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PART 1: RESUME EN FRANCAIS 

1. Introduction 

 Le taux de déforestation au Cambodge se classe parmi les plus élevés du Sud Est de l’Asie et 

du Monde. La conversion des forêts en cultures agricoles entraîne des changements brusques 

et irréversibles de ces écosystèmes. De tels changements peuvent modifier la distribution des 

rongeurs et donc des pathogènes qu’ils hébergent. Entre autres, la leptospirose représente un 

problème de santé majeur au Cambodge où elle est endémique. L’hypothèse posée dans cette 

étude est que la déforestation modifie la population des rongeurs et, par conséquent, la 

transmission de leptospires. 

 

La leptospirose est une zoonose mondialement répartie. La maladie est due à des espèces de 

leptospires pathogènes, bactéries appartenant à l’ordre des Spirochetacae et du genre 

Leptospira. Ces bactéries peuvent infecter tous les mammifères dont l’Homme. Certains 

serovars de leptospires démontrent une spécificité d’hôte. En particulier, les rongeurs sont 

considérés comme des réservoirs majeurs de leptospires pathogènes pour l’Homme. L’infection 

est maintenue chez les animaux infectés par une colonisation des tubules rénaux par les 

leptospires, qui sont ensuite relâchées dans l’environnement dans leurs urines. La plupart des 

espèces de leptospires survivent dans un environnement aqueux ou dans un sol humide. La 

présence de ces leptospires pathogènes dans l’environnement constitue ainsi le principal mode 

de contamination de l’Homme : par contact avec un environnement souillé d’urine d’animaux 

infectés. Dans les pays tropicaux où la leptospirose est endémique, la riziculture, l’élevage, les 

pluies abondantes ou encore la présence de rats dans les habitations ont été identifiés comme 

des facteurs de risque de la maladie. La circulation de leptospires pathogènes pour l’Homme a 

été mise en évidence chez les rongeurs en Asie du Sud-Est, en particulier chez des espèces 

synanthropiques mais également chez des espèces forestières peu étudiées.  

Les taux élevés de déforestation en Asie du Sud-Est coïncident avec une augmentation 

d’émergence de maladies infectieuses. Un certain nombre d’études sur les maladies infectieuses 

émergentes s’accorde à établir qu’un des mécanismes d’émergence est la modification de 

l’habitat par l’homme. Les modifications de l’habitat par l’Homme peuvent impacter 

négativement l’intégrité de l’écosystème et la biodiversité. Ces changements dans la structure 

de l’écosystème peuvent également conduire à des modifications du système hôte-pathogène. 

Ainsi les modifications de l’habitat ont le potentiel de modifier la dynamique d’une maladie 

directement ou indirectement en modifiant l’abondance, la démographie, le comportement, la 
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réponse immune ou encore le contact entre espèces et la composition des espèces réservoirs 

(Gottdenker et al., 2014).  

En effet, la modification des paysages par l’Homme se traduit par une perte de l’habitat des 

espèces forestières et sa fragmentation. Cela peut entraîner des conséquences potentielles sur la 

transmission des agents infectieux tels que l’augmentation de la densité d’une espèce réservoir 

de l’agent pathogène ; l’augmentation de contact interspécifique, c’est-à-dire entre des espèces 

différentes et en particulier en mettant en contact la faune sauvage avec l’homme directement 

ou indirectement avec les animaux domestiques ; une augmentation des contacts intra-

spécifiques (au sein d’une même espèce), due à la fragmentation de l’habitat et au regroupement 

des ressources (Brearley et al., 2013). Ce sont des exemples de mécanismes hypothétiques par 

lesquels la modification de l’habitat peut aboutir à une modification de la prévalence des 

maladies. Dans le cas des agents infectieux transmis par les rongeurs, des études sur les 

hantavirus décrivent une telle modification (Suzán, Marcé, et al., 2008 ; Blasdell et al., 2016). 

Ces virus se transmettent par contact direct avec des fluides corporels infectés entre rongeurs 

et peuvent infecter l’Homme. Des épidémies à hantavirus étaient survenues dans un contexte 

de modification de l’habitat, où la biodiversité était réduite. L’explication proposée par ces 

articles était que la modification de l’habitat favorisait des espèces de rongeur opportunistes qui 

étaient réservoirs du virus et qui en l’absence de compétition, pouvaient atteindre des densités 

élevées conduisant à une augmentation de contacts intra-spécifique et consécutivement à une 

augmentation de la prévalence (Suzán, Marcé, et al., 2008). Il est donc important de déterminer 

quels sont les agents pathogènes infectieux transmis par les rongeurs qui pourraient suivre la 

même dynamique, suite à la perturbation de l’habitat.  

Peu d’études se sont intéressées à l’impact de modification d’habitat sur la leptospirose, mais 

montrent une corrélation entre les espèces de leptospires et la topographie (Ivanova et al., 2012). 

En particulier, une étude suppose que l’infection des rongeurs par Leptospira spp. serait 

corrélée à la fragmentation de l’habitat forestier (Morand et al., 2015).  

La conversion de forêt en zone agricole n’est pas seulement le passage d’un écosystème à un 

autre, c’est un processus progressif dans le temps. Pour comprendre les changements dans la 

transmission d’agents pathogènes zoonotiques dus à la déforestation, il est nécessaire de 

s’intéresser à l’enchaînement complexe des événements qui interviennent pendant cette période 

transitoire, ou chronotone. Le chronotone, terme proposé et défini par (Bradley, 2004), est  

« l’interface temporelle entre deux types de paysage », « c’est une période relativement rapide 
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de transformation qui sépare deux types d’utilisation prolongée des terres ». C’est cette période 

transitoire qui représente un risque pour la santé publique et qui est étudiée dans cette thèse.  

2. Méthode  

 L’étude se base sur un design de « space-for-time substitution» dans lequel le gradient 

géographique de déforestation dans un même site est appréhendé comme une substitution à la 

dynamique temporelle de la déforestation, le chronotone. Trois zones, correspondant à trois 

étapes de la déforestation, sont définies : « Forêt intacte » (Forêt indemne d’activité de 

déboisement ou d’activité faible) ; « Forêt perturbée » (Forêt où l’activité de déboisement est 

intense) et « Plantation récente » (Champs agricoles divers : rizière sèche, plantations de 

cassava ou de maïs, moins de un an après le début de la déforestation). Ce modèle de 

chronoséquence pose l’hypothèse que ces trois zones correspondent à une même zone à trois 

temps différents au cours du processus de déforestation. Pour respecter cette hypothèse, les trois 

zones sont choisies géographiquement proches les unes des autres au sein de chaque site et 

ayant moins d’un an depuis le début de la déforestation, afin de limiter les différences spatio-

temporelles autres que celles dues au processus de déforestation. L’étude a été réalisée dans 

cinq sites au Cambodge dans les provinces du Mondulkiri et de Kampong Thom et fut répétée 

en saison des pluies et en saison sèche pour ces cinq mêmes sites. Les rongeurs ont été capturés 

simultanément dans les trois zones d’un même site pendant huit nuits consécutives. Les 

rongeurs capturés sont prélevés, marqués avec une boucle auriculaire unique et relâchés à leur 

lieu de capture. Les espèces de rongeurs ont été déterminées par marqueur moléculaire et 

séquençage (barcoding).  

La première partie des résultats de cette thèse s’intéresse aux effets de la déforestation sur la 

communauté de rongeur. Les mesures de composition, richesse et diversité d’espèce, ont été 

comparés entre les trois zones. Le modèle de capture-marquage-recapture a permis d’estimer la 

densité de population de rongeur dans les trois habitats. 

La deuxième partie des résultats porte sur les taux d’infections de la leptospirose chez les 

rongeurs capturés. L’infection par Leptospira spp a été testée par PCR en temps réel. Le gène 

rrs, universellement présent chez les leptospires, a été amplifié afin de détecter les infections 

par des espèces pathogénes et intermédiaires (PCR1). Le gène LipL32, présent uniquement chez 

les leptospires pathogènes, a permis de détecter les infections par des leptospires pathogènes 

uniquement (PCR2).  Les leptospires pathogènes détectées ont été séquencées. 
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3. Résultats 

A l’issu des deux saisons de captures, 522 rongeurs ont été capturés et pu être identifiés. Onze 

espèces ont pu être déterminées par marqueur moléculaire. Mus cervicolor Rattus sp R3 et 

Maxomys surifer étant les espèces les plus fréquemment capturées et représentent 95% du total 

d’animaux capturés. 

  

3.1. Déforestation et rongeurs 

Les indices de diversité et de richesse d’espèce ressortent significativement différents entre les 

trois zones de déforestation au sein de chaque site. La zone correspondant à la forêt perturbée 

contenait le plus grand nombre d’espèces de rongeurs et une plus grande diversité d’espèces 

que la forêt intacte et les champs récents. La richesse et diversité des espèces de rongeur 

augmentent donc de façon transitoire pendant la déforestation, puis diminuent après conversion 

agricole.  

La densité de rongeur augmente également au cours de la déforestation, avec des valeurs 

significativement plus élevées en forêt perturbée qu’en forêt intacte. La densité de rongeurs 

dans les zones agricoles récentes apparaît significativement dépendante de la saison, atteignant 

des valeurs élevées (de 15 à 48 animaux par hectare) en saison des pluies mais des valeurs 

faibles en saison sèche.  

Les analyses statistiques d’écologie (analyse de correspondance et matrice de dissimilarité) ont 

montré que la déforestation s’accompagnait d’un changement progressif de composition 

d’espèce de rongeur. Certaines espèces sont capturées exclusivement en forêt intacte (Rattus 

andamanensis¸ Leopoldamys sabanus, Berylmys bowersi) supposant leur disparition avec la 

déforestation, bien que le faible effectif de capture de ces espèces ne permette pas de conclure. 

En revanche, des espèces forestières telles que Maxomys surifer, Berylmys berdmorei et 

Niviventer fulvescens sont également capturées dans les zones perturbées indiquant une 

persistance de ces espèces malgré le déboisement. Aucune espèce forestière ne persiste à la fin 

de la déforestation et à sa conversion en champs agricoles (à l’exception de Rattus sp R3 qui 

fut capturé dans toutes les zones). La population de rongeurs dans les champs est alors 

caractérisée par très peu d’espèces (montré par des indices de richesse et diversité faibles) 

dominés par une espèce majoritaire Mus cervicolor et une densité élevée.  

Des espèces agricoles, notamment Mus cervicolor, étaient également présentes dans les forêts 

perturbées indiquant une invasion précoce, exacerbée pendant la saison sèche. En effet, les 

dissimiliarités de composition entre la forêt perturbée et les champs agricoles récents sont 



15 

 

minimes pendant la saison sèche. Les conditions difficiles thermiques et l’absence de nourriture 

dans les champs en saison sèche peuvent expliquer une migration des espèces agricoles vers la 

forêt alentour. La forêt perturbée se compose donc à la fois d’espèces forestières et d’espèces 

agricoles qui n’étaient jusque-là pas en contact. 

