvert the host immune response [19]. Many poly-ADP-ribose polymerases (PARPs) members 

which catalyze this PTM have been shown to undergo recurrent positive diversifying selection in 

mammals which suggests a host-pathogen molecular arms race. These systems explain a possible 

ancestral role for the ADPr binding domain of MAF1 in T. gondii [71, 72]. 

 In addition to an expanded family of Macro-domain containing proteins, the T. gondii 

genome also harbors a large number of rhoptry pseudokinases that have lost catalytic activity. 

Multiple rhoptry pseudokinases are found within tandemly expanded gene clusters (e.g., ROP2/3/4 

locus [25, 73] and ROP5 [10, 20, 28, 30]). MAF1 may represent a new locus, which has been 
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modified from an existing protein domain for the purpose of manipulating the host cell. 

Interestingly the repurposing of this locus likely occurred in the most recent common ancestor of 

T. gondii, H. hammondi and N. caninum since all three parasite species harbor at least one MAF1 

paralog, and based on sequence comparisons they all appear to have retained the pseudo-ADPr 

binding domain. To confirm whether the sequence comparison translated into structural 

conservation, we generated high confidence 3D models of HhMAF1a/b and NcMAF1b (Fig 2-8). 

Despite a similar charge distribution and high sequence conservation of the surface cleft forming 

residues, MAF1 paralogs appear to have lost the ability for high affinity coordination of ADPr and 

its derivatives, consistent with our hypothesis that the cleft region may be a vestigial domain. The 

polymorphic 16 residue C-terminal region, however, exhibits a remarkably divergent surface 

charge, suggesting that the evolutionary pressure on the C- terminal region is comparatively more 

than the cleft region, consistent with the importance of this C-terminal helix in gaining a central 

role in mediating HMA. 
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Figure 2-8 The models of Hammondia hammondi and Neospora caninum MAF1RHa1/b1 paralogs reveal 

identical structural topology with TgMAF1RHa1/b1 and exhibit major surface charge differences in the C- 

terminal region that may be responsible for HMA –ve and HMA +ve homologs.  

(A) Structural overlap of TgMAF1RHa1/b1 with HhMAF1RHa1/b1 and NcMAF1RHa1 models with C- terminal 

region and surface cleft indicated as dotted and solid black boxes. Inset 1. The surface charge distribution of the last 

16 residues of the C terminal region in MAF1a/b homologs. The dotted circle indicates the major difference in charge 

distribution among the homologs. It is clear that the basic patch present in MAF1a homologs is absent in MAF1b. 

Inset 2. The surface charge distribution of the cleft region reveals all the homologs have a similar electrochemical 

cleft region. (B) Weblogo of the T. gondii, H. hammondii, N. caninum MAF1a/b sequences. The solid boxes indicate 

the cleft forming region whereas the dotted box depicts the last 16 residues of the C- terminal region. The C- terminal 

region is considerably more polymorphic than the cleft. 

2.4.2 Structure-function analyses suggest that the C-terminus of TgMAF1RHa1 has three 

residues that prevent HMA 

We exploited sequence diversity across MAF1 paralog classes to ultimately determine that 

three residues in the C-terminus of MAF1b are necessary, but not sufficient, to mediate HMA. 

These data are consistent with previous studies of MAF1b, which found that C-terminally tagged 

MAF1b paralogs did not confer HMA in TgMe49 parasites [31]. Interestingly, the 16 C-terminal 

residues of the A and B paralogs that comprise the 5 helix differ at 10 of 16 amino acid positions 

within a given T. gondii strain, and these differences are highly conserved across divergent T. 

gondii strains and between T. gondii and H. hammondi. Notably, the C-terminal 5 helices in 

TgMAF1RHa1 and TgMAF1RHb1 adopt slightly different positions with respect to the body of 

the macro-domain, which may be due to sequence polymorphisms. With respect to HMA, only 

three of the 10 polymorphic residues of TgMAF1RHb1 are required. We hypothesize that Ser438, 
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Thr439 and Leu441 in MAF1b, which differ markedly from the structurally analogous Arg427, 

Lys428 and Lys430 residues in MAF1a, present an optimal surface enabling coordination of a yet 

unidentified protein partner that gives rise to the HMA phenotype. The basic patch in MAF1a may 

also support non-specific molecular interactions with anionic biomolecules that effectively disrupt 

recruitment of HMA proteins. In either scenario, the significant differences in size and charge 

between the STL versus RKK residues appear to have profound effects on the ability of a given 

MAF1 paralog to drive HMA. 

2.4.3 TgMAF1RHb1 mutants that do not mediate HMA still associate with members of the 

MICOS complex 

TgMAF1RHb1 exists primarily within the parasitophorous vacuole membrane (PVM) and 

has been found to interact with members of the MICOS complex in cellular lysates [70]. The 

MICOS complex spans the mitochondrial inner membrane and is responsible for the structural 

integrity of the mitochondria [74, 75]. Additionally, TgMAF1RHb1 pulls down SAM50 on the 

outer mitochondrial membrane, which interacts with the MICOS complex, forming the membrane 

inner bridge complex (MIB) [70]. Upon RNAi knockdown of SAM50 and MIC60, the ability of 

TgMAF1RHb1 to drive HMA was diminished [70], suggesting that associations between 

TgMAF1RHb1 and the MICOS complex are required for HMA. In the present study we found that 

all tested MAF1 paralogs (e.g., A and B) and HMA-deficient MAF1b mutants were capable of 

pulling down SAM50, although we did not determine precise binding affinities between the a and 

b paralogs and therefore do not know if their binding to SAM50 is equally avid. An exciting 

potential outcome from these data is that the ability to interact with host SAM50 may represent an 

ancestral function of MAF1, but that other interactions are necessary for effective HMA. The 
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chimeric MAF1b/a constructs are perfect tools to identify the precise interactions necessary for 

this intriguing host cell manipulation phenotype [76, 77]. 

2.4.4 MAF1b confers in vivo competitive advantage and replication rate 

Parasites expressing HMA-driving MAF1b paralogs do confer a selective advantage during 

mouse infections [12], but the direct link between HMA itself and this phenotype was lacking. In 

the present study our results provide the most convincing evidence to date that HMA itself (rather 

than other effects mediated by ectopic expression of MAF1b) confers increased parasite replication 

and/or survival in vivo. The competitive index of the Leu→Lys single mutant (which is HMA(+)) 

was clearly superior to that of the STL→RKK triple mutant (which is HMA(-); Figs 2-7A and B). 

Arguably, loss of HMA function provides the parasites with a measurable disadvantage in vivo 

when competed with a WT TgMe49 strain continuously cultured in the lab. These data directly 

link HMA itself to increased in vivo parasite survival and/or growth. The selective advantage 

conferred by HMA is consistent with the fact that MAF1b paralogs show signs of positive, 

diversifying selection (defined previously in [12]), while MAF1a paralogs are highly conserved 

between strains and across species (see Fig 2-1A). Somewhat paradoxically, TgMAF1RHb1 

expression in Type II parasites is also associated with an increased pro-inflammatory response in 

vitro (mouse embryonic fibroblasts) and in vivo, including the differential regulation of key Type 

1 IFNs and pro-inflammatory cytokines in mice [31]. It is possible that increased cytokine 

production may either recruit more cells that are hospitable to T. gondii and/or block recruitment 

of cells that are more lethal to T. gondii (such as GR1+ macrophages; [78, 79]). It is also possible 

that the differential cytokine response is a direct result of a gene dosage effect of Type II parasites 

retaining their endogenous MAF1 locus and exogenously expressing an additional MAF1b 
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paralog. This response is independent of the HMA phenotype and represents another ancestral 

function that is shared in both MAF1a and MAF1b paralogs.   

In summary, using structure-function analyses we have identified three residues in T. 

gondii MAF1b that are required for MAF1b-mediated HMA, and have definitively linked HMA 

to increased parasite proliferation in vivo. In the process we have identified at least two functions 

associated with all MAF1 paralogs (ADP ribose coordination and association with the MICOS 

complex), which may represent the ancestral function of MAF1 prior to its neofunctionalization. 

This study has also enabled us to generate new MAF1 mutants that will serve as valuable reagents 

to probe the importance of HMA for T. gondii mediated host cell manipulation. 

2.5 Materials and methods 

2.5.1 TgMAF1RHa1 and TgMAF1RHb1 cloning, protein production and purification 

 Constructs encoding the predicted C-terminal region of TgMAF1RHa1 (Genbank 

accession no. KU761333) (re-annotated TgMAF1RHb1; Ser173 to Ser443) and TgMAF1RHb1 

(Genbank accession no. KU761342) (re-annotated TgMAF1RHa1; Thr159 to Asp435) were 

cloned, produced and purified as previously described [80]. Each protein was in a final buffer of 

HBS (20 mM Hepes pH 7.5, 150-300 mM NaCl) with 1% glycerol and 1 mM dithiothreitol.  
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2.5.2 Crystallization and data collection 

Crystals of TgMAF1RHb1 were initially identified in the PEG/Ion Screen (Hampton 

Research) using sitting drops at 295 K. The final, refined drops consisted of 1.2 µL TgMAF1RHb1 

at 20 mg/mL with 1.2 µL of reservoir solution (0.2 M ammonium sulfate, 20% PEG3350) and 

were equilibrated against 120 µL of reservoir solution. For phase determination, TgMAF1RHb1 

crystals were soaked in a final cryoprotectant of reservoir solution with 12.5% glycerol and 1M 

NaBr for 3 min before flash cooling directly in liquid nitrogen. For co-crystallization with ADP-

ribose (ADPr) (Sigma), TgMAF1RHb1 was crystallized in the presence of 5 mM ADPr and the 

cryopreservation solution contained reservoir solution with 12.5% glycerol and 10 mM ADPr. 

Diffraction data were collected on beamline 08B1-1 at the Canadian Light Source (CLS) for 

bromide-derivatized crystals, and on beamline 12-2 at the Stanford Synchrotron Radiation 

Lightsource (SSRL) for ADPr bound TgMAF1RHb1. 

Crystals of TgMAF1RHa1 were initially identified in the Index screen (Hampton Research) 

using sitting drops at 295 K. The final, refined drops consisted of 1.0 µL TgMAF1RHa1 at 6.2 

mg/mL with 1.0 µL of reservoir solution (0.9 M ammonium sulfate, 0.1 M Hepes pH 7.0, 0.5% 

PEG8000, 3% 2-methyl-2,4-pentanediol) and were equilibrated against 120 µL of reservoir 

solution. Crystals were cryopreserved in 80% saturated lithium sulfate and flash cooled in liquid 

nitrogen. A subset of crystals was soaked with 10 mM ADPr prior to cryopreservation. Diffraction 

data for TgMAF1RHa1 were collected on beamline 08ID-1 at the CLS, and on beamline 11-1 at 

SSRL for ADPr bound TgMAF1RHa1. 
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2.5.3 Data processing, structure solution and refinement 

Diffraction data for TgMAF1 crystals were collected and processed to 1.60 Å 

(TgMAF1RHb1-Br), 1.65 Å (TgMAF1RHb1-ADPr), 2.10 Å (TgMAF1RHa1), and 2.70 Å 

(TgMAF1RHa1-ADPr) resolution using Imosflm [81], Scala [82] and Aimless [83] in the CCP4 

suite of programs [84]. The structure of TgMAF1RHb1 was phased by bromide single wavelength 

anomalous dispersion. A total of 18 Br sites were identified and refined using the ShelxC/D/E 

pipeline [85]. High quality phases were obtained following density modification in dm [86] and 

enabled building and registering of approximately 85% of the backbone using buccaneer [87]. The 

TgMAF1RHb1-ADPr structure was solved by molecular replacement using the final refined 

TgMAF1RHb1 structure as the search model in PHASER [88], while the TgMAF1RHa1 structures 

were solved using a chainsaw trimmed model of TgMAF1RHb1 as the search model [89]. For each 

structure, COOT [90] was used for manual model building and selection of solvent atoms, and the 

models were refined in Phenix.Refine [91]. Complete structural validation was performed in 

Molprobity [92]. For each dataset, 5% of the reflections were set aside for calculation of Rfree. Data 

collection and refinement statistics are presented in Table 1.  

The atomic coordinates and structure factors have been deposited in the Protein Data Bank 

under the following codes: TgMAF1RHb1-Br – 6BXR; TgMAF1RHb1-ADPr – 6BXW; 

TgMAF1RHa1 – 6BXS; TgMAF1RHa1-ADPr – 6BXT. 

2.5.4 In-silico homology modeling of HhMAF1a1/b1 and NcMAF1RHa1 

The crystal structure of TgMAF1RHa1 was used as a modeling template for 

HhMAF1RHa1 and NcMAF1RHa1 paralogs while the structure of TgMAF1RHb1 was used as the 



 47 

template for HhMAF1RHb1. The sequence identity between target and template was 40% or 

greater for all the MAF1 paralogs. Using Modeller 9v18 [93], 10 models for each MAF1 paralog 

was generated and the best model chosen based on the low value of normalized discrete optimized 

protein energy (DOPE). The assessment of the final model was carried out with Ramachandran 

statistics [94],  QMEAN [95], and ProSA[96] (Supplementary Table 1). 

2.5.5 Cell maintenance and parasite infection 

TgMe49 in these experiments were regularly passed in human foreskin fibroblasts (HFFs) 

and incubated at 37oC in 5% CO2. NRK mito-RFP cells were a kind gift from Jennifer Lippincott-

Schwartz (NIH, Bethesda, MD) [97]. Both cell types were grown in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 50 g/ml of penicillin and streptomycin, 10% FBS, and 

2mM glutamine (cDMEM). 

2.5.6 Expression of MAF1 mutants and transgenic parasites 

Parental plasmid used for cloning all TgMAF1RHb1 constructs contains the HXGPRT 

gene. TgMAF1RHb1 proline-alanine mutations were constructed using short overlap extension 

(SOE) PCR. TgMAF1RHb1 and TgMAF1RHa1 C-terminal mutants were generated using a site-

directed mutagenesis kit (NEB Q5 site-directed mutagenesis). All constructs were confirmed by 

sanger sequencing methods using TgMAF1RHb1 specific primers (Genewiz). The constructs 

contain the endogenous TgMAF1RHb1 promoter followed by the start codon, signal peptide, N-

terminal hemagglutinin (HA) epitope tag and end at the stop codon. Transgenic lines were 

generated using TgMe49∆HXGPRT:Luciferase parasites that were transfected with 55 g of DNA 
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linearized with HindIII. A T25 flask of TgMe49∆HXGPRT:Luciferase parasites was scraped and 

passed through a 25 and 27 gauge needle followed by centrifugation for 10 minutes at 800xg. 

