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Abstract
Background: The cause of cervical artery dissection is not well understood. We test the hypothesis that mutations in

genes associated with known arterial connective tissue disorders are enriched in patients with familial cervical artery

dissection.

Patients and methods: Patient duos from nine pedigrees with familial cervical artery dissection were analyzed by

whole exome sequencing. Single nucleotide variants in a panel of 11 candidate genes (ACTA2, MYH11, FBN1, TGFBR1,

TGFBR2, TGFB2, COL3A1, COL4A1, SMAD3, MYLK and SLC2A10) were prioritized according to functionality (stop-

loss, nonsense, and missense variants with polyphen-2 score �0.95). Variants classified as ‘‘benign’’ or ‘‘likely benign’’ in

the ClinVar database were excluded from further analysis. For comparison, non-benign stop-loss, nonsense and missense

variants with polyphen-2 score �0.95 in the same panel of candidate genes were identified in the European non-Finnish

population of the ExAC database (n¼ 33,370).

Results: Non-benign Single nucleotide variants in both affected patients were identified in four of the nine cervical artery

dissection families (COL3A1; Gly324Ser, FBN1: Arg2554Trp, COL4A1: Pro116Leu, and TGFBR2: Ala292Thr) yielding an

allele frequency of 22.2% (4/18). In the comparison group, 1782 variants were present in 33,370 subjects from the ExAC

database (allele frequency: 1782/66,740¼ 2.7%; p¼ 0.0008; odds ratio¼ 14.2; 95% confidence interval¼ 3.8–52.9).

Conclusion: Cervical artery dissection families showed enrichment for non-benign variants in genes associated with

arterial connective tissue disorders. The observation that findings differed across families indicates genetic heterogeneity

of familial cervical artery dissection.
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Spontaneous dissection of the cervical arteries (CeAD)
is an important cause of ischemic stroke in younger
adults. The detailed causes leading to CeAD are not
well understood.1–3 Major trauma of the neck or head
is a rare cause of CeAD, but minor mechanical trigger
events were reported in less than half of the patients,4

which are otherwise healthy individuals typically
lacking atherosclerotic vascular risk factors.4,5 Genetic
factors were assumed to modify the risk of occurrence
of CeAD.6 Indeed, carriers of the major allele of a
common variant (rs9349379) of the phosphatase and
actin regulator 1 encoding gene (PHACTR1) were
recently found to have a slightly reduced risk for
CeAD.7 Clinical connective tissue signs and electron
microscopic connective tissue alterations were asso-
ciated with CeAD.8,9 Nevertheless, known inherited
connective tissue disorders seemed exceptional with a
frequency of <1% in a recent large series of
patients.10,11 Moreover, mutation search in few candi-
date genes associated with inherited connective tissue
disorders lead to isolated suggestive findings, but was
unsuccessful in most patients.8,12–14 Thus, additional
genetic factors modifying the risk for CeAD are yet
to be discovered.

In the current study, we assumed that unrecognized
manifestations of known inherited connective tissue
disorders may predispose to CeAD. To test this
assumption, we considered familial CeAD lacking clin-
ically apparent connective tissue disorders as ideal
model. On the basis of published genetic studies of
arterial connective tissue disorders, we performed a
next generation sequencing study and defined a panel
of 11 candidate genes which were associated with arter-
ial connective tissue disorders.15–18 In nine families with
familial CeAD, we searched for putative disease-asso-
ciated, deleterious variants in the predefined panel of
candidate genes. Findings were compared with pub-
lished findings from the European non-Finnish popu-
lation of the ExAC database (http://exac.
broadinstitute.org/).19,20

Material and methods

CeAD patients with a family history of CeAD were
identified between 2004 and 2015 in databases of neur-
ology departments and stroke centers with a special
interest in CeAD.21–22 All identified families were of
German or Swiss–German origin. All affected patients
were examined, diagnosed, and treated by stroke neur-
ologists. The diagnosis of CeAD was verified and based
on arterial imaging, in particular on magnetic reson-
ance imaging findings.2 This includes the presence of
at least one of the following criteria: mural hematoma,
aneurysmal dilatation, long tapering stenosis, intimal
flap, double lumen, or occlusion �2 cm above the

carotid bifurcation revealing an aneurysmal dilatation
or a long tapering stenosis after recanalization in a cer-
vical artery (i.e. internal carotid artery (ICA) or verte-
bral artery (VA)). For the current analysis, the
following standardized variables were analyzed, apply-
ing criteria used in previous publications:5 age (at
onset), sex, site of dissection (ICA orVA), side, type
of familial relationship and country of birth.