 

3.2. Déforestation et Leptospira spp. 

 L’infection par des espèces pathogènes et intermédiaires de Leptospira spp a été mise en 

évidence chez sept espèces de rongeurs avec des prévalences variant de 1 à 100%. Les valeurs 

extrêmes étant expliquées par des effectifs très faibles d’animaux pour certaines espèces. La 

prévalence totale chez les rongeurs était de 13.5% en saison de pluies et 7.3% en saison sèche 

mais la différence entre les deux saisons n’était pas significative à l’analyse multivariée.  

La prévalence n’était pas significativement différente entre les espèces ni entre les trois niveaux 

de déforestation. Les rongeurs mâles étaient significativement plus à risque d’être infectés par 

des espèces pathogènes et intermédiaires de Leptospira spp.  

L’infection par des leptospires pathogènes uniquement n’a été trouvée que chez trois espèces : 

Mus cervicolor capturés dans les champs en saison des pluies et Maxomys surifer en forêt 

perturbée et Berylmys bowersi en forêt intacte en saison sèche. Les prévalences respectives chez 

ces espèces étaient de 4.5% (12/267), 3.8% (1/26) et 50% (1/2).  

L’isolement et le séquençage des leptospires pathogènes chez ces animaux infectés a permis 

l’identification de trois espèces de leptospires pathogènes pour l’Homme : L. borgpetersenii, L. 

weilii et L. interrogans.  

 

 

4. Discussion 

 Les résultats de cette étude montrent une modification complète de la composition d’espèces 

de rongeur, engendrée par la déforestation. Les indices de richesse et de diversité d’espèces 

augmentent transitoirement pendant la déforestation pour atteindre des minimums dans les 

champs récemment convertis à l’agriculture. La déforestation et conversion semblent favoriser 

une espèce : Mus cervicolor, espèce majoritaire dans les champs et qui atteint des densités 

élevées. La présence de cette espèce dans les zones en cours de déforestation indique une 

invasion précoce de cette espèce (moins de un an après le début de la déforestation).   

L’infection par L. borgpetersenii chez Mus musculus fait d’elle une espèce à risque. Cette 

leptospire nécessite une transmission directe, contrairement aux autres espèces de leptospires 
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qui ont la capacité de survivre dans un environnement humide et se transmettent principalement 

par contact indirect. La transmission de cette leptospire peut donc dépendre de la proportion 

d’animaux infectés dans la population mais également de la densité de sa population d’hôte. 

Les fluctuations de densité et de migration de cette espèce, induites par les saisons et exacerbées 

par les pratiques agricoles peuvent donc modifier la dynamique de la leptospirose.  

L’infection par L. borgpetersenii d’un Maxomys surifer capturé en forêt perturbée pendant la 

saison sèche où se retrouve préférentiellement Mus cervicolor, pourrait indiquer un passage de 

leptospire d’une espèce agricole hôte à une espèce forestière. L’infection d’un animal seulement 

ne nous permet pas de conclure mais permet toutefois de soulever l’hypothèse que l’assemblage 

transitoire d’espèces en forêts perturbées, en augmentant la probabilité de contact entre espèces 

différentes pourrait entraîner un potentiel changement d’hôte des leptospires.  

 

 

5. Conclusion.   

 

La leptospirose est un problème de Santé Publique majeur au Cambodge. Bien qu’endémique 

dans ce pays et d’incidence supposée élevée, la leptospirose est négligée car sous-diagnostiquée 

et souvent confondue pour des cas de paludisme et de dengue, majoritairement présents dans le 

pays. Elle y est peu étudiée et les facteurs de risques de transmission à l’Homme ne sont pas 

identifiés au Cambodge.  

Les résultats de cette thèse ont permis d’identifier quelles étaient les modifications écologiques 

qui survenaient au cours de la déforestation. Ainsi, la déforestation aboutit à une réduction de 

la diversité et richesse d’espèces de rongeurs, et favorise l’introduction et la persistance d’une 

espèce Mus cervicolor. Les résultats sur la leptospirose ne montraient pas de modification de la 

prévalence au cours de la déforestation, ni entre les espèces de rongeur. Toutefois les leptospires 

pathogènes séquencées correspondaient à trois espèces différentes dans les trois stades de 

déforestation. 

La présence de leptospires zoonotiques dans les trois niveaux de déforestation indique un  

potentiel risque de leptospirose humaine associé à des activités forestières et agricoles ou encore 

la consommation de rongeurs sauvages. Il est donc nécessaire de déterminer par la suite le 

risque associé à chacune de ces activités. 
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PART 2: LITERATURE REVIEW 

 

1. DEFORESTATION IN CAMBODIA  

Home to some of Southeast Asia’s oldest and most diverse forests, Cambodia is a recognized 

hotspot of biodiversity but is also a place of massive deforestation and of emerging infectious 

disease (Myers et al., 2000 ; Morand et al., 2014).  

The rate of deforestation in Cambodia has accelerated in the last few years and has now reached 

about 208,000 hectares a year (Forest, 2015). The proportion of primary forest, characterized 

by naturally regenerated forest of native species without any ecological disturbance or any 

visible human activities, decreased to barely 3% of total forest cover in Cambodia in 2015.  

All presented data on deforestation in Cambodia are excerpted from a Forest Trend Report from 

2015 (Forest, 2015). Cambodian forest is increasingly converted to other land use, with rubber 

plantations the most common plantation type, followed by sugar, pulp and paper plantations 

and then cassava and rice fields. These conversions are enabled by economic land concessions, 

though the legality of these land allocations is questionable. By 2015, 2.2 million hectares, 

twelve percent of the whole country had been allocated to economic land concessions (ELC) 

with no legal framework to justify these allocations. Tragically, they often overlap with 

protected areas and in 2013, 14 percent of protected forest land had been allocated resulting in 

even more loss of evergreen and primary forest (Forest, 2015). Aggravating the situation, the 

collection of timber on ELC, by becoming the main source of wood harvested in Cambodia, is 

believed to facilitate illegal logging in nearby areas, exacerbating the disputably legal logging 

from land concessions (Forest, 2015). There is a concerning lack of effective regulatory 

framework regarding land conversion and logging in Cambodia that will inevitably lead to 

tremendous loss of forest ecosystem and biodiversity (Wilcove et al., 2013). The link between 

forests and human health has been highlighted on several aspects, from the known role of forest 

in improving the human environment (for example by absorbing airborne pollution), its role as 

a source of bioactive medicinal compounds (Skirycz et al., 2016), to a recently explored causal 

link between forest change and emergence of infectious diseases which often originate in 

animals (Wilcox, Ellis, 2006). Understanding the relationship between deforestation and its 

potential impact on human health could help promote responsible forest management and 

control of forest-linked disease to lessen the impact.  
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Deforestation, by disrupting the natural environment of rodent species, will affect the species 

distribution and their densities and could thus have important consequences on the pathogens 

they carry. Rodents have been implicated in the emergence and spread of infectious diseases of 

importance to human health such as plague, murine typhus, scrub typhus, leptospirosis and 

hantavirus haemorrhagic fever, etc...(Herbreteau et al., 2012) Among them, leptospirosis, 

represents a major threat to public health in South-East Asia.  
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2. LEPTOSPIROSIS REVIEW 

Leptospirosis is a worldwide zoonosis caused by pathogenic bacteria, the leptospires that are 

transmitted directly or indirectly from animals to humans. 

  

2.1. Leptospira biology 

Leptospires are bacteria that belong to the Spirochetacae order, Leptospiraceae family and 

Leptospira genus. Leptospires are thin, highly motile, slow-growing spirochetes, about 0.1-

0.3µm in diameter by 6–20µm in length (Levett, 2001). Too thin to be visible under the ordinary 

microscope, dark-field microscopy is most often used to observe leptospires after staining 

(figure 1). 

 

 

FIGURE 1 Scanning electron micrograph of L. interrogans serovar icterohaemorrhagiae strain RGA  

SOURCE : Levett (2001) 

 

They can be distinguished from other bacteria on the basis of their unique helical shape and the 

presence of periplasmic flagella. Leptospires have distinctive hooked ends. Two periplasmic 

flagella with polar insertions are located in the periplasmic space and are responsible for 

motility. Leptospires can exhibit two distinct forms of movement, translational and 

nontranslational that enable them to move in aqueous media (Goldstein, Charon, 1988). 
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Leptospires have a typical double membrane structure in common with other spirochetes, in 

which the cytoplasmic membrane and peptidoglycan cell wall are closely associated and are 

overlain by an outer membrane. They are obligate aerobes with an optimum growth temperature 

of 28–30°C. Leptospires are catalase and oxidase positive. Leptospiral lipopolysaccharide has 

a composition similar to that of other gram-negative bacteria, but has lower endotoxic activity 

(Levett, 2001).  

2.2. Leptospira classification 

Leptospira family contains both pathogenic leptospires, having the potential to cause disease in 

animals and humans and saprophytic leptospires that are free living bacteria in wet environment 

and generally considered not to cause disease.   

Initially, two serological species were recognized, namely pathogenic Leptospira interrogans 

and saprophytic Leptospira biflexa. Both complexes (L. interrogans and L. biflexa) have been 

divided into several serovars using the cross-agglutinin adsorption test and antigenically related 

serovars were grouped into serogroups. The Leptospira classification was historically based on 

serological characteristics and comprised over 260 pathogenic serovars (See Appendix 1).  

Recent genetic research has resulted in the reclassification of Leptospira spp., on the basis of 

DNA relatedness and has led to 12 pathogenic species and 5 saprophytic species (Bharti, 2003). 

However, there are still many new species that are believed to exist and yet to be discovered.  

The two classification systems based on the serovar and genetic concepts do not correspond as 

strains belonging to the same serovar may belong to different Leptospira species (Appendix 2). 

However, both the antigenic and genetic classification systems are in common use (Morey et 

al., 2006 ; Levett, 2001).  

Currently, twenty Leptospira species have been identified on classical DNA-DNA 

hybridization studies and 16S ribosomal RNA gene phylogeny (Xu et al., 2016). They 

comprised of pathogenic, intermediate and saprophytic groups as detailed on the phylogenetic 

tree (Figure 2). The intermediate group consists of five species that occasionally cause disease 

in humans and animals. The six saprophytic species are not pathogenic and among them, L. 

biflexa is a soil bacterium, unable to replicate intracellularly. 
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Recent genomic and phylogenetic studies of Leptospira spp. supported that the actual 

biodiversity of Leptospira spp inferred that host adaptation might be the driving force of 

Leptospira diversification and evolution (Xue et al., 2008 ; Xu et al., 2016 ; Ko et al., 2009).  