2x107 parasites were re-suspended in Cytomix (120 mM KCl; 0.15 mM CaCl2; 10 mM KPO4; 25 

mM Hepes, 2mM EDTA, 5mM MgCl2; pH to 7.6), GSH and ATP. Parasites were electroporated 

with 1.6Kv and 25F. Following 24 hours of growth in cDMEM, parasites were selected with 

mycophenolic acid (MPA)/xanthine. Selected populations were then cloned via limited serial 

dilution in a 96-well plate. Cloned parasites were confirmed through immunofluorescence assays 

(IFA) by probing for HA epitope tag.  

2.5.7 Immunofluorescence assays and microscopy 

HFFs and NRK mito-RFP cells were grown to 100% and 60% confluency, respectively, 

on 0.7 cm2 8-well glass chamber slide system (ThermoFisher Scientific) in cDMEM. Monolayers 

were infected at an MOI of 1 with transgenic parasites. Cell were fixed at 18 hpi with 4% 

paraformaldehyde for 15 min. and blocked/permeabilized with blocking buffer (5% BSA, 0.1% 

Triton X-100, PBS). HFFs and NRK mito-RFP cells were then probed with anti-HA rat 

monoclonal antibody (3F10 clone, Roche) diluted to 0.1 g/mL in blocking buffer (see above) for 

1 hour at room temperature while shaking. HFFs were also incubated in anti-MTCO2 mouse 

monoclonal antibody and cells were washed with PBS. HFFs were incubated in 488 goat anti-rat 

and 594 goat anti-mouse secondary antibody (Life Technologies Alexa Fluor H+L) for 1 hour at 

room temperature while shaking, followed by PBS washes. NRK mito-RFP cells were incubated 

in Alexa 488 goat anti-rat secondary antibody dilution for 1 hour followed by PBS washes. HFFs 

and NRK mito-RFP were then mounted in Vectashield mounting media (Vector laboratories) and 

sealed with cover glass. Slides were visualized using both confocal and epifluorescence 
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microscopy. Images were taken of the three channels: 488 (anti-HA), 594 (anti-MTCO2 and mito-

RFP) and DIC/phase. Images were cropped and merged using ImageJ (NIH).  

2.5.8 MAF1 paralog alignments and C-terminal structural views  

All MAF1 paralog sequences were obtained from GenBank (NCBI accession numbers: 

SCA78755.1, ANN02899.1, AMN92255.1, AMN92254.1, AMN92252.1, AMN92247.1, 

AMN92246.1, AMN92253.1, AMN92250.1, AMN92249.1, AMN92248.1) and aligned by 

percent identity using Clustal Omega. Alignment was visualized using JalView [98]. 

TgMAF1RHb1 and TgMAF1RHa1 primary amino acid sequences were visualized using UCSF 

chimera software [99, 100]. 

2.5.9 TEM and quantification of vacuole coverage  

HFFs were infected with TgMAF1RHb1 C-terminal mutants. At 18 hpi cells were fixed 

with 2.5% glutaraldehyde in PBS for 1 hour at room temperature, washed three times with PBS 

for 10 minutes, post-fixed for 1 hour at 4C in 1% OsO4 with 1% potassium ferricyanide, and 

washed three times with PBS. Samples were then dehydrated in a graded series of alcohol for ten 

minutes with three changes in 100% ethanol for 15 minutes and changed three times in epon for 1 

hour each. Following the removal of epon, samples were covered with resin and polymerized at 

37°C overnight and then 48 hours at 60°C (protocol: Center for Biological Imagining - CBI, 

University of Pittsburgh, Pittsburgh, PA, USA). Samples were cross sectioned and processed by 

the CBI. Five vacuoles containing two parasites were imaged for each of the infections. Vacuoles 
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were traced in ImageJ and the percent of the total distance around the vacuole in direct contact 

with the host mitochondria was quantified for each of the mutants and controls [101]. 

2.5.10 Immunoprecipitation and immunoblotting 

HFFs were infected with cloned TgMe49 parasites expressing either a TgMAF1RHb1 C-

terminal mutant, TgMe49:TgMAF1RHb1, TgMe49:Empty Vector, or TgMe49:TgMAF1RHa1 at 

an MOI of 2. Cell were lysed in IP lysis buffer (50mM Tris - pH 8.0, 150 mM NaCl, 1% IGEPAL 

CA-630, 0.05% Tween 20) and treated with complete protease inhibitors (Roche) on ice. The 

insoluble fraction was pelleted at 700xg for 10 minutes at 4°C and the soluble fraction was 

incubated with Pierce anti-HA magnetic beads (Thermo scientific) for 2 hours at room temperature 

using a rotator. Beads were washed five times with IP lysis buffer and eluted by boiling in LDS 

sample buffer (Thermo scientific). Both input and eluate fractions were resolved on 10% SDS-

PAGE gel and transferred to nitrocellulose membrane. Membranes were blocked in 5% BSA in 

PBST and probed with primary antibodies to HA, SAM50, and Tubulin followed by goat horse 

radish peroxidase (HRP) conjugated secondary antibodies. Bands were visualized with 

SuperSignal West Pico chemiluminescent substrates (Thermo Scientific). Antibodies used for 

these experiments: Anti-HA high affinity rat monoclonal antibody (clone 3F10) – Roche, Goat 

Anti-Rat IgG H&L HRP – Abcam, Anti-SAMM50 antibody – Abcam, Goat Anti-Rabbit IgG HRP 

– Southern Biotech and Goat Anti-mouse IgG HRP – Southern Biotech. 
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2.5.11 In vivo competition assay 

Mice were 12-wk-old Balb/C female mice (Jackson Labs). Using the same mutant and 

control parasite clones previously listed, we created a 1:1 mix of TgMe49:EV and 

TgMe49:TgMAF1RHb1, TgMe49:EV and TgMAF1RHb1 16 C-term chimera, TgMe49:EV and 

TgMAF1RHb1 STL(438-441)RKK, and TgMe49:EV and TgMAF1RHb1 L(441)K.  TgME49:EV 

served as a baseline control and was not passage matched to the experimental strain. Three mice 

were intraperitoneally (IP) infected with 105 tachyzoites for each of the mixes allowing us to have 

three biological replicates for each treatment group. Coverslips with confluent HFFs were infected 

with the same mixed population preparations and probed for HA tag to quantify the input 

percentage of each mix. Parasite burden was measured daily over the course of the five day 

infection using in vivo bioluminescence imaging [23]. On day 6, each mouse was sacrificed and a 

peritoneal lavage was performed with PBS. A fraction of the peritoneal content was used to infect 

a confluent monolayer of HFFs, fixed at 18 hpi, and probed for HA tag for output percentage 

quantification.  

2.5.12 Ethics statement 

Animal experiments were conducted according to the guidelines of the American 

Veterinary Medical Association. Accordingly, all euthanasia of animals was carried out using 

controlled exposure to CO2. All animal protocols were approved by the local Institutional Animal 

Care Committee at the University of Pittsburgh under IACUC protocol #12010130.  
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3.0 Toxoplasma gondii sequestration of host mitochondria requires key regulatory 

mitochondrial machinery 

3.1 Summary 

Host mitochondrial association (HMA) is a well-known phenomenon during Toxoplasma 

gondii infection of the host cell. The multicopy locus mitochondrial association factor 1 (MAF1) 

is required for HMA and MAF1 encodes distinct paralogs of secreted dense granule effector 

proteins, some of which mediate the HMA phenotype (MAF1b paralogs drive HMA, MAF1a 

paralogs do not). To identify host proteins required for MAF1b-mediated HMA, we performed 

quantitative proteomics on host cells infected with Type II parasites expressing MAF1b, MAF1a, 

and a C-terminal mutant of MAF1b that is also HMA incompetent. Across all three samples we 

identified ~1,360 MAF1-interacting proteins, but only 13 that were uniquely and significantly 

enriched in MAF1b pulldowns compared to controls. The gene products include multiple host 

mitochondria outer membrane proteins, including proteins critical for mitochondrial protein 

import and immune modulation. Through a focused esiRNA screen, we identified both the 

mitochondrial receptor protein, TOM70, and mitochondria-specific chaperone, HSPA9, as 

essential mediators of HMA. Additionally, the enrichment of TOM70 at the PVM interface 

suggests parasite-driven sequestration of TOM70 by the parasite. These results show that the 

interface between the T. gondii vacuole and the host mitochondria is characterized by direct and/or 

indirect interactions between a single parasite effector and multiple target host proteins, some of 

which may be critical for the HMA phenotype itself. The elucidation of the functional members of 
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this complex will permit us to explain the link between HMA and changes in the biology of the 

host cell and the inflammatory response. 

3.2 Introduction 

Direct interactions between intracellular microorganisms and their host mitochondria have 

been characterized in many pathogen species including Legionella pneumophila [43, 44], 

Hammondia hammondi [12], Toxoplasma gondii [31, 40, 41], and Chlamydia psittaci [45, 102]. 

In the case of L. pneumophila, the bacterium utilizes its type IV secretion system to inject the 

effector protein, MitF, which traffics to the Legionella-containing vacuole membrane (LVM) [44]. 

The presence of MitF at the LMV mediates recruitment of the GTPase dynamin 1-like protein 

(Drp1) to the mitochondrial membrane and induces mitochondrial fission in macrophages [44]. In 

the case of T. gondii, this eukaryotic parasite secretes the effector mitochondrial association factor 

1b (MAF1b) to the parasitophorous vacuolar membrane (PVM), and this effector is required for 

the direct binding and manipulation of host mitochondria [11, 12, 31].  

The T. gondii MAF1 locus has a unique structure compared to its closest extant relatives, 

Neospora caninum and H. hammondi [12]. Based on extensive sequence analysis and molecular 

cloning, we found that the MAF1 locus in T. gondii, which contains 6-10 copies dependent on the 

strain, originated from a single MAF1 copy (MAF1a) in N. caninum which is incapable of driving 

HMA [12]. H. hammondi has two tandem copies of MAF1 (MAF1a and MAF1b), and this 

organism is HMA-competent [12]. H. hammondi MAF1b facilitates HMA whereas its MAF1a 

paralog does not, suggesting that a neofunctionalization event occurred during H. hammondi 

speciation [10]. Here, we utilized both MAF1a and MAF1b paralogs, in addition to a mutated 
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HMA-incompetent version of MAF1b to identify the host proteins required for MAF1b binding at 

the PVM. 

Through the use of quantitative mass spectrometry and a focused esiRNA knockdown 

[103] screen we were able to identify an outer mitochondrial membrane receptor, TOM70, as being 

critical for mediating HMA. TOM70 is a receptor protein and member of the translocase of the 

outer membrane (TOM) complex [50, 104, 105]. Collectively, the TOM complex is required for 

recognition and transport of mitochondrial-trafficked proteins [106, 107]. While decades of work 

focus on the TOM20 receptor, recent discoveries shed light on the requirement of TOM70 for 

maintaining mitochondrial health, dynamics, immunity, and calcium homeostasis [48, 49, 51, 55]. 

TOM70 binds pre-mitochondrial proteins containing internal mitochondrial targeting sequences 

through a binding groove [106-108]. Upon binding to TOM70, pre-proteins are thread through the 

TOM40 pore into the inner membrane space [104, 106]. Many of these proteins are destined for 

the sorting and assembly machinery component 50 (SAM50) which is known to interact with 

TOM70 [109]. Previous work identified SAM50 along with mitochondrial inner membrane 

bridging space complex (MIB) members as putative binding partners for MAF1b [59]. However, 

our data show that TOM70 is required for MAF1b-mediated HMA, while SAM50 is not. 

Additionally, TOM70-specific substrates are targeted to TOM70 through the Hsp70-family 

of chaperone proteins, specifically HSPA9 (GRP75) [110]. We found that HSPA9 is also required 

to mediate HMA through our focused esiRNA screen. Both TOM70 and HSPA9 cluster at 

mitochondrial-ER contact sites formerly known as MAMs which are implicated in ER-

mitochondrial calcium transfer, autophagy signaling, mitochondrial metabolism, and immune 

signaling [50, 51, 55, 58, 111]. Therefore, MAF1b binding to HSPA9 and/or TOM70 could disrupt 

these mitochondrial-ER contact sites and downstream signaling, leading to changes in host 
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responses to infection. Overall, these data identify both TOM70 and HSPA9 as essential host 

proteins for MAF1b binding and TOM70 enrichment at the PVM. These interactions may suggest 

manipulation of the mitochondrial-ER interface and contribute to parasite in vivo fitness.  

While the host mitochondrial association (HMA) phenomenon in the cases of L. 

pneumophila and T. gondii has been recognized for years in literature, the exact molecular 

mechanism and physiological impact of these interactions is unknown. Using quantitative mass 

spectrometry, we have now identified the host proteins required for T. gondii HMA. 

3.3 Results 

3.3.1 Quantitative mass spectrometry analysis identified a network of potential MAF1b host 

binding partners on the mitochondria 

Type II T. gondii strains (including TgMe49) are HMA negative and do not express 

TgMAF1RHb1 (MAF1b) protein [12, 31]. We previously characterized three TgMe49 parasite 

clones for their ability to mediate HMA: TgMe49:TgMAF1RHb1 (HMA+), 

TgMe49:TgMAF1RHa1 (HMA-), and TgMe49:TgMAF1RHb1 STYL(438-441)RKYK (HMA-

)[11, 12]. While the HMA phenotype has long been recognized [11, 12, 31, 40, 59], the molecules 

modulating the interaction between the mitochondria and the parasite have remained elusive. To 

identify host proteins required for this interaction, we infected a monolayer of HFFs with each 

parasite clone described above and performed a co-immunoprecipitation assay followed by 

quantitative mass spectrometry. Prior to analysis and selection of candidate binding partners, we 

identified a total of 1,360 proteins in our IP samples (Fig 3-1A). In order to select candidate 
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proteins we first excluded proteins that had a single peptide hit, leaving 937 proteins (Fig 3-1A). 