Peripheral blood was used for DNA extraction.
Exome sequencing was performed at the German
Research Center for Environmental Health, Helmholtz
Zentrum München, on a Genome Analyzer IIx system
(Illumina) after in-solution enrichment of exonic
sequences (SureSelect Human All Exon 38Mb kit,
Agilent). Read alignment was performed with BWA
(version 0.5.8) to the human genome assembly hg19.
Single-nucleotide variants (SNVs) were detected with
SAMtools (v 0.1.7).

On the basis of published studies,15–18 we defined a
panel of 11 candidate genes (ACTA2, MYH11, FBN1,
COL3A1, COL4A1, TGFBR1, TGFBR2, TGFB2,
SMAD3, MYLK, SLC2A10) associated with arterial
connective tissue disorders (vascular Ehlers-Danlos
syndrome, Marfan syndrome, Loeys-Dietz syndrome,
familial thoracic aortic aneurysms and dissections,
arterial tortuosity syndrome). SNV findings from the
CeAD families were prioritized if they (1) had a
coverage (depth) of �40 reads; (2) caused nonsense or
stop-loss substitutions in the encoded gene product, or
missense substitutions with polyphen-2 probability
scores �0.95. In a final filtering step, prioritized mis-
sense mutations with polyphen-2 scores �0.95 that were
classified as ‘‘benign’’, ‘‘likely benign’’ or ‘‘benign/likely
benign’’23 in the ClinVar browser (https://www.ncbi.
nlm.nih.gov/clinvar/)24 were removed from subsequent
analysis.

Prioritized ‘‘non-benign’’ SNV findings in the CeAD
families were compared with reported findings in the
European (non-Finnish) populations from the ExAC
database (http://exac.broadinstitute.org/).19,20 For
each of the 11 arterial connective tissue genes from
the candidate panel, all SNVs causing nonsense or
stop-loss substitutions or causing missense substitution
with polyphen-2 proability score �0.95 and not classi-
fied as ‘‘benign,’’ ‘‘likely benign,’’ or ‘‘benign/likely
benign’’ in ClinVar were looked up in the ExAC
Browser and scored as non-benign variants occurring
in the population.

Results

The study population included nine families with
CeAD, each comprising of two family members. In
six families, both patients had internal carotid artery
dissection (ICAD). Patients from three further families
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had dissections in different arterial beds. Multiple or
recurrent dissection events were recorded in five
families (Table 1). Family trees of the pedigrees are
shown in Figure 1. Only relatives with documented
presence dissections or with self-reported absence of
dissections were represented in the family trees.
Genetic testing was performed in affected relatives only.

SNV were considered as deleterious, if they (1)
caused a premature stop of the encoded gene product,
(2) removed a stop-codon (‘‘stop-loss’’) or (3) induced a
missense mutation with polyphen-2 probability score
�0.95 and with ClinVar classification other than
‘‘benign’’ or ‘‘non-benign’’. A total of 1242 SNV in
the panel of candidate genes were identified in the
patient sample, among them 142 SNVs leading to non-
sense, stop-loss or missense substitution. Nine missense
mutations with polyphen-2 probability score �0.95
were classified as ‘‘non-benign’’. These non-benign vari-
ants in genes associated with arterial connective tissue
disorders occurred in four of the nine analyzed CeAD
families. These include mutations in COL3A1, FBN1,
COL4A1, and TGFBR2, each exclusively in one
family. Analysis of copy number variation in the next
generation sequencing data did not indicate the occur-
rence of variants larger than five exons in any of the
cases (data not shown).