Complete genome sequencing of different Leptospira species showed a high diversity among 

species and found a range of genome size diversity higher than any other zoonotic pathogens 

(Xu et al., 2016). This high genomic variability was attributed to massive gene gain and loss 

events that allowed for adaptation to specific niche conditions and changing host environments 

(Xue et al., 2008). Saprophytic species are closer to the most recent common ancestor while 

intermediate and pathogenic species formed the two deepest branches, suggesting that virulent 

genes favoring host infection have been acquired during the evolution of the genus. Loss of 

genes involved in metabolic pathways and gains of virulent genes, for example these 

responsible for motility and chemotaxis required to colonize and invade a host, could thus 

explain the evolution from strains capable of surviving in complex ambient environments into 

those adapted for pathogenic life (Xu et al., 2016). 

 

FIGURE 2 Phylogenetic tree of Leptospira species 

Phylogenetic analysis based on the maximum likelihood of the concatenated core genes of the Leptospira genome with 

Leptonema illini as the outgroup. Scale bar indicated an evolutionary distance of 0.05 amino acid substitutions per position. 

SOURCE : XU et al. 2016.  
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2.3. Host species  

Leptospirosis affects both humans and animals and has been reported in most mammal groups 

worldwide (Levett, 2001). 

Leptospira has been found in many mammal species worldwide: from common animals 

(rodents, canidae, bovidae…) to more exotic discoveries (racoon, polar bear, whales) (Duncan, 

2012 ; Grune Loffler et al., 2015 ; Richardson, 2003 ; Jabłoński, 2016 ; Junge et al., 2007).   

Some serovars are commonly associated with particular animal reservoirs. Certain host-serovar 

specificity exhibits relatively high fidelity, for example Rattus species and serovar 

Icterohaemorrhagiae, and mice with serogroup Ballum serovars (Bharti, 2003). More examples 

are given in Appendice 3.  

Leptospires are usually adapted to their primary hosts and cause little illness in these. Clinical 

signs can be seen when a different serovar is introducer to a host species and the symptoms are 

variable, depending on the serovar or Leptospira species, the host and the animal immune 

system.  

Leptospirosis in dogs can be asymptomatic or range from a transient fever to an acute, fulminant 

illness with fever, anorexia, vomiting, liver and renal failure. Four syndromes were described 

in canine leptospirosis: icteric, hemorrhagic, uremic and reproductive syndromes (Faine et al., 

1999).  

Cattle are the maintenance host for hardjo-bovis, infection with this serovar will often produce 

a carrier state in the kidneys associated with long-term urinary shedding. In addition, infections 

with hardjo-bovis can persist in the reproductive tract. Many leptospiral infections in cattle are 

subclinical, particularly in nonpregnant and nonlactating animals. In cattle and pig, clinical 

signs of leptospirosis are mostly reproductive symptoms such as abortion, mummified fetus, 

fertility loss, agalaxia... In horses, leptospirosis can result in chronic recurrent uveitis. During 

the healing phase, animals can be asymptomatic carrier of leptospires. Present in the renal 

tubules for short to long period of times, leptospires are excreted into the environment in the 

urine (see Figure 3). 
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FIGURE 3 Photomicrograph of a Warthin-Starry stained section of kidney tissue from sewer rat.  

Leptospires are seen as silver-impregnated filamentous structures within the proximal renal tubule lumen (400x 

magnification) 

 SOURCE : Ko et al., 2009. 

  

Animal reservoirs that may pose a risk for human exposure include livestock, dogs (Mgode et 

al., 2015) but also wildlife: raccoons, prairie dogs (Olds et al., 2015 ; Richardson, 2003) and 

rodents.  

Rodents are considered a major reservoir of human leptospirosis as they can be asymptomatic 

carriers of the bacteria and may continually excrete leptospires into the environment throughout 

their life (Faine et al., 1999). Leptospirosis is maintained by persistent Leptospira colonisation 

of the proximal renal tubules of infected animals (Figure 3) who can thus shed the bacteria in 

their urine and discharge them into the environment intermittently, regularly for months or 

years, or even for their lifetime in the case of rodents (Faine et al., 1999).  

2.4. Environmental reservoir 

Once excreted in the urine into the environment, leptospires survival depends on their biological 

properties and on the environmental conditions.  

Saprophytic leptospires are naturally found in many types of wet or humid environment ranging 

from surface waters and moist soil to tap water. Some leptospires were even found in seawater. 

Both pathogenic and saprophytic species can be isolated from surface water and soils 

(Wynwood et al., 2014).  

In warm and humid conditions, most pathogenic leptospires can survive several weeks to 

months in muddy soils or rivers, by mean of cellular aggregation (Trueba et al., 2004). Viable 

cells may persist up to 20 months after excretion and their virulence was fully preserved (Andre-

Fontaine et al., 2015). Wet environments are thus an important source of leptospires, 

contributing to the transmission cycle of leptospirosis.   
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2.5. Transmission cycle  

From this survival in the environment results the main transmission pathway of leptospirosis to 

humans: through contact with urine-contaminated environment or, less commonly, through 

direct contact with urine of infected animals (see Figure 4).  

 

 

Leptospires may enter the body through cuts, abrasion on the skin or through the mucous 

membranes of the mouth, nose and eyes during swimming or  (Wynwood et al., 2014). 

Exposures that pose a risk of transmission include splashes of infected material into the eyes, 

the ingestion of food or water contaminated with urine (Mwachui et al., 2015). Inhalation of 

water or aerosols also may result in infection via the mucous membrane of the respiratory tract. 

Infection may follow animal bites as it generates a skin lesion, enabling the leptospires from 

the urine to enter the organism. Leptospira may also be able to penetrate intact skin that has 

been in water for a long time (Levett, 2001). 

There is some evidence that leptospires could be transmitted to infants through breastfeeding, 

causing infection. However, person-to-person transmission is rare (Koe et al., 2014 ; Bolin, 

Koellner, 1988). 

 

FIGURE 4 Leptospirosis transmission cycle 

Leptospires are excreted in the urine of infected animals (yellow arrows) and can be in direct contact with 

humans or disposed in the environment. Most of the leptospires can survive in humid environment and will be 

able to infect animals or humans in contact with the contaminated environment (green arrows). This is the main 

transmission path of leptospirosis to human.  
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2.6. Risk factors 

Human infections may be acquired through occupational or recreational activities. The 

prevalence of different leptospiral serovars within a human population depend on the reservoir 

animals present and the serovars that they carry, as well as local environmental conditions, 

occupation, and agricultural practices (Bharti, 2003).  

Leptospirosis is associated with activities such as livestock farming, butchering and veterinary 

medicine in which human are directly in contact with infected animals and their urine 

(Wasiński, Dutkiewicz, 2013 ; Kamath et al., 2014). For instance, assisting the delivery of a 

new-born from an infected animal or milking infected cows may be high risk of infection from 

Leptospira interrogans serovar hardjo and pomona (White et al., 1981).  

Leptospirosis is associated as well with mining, sewer maintenance where contact with urine-

contaminated environment is important (Wasiński, Dutkiewicz, 2013 ; Kamath et al., 2014). 

In developed countries, many cases occur in association with recreational activities involving 

immersion in water kayak, swimming or adventure race (Stern et al., 2010 ; Mwachui et al., 

2015).  

In tropical countries where the temperature and moisture enables a longer survival of the 

leptospires, leptospirosis is endemic with an increase of the incidence during high seasonal 

rainfall and outbreaks following flooding (Dechet, 2012 ; Lau, 2010 ; Amilasan et al., 2012). 

In these countries where the incidence is already high, occupational exposure such as rice-

farming, taro farming (Vinetz et al., 2005) and other agricultural activities increase the risk of 

leptospirosis (Mwachui et al., 2015).   

2.7.  Leptospirosis, the disease 

The clinical symptoms of leptospirosis in humans varies greatly from benign forms with flu-

like signs, fever, myalgia, headache and cough, to more severe forms. Weil’s syndrome is 

characterized by jaundice, renal failure, haemorrhage and myocarditis with arrhythmias (Haake, 

Levett, 2015).  

Disease severity varies with the infecting serovar and the dissemination of leptospires to various 

organs such as kidney, lung, liver, brain. This dissemination to other organs and their damage 

can result in hepatic, pulmonary or renal forms of leptospirosis, characterised by haemorrhages 

and the organ failure. 
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These symptoms are not pathognomonic and in endemic countries, are easily attributed to other 

more common diseases with similar symptoms that are distributed in the same areas, such as 

malaria, dengue and enteric fever (Costa et al., 2015). Such misdiagnosis lead to an 

underestimation of leptospirosis cases and little is actually known about the true disease burden.  

Clinical diagnosis is difficult because of the varied and nonspecific presentation and 

undiagnosed leptospirosis can progress to more severe forms with poorer prognosis.  Causes of 

death include renal failure, cardiopulmonary failure and widespread haemorrhage. The 

mortality rate varies from 5-10% for the symptomatic cases to 20-50% for the more severe 

forms with complications, especially in case of pulmonary haemorrhage (Haake, Levett, 2015 ; 

Segura, 2005).  

2.8. Diagnostic tests 

Numerous tests have been developed, but availability of appropriate laboratory support is still 

a problem. Table 1 presents a summary of the different tests and their advantages and 

disadvantages from Musso and Scola, (2013). Figure 5 from (Levett, 2001) is an illustration of 

the biphasic dynamic of leptospirosis and the relevant tests at the different stages of the disease.    

 

FIGURE 5 Biphasic nature of leptospirosis and relevant investigations at different stages of disease 

SOURCE: LEVETT et al (2011). 
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Leptospires may be visualized in clinical material by dark-field microscopy or by 

immunofluorescence or light microscopy after appropriate staining. Dark-field microscopy to 

see organisms in blood or urine is fraught with false-positives and false-negatives, is unreliable 

and therefore, not recommended (Musso, Scola, 2013).  

Culture and isolation of leptospires from clinical samples gives a definitive diagnosis. Blood 

should be cultured as soon as the patient’s presentation as leptospiremia occurs before the onset 

of symptoms and ends by the first week of the illness. Cerebrospinal fluid and dialysate fluid 

can also be cultured during the first week of illness and urine from the second week of 

symptomatic illness. The use of cultures to confirm diagnosis is rare as it is very tedious, 

expensive and requires prolonged incubation that can take up to months and does not contribute 

to early diagnosis (Musso, Scola, 2013). 

Serology is the most frequently used diagnostic approach. The current gold standard is the 

microscopic agglutination test (MAT). Patient sera are reacted with live antigen suspensions of 

leptospiral serovars. After incubation, the serum-antigen mixtures are examined 

microscopically for agglutination and the titers are determined. This method, however, relies 

on the maintenance of panels of Leptospira serovars through culture. The MAT is complex to 

control and perform; it cannot be standardized because live leptospires are used as antigens 

(Chappel et al., 2004).  