Each identified peptide yielded a peak intensity score directly related to its ability to ionize. We 

hypothesized that proteins required for binding MAF1b at the PVM would be enriched in the 

TgMe49:TgMAF1RHb1 (Type II: MAF1b) samples and less enriched in the 

TgMe49:TgMAF1RHa1 (Type II:MAF1a) and TgMe49:TgMAF1RHb1 STYL(438-441)RKYK 

(Type II:MAF1b mutant) IP samples. For this reason, we then selected candidate binding proteins 

that had a ≥2 fold change in the Type II:MAF1b samples compared to Type II:MAF1a and Type 

II:MAF1b mutant and an ANOVA p value of <0.001 (Fig 3-1A). These conditions revealed a final 

list of 13 candidate binding partners (Table 1). Candidate binding partners included proteins 

required for cellular metabolism including 3-Hydroxyisobutyrate dehydrogenase (HIBADH), 

glycerol kinase 2 (GK2), and ATP synthase F1 subunit beta (ATP5B) (Table 1). SAM50, which 

was previously identified as a potential binding partner of MAF1b was also enriched in the Type 

II:MAF1b samples [11, 59] (Table 1). Interestingly, proteins known to be enriched at 

mitochondrial-ER contact sites, including translocase of the outer mitochondrial membrane 

receptor (TOM70) and HSPA9, were also identified (Table 1). While ranking proteins based on 

their associated peptide ANOVA p-values is important for investigating candidates, we also 

prioritized proteins based on both their degree of variance in raw peak intensity (Fig 3-1B) and 

overall scatter of individual peptide ionizations (Fig 3-1C). High priority candidates had a narrow 

variance (Fig 3-1B and 3-1C). To assess the scatter of individual peptides, we normalized each of 

the peptide ionization intensity replicates for both SAM50 and TOM70. We found that upon 

normalization, individual peptides do not scatter as drastically compared to the raw data (Fig 3-

1D). 
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Figure 3-1 Quantitative mass spectrometry analysis identified 13 potential MAF1 host binding partners.  

(A) Selection criteria for candidate proteins included identifying proteins with 2 or more peptide hits and proteins 

significantly higher in abundance (greater than 2-fold change) in Type II:MAF1b IP samples in comparison to the 

Type II:MAF1a and Type II:MAF1b mutant samples and must have an ANOVA p-value ≤0.001. Nine of the final 13 

candidates have a mitochondrial function based on DAVID 6.8 analysis. (B) Peak intensity plots for the cumulative 

ionized peptides from the 13 candidate proteins. All identified peptides for each IP sample (n=7) are graphed against 

their peak ionization intensity. (C) Peak intensity plots for the cumulative ionized peptides for each mitochondrial 

candidate protein (9 total). Peptides are colored and labeled to illustrate individual recognized peptides for each 

infection condition (n=7). (D) Normalization of peak intensities for both SAM50 and TOM70 cumulative peptide 

ionizations. Ionization values for each peptides were normalized to overall mean peptide ionization. Peptides are 

colored as in (C). 
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Table 1. List of identified 13 candidate proteins sorted by their associated ANOVA p-value comparing mean 

of each peptide for each candidate protein described in Figure 3-1A. Gene names are provided with their 

relevance to mitochondrial biology. 

 

3.3.2 Focused RNAi screen reveals requirement for TOM70 and HSPA9 in MAF1b-driven 

HMA 

To identify host proteins required for T. gondii recruitment of mitochondria, we generated 

endoribonuclease-prepared siRNAs (esiRNAs) [103] to knockdown candidate gene expression 

and assess co-localization of the mitochondria with the PVM. Human U2OS cells were transfected 

for 48 hours with either a target or non-target esiRNA followed by infection with Type II:MAF1b 

parasites. Knockdown was analyzed using RT-qPCR and candidate transcripts were successfully 

knocked down between 75-95% (Fig 3-2A). We performed an immunofluorescence assay (IFA), 

staining mitochondria and HA-tagged MAF1b to quantify the percent of HMA+ vacuoles. To 
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avoid inherent bias in this assay, we blinded each infection condition and counted three replicates 

(n=3 coverslips per treatment). In vehicle control and non-target (Cytophilin B esiRNA) treated 

cells, 76-84% of the Type II:MAF1b-containing vacuoles were HMA+ (Fig 3-2C). Knockdown of 

multiple candidates identified in our quantitative mass spectrometry screen, including VDAC2, 

GLS, GK2, HIBADH, SAM50, and ATP5B, did not significantly reduce HMA efficiency, where 

again between 71% and 81% of the MAF1b-containing vacuoles were HMA+  (Fig 3-2B and C). 

Interestingly, while many of these candidates are key proteins for the structural integrity and 

function of the mitochondria, only knockdown of ATP5B, a subunit of the multimeric ATPase F1 

subunit, resulted in strikingly unhealthy mitochondria. Importantly, even the fragmented bead-like 

mitochondria in these samples bound to the PVM (Fig 3-2B). TOM70 and HSPA9 esiRNA 

treatments were the only proteins to knockdown the HMA efficiency of the parasites by 30-40% 

(Fig 3-2B and C). We validated TOM70 knockdown by comparing TOM70 protein levels between 

vehicle and HIBADH esiRNA-treated cells (Fig 3-2D). The receptor protein, TOM70, recognizes 

key internal mitochondrial targeting sequences in pre-proteins destined for translocation through 

the TOM complex [106, 107, 112]. To confirm that the decrease of HMA was due to TOM70 and 

not an artifact of disrupting the TOM complex, we knocked down transcript of TOM40, which 

forms the pore of the complex, and this did not significantly alter HMA (Fig 3-2B and C). The 

degree of HMA is measured by quantifying the percent of the vacuole in contact with host 

mitochondria (percent vacuole coverage). Attachment of the vacuole to the mitochondria is most 

readily quantified using transmission electron microscopy (TEM) because the distance between 

the vacuole and mitochondria is 12.04 nm  3.05 nm and starkly different than unattached 

mitochondria, which can be more difficult to distinguish using epifluorescence microscopy [41]. 

To assess the attenuated HMA phenotype, we infected cells knocked down for either HIBADH or 
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TOM70 with Type II:MAF1b parasites and quantified the percent vacuole coverage using TEM. 

Coverage in the TOM70 treated cells was significantly lower than both the vehicle-treated and 

HIBADH knockdown cells (Fig 3-2E, ****p<0.0001) confirming the requirement of the 

mitochondrial TOM70 receptor in mediating HMA. 
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Figure 3-2 TOM70 and HSPA0 are required for MAF1b-mediated HMA.  

(A) U2OS cells were treated with 25nM esiRNA targeting the candidate gene of interest for 48 hours followed by 

Type II:MAF1b infection for 24 hours (MOI=2). RNA was collected at 48 hours and qPCR analysis was performed. 

**p=0.0021, ****p<0.0001 unpaired two-tailed t-test between cognate vehicle-treated control CT values. (B) U2OS 

cells were treated as in (A). Following 48 hours of esiRNA treatment, cells were infected for 24 hours with Type II: 

MAF1b parasites. Cells were fixed and visualized using fluorescence microscopy. Immunofluorescence staining was 

performed with antibodies against the HA epitope tag and mitochondria. (C) HMA+ and HMA- vacuoles were counted 

(n=3, 50 per treatment group) using fluorescence microscopy. ***p=0.0005, ****p<0.0001 one-way ANOVA 

multiple comparisons. (D) U2OS cells were treated as in (A) with 25nM esiRNA targeting TOM70, HIBADH, or 

vehicle control, and TOM70 protein levels were measured by Western blot analysis. -Actin was used as a loading 

control. (E) U2OS cells were treated as in (A) with 25nM esiRNA targeting TOM70 or HIBADH. After 48 hours of 

treatment, cells were infected with Type II:MAF1b parasites for 24 hours followed by fixation in 2.5% glutaraldehyde 

and processed for transmission electron microscopy. For each esiRNA treatment, a minimum of 19 vacuoles were 

quantified. Mitochondria (M) are labelled. ****p<0.0001 **p=0.0055 unpaired two-tailed t-test. 

3.3.3 MAF1 ectopic expression validates the requirement of TOM70 in mediating 

mitochondrial attachment at the vacuole 

Our esiRNA investigation identified TOM70 as being a key mediator of Type II:MAF1b-

driven interaction with the host mitochondria. To determine if the TOM70 requirement for 

MAF1b-mediated HMA required other parasite factors, we expressed GFP-tagged MAF1 in host 

cells directly. Overexpression of GFP-tagged T. gondii effectors is utilized to tease out effector 

localization, physiological response, and immune modulation on the host cell without the 

collective effect of the parasite’s effector proteome. To first assess MAF1 localization and 

mitochondrial binding, we N-terminally GFP tagged both TgMAF1RHb1 and TgMAF1RHa1 

(MAF1b and MAF1a respectively) using the pcDNA3.1/NT-GFP-TOPO expression plasmid 
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(ThermoFisher Scientific). Expression of both GFP-MAF1a and GFP-MAF1b was observed as 

early as 6 hours post transfection and up to 48 hours post transfection in U2OS cells (Fig 3-3A). 

Strikingly, GFP-MAF1b co-localized with the host cell mitochondria as soon as 6 hours post-

transfection and mitochondrial morphology changed dramatically between the 6 and 48 hour time 

points (Fig 3-3A). Our observations of MAF1b-associated mitochondrial aggregation are 

consistent with previous work characterizing the changes to the mitochondrial cristae and overall 

increase in mitochondrial cross sectional area in vacuole-associated mitochondria [31]. 

Interestingly, the three MAF1b residues (STL→RKK) required for HMA during parasite infection 

(Chapter 2, [11]) are also required for MAF1b association with mitochondria during ectopic 

expression (Fig 3-3B).  

Using this system we tested MAF1b binding partner candidates from our quantitative mass 

spectrometry screen for their ability to mediate mitochondrial localization of GFP-MAF1b. We 

knocked down each candidate in U2OS cells using esiRNAs as described above for 48 hours, 

followed by 24 hours of GFP-MAF1b expression by lipofection. Neither HIBADH or SAM50 

knockdown disrupted GFP-MAF1b mitochondrial localization (Fig 3-3C). Additionally, the 

mitochondria morphology was severely altered and the mitochondria aggregated around the 

nucleus. Even in the aggregated mitochondria, GFP-MAF1b remained localized at the 

mitochondria in the knockdown cells (Fig 3-3C). In contrast, knockdown of TOM70 followed by 

GFP-MAF1b expression had markedly different results. TOM70 knockdown cells had severely 

impaired GFP-MAF1b co-localization with mitochondria (Fig 3-3C). These data further confirm 

the requirement of TOM70 in mediating MAF1b binding to the mitochondria.  
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Figure 3-3 Ectopic expression of GFP-MAF1b/a confirms the requirement of TOM70 for mediating HMA.  

(A) U2OS cells were transfected with either GFP-MAF1b or GFP-MAF1a. Cells were fixed at either 6 or 8 hours post 

transfection and probed with an antibody against mitochondria. Samples were visualized using epifluorescence 

microscopy. (B) U2OS cells were transfected with GFP-MAF1b mutant containing the C-terminal mutations STYL 

(438-441) RKYK for 24 hours followed by fixation and immunofluorescence analysis. (C) U2OS cells were treated 

with 25nM esiRNA against the indicated transcript for 48 hours following by transfection with GFP-MAF1b for 24 

hours. Cells were fixed and immunofluorescence staining was performed with antibodies against the mitochondria. 

Profile plots of both the GFP-MAF1b and mitochondria correlate to dotted white line in the merged image (left to 

right). 
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3.3.4 MAF1 maintains multiple internal mitochondrial targeting sequences 

Through a proteomic screen in yeast the mitochondrial ATPase, Atp25, was identified as a 

TOM70 binding partner [107]. Prior to mitochondrial import via the TOM complex, Atp25 binds 

to TOM70 through previously unclassified internal mitochondrial targeting sequences [107, 113]. 

Mitochondrial targeting sequence (MTS) identification algorithms were used to scan the sequence 

for alpha helices, amphipathic regions, and overall positive charge [113, 114]. These algorithms 

predicted MTSs predominantly at the N-terminus of the precursor protein. Through the use of the 

newer TargetP algorithm, mitochondrial sequences were identified throughout the protein with 

high confidence and these regions were termed internal mitochondrial targeting sequences 

(iMTSs) [115]. Atp25 is a prime example of a mitochondrial localized protein that contains 

multiple iMTSs, each of which is required for binding TOM70.  

We hypothesized that MAF1b and MAF1a include distinct iMTSs, and that their 

differences would help to identify the region of MAF1b required for interacting with TOM70 and 

ultimately to drive HMA. To test this hypothesis, we used the TargetP algorithm to generate iMTS 

probabilities along the length of MAF1b/a. TargetP profiles for both MAF1b and MAF1a reveal 

five predicted targeting sequences along the length of both paralogs (Fig 3-4A). All but one of the 

predicted iMTS regions tightly overlap with each other between MAF1b and MAF1a (Fig 3-4A). 

The stretch of 40 residues in MAF1b iMT4 have a high TarpetP score as compared to their aligned 

residues in MAF1a (Fig 3-4A). To identify the specific region in MAF1b required for 

mitochondrial localization, we generated GFP-MAF1b/a chimeric constructs for ectopic 

expression in U2OS cells (Fig 3-4B). Each chimeric construct was designed in a manner so that 

the secondary structure would not be disrupted using both secondary structure prediction software 

(JPred 4) [116] and the solved structures for MAF1a (PDB:6BSX) and MAF1b (PDB: 6BSR) 
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(Chapter 2, [11]). For this reason, some chimeric regions extended beyond the boundaries of a 

predicted iMTS. MAF1 chimera 1 contained the N-terminus of MAF1b (including iMTSs 1 and 

2) with the C-terminus of MAF1a (including iMTSs 3, 4, and 5). Each chimera with the C-terminus 

of MAF1a contained the three C-terminal residues of MAF1b (RKK→STL) required for HMA 

(Fig 3-4A and B) (Chapter 2, [11]).  