In detail, two cousins with ICAD from family 604
carried a COL3A1 Gly324Ser substitution which was
not found in any control. Both mothers of the patients
were asymptomatic carriers of this rare and deleterious
SNV. A missense mutation in FBN1 (Arg2554Trp) was
identified in a mother and her daughter of family 2149.
A Pro116Leu substitution in COL4A1 was identified in
family 2953. The father of this family had a dissecting
aneurysm of the ICA and multiple aneurysms in other
arterial locations. His daughter had an ICAD followed
by an asymptomatic contralateral ICAD within four
weeks after the first event. The index patient of family
2904 had recurrent ICAD events, whereas her father
suffered aortic dissection. Both father and daughter
carried a missense mutation (Ala292Thr) in TGFBR2,
encoding the transforming growth factor-beta receptor
2. Both patients had hypermobile joints. Moreover, the
father showed minor connective tissue signs (Table 2).
Finally, one non-benign variant associated with arterial
connective tissue disorders (Gly343Arg in FBN1) was
found in one affected relative of family 604 (the index-
patient, indicated by an arrow in Figure 1), but absent
from her affected cousine.

To explore the population frequency of deleterious
SNVs in the panel of candidate genes, we analyzed
SNV-findings from non-Finnish, European populations
from the ExAC database. All subjects with nonsense
and stop-loss SNVs as well as all ‘‘non-benign’’ mis-
sense substitutions with polyphen-2 probability scores T
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�0.95 were counted for each of the 11 genes of the
selected panel. The non-Finnish European populations
of the ExAC database carried a total of 10,138 SNVs
causing nonsense, stop-loss or missense substitutions
(Table 3). After removal of SNVs that were classified
as ‘‘benign’’ or ‘‘likely benign’’—including two
common variants in the MYLK gene—a total of 1782
non-benign variants was found in the control sample.

The finding of four non-benign SNPs in nine families
(allele frequency: 4/18¼ 22.2%), compared to 1782
findings in 33,370 population controls (allele frequency:
1782/66,740¼ 2.7%) suggested that carriers with non-
benign SNPs in genes associated with arterial connect-
ive tissue disorders were at increased risk for familial
CeAD (Table 3; p¼ 0.0008; odds ratio¼ 14.2; 95%
confidence interval¼ 3.8–52.9).

Discussion

This analysis of rare deleterious SNVs in a predefined
set of candidate genes had the following key findings:
(1) non-benign variants in genes associated with

inherited arterial connective tissue disorders were
observed at low prevalence in the European non-
Finnish population, but were about 10 times more fre-
quent in patients with familial CeAD; (2) our study did
not identify a single CeAD-specific candidate gene, but
observed a polygenic burden of variants across different
genes associated with known inherited connective tissue
disorders, suggesting genetic heterogeneity of the
CeAD phenotype.

Mutations in COL3A1 or TGFBR2 in CeAD
patients had been reported in anecdotal case
reports,7,13,14 whereas this had been not the case for
FBN1 and COL4A1. The FBN1 Arg2554Trp mutation
in pedigree 2149 was described before in three family
members with atypical Marfan syndrome affecting the
cardiovascular system, but neither the eyes nor the skel-
eton.25 Recently, we found this same Arg2544Trp mis-
sense mutation of FBN1 in a young woman with
multiple CeAD and arachnoidactily (Baumgartner
RW and Grond-Ginsbach C, unpublished data).
Mutations in COL4A1 were associated with a broad
spectrum of symptoms (HANAC (dominant hereditary

Figure 1. Pedigrees of the analysed families. Arrows indicate index-patients (index patients of Table 1). Filled symbols indicate

patients with CeAD, open symbols indicate relatives with documented self-reported absence of CeAD. Genetic analysis was per-

formed solely in affected relatives.

Table 2. Prioritized non-benign variants in the patient sample.

ID Gene Variant Depth dbSNP Polyphen ClinVar ExAC allele

604 COL3A1 G324S 135/164 unknown 0.991 (prob. damaging) Pathogenic Not found

FBN1 G343R 77 rs146726731 1.000 (prob. damaging) Conflicting 13/66,698

2149 FBN1 R2554W 56/93 rs369294972 9.975 (prob. damaging) Uncertain 2/63,584

2953 COL4A1 P116L 71/75 rs538816765 0.977 (prob. damaging) No items found 1/66,704

2904 TGFBR2 A292T 150/161 Unknown 1.000 (prob. damaging) No items found Not found

Depth: coverage for both affected relatives or (in case of the FBN G343R variant) for a single patient; polyphen: polyphen-2 probability score (and

assigned classification); prob. damaging: probably damaging; ClinVar: classification of the variant according to the ClinVar database; conflicting:

Conflicting interpretations of pathogenicity; uncertain: uncertain significance; ExAC allele frequency: observed allele frequency in the non-Finnish