Enzyme-linked immunosorbent assay (ELISA) detects antibodies reacting with a broadly 

reactive genus-specific antigen and thus is not suitable for identification of the causative serovar 

or serogroup. Leptospiral DNA can be amplified from serum and urine. PCR detects DNA in 

blood in the first 5-10 days after the onset of the disease and up to the 15th day. Several primer 

pairs for PCR detection of leptospires have been described, some based on specific gene targets 

or repetitive elements. PCR is based on the detection of genes universally present in bacteria as 

gyrB, rrs (16S rRNA gene), secY or genes restricted to pathogenic Leptospira spp. as lipL32, 

lfb1, ligA, ligB. Real-time quantitative PCR, combining amplification and detection of 

amplified product in the same reaction vessel has an excellent sensitivity and specificity and 

low contamination risk. They can either be performed using SYBR Green or fluorescent 

TaqMan probes. Depending on the target gene, these PCR allow detection and differentiation 

of pathogenic and non-pathogenic leptospires from clinical and environmental samples. PCR 

can rapidly confirm the diagnosis in the early phase of the disease when bacteria are present 

and before antibody titres are at a detectable level. However, they require special equipment 
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and skilled technicians, lacking in some areas. Laboratory diagnosis tests are not always 

available, especially in developing countries. 

 

 

2.9. Treatment 

In Human, treatment of leptospirosis differs depending on the severity and duration of 

symptoms. Patients with mild, flu-like symptoms require only symptomatic treatment. Hospital 

admission is required for patients with icteric leptospirosis and dialysis for patients with acute 

renal failure. Severe cases of leptospirosis can be treated with high doses of intravenous 

penicillin. Doxycycline, ampicillin and amoxicillin are recommended in mild cases (Levett, 

2001).  

Vaccinations for dog and cattle are available to prevent illness but do not prevent the shedding 

of the bacteria and thus their transmission to human. Canine vaccines generally contain serovars 

canicola and icterohaemorrhagiae and can include serovars grippotyphosa and pomona 

(Klaasen et al., 2014). However immunized dogs may be infected with serovars other than those 

contained in commercial vaccines (Llewellyn et al., 2016). 

Vaccines to prevent human leptospirosis are available in some countries but are not authorized 

in other countries. None of them protect against all circulating strains and focused only on 

important serovar. For instance in France, a monovalent vaccine against L. interrogans from 

Icterohaemorrhagiae serogroup is available only for sewers workers (Institut Pasteur, 2015). 

TABLE 1 Advantages and disadvantages of common diagnostic tests for leptospirosis 

SOURCE : Musso, Scola, (2013) 



30 

 

Moreover, these killed bacteria vaccines are likely to provide only short-term and possibly 

incomplete protection (Haake, Levett, 2015).  
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3. LEPTOSPIROSIS EPIDEMIOLOGY 

Leptospirosis is considered the most common and widespread bacterial zoonosis (Levett, 2001). 

The global burden of leptospirosis is estimated at around 1.03 million cases per year and 58 900 

deaths per year (Costa et al., 2015). These estimates emphasize that leptospirosis is one of the 

greatest zoonotic causes of morbidity and mortality. Leptospirosis takes an even greater 

importance in tropical and subtropical regions where the disease is endemic. Over 73% of the 

total cases of leptospirosis worldwide are believed to occur in the tropics (Victoriano et al., 

2009).  

3.1. Leptospirosis epidemiology in humans, in SEA 

Leptospirosis incidence in the Asia-Pacific is estimated between 10 and 100 cases per 100 000 

habitants per year (Costa et al., 2015). Although transmission is endemic and large outbreaks 

have been reported, there is currently no routinely performed surveillance in South East Asian 

countries and therefore no official data on the incidence of the disease. In tropical regions, 

where humid and warm conditions enable a longer survival of Leptospira, leptospirosis is 

significantly associated with occupational exposure such as rice farming and other agricultural 

activities (Bharti, 2003 ; Mwachui et al., 2015) and with heavy rainfall or extreme weather 

events such as floods and cyclones (Dechet, 2012 ; Lau, 2010 ; Wasiński, Dutkiewicz, 2013). 

In Vietnam and Laos, leptospirosis was shown to occur in a seasonal pattern in these countries, 

with a peak incidence during the rainy season and outbreaks occurring after flooding (Lau, 

2010). 

In Cambodia, few studies give an insight into the leptospirosis situation in the country: in 2003, 

a survey in Takeo provincial hospital estimated the annual incidence to be 7.65 cases per 

100 000 habitants, with Javania and Australis as the main serogroups (Seng et al., 2007). In 

2012, fever surveillance in South-Central Cambodia found a seroprevalence of 20.8% IgM 

(Kasper et al., 2012). A more recent study by Institut Pasteur du Cambodge from 2007 to 2009, 

found a seroprevalence of 26.7% of febrile cases in patients younger than 20 years old, in 

Kampong Cham province. Of these, 15.8% had seroconversion illustrating the incident 

infection in this province. They also showed that probability of having a fever caused by 

leptospirosis was at 1% of all fevers per semester (Hem et al., 2016).  

3.2. Leptospirosis epidemiology in rodents, in SEA 

Little is known about human leptospirosis in Southeast Asia, but the lack of knowledge about 

leptospirosis circulation in rodents is even greater, though they are believed to be important 

reservoirs and could be a source of infection to humans. In a study conducted in the Mekong 
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Delta of Vietnam (Loan et al., 2015), 5.8% of captured rats were tested positive by RT-PCR 

and 18.3% by Microscopic Agglutination Test (MAT). They observed a higher prevalence of 

detection among older rats, suggesting a long-term carriage of leptospires and that Leptospira 

infection does not result in increased mortality in rats. In Thailand, leptospires were found in 

the following species: Rattus argentiventer, R. exulans R. losea, R. norvegicus, R. tanezumi but 

also in the less studied Bandicota indica and B. savilei (Herbreteau et al., 2012). 

A recent study conducted in Thailand, Lao PDR and Cambodia assessed Leptospira prevalence 

in rodent species using RT-PCR, and found that detection varied from 0 to 18% across 

localities, and from 0 to 19% across species (figure 6, Cosson et al., 2014). In Cambodia, the 

prevalence was 4% in Mondolkiri province and 8.33% in Sihanoukville province and the 

leptospira species found, were Leptospira borgpetersenii, L. interrogans and L. weilli. 

Leptospira borgpetersenii and L. interrogans were the most abundant species in Lao, Thailand 

and Cambodia but were found in different habitats. 

 

FIGURE 6 Geographic distribution of Leptospira infection in rodents from Thailand, Lao PDR and Cambodia. 

SOURCE : Cosson et al (2014) 
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L. borgpetersenii was more abundant in dry habitats than L. interrogans, suggesting a difference 

in ecological niche for these Leptospira species. 

However, the study found no difference of prevalence between floodable areas, forests and dry 

agricultural fields. Such a result illustrates the two transmission routes of leptospirosis and 

suggests that direct transmission could explain the circulation of leptospires in the dry habitats 

while the indirect transmission via wet environments occurs in floodable areas. Leptospira 

prevalence did not significantly vary across rodent species, though higher prevalence was 

observed in wild mice (Mus sp.) and in rarely investigated forest species (Berylmys sp., 

Maxomys sp.).   

In Cambodia, the forest species Maxomys surifer and Niviventer fulvescens were also found to 

carry Leptospira and high prevalence was observed in Rattus argentiventer, a species found in 

rain-fed cultivated areas. Leptospira were also detected in Bandicota savilei and Berylmys 

berdmorei which are both present in paddy fields; and B.berdmorei which is found in forest 

areas near crops. High prevalence of Leptospira in rodents in cultivated areas and degraded 

forest suggests that these habitats may present a high risk of leptospirosis for humans (Svilena 

Ivanova, 2012).  

Rodents may move among habitats, either as part of the natural dispersal process (from their 

birth place to their first breeding site or from one breeding site to another) or in response to the 

seasonal variation in habitat quality (i.e. amount of food, shelter availability, competition with 

other rodents, predation etc.). In Lao PDR, movements of rodents between field and village 

habitat were shown in response to the availability of food resources (Douangboupha et al., 

2009). Because these movements may involve rodents infected with Leptospira, this process 

could have important consequences on Leptospira distribution within Southeast Asian 

landscapes. It seems therefore likely that deforestation, by disrupting rodent habitats, would 

have consequences on Leptospira distribution. But knowledge on the impact of deforestation 

on pathogen circulation is currently lacking. The following paragraphs summarize the current 

literature on how human land-use change impacts infectious disease transmission in general 

and rodent-borne pathogens. 
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4. IMPACT OF LAND-USE CHANGE ON PATHOGENS IN SEA 

 

South East Asia is both a hotspot of land use change and zoonotic disease outbreaks. Indeed the 

current increase of infectious disease emergences coincides with accelerating rates of tropical 

deforestation (Wilcox, Ellis, 2006). An increasing number of studies on emerging infectious 

diseases points to changes in land cover and land use, including forest cover change such as 

deforestation and forest fragmentation, as major factors contributing to the surge in infectious 

diseases. Some examples of pathogens whose current emergence patterns show an association 

with forest degradation and clearing are Ebola virus, Nipah virus, malaria and Lyme disease 

(Wilcox, Ellis, 2006). 

4.1. Land use changes and disease prevalence 

 

Brearley et al. (2013) reviewed the influence of human-induced landscape change on wildlife 

disease prevalence. Half of the papers reviewed found an increase in disease prevalence due to 

human-induced landscape change, while 21% identified a decrease in disease prevalence and 

the remainder 26% indicated that disease prevalence varied (Brearley et al., 2013). Similarly, 

the Gottdenker et al. review (2014) about land use change impact on infectious disease showed 

that more than 56.9% of reviewed studies documented increased pathogen transmission in 

response to anthropogenic land use change, 10.4% found decreased pathogen transmission 

secondary to land use change, 30% observed variable pathogen response while 2.4% showed 

no changes at all (Gottdenker et al., 2014). These results (illustrated in Appendix 4) clearly 

indicate that the issue of wildlife disease in human-modified landscape is complex and highly 

variable and no general trend of disease prevalence response to land-use changes has been 

determined. Richness of infectious diseases was found positively correlated with the richness 

of mammals depicting biodiversity as a source of pathogens (Morand et al., 2014). The same 

study also found an association between an increase of zoonotic disease outbreaks and the loss 

of biodiversity as measured by the number of species at threat and proportion of forest cover.  

The current evidence suggests several hypothesized mechanisms that would lead to infectious 

disease changes after land use alteration. They include modification of habitat structure, 

microclimate and resource availability for both the host and its pathogens. Other proposed 

mechanisms were changes in the host community composition, and host jumping of the 

pathogen. Anthropogenically driven land use changes can produce ecological conditions that 

facilitate geographic expansion of pathogens via the modification of spatial distribution of the 

host or of their behaviour and movements (Gottdenker et al., 2014).  
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Deforestation and forest fragmentation can have two possible outcomes: on one hand the highly 

fragmented environments may reduce the disease prevalence due to lack of connectivity 

between the patches of forest, resulting in less contact rates between hosts and thus reducing 

the infection rates; conversely, such fragmentation may also increase contact rates and disease 

prevalence by clumping the resources and the hosts (Bradley, Altizer, 2007). Or, in case of 

indirectly transmitted diseases such as leptospirosis, fragmentation may result in overlapping 

distributions of species and might increase their probability of getting infected from each other, 

from the spread of germs along the tracks they now share. Furthermore, deforestation leads to 

ecological changes such as increased edge habitat and local extinction of predators that may 

favour some species that happen to be disease reservoir (Wilcox, Ellis, 2006). 