Chimera 1 was incapable of mitochondrial localization revealing that iMTSs 1 and 2 were 

not sufficient to mediate HMA (Fig 3-4B). MAF1 chimera 2 contained the N-terminus of MAF1a 

(including iMTSs 1 and 2), MAF1b iMTS3, and the C-terminus of MAF1a (including iMTSs 4 

and 5) (Fig 3-4B). Expression of MAF1 chimera 2 also failed to drive MAF1 association with the 

mitochondria (Fig 3-4B). Expression of chimeras 1 and 2 show that MAF1b iMTSs 1, 2, and 3 are 

not sufficient to mediate HMA. To probe the C-terminal iMTS regions, I generated a third MAF1 

chimera which contained the N-terminus of MAF1a (including MAF1a iMTSs 1, 2, and 3) and the 

C-terminus of MAF1b (including MAF1b iMTSs 4 and 5) (Fig 3-4B). MAF1 chimera 3 was also 

unable to drive association with host mitochondria (Fig 3-4B). Finally, I expressed MAF1 chimera 

4 which contained both the N-terminus and C-terminus of MAF1b (including MAF1b iMTSs 1-2 

and iMTSs 4-5). This chimera drove HMA similar to WT GFP-MAF1b (Fig 3-4B). These data 

suggest the sequences at both the N-terminus and C-terminus of MAF1b are necessary to associate 

with mitochondria, while residues 102-211 of MAF1a are not. 
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Figure 3-4 Internal mitochondrial targeting sequences (iMTSs) are present in both MAF1b/a paralogs.  

(A) TargetP analysis predicts 5 IMTSs present in both MAF1a (light gray) and MAF1b (dark gray) sequences. Each 

iMTS is illustrated on the x-axis with different colors. Alignments were visualized in JalView after alignment using 

ClustalOmega. (B) U2OS were transfected with a MAF1 chimeric construct. Cells were fixed 24 hours post 

transfection and immunofluorescence staining was performed with antibodies against the mitochondria. Cartoon 

depictions of each generated GFP-MAF1a/b chimera are illustrated to highlight the boundaries and identity of each 

MAF1 iMTS. Associated iMTS colors are illustrated in (A). The asterisks in MAF1 Chimera 1 and MAF1 Chimera 2 

refer to the C-terminal residues of MAF1b required for mediating HMA: STYL(338-441)RKYK. 

 

3.3.5 TOM70 is enriched at the parasitophorous vacuolar membrane 

Since most of the MAF1b binding candidates have clear mitochondrial functions, 

fluorescently labelling a potential binding partner only confirms MAF1b localization to the 

mitochondria but does not specifically delineate co-localization of that specific protein with 

MAF1b. We hypothesized that the requirement of TOM70 in mediating HMA would suggest 

localization of TOM70 in the MAF1b-rich regions on the PVM which could be detected using 

epifluorescence microscopy. To test this, we measured TOM70 raw intensity values following 

infection with either Type II:MAF1b or Type II:MAF1a parasites (Fig 3-5A). Following a 24-hour 

infection, we stained infected mito-RFP normal rat kidney (mito-RFP NRK) cells with a TOM70 

antibody. TOM70 was significantly enriched at the MAF1b-PVM interface in comparison to 

unattached mitochondria. (Fig 3-5A and B). TOM70 was also significantly more enriched than the 

mitochondrial matrix-localized RFP indicator at the MAF1b-PVM interface (Fig 3-5A and B). 

This enrichment is lost in the Type II:MAF1a infected cells where we saw no enrichment of RFP-

mitochondria or TOM70 at the PVM (Fig 3-5A and C). The enrichment of TOM70 at the vacuole 
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could be explained by upregulation or stabilization of the protein in cells infected with Type 

II:MAF1b. We wanted to address this question by infecting U2OS cells with either Type II:MAF1b 

or Type II:MAF1a parasites followed by Western analysis to assay overall TOM70 protein levels. 

There was no significant change in TOM70 abundance between infection conditions, suggesting 

no difference in overall MAF1b/a stabilization (Fig 3-5D and E). TOM70 enrichment at the 

vacuole surprised us, so we returned to previously VDAC2-stained cells that were ectopically 

expressing either GFP-MAF1b or GFP-MAF1a to see if another MAF1b candidate binding protein 

corroborated the enrichment phenotype. The voltage-gated dependent anion channel, VDAC2, is 

predominantly located in the outer mitochondrial membrane and is part of the VDAC family of 

proteins required for shuttling metabolites into the mitochondria [117, 118]. VDAC2 localized at 

the mitochondria as well as throughout the cytoplasm in both the GFP-MAF1b and GFP-MAF1a 

samples (Fig 3-5F). Because these U2OS were ectopically expressing GFP-MAF1a/b and were 

not infected with parasites, we quantified VDAC2 enrichment by first measuring the raw pixel 

intensity ratio of mitochondria (-mitochondria Abcam) in the regions with MAF1 protein present 

to the regions where no MAF1 is present. We then compared this ratio to the raw pixel intensity 

ratio of VDAC2 at the MAF1-rich regions of the cell to VDAC2 regions where MAF1 was absent. 

These data indicate that VDAC2 is not enriched in the MAF1b regions of the cell. (Fig 3-5F and 

G). Additionally, there was no significant enrichment of either mitochondria or VDAC2 in the 

GFP-MAF1a samples (Fig 3-5F and H). Overall, we were able to identify TOM70-specific 

enrichment in the regions of the vacuole where MAF1b and not MAF1a localizes, suggesting a 

binding partner complex requiring TOM70. 
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Figure 3-5 TOM70 is enriched at the parasitophorous vacuole. 

(A) Normal rat kidney cells expressing RFP-labelled mitochondria were infected with Type II:MAF1b and Type 

II:MAF1a parasites. Cells were fixed at 18 hpi and visualized with epifluorescence microscopy. Immunofluorescence 

staining was performed with antibodies against TOM70. (B) Enrichment of either RFP-mitochondria or TOM70 at 

the parasitophorous vacuole was performed by quantifying pixel intensity of either the TOM70 or the mitochondria 

channel in a selected region on the vacuole membrane and a region off of the vacuole membrane. The ratio of these 

two areas was then calculated to measure enrichment of mito-RFP or TOM70 protein at the Type II:MAF1b vacuole. 

**p=0.0033 unpaired two-tailed t-test. (C) Similar to (B), enrichment ratios were calculated in cells infected with 

Type II:MAF1a parasites. (D) U2OS cells were infected with Type II:MAF1b or Type II:MAF1a parasites for 24 

hours (MOI=2) in triplicate. Cells were lysed at 24 hours in IP lysis buffer and boiled in LDS sample buffer. Western 

blotting analysis was performed with the listed primary antibodies and HRP-conjugated secondary antibodies. (E) 
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Densitometric actin/TOM70 quantification of western blots depicted in (D) using FIJI ImageJ software (NIH). (F) 

U2OS cells were transfected with GFP-MAF1a and GFP-MAF1b. Cells were fixed at 24 hours post transfection and 

visualized with epifluorescence microscopy. Immunofluorescence staining was performed with antibodies against 

both VDAC2 and the mitochondria (MTCO2). (G) Enrichment of either mitochondria (MTCO2) or VDAC2 at the 

locations where MAF1b is present was performed by quantifying pixel intensity of either the VDAC2 or the 

mitochondria channel in a region overlapping with MAF1b and a region not-overlapping with MAF1b. The ratio of 

these two areas was then calculated to measure enrichment of that protein at MAF1b-localized sites. **p=0.0064 

unpaired two-tailed t-test (H) Similar to (G), enrichment ratios were calculated in cells expressing GFP-MAF1a. 

 

3.4 Discussion 

The association of host cell organelles with their invading pathogens has long been 

observed, but the intricate molecular mechanisms underlying these interactions have remained 

elusive. For example, the striking cellular phenotype of some pathogens associating with host 

mitochondria has been phenotypically characterized by microbiologists for quite some time. This 

phenotype has been reported in Legionella pneumophila [43], Chlamydia psittaci [45, 102], 

Hammondia hammondi [12, 119], and Toxoplasma gondii [11, 12, 31]. While the secreted 

bacterium effector driving association of the infectious C. psittaci elementary body with its host 

mitochondria remains unknown, key mitochondrial functions like ATP synthesis and the 

regulation of glucose metabolism are enhanced upon pathogen infection [120]. Additionally, 

mitochondrial association is specific to C. psittaci and this association is absent in both C. 

pneumonia and C. trachomatis [121]. Recent discoveries in L. pneumophila answered a decades-

long question about the impact of bacterial association with host mitochondria. L. pneumophila 
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utilizes the protein effector, MitF, to mediate downstream host GTPase recruitment leading to 

alterations in mitochondrial morphology, including fragmentation [44]. However, the mechanism 

behind MitF driving mitochondrial fragmentation is still unknown. Pinpointing the exact host 

proteins interacting with MitF would provide valuable insight into this mechanism. Similar work 

in the eukaryotic parasite, T. gondii, has resulted in the identification of the parasite effectors 

driving association with host mitochondria [31]. T. gondii secretes the effector protein, MAF1b, 

from its dense granules upon invasion, and after trafficking to the PVM, it is required for 

association with host mitochondria [12, 31]. This association is physiologically relevant, since 

HMA+ parasites outcompete their HMA- counterparts during acute infection in mice (Chapter 2, 

[11, 12]). This growth advantage was first recognized during acute infection, but there is also a 

MAF1b/HMA-dependent increase in cyst burden in the brain of mice during chronic infection 

[122]. The exact signaling pathways underlying these physiological effects of MAF1b and 

identification of host proteins required for HMA represent an important means to uncover these 

mechanisms. In this work, we use a non-biased quantitative mass spectrometry approach to show 

the requirement of the outer mitochondrial membrane receptor protein, TOM70, and 

mitochondrial-specific chaperone, HSPA9, in mediating MAF1b binding to the host mitochondria. 

While both proteins are directly required for mediating HMA, these data do not exclude the 

possibility of additional candidates being required to complex together and facilitate MAF1b-

mitochondrial binding. 

3.4.1 Quantitative mass spectrometry narrow MAF1b binding partners 

The MAF1 locus has undergone significant gene expansion-driven diversification and Type 

I T. gondii maintains 7 tandem MAF1 copies in its genome (Chapter 1, [10, 12, 123]). Based on 
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the predicted primary sequence of each MAF1 protein product, these MAF1 copies can be 

categorized as either MAF1a or MAF1b paralogs [12]. Both paralog types traffic to the PVM upon 

expression in Type II (HMA-) parasites, but only MAF1b drives association of the Type II PV 

with host mitochondria [12]. We leveraged the diversity of the MAF1 locus to identify host proteins 

required for MAF1b-mediated HMA. We compared interactions between three parasite clones 

(MAF1b, MAF1a, and a non-functional MAF1b) with their host proteins. Through the use of 

quantitative mass spectrometry, we identified 13 candidate MAF1b host binding proteins. Some 

of these candidates including IMMT and SAM50 were previously identified as MAF1b binding 

partners [59]. 

3.4.2 T. gondii associates and manipulates host mitochondria through binding TOM70 and 

HSPA9 

The esiRNA knockdown experiments are difficult to perform because we are measuring 

HMA competency following an extended time period of protein depletion. We were cautious of 

the effects of protein knockdown to overall mitochondrial and cellular health. For example, the 

candidate protein, ATP5B, is an essential component of the F1/F0 ATP synthase machinery. 

Previous literature shows that RNAi knockdown of ATP5B leads to a decrease in cellular 

respiratory rate, increased production of ROS, and initiation of cellular apoptosis [124, 125]. While 

fragmented mitochondria were visualized in these samples, Type II:MAF1b parasites were still 

capable of driving clear association with the fragmented mitochondria, indicating the robustness 

of the HMA phenotype and the tight interaction between MAF1b and the mitochondria. 

Additionally, in our experiments, knockdown of the previously identified MAF1b-interacting host 

protein, SAM50, did not disrupt HMA. Previous work reports MAF1b interacts with members of 
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the mitochondrial intermembrane-space bridging complex (MIB) including SAM50, IMMT, 

CHCHD3, and mitofilin [59]. They hypothesized that because SAM50 is the only member of the 

complex exposed to the cytosol, this is the reasonable point of contact with MAF1b [59]. Upon 

RNAi knockdown of the outermost member, SAM50, and internal candidate, Mitofilin, the percent 

of HMA+ vacuoles in both treatments decreased by 40-50% [59]. Parasite clones used in the 

previous experiments were an HMA+ Type I strain with an N-terminally HA-tagged MAF1b 

paralog and an HMA- Type I strain with a C-terminally HA-tagged MAF1b paralog [31, 59]. The 

presence of the C-terminal HA tag functions as a dominant negative and renders the parasites 

HMA incompetent. Our work utilized a more elegant approach by comparing evolutionary-

relevant MAF1 paralogs (MAF1b:HMA+ and MAF1a:HMA-) and a single engineered MAF1b 

mutant (Chapter 2, [11]). While our data provides a more comprehensive view of the molecular 

mechanism driving MAF1b-mediated HMA, it is not in complete contrast to the previous results. 

Interestingly, SAM50 and IMMT, which were identified in our screen are known transient 

interactors with TOM70 and this might explain the previous identification of these proteins in pull 

down analyses [109].  

The requirement of TOM70 in mediating HMA is also confirmed through our ectopic 

overexpression approach. The purpose of this method is to assay MAF1b interactions without the 

milieu of parasite effectors and subsequent pathway manipulations in a parasite infection. N-

terminally GFP-tagged MAF1b traffics directly to the host mitochondria as early as six hours post 

transfection (Fig 3-3A). This is in direct contrast to the GFP-tagged MAF1a which remains 

cytosolic and occasionally forms puncta in both the cytosol and nucleus. Interestingly, 

overexpression of GFP-MAF1b in the host cell causes dramatic aggregation of the mitochondria 

which is not observed following GFP-MAF1a expression. Additionally, these morphological 
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changes to the mitochondria are not seen in the cells knocked down for TOM70 followed by GFP-

MAF1b expression. 

3.4.3 MAF1b binding to mitochondria may require multiple target sites 

TOM70 is known to interact with its target proteins through internal mitochondrial 

targeting sequences (iMTSs) [107]. These regions function similarly to N-terminal signal 

sequences in that they maintain an amphipathic alpha helical structure and contain many 

hydroxylated and positively charged residues. Both MAF1b and MAF1a contain five predicted 

iMTSs with only the N-terminal iMTSs being conserved among the two paralogs, suggesting the 

MAF1b paralog interacts with TOM70 through its C-terminal iMTSs. However, almost all of the 

iMTSs including the N-terminal iMTSs are required for proper mitochondrial localization upon 

ectopic expression. The only region not required is the disordered region downstream of the 

MAF1b proline-rich stretch which was previously identified as being dispensable for MAF1b 

function (Chapter 2, [11]). This suggests that MAF1b and MAF1a are quite diverged from one 

another and MAF1b requires interactions on both its N-terminal and C-terminal ends to drive 

HMA.  