European populations of the ExAC database.
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angiopathy with nephropathy, aneurysms, and muscle
cramps) syndrome), including aneurysms, small vessel
disease and hemorrhagic stroke.26 The affected father
of family 2953 developed a large dilatative ICA aneur-
ysm secondary to his ICAD, which may be considered
as sign of an underlying syndrome.18

No mutations were identified in the remaining four
families. Other types of genetic variation may play a
role, including small deletions or duplications (indels)
causing frame-shift mutations or large structural variant
like a deletion covering the whole COL3A1 and COL5A2
genes that was identified in a pilot study of copy number
variation (CNV) in CeAD patients.14 Interestingly, a
recent follow-up CNV study in a large patients’ sample
associated CeAD with genetic variants affecting the
development of the vascular system and found such vari-
ants in both affected sibs of a family.27 The lack of find-
ings in five families may also indicate that the current
panel of 11 candidate genes was too selective or that the
cut-off for the prioritization of variants (with polyphen-2
probability scores �0.95 and with non-benign ClinVar
classification) might have been too stringent.

Familial occurrence of CeAD is rare
(i.e.<1%).11,28,29 Hence, the presented sample of nine
affected duos with familial CeAD, all white Caucasians
from Germany or from the German speaking part of
Switzerland, provided a unique material for a genetic
analysis. The analysis of a large group of unrelated
subjects for the ExAC database for comparison was a

further strength of this study. However, we had no
information on age, sex or health state of the analyzed
ExAC controls. Nevertheless, our study has several
limitations: The study sample of patients was small,
which reduced the likelihood of recurrent findings in
different families. Moreover, the study sample was
highly selective, as most CeAD patients are sporadic
(i.e. not familial) and familial occurrence of CeAD is
in fact exceptional. Sequence analysis of larger series of
patients is therefore needed to estimate the contribution
of rare genetic variants in the pathogenesis of sporadic
CeAD. The variants in this study were prioritized with
regard to functionality, but not with regard to fre-
quency. As all prioritized familial variants appeared
to be extremely rare in the non-Finnish European
controls, it is tempting to reanalyze the frequency of
non-benign variants in the control population after
exclusion of common variants. Prioritization of rare
variants in the ExAC sample would suggest an even
more dramatic enrichment of variants in the familial
CeAD patients (data not shown).

Conclusion

CeAD families showed enrichment for deleterious vari-
ants in genes associated with arterial connective tissue
disorders. The observation that findings were identical
within each family but different across families indi-
cates genetic heterogeneity of CeAD.

Table 3. SNVs in the candidate gene panel identified in CeAD patients and in European control subjects.

Gene

Patients

(n¼ 18) All

Patients

(n¼ 18)

Missense,

nonsense,

stop-loss

Patients

(n¼ 18)

Non-benign

Families

(n¼ 9)

Controls

(n¼ 33,370) All

Controls

(n¼ 33,370)

Non-benign

p (Fisher’s

exact test) for

comparison of

non-benign patients

and non-benign controls

ACTA2 10 0 0 0 1 1 1.00

MYH11 231 12 0 0 989 559 0.86

FBN1 116 23 3 1 290 282 0.038

TGFBR1 5 2 0 0 19 16 0.99

TGFBR2 29 2 2 1 167 167 0.044

TGFB2 7 0 0 0 21 21 0.99

COL3A1 90 22 2 1 71 71 0.019

COL4A1 446 34 2 1 410 136 0.036

SMAD3 73 6 0 0 2 2 1.00

MYLK 210 39 0 0 8091 450 0.88

SLC2A10 25 2 0 0 77 77 0.98

Whole gene panel 1242 142 9 4 10,138 1782 0.0008

Note: For the patient sample, columns show all identified exome variants (including synonymous variants, splice variants as well as intronic, 30 and 50

UTR variants), all nonsense, stop-loss and missense variants and (third column), nonsense, stop-loss variants as well as missense variants with

polyphen-2 probability scores �0.95 and with ClinVar classification other than ‘‘benign’’ or likely ‘‘benign’’. The prioritized variants that were present

in both affected relatives of a family were considered as familial. All European non-Finnish carriers of a nonsense or stop-loss variant or of a missense

variant with polyphen-2 probability scores �0.96 were counted for each of the 11 candidate genes. In a final prioritization step, variants that were

classified as ‘‘benign’’ or ‘‘likely benign’’ were not analyzed further.
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