 

4.2. Land use changes and rodent-borne diseases 

The conversion and loss of forest in SEA is presumed to affect rodents in terms of their diversity 

and species composition.  Several studies have established that rodent species may differ in 

their response (presence/absence or abundance) to habitat modification. The importance of 

habitat modification in shaping small mammal communities is now recognized and was 

assessed by world-wide studies (Bernard et al., 2009 ; Morand et al., 2015 ; Lynam, Billick, 

1999 ; Umetsu, Pardini, 2007). Bernard et al. (2009) found that habitat types (forest versus 

plantation) were important determinant of small mammals’ species occurrences and assemblage 

composition in Borneo.  

Morand et al. (2015) showed that habitat structure and fragmentation affected the spatial 

distribution of rodent species in SEA. In particular, alteration of the habitat (decreasing forest 

cover, increasing fragmentation and urbanization) was found to favour the presence of 

synanthropic rodent species such as Rattus tanezumi. Similarly, Suzán et al. (2008)  highlighted 

that fragmentation of the habitats resulted in lower diversity of small mammals and higher 

densities of populations of rodents. All these studies focusing on forest fragmentation in tropical 

areas have emphasized that species richness or diversity are affected in disturbed ecosystems.  

Changes in land use in Southeast Asia are therefore expected to alter rodent species distribution 

and diversity (Morand et al., 2015). As rodents are important reservoirs of human diseases, it 

is likely that their incidence is linked to fluctuations in rodent population. Habitat fragmentation 

and decreasing forest cover seemed to favour the presence of synanthropic rodent species that 

are important host of rodent-borne diseases (Suzán, Marcé, et al., 2008). In particular, 
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Bartonella spp. and hantavirus were associated with disturbed landscapes with ongoing 

fragmentation (Morand et al., 2015).  

Outbreaks of hantavirus diseases, were found to occur in anthropologically disturbed habitats, 

where natural biodiversity had been reduced to low levels (Mills, 2006). This was explained by 

the fact that disturbed habitats favour opportunistic species that were reservoir of hantavirus 

and due to the lack of competitive pressure, these species could reach higher densities. It is 

therefore important to understand which rodent-borne pathogens would have a similar response 

to land use changes as those observed for hantavirus.  

 

4.3. Land-use changes and leptospirosis 

Studies conducted in SEA have found leptospires in all types of rodent habitats: from forest to 

floodable areas and dry agricultural fields (Cosson et al., 2014 ; Ivanova et al., 2012). 

Ivanova et al. (2012) described a high prevalence in rodents trapped in newly cultivated areas 

and in degraded forests and that species from these two areas had similar level of infection. 

This study suggested that both rice fields and forests were also areas of potential risk for 

leptospirosis. Though it is important to note that Leptospira was detected in this study with the 

PCR protocol from Mérien et al (1992) that detects both pathogenic and non-pathogenic 

species. 

Morand et al (2015) observed associations between habitat structure (forest, settlement, 

agricultural fields and fragmented habitats) and the prevalence of rodent-borne pathogens with 

Leptospira prevalence linked to fragmented habitat (Figure 7). This discovery highlighted 

fragmented forest as a zone of higher risk of leptospirosis than in paddy fields.  
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.   

FIGURE 7 Associations between habitat structure and the prevalence of rodent-borne pathogens, based on 

values on the first two axes of the principal component analysis from Morand’s study (2015). 

SOURCE : Morand et al 2015 

Leptospirosis has been linked with weather-related phenomena such as flooding but also with 

anthropogenic land-use changes that influence the natural flow of water (Vinetz et al., 2005). 

Indeed, they advanced that hydrologic alterations of watersheds may impact the survival of 

Leptospira in the environment and could consequently influence the disease incidence. Even 

though these previously cited studies have stressed that anthropological changes may increase 

leptospirosis risk, there is no evidence yet of a direct causal relationship between deforestation 

and leptospirosis. Respective limits of the studies do not permit us to clear establishment of a 

link between them and are detailed in the following section.  

 

4.4. Limitations of the current literature  

The literature on land use changes and infectious disease, although a field of growing concern, 

is quite limited. A third of the published studies are actually review papers and almost all of the 

original research papers are observational studies (Gottdenker et al., 2014). There is a lack of 

experimental or analytical studies evaluating the relationship between environmental changes 

and infectious disease transmission (Gottdenker et al., 2014). The majority of past studies were 

observational approaches based on a one-dimensional comparison of prevalence or vector 

abundance at landscape level (between unmodified and modified sites) and presumably had a 

major influence on the variability of results. Studies conducted at a single spatial scale can 

explain only partially the impact of human-modified heterogeneous landscapes (Gottdenker et 

al., 2014). Indeed characteristics present at a landscape-scale may have different impacts on 
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wildlife disease compared to characteristics present at habitat or micro-habitat scales. Studies 

conducted at multiple spatial scales will provide a more complete understanding of the 

processes influencing the species distribution, abundance and leptospirosis prevalence 

according to Brearley et al. (2013). They also indicated that none of the studies linked temporal 

changes in landscape modification with consequences in wildlife disease prevalence and 

therefore recommended that future research should incorporate temporal components as well 

as spatial components of analysis. Indeed, it stands to reason that land use change is inherently 

a temporal process and that disease prevalence is likely to also vary over time. Studies 

comparing the disease prevalence before and after deforestation will not depict the actual risk 

of disease and will overlook out the changes of disease prevalence that may occur during the 

deforestation process. 

During land-use change there may be incremental alterations in the environment from the virgin 

forest to the long-term plantation field. These may include selective logging and forest 

degradation, increase forest patchiness (fragmentation), secondary growth of undergrowth, 

invasive plant species and secondary forest, burning, and immature grassland before the long-

term steady-state situation of land cultivation. Bradley termed this transient period 

“chronotone” and defined it as “a boundary in time between two ecosystems or landscape 

phases, by analogy with “ecotone” that is the boundary in space between two ecosystems.” 

(Bradley, 2004).  

 

FIGURE 8 Chronotone representation as a period of intense activity (C). The chronotone is the transient period 

of environmental change but also in time of the ecosystem from one state (A) to another (B).  

SOURCE : Bradley, 2004 
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This transition phase (e.g. between forest and agricultural land) is of great importance in the 

epidemiology of infectious diseases in changing landscapes as it includes a succession of 

mechanisms affecting habitats, hosts communities and diseases dynamics in the unstable 

ecosystems. Study the deforestation chronotone is thus likely to provide important insights into 

the impact of deforestation on leptospirosis prevalence in rodents, and the associated risk to 

public health. 
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PART 3: HYPOTHESIS 

The main objective of our study is to assess the consequences of the changes occurring during 

the process of deforestation on rodent populations and on the dynamics of leptospirosis.  

Our aims are:  

 To demonstrate the shift of rodent species composition and the ecological mixing of 

different rodent species accompanying rapid deforestation  

 To determine the species carrying Leptospira.  

 To identify the Leptospira strains carried by the different rodents in the different steps 

of deforestation to assess the potential risk for human health.  

Studying the changes driven by deforestation on rodent species distribution, densities and 

prevalence would allow an assessment of the possible risk of human leptospirosis. Our 

hypothesis is that the transition period from intact forest to cleared forest, represents an 

opportunity for an increased circulation of Leptospira spp between rodent species. We predicted 

that the ongoing changes, driven by deforestation, affect the distribution of rodents and thus of 

the pathogens they carry.  

Specific hypothesis: 

 The disruption of the habitat modifies the distribution of rodent species and their 

densities, resulting in overlapping distributions of different species that were 

originally not in contact. 

 Deforestation increases the risk of leptospirosis:  

 By transmission of Leptospira from a wild species from the intact forest to 

other rodent species that are invading the disrupted forest.  

 By introduction of Leptospira by invasive species, that are non-native to the 

forest and whose introduction and spread are likely to cause harm to human 

health. 

 By favouring species which are Leptospira hosts.  
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PART 4: METHOD AND MATERIALS 

1. Study design 

To study the deforestation chronotone, i.e. the succession of ecological and epidemiological 

changes, we used a chronosequence design that compares areas representative of different steps 

of the deforestation process. This method involves a space-for-time substitution that assumes 

that the different zones that are compared only differ by their time since the beginning of the 

deforestation process, and can be considered a time sequence. Three levels of forest degradation 

were defined as follow: 

INTACT FORST: intact evergreen or semi-evergreen forest protected areas or community 

forestry, with low to medium selective logging (Zone 1); 

DISTURBED FOREST: degraded forest with intensive tree removal (Zone 2); 

RECENT FIELD: recent plantation less than one year since clearing (Zone 3).  

These zones corresponded to different steps of forest clearing and thus to different steps of the 

deforestation chronotone.  The main assumptions of this design is that the three zones had the 

same initial stage and that they follow the same pattern of change. To ensure these assumptions 

were met, the three zones (corresponding to the three steps of forest degradation) were matched 

within each site included in this study. This matching was designed to minimize the spatio-

temporal variations that would be unrelated to the process of deforestation and thus ensured 

that zones were comparable. All matched zones of a site were sampled at the same time. In 

addition, the three zones of each site were sampled in two seasons: rainy season from June to 

September, and dry season from January to April. 

1.1. Trapping grid 

Fifty locally made non-lethal Havahart traps were deployed in each of the three zones, giving 

150 traps per site. The traps were separated by 20-meter intervals and placed at least 100m from 

the habitat edge in each zone. Zones were at least 200m apart from each other. Traps were 

deployed during eight consecutive nights and were baited with sweet-potato covered with 

peanut butter. The sampling effort was comprised by a total of 1200 night traps per trapping. 

Each trap was located with a global positioning system (GPS) receiver and the surrounding 

habitat was characterized by its canopy cover, vegetation density and vegetation transects 

around the traps (data not shown). The geography of each site and an example of a grid layout 

from one site are provided in the appendix 5 and 6. 
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Trapping effort was identical between zones and capture session occurred simultaneously in 

the zones of a same site. This capture design allowed to minimize the effects of temporal 

variation and weather on capture probability. 