3.4.4 MAF1b potentially disrupts ER-mitochondrial contact sites 

While the physiological impact of the TOM70 and HSPA9-MAF1b interaction is not yet 

known, we did measure a significant enrichment of TOM70 at the MAF1b-mitochondria interface. 

Fluorescence microscopy does not allow us to visualize precise MAF1b-TOM70 interactions 

because TOM70 studs the outer mitochondrial membrane and serves as a good general 
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mitochondrial marker. However, through immunofluorescence we were able to quantify the 

significant enrichment of TOM70 at the vacuole in comparison to a mito-RFP mitochondrial 

marker, suggesting aggregation or stabilization of TOM70 at the regions on the vacuole in contact 

with MAF1b. In mammalian cells, TOM70 clusters at specific ER-mitochondria contact sites and 

recruits ER-bound inositol triphosphate receptor (IP3R3) and HSPA9 to transfer Ca2+ from the ER 

to the mitochondria [50]. This ER-mitochondrial contact site mechanism is essential for 

maintaining healthy mammalian cell homeostasis and mitochondrial health [50]. Upon knockdown 

of TOM70, the ER-mitochondrial transfer of Ca2+ is ineffective and the cells show a marked 

increase in autophagy and decreased proliferation [50]. Additionally, the attachment of the host 

mitochondria to the vacuole excludes the ER along the entire length of the interface which is 

observed on both an epifluorescence and TEM level (Fig 3-6), suggesting a disruption of ER-

mitochondrial contact sites. Perhaps, T. gondii MAF1b binds the HSPA9-TOM70 complex and 

disrupts the ER-mitochondria contact sites along the length of the vacuole-mitochondria interface. 

These interactions might induce mitochondrial dysfunction and signal cellular autophagy leading 

to improved T. gondii growth conditions. The mitochondrial associated pathogen, L. pneumophila, 

utilizes a similar mechanism where bacterium induction of mitochondrial fragmentation leads to 

impairment of oxidative phosphorylation and Warburg-like metabolism promoting bacterium 

replication [44]. In the case of T. gondii, these conditions would describe the increase in parasite 

fitness in both acute and chronic in vivo infections. 

In summary, by leveraging an evolved T. gondii locus, we identified the requirement of the 

host proteins, TOM70 and HSPA9, in mediating host mitochondrial association. These findings 

shed light on the intricate host-pathogen molecular arms race for pathogen manipulation of host 

organelles.  
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Figure 3-6 MAF1b preferentially binds mitochondria and excludes ER.  

(A) mCHERRY-KDEL cells were infected with either Type II:MAF1b or Type II:MAF1a parasites. Cells were fixed 

24 hpi and visualized using fluorescence microscopy. Immunofluorescence staining was performed with antibodies 

against the mitochondria and HA epitope tag. Profile plots of HA-MAF1b (green), KDEL(blue), and mitochondria 

(red) correlate to yellow arrow in the merged image. (B) TEM micrograph of HFFs infected with Type III (HMA+) 

parasites. Arrow heads indicate ER and asterisks indicate mitochondria. Right image is magnified region of left (dotted 

square).  
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3.5 Materials and methods 

3.5.1 Parasite expression of MAF1 paralogs and transgenic parasites 

Parental plasmid (pATTGra_HA_HPT) for expression of TgMAF1RHb1 (MAF1b) and 

TgMAF1RHa1 (MAF1a) paralogs contained the selectable HXGPRT gene marker. Transgenic 

clones were generated using Type II TgMe49∆HXGPRT:Luciferase parasites that were transfected 

by electroporation at 1.6Kv and 25F with 50 g of pATTGra TgMAF1RHb1 (MAF1b) and 

TgMAF1RHa1 (MAF1a) linearized with HindIII. TgMe49∆HXGPRT:Luciferase parasites were 

scraped and passed through a 25 and 27 gauge needle. Cell lysate was centrifuged for 10 minutes 

at 800xg and 2x107 parasites were re-suspended in Cytomix (120 mM KCl; 0.15 mM CaCl2; 10 

mM KPO4; 25 mM Hepes, 2mM EDTA, 5mM MgCl2; pH to 7.6), ATP and GSH. Parasites were 

selected with mycophenolic acid (MPA)/Xanthine and cloned by limited series dilution in a 96-

well plate. Positive and negative parasite clones were confirmed through immunofluorescence 

analysis by the presence or absence of an HA-tag. TgMe49:TgMAF1RHb1 (RHb1 clone 1 i.e. 

“Type II:MAF1b”), TgMe49:TgMAF1RHa1 (RHa1 clone 3 i.e. “Type II:MAF1a”), and 

TgMe49:Empty Vector (EV clone 1) are passaged matched and used for the entirety of all 

experiments. Additionally, TgMe49:TgMAF1RHb1:STYL(438-441)RKYK clone 6 

(STYL/RKYK clone 6 i.e. “Type II:MAF1b mutant”) was similarly generated and used for all 

experimentation.  

GFP-MAF1b/a constructs were generated using the pcDNA3.1/NT-GFP-TOPO GFP-

fusion TOPO TA expression kit (ThermoFisher). The region of MAF1b/a cloned into the 

pcDNA3.1 expression plasmid excluded the first 23 residues containing the signal peptide. MAF1b 
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(residues 24-446) and MAF1a (residues 24-446) were PCR amplified and gel purified prior to GFP 

fusion.  

MAF1 chimeras 1,3, and 4 were generated using overlapping PCR and Gibson assembly 

(NEB Gibson Assembly Master Mix) methods. MAF1 chimera 2 was generated using a site-

directed mutagenesis kit (NEB Q5 Kit) to mutate both MAF1a iMTS3 and the C-terminal residues 

(STYL→RKYK). The same C-terminal residue changes (STYL→RKYK) were made in MAF1 

chimera 1 using the same site-directed mutagenesis methods.  

3.5.2 Cell maintenance and parasite infection 

All TgMe49 parasite clones were regularly passed in human foreskin fibroblasts (HFFs) 

and incubated at 37oC in 5% CO2. Following parasite selection and cloning, all HFFs were 

incubated in Dulbecco’s modified Eagle’s medium supplemented with 10% FBS, 2mM glutamine, 

and 50g/ml of penicillin and streptomycin (cDMEM). Human bone osteosarcoma cells (U2OS) 

and NRK mito-RFP cells were also regularly passed in cDMEM media. All experimental parasite 

infections included scraping and passing cell lysate through a 25 and 27 gauge needle followed by 

counting on a hemocytometer and infection at the noted MOI. 

3.5.3 cDNA synthesis and qPCR/TOM70 protein knockdown analysis 

After 48 hours post 25nM esiRNA treatment, three wells were lysed using the Qiagen RNA 

Shredder and RNeasy RNA extraction kit. RNA samples were reverse transcribed using 

SuperScript III Reverse Transcriptase protocol (Thermofisher) and qPCR was performed using the 

SYBR Green Supermix (BioRad). Quantification and statistical analyses were performed in Prism 
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GraphPad. Replicate CT values were used to determine statistical significance in Prism GraphPad. 

Additionally, Vehicle, TOM70, and HIBADH esiRNA-treated wells were lysed in Pierce IP lysis 

buffer (ThermoFisher) and treated with complete protease inhibitors (Roche) on ice. Samples were 

boiled in SDS sample buffer for 10 min, resolved on 10% SDS-PAGE gel and transferred to 

nitrocellulose membrane. Membranes were blocked in 5% BSA in PBST and probed with primary 

antibodies to TOM70 and -actin followed by HRP conjugated secondary antibodies. Membranes 

were visualized with SuperSignal West Femto chemiluminescent substrates. Antibodies used for 

these experiments: anti-TOM70 (sc-390545) – Santa Cruz Biotechnology, anti--actin (#4970) – 

Cell Signaling Technology, Goat Anti-Rabbit IgG HRP – Southern Biotech, Goat Anti-Mouse IgG 

HRP – Southern Biotech. 

3.5.4 esiRNA generation and RNAi treatment 

Silencing regions (400-600 bp) of a candidate gene were PCR amplified to include a 5’ and 

3’ T7 RNA polymerase promoter sequence (FWD-TAATACGACTCACTATAGGGAGAG, 

REV-TAATACGACTCACTATAGGGAGAC) from human HEK cell cDNA. PCR products were 

gel purified and Sanger sequencing confirmed candidate sequences (Genewiz). 250 ng of verified 

product was in vitro transcribed using components of the MEGAscript T7 kit. Following DNase 

treatment, transcribed RNA product was digested with RNase III for 2 hours at 37oC. Digested 

esiRNA products were purified by passing the solution in equilibrium buffer (20mM Tris-Cl, 1mM 

EDTA, 300mM NaCl) through Q-sepharose beads followed by wash buffer (20mM Tris-Cl, 1mM 

EDTA, 400mM NaCl). Purified product was eluted off the beads in elution buffer (20mM Tris-Cl, 

1mM EDTA, 520mM NaCl). Eluted esiRNA precipitated overnight in isopropanol and 

resuspended 50uL of nuclease-free H2O. 
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U2OS cells were seeded in a 24 well plate at 37oC in 5% CO2 for 24 hours to reach 80% 

confluency. Six wells for each candidate gene were treated with 25nM esiRNA using Dharfect-1 

reagent for 48 hours. Three wells were infected with Type II:MAF1b parasites (MOI=2) and the 

remaining wells were lysed for RNA extraction and purification. Cells were fixed at 24 hpi with 

4% formaldehyde in PBS followed by immunofluorescence analysis. 

3.5.5 TEM and percent vacuole coverage quantification 

U2OS were treated with 25nM Vehicle, TOM70, or HIBADH esiRNA for 48 hours 

followed by infection with Type II:MAF1b parasites (MOI=2). At 24 hpi cells were fixed with 

2.5% glutaraldehyde in PBS overnight in 4C and subjected to same TEM sample preparation 

previously described in Chapter 2 (protocol: Center for Biological Imagining - CBI, University of 

Pittsburgh, Pittsburgh, PA, USA). A minimum of 19 vacuoles for each esiRNA treatment were 

imaged. Vacuoles were traced in FIJI ImageJ and the percent of the total distance around the 

vacuole in contact with the host mitochondria was quantified for each esiRNA treatment group. 

Quantification and statistical analyses were performed in Prism GraphPad. 

3.5.6 Immunofluorescence and immunoblotting 

HFFs, U2OS, and NRK mito-RFP cells were grown in cDMEM on glass coverslips in a 

24-well plate. Following either esiRNA knockdown, GFP-MAF1a/b expression, or Type 

II:MAF1a/b infection, cells were fixed with 4% paraformaldehyde for 15 min. and permeabilized 

with 0.1% Triton X-100 in PBS at room temperature. Cells were then probed with primary 

antibodies diluted in PBS for 1 hour at room temperature while shaking. Following PBS washes, 
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cells were incubated in secondary antibodies fused to a fluorescence indicator for 1 hour at room 

temperature while shaking (Life Technologies Alexa Fluor H+L) followed by PBS washes. Cells 

were mounted on glass slides using ProLong Diamond Antifade Mountant (ThermoFisher) and 

cured in the dark for 24 hours. Immunofluorescence primary antibodies used in this work include: 

anti-HA rat monoclonal antibody (3F10 clone, Roche), anti-mitochondria (ab92824, Abcam), anti-

TOM70 (sc-390545, Santa Cruz Technologies), and anti-VDAC2 (PA5-28106, ThermoFisher). 

Images were taken of five total channels dependent on the experiment: 488, 594, 647, 350, and 

DIC/phase. Images were cropped and merged using FIJI ImageJ (NIH). 

3.5.7 Immunoprecipitation and quantitative mass spectrometry 

HFFs were seeded to confluency in a T175 (107 cells) and hyper-infected (MOI=10) with 

either Type II:MAF1b, Type II:MAF1a or Type II:MAF1b mutant parasites (n=7) for 24 hours. 

Cell were lysed in IP lysis buffer (50mM Tris - pH 8.0, 150 mM NaCl, 1% IGEPAL CA-630, 

0.05% Tween 20) supplemented with complete ULTRA-tablet protease inhibitor (Roche) on ice. 

Following sonication using three 15mV 10s bursts with 25s intervals on ice, the insoluble fraction 

was pelleted at 800xg for 10 minutes at 4°C. The soluble fraction was incubated with Pierce anti-

HA magnetic beads (Thermo scientific) overnight using a rotator. Beads were washed five times 

with IP lysis buffer and eluted by boiling in SDS sample buffer (Thermo scientific). Eluate 

fractions were resolved at 150V for 10 minutes on 10% SDS-PAGE gel to only allow the protein 

samples to enter the resolving portion of the gel. The eluted samples were loaded on to a 4-12% 

Bis-tris gradient gel in ~18µL aliquots at constant 150V 1X MES for 2 minutes or until the entire 

sample was loaded. The gel bands were digested with trypsin as described in [126] and tryptic 

peptides were desalted with Pierce C18 Spin Columns, speedvac dried and resuspended in 18µL 
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0.1% formic acid. A pooled instrument control (PIC) was made by taking 3µL from each of the 21 

replicate samples. The injection order was randomized in a balanced block design. 

All samples were analyzed by nano-flow liquid chromatography tandem mass 

spectrometry (nLC-MS/MS) using an injection volume of 1 µL on to a 25 cm C18 Picochip column. 

The LC Gradient ran at 300 nL/min with a 2-35% acetonitrile over a 66 minute gradient. 

Instrument parameters included a full scan with top13 ddMS2 on the high resolution Thermo 

Orbitrap Velos Pro mass spectrometer. 

Extracted ion chromatogram peak area for 32 selected peptides were monitored during the 

instrumental analysis to ensure proper instrument performance using Skyline software. MASCOT 

database search was performed using a modified UniProt human database with Toxoplasma gondii  

protein sequence database with the parameters: fixed modification carbamidomethylation (C), and 

variable modifications of acetyl (N-terminus), oxidation (M), and deamidation (NQ). Major 

identified proteins were reported in Scaffold v4.5.3. Proteomic features were aligned and 

quantitated using MaxQuant v1.6.2.1 software and Andromeda search engine with 1% FDR 

selected. Graphpad Prism was used to create bar charts. Matlab was used for the statistical analysis. 