 

1.2. Rodent sampling  

Captured rodents were anaesthetised for a short period after inhalation of isoflurane and then 

sampled in a modified field biosafety container to ensure the safety of field staff. Blood, feces 

or rectal swab, urine or uro-genital swab, oral swab, skin and ectoparasites (fleas, ticks and 

chiggers) were collected from each animal and preserved in both viral transport media and 

RNAlater (except ectoparasites which were preserved in 70% ethanol). Rodent identifications 

(species, age, sex, etc.) were recorded (detailed in Appendix 7) and each rodent was marked 

with a unique ear tag and released at its original capture location. Recapture was recorded with 

the ear tag of the recaptured animal and the trap number. This capture-mark-recapture design 

enabled the assessment of the overall recapture rate, population density and home range size.  

2. Laboratory analyses  

2.1. Rodent species 

Rodent species were identified on the basis of their morphology (Francis et al., 2008) and by 

barcoding assignment. Skin tissue was collected under anaesthesia, from a 1 mm ear punch or 

the tip of the tail and DNA was extracted from the tissue using the Qiagen DNeasy® Blood & 

Tissue Kit according to the manufacturer’s instructions. The primer set of BatL5310 

(CCTACTCRGCCATTTTACCTATG) and R6036R (ACTTCTGGGTGTCCAAAGAATCA) 

were used to amplify a 750 base pair fragment of the Cytochrome c oxydase I (COI) gene, as 

previously used in the CERo-Path project (Pagès et al., 2010 ; Svilena Ivanova, 2012). PCR 

products were visualised by gel electrophoresis before amplicons were sent for sequencing to 

Macrogen (Seoul, South Korea). Sequences were trimmed and assembled using CLC Genomics 

Workbench 3.6.1 (2013) software. Either the consensus (when obtained) or both sequences 

(reverse and forward) were submitted for BLASTn search to obtain the species on the NCBI 

website (National Center for Biotechnology Information) or CERo-Path website (CERoPath, 

http://www.ceropath.org/). An exemple is given on Appendix 8. 

2.2. Leptospira detection 

Urine, uro-genital swabs, rectal swabs and feces were used to identify rodent carriers of 

Leptospira. DNA was extracted using the Qiagen RNeasy® Mini Kit. We performed two 

http://www.ceropath.org/
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different PCRs to detect Leptospira. The first PCR amplified the rrs-gene, universally present 

in Leptospira and thus detected both pathogenic and intermediate pathogenic Leptospira 

species allowing us to carry out a broader screening of Leptospira in rodents (Leptospira species 

assay). The second PCR amplified the LipL32 gene, which is only present in pathogenic 

Leptospira spp. and encodes an outer membrane lipoprotein that is considered to be a virulence 

factor (Haake, 2000). This second PCR permitted us to detect species of Leptospira that are 

known to be human pathogens (Pathogenic Leptospira assay). 

2.2.1.  Leptospira species assay  

 This real-time PCR assay, previously described by Thaidunpanit, Slack and Smith, amplified 

the rrs-gene. The primer set of Lepto-F (5’-CCCGCGTCCGATTAG-3’) and Lepto-R (5’-

TCCATTGTGGCCGRACAC-3’) were used to amplify the rrs-gene detected by the probe 

Lepto-probe (5’-6-FAM-CTCACCAAGGCGACGATCGGTAGC-BHQ1-3’). Real-time 

amplification was performed using the BioRad Thermal Cycler CFX96. The PCR reaction 

conditions were as follow: 4.25 mmol/L of MgCl2, 0.25 µmol/L for the Primer F (Lepto-F), 

0.50µmol/L for the Primer R (Lepto-R), 0.05 µmol/Lf of Lepto-probe and 5µL of DNA extract 

in a final volume of 20µL. PCR amplification was performed using the following parameters: 

reverse transcription for 2 min at 50°C thenan initial denaturation at 95°C for 8 min, followed 

by 45 cycles of denaturation at 95°C for 15 s and annealing elongation at 60°C for 1 min. 

Positive samples were defined as having a cycle-to-threshold (CT) value below 35.  

2.2.2.  Pathogenic Leptospira assay 

Detection of human pathogenic Leptospira infection was determined by real-time PCR, using 

a TaqMan assay targeting the LipL32 gene. The primer set of LipL32-45F (5′-AAG CAT TAC 

CGC TTG TGG TG-3′) and LipL32-286R (5′-GAA CTC CCA TTT CAG CGA TT-3′) were 

selected to amplify a fragment of 242 bp, which was detected by the probe, LipL32-189P 

(FAM-5′-AA AGC CAG GAC AAG CGC CG-3′-BHQ1), as previously reported (Stoddard et 

al., 2009). Reaction conditions used were 3.0 mmol/L of MgCl2, 400 nmol/L of each primer, 

132.5 nmol/L probe, and 5μL of DNA extract in a final volume of 20μL. The amplification 

protocol consisted of 3 min at 50°C then pre-denaturation at 95°C for 8 min, followed by 45 

cycles of amplification (95 °C for 20 s and 58 °C for 40 s). Samples with a CT value below 40 

were considered positive. 

2.3. Leptospira species identification 
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The protocol used was modified from a single tube nested PCR, developed by Mahidol-Oxford 

Tropical Medicine Research Unit (Boonsilp et al., 2011). It was used to amplify a 443-

nucleotide fragment from the rrs gene.  

Primers were as follows: rrs-outer-F (5’-CTCAGAACTAACGCTGGCGGCGCG-3’), rrs-

outer-R (5’-GGTTCGTTACTGAGGGTTAAAACCCCC-3’), rrs-inner-F (5’-

CTGGCGGCGCGTCTTA-3’), and rrs-inner-R (5’-GTTTTCACACCTGACTTACA-3’).    

The resulting amplicon was 547 bp. Amplicons were visualized using a 1.5% gel 

electrophoresis followed by staining with ethidium bromide. Samples with an amplicon of the 

expected size were sequenced by the Institut Pasteur du Cambodge using a combination of all 

four primers to generate a contiguous sequence. Leptospira species were identified by BLAST 

searches of the resulting sequences, using the GenBank database 

(http://www.ncbi.nlm.nih.gov/BLAST). Sequences were trimmed and aligned with CLC 

Genomic workbench. The phylogenetic tree was constructed from the resulting 481-bp rrs 

fragments alignment and a bootstrapped test with 100 replicates was performed using the 

(BIONJ) Neighbour-Joining method in Seaview software version 4. 

3. Statistical Analyses 

3.1. Rodent species richness and diversity indices 

We first described the zones with their rodent species richness, diversity and their total rodent 

density.  

Rodent species richness and diversity indices were assessed for each zone within all sites: 

species richness was defined as the number of species present within a zone and species 

diversity was calculated using the Shannon index defined by Hill (Shannon-Weaver index: H=

 − ∑ 𝑝𝑖𝑙𝑜𝑔𝑏(𝑝𝑖)
𝑆
𝑖=1  , where pi is the proportion of species i and S the number of species in the 

community—Hill 1973) vegan R package. Species richness gave us a straightforward count of 

identified species in the different rodent communities along the three stages of deforestation 

and species diversity determined the weighted presence of each species within the community.  

3.2. Rodent density 

Rodent densities were estimated with the null spatially explicit model in ‘secr’ R package using 

the recapture history and the GPS coordinates of capture locations, for each zone of each site. 

Rodent densities were then log-transformed to meet assumptions of normality. 

http://www.ncbi.nlm.nih.gov/BLAST
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A split-plot factorial ANOVA was used to test for differences of richness, diversity and density 

between zones. Site represented grouping in time and in space of the three zones. We were 

interested in the main effects of zones on species richness, diversity and density, and in the 

interaction between zones and the season.  As we were not interested in testing hypotheses 

about differences between sites, site was defined as a random effect in our ANOVA and Season 

and Zone as fixed effects. Statistical significance was set at P< 0.05 and the Bonferroni 

procedure was used to adjust the P values in pairwise comparisons. Before analysis, the 

homogeneity of variances among zones was tested for the two indices using the Bartlett test 

and normality of the residuals was tested using the Shapiro-Wilk test. 

3.3. Rodent species composition 

To quantify the compositional dissimilarity between zones, we generated Bray-Curtis 

dissimilarity on the rodent species abundance matrix by zone per site, for the rainy and dry 

seasons separately, with the ‘vegan’ package in R (Bray-Curtis dissimilarity:𝐵𝐶𝑖𝑗 = 1 −
2𝐶𝑖𝑗

𝑆𝑖+𝑆𝑗
 , 

where Cij is the sum of the lesser values for only the species in common between two zones, Si 

and Sj are the total number of specimens counted at both zones). 

To investigate whether deforestation impacts species assemblages, we compared zones within 

each site for both seasons with a non-parametric analysis of variance (ANOVA) with the Adonis 

function in the ‘vegan’ package in R. Pairwise-comparisons were then to identify which zones 

shared similar species composition and which ones were clearly dissimilar. 

Then, to illustrate the distribution of rodent species across zones, we performed a 

correspondence analysis (COA) on the number of individual rodents trapped in each zone per 

site, for the rainy and the dry season separately. We completed the COA with between-class 

analysis to discriminate the zones, given the distribution of species using the package ‘ade 4’ 

implemented in R. Permutation test (Monte-Carlo test) was used to assess the statistical 

significance of the between class analyses. This analysis allowed us to identify the species 

present in the different zones and their apparent association with the zones. 

3.4. Habitat specialization and Zone Preference 

To clearly establish the degree of habitat specialization of each rodent species regarding the 

three zones, we first used the previously described Shannon index, measuring the diversity of 

habitat (zones) for each species with the vegan R package. For species with high diversity of 

zones, i.e. that were not specialised for one zone and were captured in two or three zones, we 

modelled their zone preference as explained next.  The zone preference of each species was 
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modelled with a nested negative binomial regression of the number of individuals for each 

species, with zone and season as fixed effects and site as a grouping factor, using the xtnbreg 

function in STATA 14.1. We also tested the existence of interaction between zone and season 

for species in the model to assess the seasonality of their zone preference.   

3.5. Leptospira infection 

General Leptospira prevalence was measured for all species in each zone of each site from the 

results of the Leptospira-assay. The χ² test was used to test the frequency distribution of 

Leptospira in rodent species, zones and seasons. We analysed the probability of 

presence/absence of general Leptospira infection (Leptospira species essay) as follows:  

To test the effect of zone and season on the risk of general Leptospira infection, we used a 

conditional logistic regression with site as a grouping variable using clogit function in STATA.  

To test the association with individual rodent characteristics: species, age (juvenile, adult) and 

sex on the risk of infection, we used a conditional logistic regression as well, using clogit 

function in STATA. Trapping session of the five sites occurred at different time during each 

season and can therefore, induce potential selection bias as capture probability was quite 

probably different given a different time and different weather. Grouping on site enabled to 

minimize this bias and compare only zones within the same site.  

Cases were individual rodents. Statistical significance was set at P< 0.05.    
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PART 5: RESULTS 

1. Rodent trapping  

 

Rodents were trapped in the Cambodian provinces of Mondulkiri, in the Keo Siema district for 

the sites S1, S2 and S4 and of Kampong Thom, San Dan district for the sites S3 and S5. A map 

is given in Appendix1.   

A total of 547 animals were captured from the rainy and dry seasons (424 and 123 animals, 

respectively) (TABLE 2).  Seven animals escaped before sampling and species could not be 

determined for another four individuals. Fourteen animals belonged to the Tupaiidae family 

(treeshrew) and were not included in this analysis. Rodent genotyping was successfully 

determined for all 522 remaining individual rodents using COI-gene barcoding and identified 

eleven species. 

 TABLE 2 Species identity and total number of captured individuals by zone and by season. Species are ordered 

according to their total abundance. (Zone1= Intact forest ; Zone2=Disturbed forest ; Zone3= Recently cleared 

fields). 

 In the rainy season, 399 rodents came from eight species and in dry season, 123 from eight species.  

 

  

Species 
Rainy Season 2015 Total 

Rainy 

Dry Season 2016 Total 

Dry 
Total 

Zone1 Zone2 Zone3 Zone1 Zone2 Zone3 

Mus cervicolor 0 39 228 267 0 36 33 69 336 

Rattus sp. R3 3 42 21 66 5 13 1 19 85 

Maxomys surifer 34 15 0 49 17 9 0 26 75 

Mus caroli 0 0 6 6 0 0 0 0 6 

Niviventer 

fulvescens 0 4 0 4 1 1 0 2 6 

Rattus exulans 0 0 4 4 0 0 0 0 4 

Berylmys 

berdmorei 1 1 0 2 0 1 0 1 3 

Vanderleuria 

oleracea 0 0 0 0 0 2 1 3 3 

Berylmys bowersi 0 0 0 0 2 0 0 2 2 

Leopoldamys 

sabanus 0 0 0 0 1 0 0 1 1 

Rattus 

andamanensis 1 0 0 1 0 0 0 0 1 

Total 39 101 259 399 26 62 35 123 522 

Non Rodentia sp          

Tupaia belangeri* 2 4 0 6 1 7 0 8 14 

*  Scandentia order,   Tupaiidae family        
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Mus cervicolor constituted the largest number of captured animals (64.4% of all captured 

animals) during both seasons. The second most abundant species was Rattus sp.R3 (16.3%), 

followed by Maxomys surifer (14.4%). These three species accounted for 95% of the overall 

rodent community. Each of the other 8 species were represented by no more than 6 specimens. 

The detailed number of captured individuals by season, site, zone and species are presented in 

Appendix 9.  

2. Ecological changes during deforestation 

2.1. Species richness 

The species richness of each zone varied from 1 to 5 species with higher species richness 

observed in disturbed forest (Figure 9) and was statistically different among zones (Split plot 

factorial ANOVA, F(2,16)=10.4, P=0.0013). The impact of zone on species richness was 

influenced by the season (significant interaction in the split plot factorial ANOVA F(2,16)=5.6, 

P=0.014). Comparisons with contrasts showed that the mean richness was significantly higher 

in disturbed forest than in intact forest (F(1,16)=15.6, Bonferoni-adjusted P=0.002) and higher 

than in recently cleared fields (F(1,16)=5.2, Bonferoni-adjusted P=0.003) The mean richness 

was higher in disturbed forest than intact forest regardless of the season. In contrast, the 

difference of species mean richness between disturbed forest and recently cleared fields was 

influenced by the seasons (F(1,17)=11.1, P=0.004). Recently cleared fields had a lower mean 

richness than disturbed forest during the dry season only. 

 

 

 Species Richness 

FIGURE 9 Species richness distribution among zones by season.  

(Zone1=intact forest, Zone2=disturbed forest, Zone3=recently cleared field). 
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2.2. Species diversity 

Species diversity varied from 0 to 1.2 (Figure 10). A zero value of the Shannon Index illustrated 

an absence of rodent species diversity in zones that were represented by a single species. Higher 

values of the index represented higher diversity. 

Species diversity was statistically different among zones within sites (Split plot factorial 

ANOVA F(2,16)=10.9, P=0.001) and the season did not significantly influence the general 

effect of the zone on the species diversity (F(2,16)=2.8, p=0.08). Average diversity significantly 

increased from intact forest to disturbed forest (F(1,16)=7.5, Bonferoni-adjusted P=0.02) and 

the interaction with season was not significant. There was a significant drop of the mean 

diversity between disturbed forest and recently cleared fields (F(1,16)=14.2, Bonferoni-

adjusted P=0.003). Thus disturbed forests were found to have the highest species richness and 

diversity compared to intact forest and recently cleared fields. 

 

 

 

 

 

 

 

 

     Species Diversity (Shannon Index) 

FIGURE 10 Species diversity (Shannon Index) among zones and season  

(Zone1=intact forest, Zone2=disturbed forest, Zone3=recently cleared field). 
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2.3. Rodent density 

The total rodent density varied from 0 to 48 animals/ha. We observed clear differences between 

zones during the rainy season with an increase of density along the deforestation gradient. Intact 

forest and recently cleared fields had the highest densities and the greatest variation of density 

among sites. Density in intact forest and disturbed forest did not seem to vary between the 

seasons but we observed a sharp fall of densities during the dry season in the recently cleared 

fields. 

Rodent density estimates (after Log+1-transformation) varied significantly among zones (Split 

plot factorial ANOVA F(2,16)=10.6, P=0.001) and the zone effect on density was influenced 

by the season (F(2,16)=5.8, P=0.013). Disturbed forest had a significantly higher mean density 

than intact forest (F(1,16)=6.1, Bonferoni-adjusted P=0.049) and significant lower than recently 

cleared fields (F(1,16)=15, Bonferoni-adjusted P=0.002). The season did not change the trend 

of difference between intact forest and disturbed forest but significantly influenced the 

difference between disturbed forest and recently cleared fields (F(1,16)=11.4, P=0.004), with 

decreasing densities from disturbed forest to recently cleared fields in dry season (Figure 11). 

 

 

 

 

 

 

Total Rodent Density Estimation  

FIGURE 11Rodent density estimate (in animal/ha) per zone by season  

Z1=intact forest, Z2=disturbed forest, Z3=recently cleared field. 
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2.4. Species composition  

Analysis of the Bray-Curtis dissimilarity matrix between zones and sites showed that rodent 

species composition was statistically different among zones during both the wet season 

(PERMANOVA, F(2,12)=6.8, P=0.002) and the dry season (PERMANOVA, F(2,12)=4.6, 

P=0.001). Intact forest and recently cleared fields had the greatest dissimilarity during both 

seasons (PERMANOVA, F(1,12)=7.1, Bonferoni-adjusted P=0.004 for the wet season and 

F(1,12)=9, Bonferoni-adjusted P=0.002 for the dry season). Based on this index, there was no 

statistically significant difference in rodent composition between intact forest and disturbed 

forest. The difference of rodent species composition between disturbed forest and recently 

cleared fields was season-dependent. Indeed, we found a significant dissimilarity between them 

during the rainy season (PERMANOVA, F(1,12)=5.9, Bonferoni-adjusted P=0.026) but this 

dissimilarity was no longer found during the dry season. Disturbed forest and recently cleared 

fields therefore appeared to be more similar in their rodent species composition during the dry 

season than during the wet season. Because we found clear differences between zones, it is 

therefore of interest to look more closely on how deforestation impacts rodent species 

composition. In particular trying to understand changes in the presence and abundance of 

species during the deforestation process and to determine which of these species are Leptospira 

carriers. 

The correspondence analysis plot (figures 12 & 13) illustrates the distribution of rodent species 

across the zones of each sites per season. The first and second axes explained 65.5% of the total 

inertia for the rainy season and 65.3% for the dry season. Three axes were kept for the dry 

seasons and they explained 82.23% of the total inertia.  
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FIGURE 12 & FIGURE 13 : Correspondence Analysis Graphs for 

the rainy season (left) and the dry season (right) The dots represents 

the sites and their colour the zone (Z1=intact forest green, 

Zone2=disturbed forest blue, Zone3=recently cleared field red). 
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The figures 14 & 15 represent the distribution of rodent species according to sites and zones on 

the first two axes of a correspondence analysis (COA) for the rainy and the dry season 

respectively. 

In the rainy season, sites and species from intact forest and recently cleared fields are clearly 

segregated along the first axis. The second axis is strongly associated with B. berdmorei. All 

sites lined up on the first axis which could be the results from the spatio-temporal gradient. 

Maxomys surifer and Rattus andamanensis demonstrated relatively strong association with 

intact forest. Mus cervicolor, Mus caroli and Rattus exulans tended to prefer recently cleared 

fields but the preference was not strong on the first axis. Other species showed lower habitat 

preferences such as Niviventer fulvescens which were found in disturbed forest and intact forest 

and finally Rattus sp.R3 demonstrated a more generalist trend and was trapped in all three 

zones. 

The between-class analysis plot confirmed these zone preferences by regrouping species and 

sites by zone. The zone class was significant in the rainy and dry seasons (Monte-Carlo 

permutation test, based on 999 replicates, p=0.001 and p=0.022, respectively). Maxomys surifer 

was present in both intact forest and disturbed forest, but was more abundant in intact forest, 

represented by the position of this species at the junction of intact forest and disturbed forest 

ellipses and closest to intact forest group. Rattus sp.R3 seemed strongly associated to disturbed 

forest and Mus cervicolor to recently cleared fields. The greater species diversity of disturbed 

forest was visible with the long arrows around its gravity centre (sites less homogenous within 

that group) with species from intact forest and recently cleared fields, disturbed forest, in line 

with previous findings. 

Disturbed forest and intact forest shared more species than with recently cleared fields and had 

more similar species compositions during the rainy season. This trend was reversed during the 

dry season, where all species captured in recently cleared fields were also present in disturbed 

forest (illustrated by closer ellipses and overlapping species in figure 14).  
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FIGURE 14 Between-class correspondence analysis of species abundance among the three zones. The dots represent the sites, 

and colors the zones (Z1=intact forest green, Zone2=disturbed forest blue, Zone3=recently cleared field red). The sites are 

linked to the class-gravity, center of the ellipse.  

  

 

FIGURE 15 Between-class correspondence analysis of species abundance among zones during the dry season The dots 

represent the sites, and colors the zones (Z1=intact forest green, Zone2=disturbed forest blue, Zone3=recently cleared field 

red). The sites are linked to the class-gravity, represented by the center of the ellipse.  
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2.5.  Zone preferences of species  

Habitat specialization of rodent species was measured with the Shannon index, and represented 

in Figure 16, where species were regrouped by zones (based on the zone in which the highest 

number of captures were obtained for each species). A high Shannon index indicates a high 

habitat diversity of the species and thus a low habitat specialization (generalist species), 

whereas a low index indicates greater habitat specialization of the species (specialist species). 

Most species captured in intact forest and recently cleared fields, were specialist species, except 

for Maxomys surifer and Mus cervicolor, respectively, which were also present in high numbers 

in disturbed forest. All species found in disturbed forest were generalist species that is, able to 

adapt to multiple habitat types and were also found in intact forest and/or recently cleared fields.  