3.5.8 MAF1 ectopic expression 

U2OS cells were plated to 80% confluency and transfected with 1g of GFP-MAF1b/a 

plasmid by lipofection (Lipofectamine 3000). In some cases, U2OS were treated with 25nM target 

esiRNA for 48 hours followed by transfection with 1g of GFP-MAF1b/a plasmid for 24 hours. 

Following transfection, cells were fixed and stained with anti-mitochondria antibody for 

immunofluorescence analysis. Additionally, VDAC2 localization was investigating by 
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transfecting both GFP-MAF1a/b for 24 hours followed by fixation and immunofluorescence 

analysis.  

3.5.9 iMT targetP analysis 

Both TgMAF1RHa1 (MAF1a) and TgMAF1RHb2 (MAF1b) sequences were subjected to 

TargetP prediction software as described in [107]. The algorithm N-terminally truncates the 

protein of interest by a single residue at a time and assigns a score to the truncated form. This 

allows us to identify regions of TgMAF1b/a that are predicted iMTSs. 

3.5.10 TOM70 and VDAC2 enrichment 

Mito-RFP NRK cells were infected with either Type II:MAF1a or Type II:MAF1b 

parasites (MOI=2). Mito-RFP NRK cells were fixed at 24 hpi and stained for the HA-tag and 

TOM70 (antibodies previously described). Using FIJI ImageJ software, the raw intensity density 

of a 15x15 pixel area was measured in a region on the PVM and off of the PVM. An enrichment 

ratio was calculated (pixel intensity on the PVM/ pixel intensity off of the PVM) in both the RFP-

mitochondria channel and the TOM70 channel (11 independent vacuoles were counted).  

Additionally, U2OS cells were transfected with 1g of GFP-MAF1b/a plasmid. At 24 hpi, 

cells were fixed and stained for the mitochondria and VDAC2 (as described above). Using FIJI 

ImageJ software, a 15x15 pixel area was measured in a MAF1-rich region and MAF1-absent 

region. An enrichment ratio was calculated (pixel intensity in MAF1-rich region/ pixel intensity 

MAF1-absent region) in both the mitochondria channel and the VDAC2 channel (9 independent 

cells were counted). 
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TOM70 stabilization experiment included seeding U2OS cells in a 24-well plate until they 

reached confluency. Wells were infected with Type II:MAF1b, Type II:MAF1a, or uninfected at 

an MOI of 5 (n=3 per treatment condition). Cells were lysed at 24 hours post infection in Pierce 

IP lysis buffer (ThermoFisher) and treated with complete protease inhibitors (Roche) on ice. 

Samples were boiled in SDS sample buffer for 10 min, resolved on 10% SDS-PAGE gel and 

transferred to nitrocellulose membrane. Membranes were blocked in 5% BSA in PBST and probed 

with primary antibodies to TOM70, -actin, and VDAC2 followed by HRP conjugated secondary 

antibodies. Membranes were visualized with SuperSignal West Femto chemiluminescent 

substrates. Antibodies used for these experiments: anti-TOM70 (sc-390545) – Santa Cruz 

Biotechnology, anti--actin (#4970) – Cell Signaling Technology, anti-VDAC2 (PA5-28106) – 

ThermoFisher, Goat Anti-Rabbit IgG HRP – Southern Biotech, Goat Anti-Mouse IgG HRP – 

Southern Biotech. 
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4.0 Discussion and future directions 

T. gondii and its closest extant relatives, N. caninum and H. hammondi, maintain many 

tandemly expanded loci, many of which contain N-terminal signal sequences required for secretion 

from the parasite [10]. Gene expansion-driven diversification (GEDD) in T. gondii has led to the 

evolution of novel mechanisms to interact with and manipulate its host [10, 123]. In Chapter 1, we 

show that a select group of characterized GEDD loci in tissue-dwelling coccidia maintain multiple 

tandemly expanded and diversified loci that play critical roles in host manipulation rather than 

providing a more classical function in antigenic variation. For example, in P. falciparum and T. 

brucei, the diversity of the var and variant surface glycoprotein (VSG) family genes, respectively, 

is a source for antigenic variation in the parasite allowing it to avoid parasite clearance by host 

antibody responses. In T. gondii, 53 of understudied GEDD loci drive expression of predicted 

secreted paralogs that each maintain an individualized role in their interaction with their associated 

host [13-15], and to date no such loci have been identified that perform any function akin to 

antigenic variation in T. gondii and P. falciparum. A prime example of a tandem GEDD locus in 

T. gondii, ROP5, illustrates the nuances of classes how gene diversification can impact parasite 

virulence. While the ROP5 cassette maintains three paralog classes that each traffic to the PVM, 

parasite virulence is only driven by the combined expression of ROP5A and B. These finding 

suggest a neofunctionalized ROP5 locus in T. gondii that maintains ROP5 paralog classes 

(ROP5C) which have no bearing on parasite virulence but are maintained in the genome [20, 29, 

30]. While many of these tandem GEDD loci have been identified in T. gondii and its close 

relatives, including IMC8/5 [19], NTPases I and II [19], SRS paralogs [10, 22], and MAF1 [11, 
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12], the multi-copy nature of these loci make them difficult to study with traditional sequencing 

techniques, and therefore difficult to clone and individually express in parasites.  

The work in Chapters 2 and 3 along with previously published research [11, 12, 31],  

describe a comprehensive strategy to elucidate the mechanism and impact of GEDD on the host, 

with a focus on MAF1b-driven host mitochondrial association (HMA). Our work characterizes the 

functional significance of the expanded MAF1 locus (Chapter 2) [12], tracks the expression of 

individual MAF1 paralogs (Chapter 2), and employs a structure-function approach to not only 

identify the functional regions of MAF1 (Chapter 2) but leverage the multi-copy locus to identify 

host proteins driving the interaction with the parasite (Chapter 3).  

4.1 The shifting red herring: evolutionary significance of a diverse MAF1 locus 

T. gondii maintains a diverse and expanded MAF1 locus in comparison to its closest extant 

relatives, N. caninum and H. hammondi [10, 12]. Interestingly, even within the T. gondii lineage, 

MAF1 is diverse in copy number and sequence among the three major strains (Types I, II, and III) 

[12]. Previous literature characterized the neofunctionalized role of MAF1 in mediating HMA and 

highlighted the diverse protein paralogs expressed by each of the three strains [12]. Chapter 2 

illustrates our structure-function approach to identify the regions of MAF1 critical for the HMA 

phenotype and reveal possible ancestral functions of MAF1 (prior to the emergence of HMA). The 

two paralogs most useful for our analyses were TgMAF1RHb1 (MAF1b) and TgMAF1RHa1 

(MAF1a) cloned from RH (Type I) parasites. The HMA-incompetent, N. caninum, maintains two 

identical copies of MAF1a, while the more recently speciated H. hammondi maintains a single 

MAF1a and MAF1b copy, suggesting an ancestral role of MAF1a. 
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 Structural analysis of both MAF1b and MAF1a in collaboration with the Boulanger lab, 

identifies similarities with the macroH2A (non-histone) macro-domain in Archaeoglobulus 

fulgidus 1521 (Af1521) [11, 62, 64]. This macro-domain is responsible for binding the nucleotide, 

ADPribose (ADPr) which functions as a histone post-translational modification involved in 

regulation of gene expression, however our work found minimal coordination of ADPr by either 

MAF1a or MAF1b [11], suggesting that ADPr binding may have been lost in MAF1a prior to its 

diversification in N. caninum. Interestingly, hepatitis E virus (HEV) expresses an antagonist ADPr-

binding domain that subverts downstream host immune responses by reversing cellular ADP 

ribosylation [71]. While our work does not investigate further the pseudo-ADPr-binding domain 

on MAF1, it sheds light on the evolutionary history of host-interacting proteins secreted by T. 

gondii. 

Our goal in identifying the MAF1b region required for mediating the HMA phenotype was 

two-fold. Firstly, identifying these regions would provide an evolutionary path for the 

neofunctionalization of the MAF1 locus, pinpointing the residues maintained to provide increased 

parasite fitness in both acute and chronic infection. Secondly, identifying this region would create 

a powerful reagent to probe the molecular mechanism driving MAF1b-mediated HMA. Described 

in Chapter 2, significant differences were identified in a disordered repetitive proline-rich region 

near the N-terminus of only the MAF1b paralog. Proline-rich regions and motifs have been 

identified in budding viral proteins required for binding and manipulation of host ESCRT 

machinery [127]. While this region proved to have no direct role in mediating HMA, because 

MAF1 functions within the confines of a lipid bilayer originating from the host cell membrane, it 

might describe a yet unidentified role of MAF1b specifically in host immune evasion via ESCRT 

manipulation. Chapter 2 [11] describes the elucidation of three C-terminal residues in MAF1b 
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required for mediating binding to the host mitochondria and the in vivo growth advantage 

associated with HMA. These residues were pinpointed after ClustalO analysis revealed 100% 

conservation among the T. gondii Types I, II, and III MAF1b paralogs compared to 40% identity 

with MAF1a paralogs [11].  

Crystallization and structural analysis of both the macrodomains of MAF1a and MAF1b 

reveal highly similar structures with an rmsd of 0.6 Å over 240 Cα atoms [11]. We focused our 

attention on differences in key phosphorylation sites, secondary structure, and charged residues 

between MAF1a/b structures. Finally after significant mutational analysis along the length of the 

MAF1b paralog, we identified a C-terminal MAF1b mutation that disrupts HMA (Chapter 2: 

STYL(338-441)RKYK) [11]. While expression of MAF1b in Type II parasites drives HMA to 

near WT Type I levels, expression of the C-terminal MAF1b mutant does not lead to HMA [11]. 

Additionally, Type II:MAF1b parasites outcompete their Type II HMA-incompetent counterparts 

in both in vivo acute and chronic infections, while Type II parasites expressing the MAF1b mutant 

do not [11, 122]. Interestingly, the MAF1b-driven in vivo growth advantage is only relevant in 

vivo and not during in vitro culture. These data suggest that MAF1b may manipulate host immune 

pathways not present in fibroblasts growth in vitro. However, additional work into these growth 

differences and fully characterizing immune modulation driven by MAF1b-mediated HMA in a 

more biologically relevant context (such as in primary immune cells or in the mouse model) is 

warranted.  
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4.2 The bargaining chip: leveraging the MAF1 locus to probe molecular function 

 Previous work identified the mitochondrial membrane inner bridge (MIB) complex as a 

role in mediating HMA in T. gondii using a non-quantitative mass spectrometry approach [59]. 

Key players in this interaction were the outer membrane sorting assembly and machinery 

component 50 (SAM50) and inner membrane space protein, mitofilin (IMMT). However, our work 

in Chapter 2 reveals an interaction between SAM50 with both MAF1a and MAF1b [11], 

suggesting that the MIB complex may not be required for HMA. While this interaction could be 

explained by yet another ancestral role of MAF1, it is more likely that SAM50 was associated with 

Type I:HA-MAF1b based on belonging to a large, but functionally irrelevant complex of 

mitochondrial proteins. There is an inherent challenge in immunoprecipitation of membrane-

bound proteins because they require optimized lysis conditions to solubilize the membrane-bound 

candidate without forcing it to aggregate with the lipid insoluble fraction. These lysis conditions 

could lead to membrane proteins remaining tethered together with their lipid constituents, and 

subsequent false positives in downstream proteomics.   

Chapter 3 describes our unbiased approach to carefully identify MAF1b-binding 

candidates through co-IP of HFFs infected with either Type II:MAF1b (HMA+), Type II:MAF1a, 

or Type II:MAF1b (HMA-) parasites followed by quantitative mass spectrometry. The previous 

work which identified the binding of the MIB complex with MAF1b utilized an approach where 

they infected HFFs with Type I parasites or Type I parasites expressing a C-terminally tagged 

MAF1b which functioned as a dominant negative factor rendering the parasite HMA incompetent 

[31, 59]. Our strategy was different considering the mutated version of MAF1b consisted of only 

a three-residue change and we also compared Type II:MAF1b to an additional and naturally-

occurring paralog, MAF1a (Type II:MAF1a). Interestingly, while SAM50 was significantly 
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enriched in our Type II:MAF1b samples in comparison to the Type II:MAF1a and Type II:MAF1b 

mutant samples, RNAi knockdown of SAM50 did not decrease the HMA efficiency of Type 

II:MAF1b parasites. These data confirmed our hypothesis that SAM50 affinity for MAF1b is 

unrelated to HMA.  

The two host proteins we identified as being required for MAF1b-mediated HMA are the 

outer translocase of the mitochondria member 70 (TOM70) and the mitochondrial-specific heat 

shock protein, HSPA9. Both proteins are known to interact with one another and interact with 

SAM50 [109], illuminating a potential reason why SAM50 was previously identified as a MAF1b 

interactor. We found that upon esiRNA knockdown of TOM70 and HSPA9, the efficiency of 

HMA decreased. Knockdown of TOM70 had a more dramatic effect on HMA than HSPA9. 

Because of the role of HSPA9 in mediating the transport and docking of mitochondrial pre-proteins 

to TOM70 [110, 112], our data might suggest an intermediary interaction between HSPA9, 

TOM70, and MAF1b. Additionally, while T. gondii HMA drives a significant in vivo inflammatory 

response [31] as well as an acute growth advantage for the parasite in mice [11, 12], recent work 

described HMA as a potential host response to parasite infection [47]. This work reveals a decrease 

in parasite lipid scavenging upon T. gondii PVM association with mitochondria, suggesting 

mitochondrial binding and fusion around the vacuole is initially driven by the host and impairs 

parasite growth over the first 24 hours of infection [47]. After 24 hours of infection, the 

mitochondria fragment and ultimately expose the PV to the host cytosol. While our work described 

in Chapter 2 regarding the MAF1b-mediated acute in vivo growth advantage might seem 

contradictory to these most recent findings, we hypothesize that the timing of infection is critical 

and the intricacies of the host/parasite interaction is bound to vary over the course of infection and 

HMA may have divergent impacts in vivo and in vitro. 
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4.3 The ultimate tug of war: a model for MAF1b-mediated HMA 

We now know that both TOM70 and HSPA9 are required for MAF1b-mediated HMA. A 

testable model for HMA could be described as initially host-derived where HSPA9 docks MAF1b 

and pulls the parasite-containing vacuole to the mitochondria via TOM70 (Fig 4-1). Over the first 

24 hours of infection, parasite growth is restricted but alleviated upon mitochondrial fragmentation 

seen at the 24 hour timepoint, leading to the increase in MAF1b-mediated growth advantage we 

record in mice. Interestingly, both HSPA9 and TOM70 are implicated in regulating key cell 

signaling functions including calcium flux, autophagy, and oxidative phosphorylation [49-51, 55]. 

Recent work pinpoints their site of regulation as being ER-mitochondrial contact sites throughout 

the cell [50, 75]. Through interaction with one another in conjunction with ER-associated inositol 

tri-phosphate receptor 3 (IP3R3), calcium flux from the ER lumen into the mitochondria mediates 

calcium homeostasis, mitochondrial dynamics, and downstream immune signaling [50]. 

Highlighted in Chapter 3, many of the proteins we identified as candidate MAF1b-interactors are 

found in high abundance at ER-mitochondrial sites, including VDAC 1 and 2, TOM70, and 

HSPA9 [50, 51, 56]. Additionally, while the ER is known to loosely associate with the T. gondii 

PVM [128, 129], in all infections with MAF1b-expressing parasites, the mitochondria outcompete 

the ER for PVM binding (see Chapter 3 Fig 3-6), supporting a MAF1b-driven direct interaction 

with the mitochondria which is absent in ER association. Our data indicating the requirement of 

TOM70 to mediate HMA along with its significant enrichment at the vacuole and requirement of 

HSPA9 leads us to hypothesize that ER-mitochondrial contact sites are disrupted upon MAF1b 

binding to the mitochondria via TOM70.  

ER-mitochondrial sites are thought the be an early form of the machinery required for 

recognizing pathogens (specifically pathogen PAMPs) as they drive intricate anti-microbial 



 97 

immune responses such STING, RIG-I, and MAVS-associated pathways [49, 130]. For example, 

hepatitis C virus maintains a NS3/4a protease that cleaves the N-terminus of MAVS and disrupts 

the downstream immune response [131]. TOM70 plays a key role in MAVS-dependent immune 

signaling and cytokine production [49]. Type I parasites knocked out for the MAF1 locus show a 

significant reduction in MAVS-dependent cytokine transcript [31], suggesting a role for MAVS in 

MAF1b-specific immune modulation and further bolstering an argument for reduced ER-

mitochondrial contact sites mediated through MAF1b binding. 

Future work identifying the downstream effects of the requirement of TOM70 and HSPA9 

in driving MAF1b-mediated HMA will require in depth analysis of ER-mitochondrial dynamics 

and identify mechanisms that are differentially disrupted between a Type II:MAF1b and Type 

II:MAF1a infection. It is quite possible that ER-mitochondrial effects can only be observed upon 

hyper infection and/or following multiple parasite replications when a large percentage of the host 

mitochondria are sequestered by the parasite (and thus disrupting a majority of the ER-

mitochondrial contact sites). Overall, our work outlines an intricate host-parasite interaction at the 

PV-mitochondrial interface where parallel evolution of host and parasite factors shape the 

molecule arms race between the two. 
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Figure 4-1 Model for MAF1b-mediated HMA.  

T. gondii parasitophorous vacuole membrane (PVM) contains MAF1b which spans the PVM with the C-terminal 

portion in contact with the host cell cytosol. The requirement of HSPA9 and TOM70 for MAF1b-mediated HMA 

suggests a role of both proteins in tethering the PVM to the host mitochondria. Other members of the TOM complex, 

including the TOM40 pore (light blue) and TOM20 receptor (dark blue ‘20’) are illustrated for reference but are not 

required for HMA. While MAF1b is not shown to directly interact with IMMT, members to the MIB complex 

(including IMMT, SAM50, and MICOS) are depicted in close proximity to the TOM complex because these are 

known transient interactors with members of the TOM complex (specifically TOM70). 
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Appendix A Investigating the role of the host protein RALGAPA1 in modulating HMA 

and its localization with MAF1b 

Contents of this appendix were taken from work performed in collaboration with the 

Boulanger lab. I performed all experiments outlined in Fig A-3, A-4, and A-5. I am including Fig 

A-2 to provide clarity and illustrate the complete narrative. 

Appendix A.1 Introduction 

Currently unpublished work from our collaborators (Boulanger Lab, University of 

Victoria, BC) identified an interaction between the host GTPase-activating protein, RALGAPA1, 

and MAF1b. The specific interaction between MAF1b and the GAP domain of RALGAPA1 was 

identified through a Y2H screen of human host proteins and confirmed by isothermal titration 

calorimetry (ITC) using recombinant MAF1b (residues 173-443) and the RALGAPA1 GAP 

domain (T1807-P1988) protein. Interestingly, the HMA-competent MAF1b protein showed high 

affinity with RALGAPA1 (Kd of 334  35nM), while MAF1a showed no affinity (Fig A-2). These 

data led us to hypothesize that the MAF1b-specific interaction with RALGAPA1 might be required 

for MAF1b-mediated HMA.  
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Appendix A.2 RNAi knockdown decreases HMA due to high dosage effects 

As a GTPase activating protein, RALGAPA1 tightly regulates the dephosphorylation of 

Ras-like GTPases, RalA and RalB [132]. Dephosphorylation of RalA and RalB shifts the GTPases 

from their active (GTP-bound) to inactive (GDP-bound) states [132]. The oscillation of Ral 

proteins from their active to inactive forms drives a variety of complex signaling cascades in the 

cell [133]. For example, RALGAPA1 is known to induce mitochondrial fragmentation through its 

regulation of RalA at the site of the mitochondria [134]. 

To determine if RALGAPA1 was required for HMA, we used two separate siRNA reagents 

(siRNA “RG set 2” and “RG smart POOL”) to knockdown RALGAPA1 transcript for 48 hours 

followed by infection with Type II:MAF1b parasites. In pilot studies, knockdown of RALGAPA1 

proved challenging. Therefore we increased the concentration of siRNA to 40nM, which can be 

toxic to host cells and increases off-target effects [135]. Treatment with 40nM siRNA was 

successful at knocking down RALGAPA1 transcript and protein levels by 45-60% (Fig A-3 A-C). 

Following 48 hours of knockdown, we infected cells with Type II:MAF1b parasites. After 24 

hours, the percent of HMA+ vacuoles was significantly less (**p=0.0024 and ***p=0.0008)  in 

the siRNA-treated cells (Fig A-3D and E) compared to vehicle treatment. However, the number of 

HMA+ vacuoles also significantly decreased in the non-target siRNA (Cytophilin B) control-

treated cells (Fig A-3E), suggesting that the impairment of HMA may have been an artifact of high 

siRNA dosage. Taken together, these data indicate that while RALGAPA1 knockdown decreases 

the HMA efficiency of Type II:MAF1b parasites, it is likely due to off target effects related to high 

siRNA toxicity. 
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Appendix A.3 MAF1b-RALGAPA1 binding loop is not required for mediating HMA in 

parasite infection 

Through the use of hydrogen-deuterium exchange coupled with mass spectrometry (HDX-

MS), the Boulanger lab discovered a loop on MAF1b driving the interaction with RALGAPA1 

(boxed in Fig A-4A). We hypothesized that if the MAF1b-RALGAPA1 interaction drives MAF1b-

mediated HMA, the MAF1b-RALGAPA1 binding loop would be required HMA. Using site-

directed mutagenesis, we mutated the MAF1b-RALGAPA1 binding loop to its aligned sequence 

in MAF1a. Additionally, we mutated three loop residues shown to disrupt in vitro binding of 

MAF1b to RALGAPA1 (MAF1b:VAP→MAF1a:RFR). Expression of both constructs in Type II 

(Me49) parasites did not disrupt MAF1b trafficking to the PVM and HMA phenotype (Fig A-4B). 

We also transfected Type II parasites with a MAF1a construct where the aligned binding loop 

sequence was mutated to its MAF1b counterpart in an effort to complement the positive HMA 

phenotype. However, this chimeric construct was unable to drive association with the host 

mitochondria when expressed in Type II parasites (Fig A-4B).  

Appendix A.4 RALGAPA1 localization is not dependent on MAF1b expression 

To assess the significance of the MAF1b-RALGAPA1 interaction in the absence of the 

parasite proteome, we used ectopic GFP-MAF1b/a expression (see Chapter 3) by generating the 

same MAF1b/a-RALGAPA1 binding loop mutations fused to an NT-GFP tag (pcDNA3.1/NT-

GFP-TOPO). Mutating the MAF1b-RALGAPA1 loop (residues 274-287) to their aligned 

sequence in MAF1a (residues 263-276) did not disrupt localization with host mitochondria 24 
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hours post transfection in U2OS cells, whereas mutating the MAF1a-RALGAPA1 loop sequence 

(residues 263-276) to their aligned sequence in MAF1b (residues 274-287) did not drive 

association with the host mitochondria (Fig A-5A) and the chimeric MAF1a construct remained 

largely cytosolic. In order to assess MAF1b-RALGAPA1 interaction in host cells, we quantified 

the differences between GFP-MAF1b and GFP-MAF1b RGLoop (274-287)MAF1a (i.e. “MAF1b 

mutant”) localization with RALGAPA1 in the nucleus of the cell expressing GFP-MAF1, the 

mitochondria of the cell expressing GFP-MAF1, and the mitochondria in a neighboring cell not 

expressing GFP-MAF1. We hypothesized that if the MAF1b-RALGAPA1 in vitro interaction 

could be recapitulated in host cells, we would identify differences between MAF1b and MAF1b 

mutant co-localization with RALGAPA1. To first assess whether MAF1 expression re-localized 

and/or enriched RALGAPA1 at the mitochondria, we quantified the pixel intensity ratio of 

RALGAPA1 to mitochondria. There was no significant difference between RALGAPA1 

localization in MAF1b-transfected and MAF1b mutant-transfected cells and no difference in 

RALGAPA1 localization when compared to a non-MAF1-expressing cell (Fig A-5B). We also 

quantified the pixel intensity ratio of MAF1 to mitochondria to measure MAF1 localization at the 

mitochondria. These data showed no significant difference between MAF1b-transfected and 

MAF1b mutant-transfected cells (Fig A-5C). Most importantly, there was no difference in 

RALGAPA1/MAF1 pixel intensity ratios between MAF1b-transfected and MAF1b mutant-

transfected cells (Fig A-5D). These data indicate that MAF1b localization has no bearing on 

RALGAPA1 localization.  

Overall, our data suggest that the MAF1b-specific interaction with the host GAP protein, 

RALGAPA1, has no bearing on the T. gondii HMA phenotype. It is possible that the observed in 

vitro MAF1b-RALGAPA1 interaction may point to an additional neofunctionalized role of 
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MAF1b, however, our data suggest that RALGAPA1 (and specifically the MAF1b-RALGAPA1 

binding loop) is not required for T. gondii HMA. 

Figure A-1 TgMAF1b interacts with the GAP domain of RalGAPa1. 

Representative ITC binding isotherms following the titration of wild-type MAF1b (left) or MAF1a (right) into a cell 

containing RalGAP. 
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Figure A-2 Knockdown of RALGAPA1 protein decreases T. gondii association with host mitochondria 

similarly to siRNA off-target control. 
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(A) U2OS were treated with 40nM of RALGAPA1 (set 2) single target siRNA or RALGAPA1 siRNA smart pool

(RG pool) in cDMEM. RNA was collected at 48 hours and qPCR analysis was performed (****p<0.0001, one-way 

ANOVA multiple comparisons). (B) U2OS cells treated with 40nM of RALGAPA1 siRNA set 2 or RALGAPA1 

siRNA pool. At 48 hours, cells were lysed in Pierce IP lysis buffer and boiled in 1x SDS. Samples were resolved on 

10% SDS-PAGE gel and transferred to nitrocellulose. Both RALGAPA1 (Sigma-Aldrich Atlas Antibodies 

#HPA000851) and Tubulin (Cell Signaling Technology #2144) antibodies were used for western analysis. (C) 

Quantification of pixel intensity density ratio of each treatment RALGAPA1/tubulin bands to vehicle control. (D) 

U2OS cells were treated as in (A) Following 48 hours of siRNA treatment, cells were infected for 24 hours with Type 

II: MAF1b parasites (MOI=2). Cells were fixed, permeabilized, and visualized using fluorescence microscopy. 

Immunofluorescence staining was performed with antibodies against the HA epitope tag and mitochondria. (E) HMA+ 

and HMA- vacuoles were counted (n=3, 50 per treatment group) using fluorescence microscopy. *p=0.0147, 

**p=0.0024, ***p=0.0008 unpaired t-test comparing treatment to vehicle. 
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Figure A-3 MAF1b RALGAPA1-binding loop is not required to mediate HMA. 

(A) Alignment of TgMAF1RHb1 (MAF1b) and TgMAF1RHa1 (MAF1a) visualized in JalView after alignment using 

ClustalOmega. MAF1-RALGAPA1 binding loop outlines in red box. (B) Site-directed mutagenesis of MAF1b-

RALGAPA1 binding loop and the aligned region in MAF1a. HFFs were infected with stable TgMe49 

(Me49∆HPT:Luc) clones of Type II:MAF1b-RGLoop(274-287)MAF1a and Type II:MAF1a-RGLoop(263-

276)MAF1b. The three residue mutation (VAP→RFR) of MAF1b was transiently expressed in Type II 

(Me49∆HPT:Luc) parasites and all infected cells were fixed 24 hpi and visualized using fluorescence microscopy. 

Immunofluorescence staining was performed with antibodies against the HA epitope tag and mitochondria. 
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Figure A-4 RALGAPA1 localization does not depend on MAF1b localization. 

(A) Mammalian GFP-MAF1 plasmids were generated using pcDNA3.1/NT-GFP TOPO plasmid cloning kit with the 

same mutations listed in Fig 4-4. U2OS cells were transfected with each construct by lipofection (Lipofectamine 3000, 

ThermoFisher). Cells were fixed and permeabilized at 24 hours post transfection and stained for RALGAPA1 (Sigma-

Aldrich Atlas Antibodies #HPA000851) and mitochondria (Abcam #92824). (B) A selected 15x15 pixel area was 
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chosen for each measurement. Pixel intensity was measured in both the RALGAPA1 and mitochondria channel over 

the mitochondria of a MAF1-expressing cell, the nucleus of a MAF1-expressing cell, and the mitochondria of a 

neighboring non-MAF1-expressing cell. The ratio of RALGAPA1/mitochondria pixel intensity was measured for each 

of these three locations. This same procedure was performed for the MAF1b mutant (GFP-MAF1b-RGLoop(274-

287)MAF1a) samples. (C) Similar to (B), the pixel intensity ratio of MAF1/mitochondria was measured. (D) Similar 

to (B), the pixel intensity ratio of RALGAPA1/MAF1 was measured. 

 

Table 2. Primers used in Appendix A 

Forward (5’-3’) Primer Reverse (3’-5’) Primer Purpose 

CAGCTCCCTACCACCATTTAC GGGAGTTTCACTGGGTAGAATC RALGAPA1 qPCR 

primers 

AGTGGGAGATTCTCCCGAGTG 

TTTGCAAGGTCGTTCGGCTTC 

GTCTATCTCCACCAGTGTCCCCG 

GGCTTTTCACGGCACGGCG 

MAF1 RALGAPA1 

Loop Mutant 

TgMAF1RHb1 

(274-287)RHa1 

ACCGGGGTCGCTTCTCCAGTG 

TTCGCCAGGTCCTTTGCCTAC 

GTCTAACTCCACCAGTTTCCCCGG 

TTGTCTCTCTGCATCGTGAAG 

MAF1 RALGAPA1 

Loop Mutant 

TgMAF1RHa1(263-

276)TgMAF1RHb1 

TCTAGAGTGTTCGCAAGGTCGTTC GAACCGCCCGGTGTCTAACTCCAC MAF1 RALGAPA1 

Loop Mutant 

VASP→ RFSR 

TgMAF1RHb1 

(280-

284)TgMAF1RHa1 

CACATCGCTCAGACACCATG TGACGGTGCCATGGAATTTG GAPDH qPCR 

primers 
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Appendix B  

 

Table 3. Primers used for MAF1 mutational analysis in Chapter 2 

Forward (5’-3’) Primer Reverse (3’-5’) Primer Purpose 
GCCCTCCGGGCAAGACGAGGCTTCGTCT

TCG 

GCCCGGGGACGCGGCAC 

AGAACGCGGTGCAGG 

TgMAF1RHb1(136-

144)RHa1               

AGATCCGTTGAAGCCGGA 

GTCCCAAACAGTTGACCTCTCG 

TCGACGGGCGGCGGCGGA TgMAF1RHb1(170) 

RHb0 

AGCCTTCTGAGTCAGAG 

CCGCCCGCGGGAGTTCCGATGAA 

GCCTGAGTCCCAAACAGTTGACCTCTC 

GCTGTTGCCCGGAAGGAG 

CCCTGGGACGCGGCGTAC 

GGAGTCGCGTAGGGGGTTC 

CGGATCCTG 

TgMAF1RHb1(131-

174)RHb0 

TGTTTGGGAGACACGAAAGT 

GACATTCTTTGGGCCGTCACACCA 

CGTGAAGGGAAGTGTTAGG 

GACTCCGGCGACAACGGAT

CTT 

TgMAF1RHb1(174-

187)RHb0 

GTGGCCCCTTTTGGAGCTGCG GGTGTACATCATGACGTTG 

TTGTTC 

TgMAF1RHb1:S(339)F:

RHa1 

AAGTATAAGTTTCCCCAGGGAGAT 

TGATTAATTAAGACTACGACGAAAGTGA

TGC 

 

GCGTTCAGATTCCATTAAAC 

CGCGAAGAGCCGCGTTGCT

GGG 

 

TgMAF1RHb1:16 C-

terminal chimera 

ACGTATCTGGCTAGCATGCTG 

GACTGATTAATTAAGACTACGACGAAAG

TGATG 

 

GCTTTCAGCCTCCTGTAAGC 

CGTGGAGGGCTGTGTCGCT

AGG 

 

TgMAF1RHa1:16 C-term 

chimera 

TAACACGGCTTACAGGAGGCTG 

 

AAGAGCCGCGTTGCTGGG 

 

TgMAF1RHb1: 16 C-

terminal truncation 

TAAACGTATCTGGCTAGCATG 

 

GCTTTCAGCCTCCTGTAAG 

 

TgMAF1RHb1:8 C-

terminal truncation 

TACAAGGCTAGCATGCTGGACTGA 

 

CTTCCTTTCAGCCTCCTGTA

AGCC 

 

TgMAF1RHb1: 

STL(438-441)RKK 

GGCTGAAAGCAAATATCTGGCTAGCATG 

 

TCCTGTAAGCCGTGAAGA 

 

TgMAF1RHb1: T(439)K 

AAGCACGTATAAAGCTAGCATGCTGGAC 

 

TCAGCCTCCTGTAAGCCG 

 

TgMAF1RHb1: L(441)K 

GGAGGCTGAACGCACGTATCTGG TGTAAGCCGTGAAGAGCC TgMAF1RHb1: S(438)R 

TATAAAGCTAGCATGCTGGACTGA 

 

CGTTCTTTCAGCCTCCTGTA

AGCC 

 

TgMAF1RHb1: SL(438-

441)RK 
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Table 4. Primers used in Chapter 3 

Forward (5’-3’) Primer Reverse (5’-3’) Primer Purpose 
TAATACGACTCACTATAGGGAGA

GCCCAAGCAGCCAAGAATAAA 

TAATACGACTCACTATAGGGAGA

CGTGGAGATGGCATCAGAGGT 

TOMM70 (set2) human 

primers for esiRNA 

generation 

TAATACGACTCACTATAGGGAGA

GCGGGTGATCTTTGGTCTCTT 

TAATACGACTCACTATAGGGAGA

CCTTCTCCACCTCGATCTTGC 

Cytophilin B (set2) 

human primers for 

esiRNA generation 

TAATACGACTCACTATAGGGAGA

GTTCAGTCCCGATTTGTGGGG 

TAATACGACTCACTATAGGGAGA

CAAGGAATGCCTTTGATCACCA 

GLS (set3) human 

primers for esiRNA 

generation 

TAATACGACTCACTATAGGGAGA

GAATGGGAGCAGTTTTCATGG 

TAATACGACTCACTATAGGGAGA

CGTCTTGTGCCAATCCCAGAT 

HIBADH (set1) human 

primers for esiRNA 

generation 

TAATACGACTCACTATAGGGAGA

GCCCTGGAAGGTGTGCCAATA 

TAATACGACTCACTATAGGGAGA

CGGTTCAAGGCTCCAAACGC 

GK2 (set6) human 

primers for esiRNA 

generation 

TAATACGACTCACTATAGGGAGA

GGGTGGCCTCAGGTGAAAATA 

TAATACGACTCACTATAGGGAGA

CACAAACAGACACACCCCACA 

GLS (set2) human 

primers for esiRNA 

generation 

TAATACGACTCACTATAGGGAGA

GCGATTCTCGGAATTCTTCCA 

TAATACGACTCACTATAGGGAGA

CAGAGGTTTCCTGCGTTGAGA 

SAMM50 (set2) human 

primers for esiRNA 

generations 

TAATACGACTCACTATAGGGAGA

GTGCTACCAAGCGTCTCATTG 

TAATACGACTCACTATAGGGAGA

CATCCCCATTTGTGGATTTCA 

HSPA9 (set1) human 

primers for esiRNA 

generation 

TAATACGACTCACTATAGGGAGA

GTGGACAACAGTGGCAGTCTC 

TAATACGACTCACTATAGGGAGA

CCTCAAACTCCACACCCACCT 

TOMM40 (set1) human 

primers for esiRNA 

generation 

TAATACGACTCACTATAGGGAGA

GTTGGCAAAGCTGCCAGAGAT 

TAATACGACTCACTATAGGGAGA

CCAAGCCAGCCCTCATAACCA 

VDAC2 (set1) human 

primers for esiRNA 

generation 

TCCCTGGAGAAGAGCTACGA AGCACTGTGTTGGCGTACAG ActinB qPCR human 

primers 

GACAGACAGCCGGGATAAAC CACAGACGGTCACTCAAAGAA Cytophilin B qPCR 

human primers 

CCCTGTCTCTGGGTATTGAAAC CATCAGCGGCAGTAGAGAATAC HSPA9 qPCR human 

primers 

CCCAAGCAGCCAAGAATAAAG CTCTGTAGGGCACAAGCTAATA TOMM70 qPCR human 

primers 

CGCACTTCCAAATGGGTTAGA CTGCACGACCAAGAAGATTAGG SAMM50 qPCR human 

primers 

TCTCAACGCTCAGGTCATTC CCTGCCAGTTCACAAACTTC TOM40 qPCR human 

primers 

CATGGGTACTATGCAGGAAAGA AGTCATCAGCAGGCACATAG ATP5B qPCR human 

primers 

GGTTCAGCTGTCTTTGGTTATG GTAGCCCACTGCAAAGTTATTC VDAC2 qPCR human 

primers 

CTGGAGGAAAGGTTGCAGATTA GAATGCCTCTGTCCATCTACTG GLS qPCR human 

primers 

CGTTCCCTCGGCTAATAACTATC CCAAGAAGGATTGGGCTCTT HIBADH qPCR human 

primers 

CCTGAAACAACTGCACTAGGA TCCATCCTGAGAACTGACAAAG GK2 qPCR human 

primers 
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ATGCATGGTGGTCTAGGCAG TCAGTCCAGCATGCTAGCCA GFP-MAF1b for TOPO 

NT-GFP fusion 

ATGCATGGTGGTCTAGGCAG TCAGTCGCCTTGCGGAAACT GFP-MAF1a for TOPO 

NT-GFP fusion 

ATGCATGGTGGTCTAGGCAG TCAGTCCAGCATGCTAGCCT GFP-MAF1b 

(STL→RKK) for TOPO 

NT-GFP fusion 

agtgtggtggaattgcccttATGCATGGTGGT

CTAGGC 

tgtggtggctgtgcccggcgCCGCCTTAATA

CATACACCG 

MAF1 chimera 1 MAF1b 

portion 

CGCCGGGCACAGCCACCA AAGGGCAATTCCACCACACTGGA

CTAGTG 

MAF1 chimera 1 

MAF1a portion for 

Gibson 

tgacctctcgtgtttgtcaggcacgacagtgagaTTC

TTTGGGCCGTCGGGC 

actgtttgggactccggcgacaacggatcttcgacGG

GCGGCTCTGACTCAGAAG 

MAF1 chimera 2 for Q5 

mutagenesis 

tcgaggaggcaagacgaaacGGCATCCGGC

TGACACCC 

atatctgcagaattgcccttTCAGTCCAGCAT

GCTAGCCAG 

MAF1 chimera 3 

MAF1b portion for 

Gibson 

AAGGGCAATTCTGCAGATATC GTTTCGTCTTGCCTCCTC MAF1 chimera 3 MAF1a 

portion for Gibson 

ggcatccggctgacacccgaagag ctgtgcccggcgccgcct MAF1 chimera 4 MAF1b 

portion for Gibson 

Taaggcggcgccgggcacagccaccacaggagccg

gaa 

Tcgggtgtcagccggatgccgtttcgtcttgcctcctcg MAF1 chimera 4 

MAF1a portion for 

Gibson 

tatctgTTTCCGCAAGGCGACTGA cgtgctTTCAGACTCCATCAAGCCAC MAF1 chimera 1&2 

RKK→STL C-term Q5 

 

Table 5. Data collection statistics for X-Ray crystallographic studies in Chapter 2 

 TgMAF1RHb1-Br TgMAF1RHb1-

ADPr 

TgMAF1RHa1 TgMAF1Rha1-

ADPr 

A. Data collection statistics  

 

   

Space group                           P212121  P212121 P21 P21 

a, b, c (Å)                              45.09, 62.11, 89.21 45.47, 62.36, 89.69 79.89, 49.67, 

114.75 

78.23, 49.52, 

115.71 

α, β, γ (°)                          90, 90, 90 90, 90, 90 90, 96.09, 90 90, 96.63, 90 

Wavelength (Å) 0.9195 0.9795 0.9794 0.9795 

Resolution (Å) 45.09-1.60 (1.69-

1.60) 

51.20-1.65 (1.68-

1.65) 

48.86-2.10 (2.16-

2.10) 

27.40-2.70 (2.86-

2.70) 

Measured 

reflections               

280,473 (26,900) 114,544 (5,631) 197,078 (14,313) 117,630 (16,227) 

Unique reflections                   33,786 (4,786) 29,065 (1,489) 51,862 (3,990) 23,134 (3,436) 

Redundancy 8.3 (5.6) 3.9 (3.8) 3.8 (3.6) 5.1 (4.7) 

Completeness (%)                    99.8 (98.9) 93.4 (97.4) 98.5 (92.4) 94.4 (87.9) 

I/σ(I)                                        12.7 (3.5) 7.6 (2.2) 11.5 (3.0) 11.6 (2.2) 

Rmerge (%)   10.3 (47.5) 9.4 (55.3) 8.0 (44.4) 9.0 (61.1) 

     

B. Refinement 

statistics 

    

Resolution (Å)                 44.60-1.60 40.56-1.65 48.86-2.10 27.40-2.70 

Rwork / Rfree (%)                            17.0/21.0 20.5/22.8 21.2/24.4 23.3/28.3 



 112 

No. of atoms     

   Protein (A/B/C) 2057 2012 2114/2081/2099 2047/2005/1949 

Solvent/Br/Na 257/11/3 105 159 16 

Glycerol or Sulfate  18 N/A 70 N/A 

ADPribose N/A 36 N/A 72 

Average B-values (Å2)    

Protein (A/B/C) 14.2 22.3 30.5/36.8/33.4 55.1/63.9/63.6 

Solvent/Br/Na 24.0/26.9/32.9 28.4 31.5 42.6 

Glycerol or Sulfate 23.0 N/A 47.8 N/A 

ADPribose N/A 33.4 N/A 68.6 

r.m.s. deviation from ideality    

Bond lengths (Å) 0.008 0.012 0.003 0.003 

Bond angles (°)  1.17 1.02 0.67 0.67 

Ramachandran statistics (%)    

Most favoured  99.3 98.9 98.5 96.5 

Allowed 0.7 1.1 1.5 3.5 

Disallowed  0.0 0.0 0.0 0.0 

Values in parentheses are for the highest resolution shell 
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