 

For predominant species captured in at least two different zones (M. surifer, R. sp R3 and M. 

cervicolor), the effect of the season on the habitat (zone) was assessed using a negative binomial 

regression on the number of individuals from a given species, with season and zone as fixed 

effects and site as grouping variable. Mus cervicolor had a clear difference of distribution 

between disturbed forest and recently cleared fields depending on the season. There was a 

significantly higher abundance of M. cervicolor in recently cleared fields than in disturbed 

forest during the rainy season (coef. = 2.15 [1.15; 3.15] P<0.001), indicating a strong preference 

to the agricultural fields during the rainy season while there was no difference between the 

disturbed forest and recently cleared fields during the dry season. 

FIGURE 16 Habitat diversity measured with the Shannon Index, per species 

Rodents are ranked according to their habitat diversity and grouped by zone in which the highest number of 

captures was obtained (rainy and dry seasons taken together). 

(Zone1=intact forest green, Zone2=disturbed forest blue, Zone3=recently cleared field red) 

Zone1 

Zone3 

Zone2 
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Rattus sp.R3 was in significantly higher abundance in disturbed forest (Coef.=2.44 [0.92; 3.95], 

P=0.002) and in recently cleared fields (Coef.=1.7 [0.23; 3.27], P=0.024) compared to intact 

forest during the rainy season though there was no significant differences of abundance between 

zones during the dry season. 

No zone or season effect was detected for M. surifer.  

3. Leptospira infection  

3.1.  Pathogenic and Intermediate Leptospira PCR results 

A total of 522 animals were tested and 63 were found positive with the Leptospira species real-

time PCR, giving an overall prevalence of 12.1%. Leptospira-positive individuals were found 

in seven of eleven species and prevalence within species varied from 0 to 100%. A number of 

species (Berylmys berdmorei, B. bowersi, Leopoldamys sabanus, Rattus andamanensis and 

Vanderleuria oleracea) were rarely captured and the very low sample size did not allow 

estimating a reliable prevalence of Leptospira infection. Table 4 provides a summary of 

Leptospira prevalence (as determined by the Leptospira sp. real-time PCR assay) by rodent 

species, zones and season. 

3.2. Pathogenic Leptospira PCR results 

The pathogenic Leptospira real-time PCR protocol determined that 14 animals were positive 

for Leptospira spp. with pathogenic potential in humans (Table 3). Twelve of these strains were 

detected in the rainy season, all originating from Mus cervicolor, of which eleven were captured 

in recently cleared fields and one in disturbed forest. 

In the dry season, two animals were positive for pathogenic Leptospira: one Maxomys surifer 

captured in disturbed forest and one Berylmys bowersi from intact forest. The sample size was 

too small to do further statistical analyses on the results from the specific-PCR. 

TABLE 3 Pathogenic Leptospira prevalence among rodent species and zones per season 

Species 

Rainy season 2015 
Rainy season 

Prevalence 

 

Dry season 2016 

Dry season 

Prevalence Intact 

forest 

Disturbed 

forest 

Recently 

cleared fields 

Intact 

forest 

Disturbed 

forest 

Recently 

cleared 

fields 

Berylmys bowersi - - - - 50% (1/2) - - 50% (1/2) 

Maxomys surifer 0/34 0/15 - (0/49) 0/17 11,1% (1/9) - 3,8% (1/26) 

Mus cervicolor - 2,6% (1/39) 4,8% (11/228) 4,5% (12/267) - 0/36 0/33 (0/69) 

Zone prevalence 0%(0/39) 1% (1/101) 4.2% (11/259) 13.5%(12/399) 3.8%(1/26) 1.6% (1/62) 0%(0/35) 1.6% (2/123) 



60 

 

 

TABLE 4 Leptospira prevalence (from the Leptospira species essay) among rodent species and zones per season.  (Zone1= Intact forest ; Zone2=Disturbed forest ; Zone3= Recently 

cleared fields) Numbers of positive samples over numbers of captured animal is (given in parentheses). The 95% confidence interval is given for the total prevalence per species in the 

rainy and the dry seasons. Species are ordered according to their total abundance. 

Species 
Rainy Season 2015 Prevalence per 

species (Rainy) 

Dry Season 2016 Prevalence per species 

(Dry) Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3 

Mus cervicolor - 20.5% (8/39) 14.5% (33/228) 15.4 ± 6% (41/267) - (0/36) 3% (1/33) 1.4 ± 5% (1/69) 

Rattus sp. R3 (0/3) 19% (8/42) (0/21) 12.1 ± 10% (8/66) 20% (1/5) 23.1% (3/13) (0/1) 21.1 ± 21% (4/19) 

Maxomys surifer 2.9% (1/34) 6.7% (1/15) - 4.1 ± 10% (2/49) 5.9% (1/17) 22.2% (2/9) - 11.5 ± 15% (3/26) 

Mus caroli - - 16.7% (1/6) 16.7 ± 33% (1/6) - - - - 

Niviventer fulvescens -  (0/4) - 0% (0/4) (0/1) (0/1) - 0% (0/2) 

Rattus exulans - - 25% (1/4) 25 ± 40% (1/4) - - - - 

Berylmys berdmorei  (0/1)  (0/1) - 0% (0/2) - (0/1) - 0% (0/1) 

Vanderleuria oleracea - - - - - (0/2) (0/1) 0% (0/3) 

Berylmys bowersi - - - - 50% (1/2) - - 50 ± 48% (1/2) 

Leopoldamys sabanus - - - - (0/1) - - 0% (0/1) 

Rattus andamanensis 100% (1/1) - - 100% (1/1) - - - - 

Prevalence per zone 5.1% (2/39) 
16.8% 

(17/101) 
13.5% (35/259) 13.5% (54/399) 

11.5% 

(3/26) 
8.1% (5/62) 

2.9% 

(1/35) 
7.3% (9/123) 
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3.3.  Sequencing results 

A nested PCR was performed on all samples that were positive for pathogenic Leptospira to 

determine the bacterial species that were carried by the rodents. Of the fifteen samples that were 

positive for pathogenic Leptospira, an amplicon was successfully produced by the nested PCR for 

eight animals. These PCR products were then sequenced to determine the Leptospira species. 

Three different species of Leptospira spp. were identified (Table 5).   

 

TABLE 5 Pathogenic Leptospira species identified in the rodent species 

Rodent Species Season Zone 
Number of 

infected animals 

Sample 

type 
Leptospira spp 

Berylmys bowersi Dry Intact forest 1 Urine 
Leptospira interrogans  

serovar Icterohaemorrhagiae 

Maxomys surifer Dry 
Disturbed 

forest 
1 

Urine Leptospira borgpetersenii 

Kidney Leptospira weilii serovar Topaz 

Mus cervicolor Rainy 
Recently 

cleared fields 
6 Urine Leptospira borgpetersenii 

 

 

L. borgpetersenii was identified from six mice. Two species were found in the same rodent, from 

two different samples (kidney and urine): L. weilii and L. borgpetersenii in a Maxomys surifer and 

finally L. interrogans was identified in Berylmys bowersi. Figure 17 represents the phylogenetic 

tree built using SeaView software with the BIONJ method. Reference Leptospira species 

sequences from GenBank were added to the alignment and phylogenetic tree.  
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Zone3 

Zone2 

Zone1 

FIGURE 17 Phylogenetic analysis for the rrs gene of Leptospira sp. isolated from rodents based on BIONJ method. 

Sequences from our samples are indicated with symbols per zone. (Zone1=Intact forest, green ; Zone2=Disturbed 

forest  blue ; Zone3= Recently cleared forest Leptospira species from GenBank were added to the alignment for 

comparison.  
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3.4. Statistical analysis on Leptospira infection 

3.4.1.  Univariate analysis 

Univariate analysis of leptospiral infection revealed that season and sex significantly affected 

individual infection: males were significantly more likely to be infected than females (OR=2.27 

[1.30-3.98], p=0.003) and rodents were more likely to be infected during the rainy season 

(OR=2.48 [1.17-5.24], p=0.013). However, there was no significant effect of rodent species or 

zones on the probability of infection. Leptospira prevalence was significantly different among sites 

(Chi2 P<0.0001). It is therefore important to conduct multivariate analysis with sites as a cluster 

effect, in order to take into account the matching of zones within sites in this study design. 

The statistical association between the probability of infection and the season was not significant 

when stratified by site. Indeed, Leptospira prevalence in the dry and the wet seasons did not differ 

significantly within site except for one site which had zero infected rodents during the dry season. 

3.4.2.  Multivariate analysis 

Species and zones were highly correlated and were therefore separately included in the models. 

The conditional logistic regression with clogit function (using STATA) with the explanatory 

variables: season and zone, or season and species as fixed effects, and site as a group factor gave 

no statistically significant relationships between the probability of infection and any of these 

variables (all P>0.10). 

The probability of infection was significantly correlated to the sex, male were more likely to be 

infected than female (Adjusted OR=2.37 [1.30-4.31] P=0.005). The age (juvenile or adult) did not 

influence the probability of infection.  
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PART 6: DISCUSSION 

1. Rodent and deforestation 

Tropical forests in Cambodia have been dramatically transformed in the past few years. The 

ecological and epidemiological consequences of this massive deforestation have not yet been 

assessed. Our data support the hypothesis that forest clearing and its conversion into agricultural 

fields engender manifest modification of rodent communities during these habitat changes.  

The results of our study showed that deforestation clearly impacted the rodent species richness and 

diversity and greatly modified the overall rodent species composition. Species richness and 

diversity increased during the first steps of the deforestation process then decreased reaching a 

minimum in recently cleared fields. Species richness and diversity were greatest in disturbed 

forest, composed of species from both the forest and the agricultural fields. The disturbed forest 

rodent community appeared to be a mixing of species from the intact forest that persisted in the 

disturbed forest environment and of invading species from plantations. Such a mixing of species 

in the disturbed forest could favour spill over of pathogens between species, including Leptospira. 

Bernard et al. (2009) observed a similar pattern with increased species richness and diversity of 

small mammal species in logged areas. Though they could not provide conclusive evidence as the 

study was conducted at a single local scale. Conversely, Wells et al (2007) observed contrary 

results with higher species richness and diversity in unlogged forest than logged forest in Borneo. 

In their study, this decline of diversity and richness was attributed to the reduction of rare species 

due to logging. 

Our data identified a number of specialist species that were only found in the forest and seemed 

unable to adapt to the habitat disturbance caused by deforestation. However, one predominant 

forest species, Maxomys surifer persisted in disturbed forest. Conversely, some species were 

mostly found in agricultural land and could be considered synanthropic specialists. Mus cervicolor 

was found in the recently planted zone of all sites, regardless of the crop type (cassava, corn and 

rice field). Mus cervicolor, was also found in disturbed zones, possibly indicating an ability to 

invade disturbed forest early during the deforestation process. Another key species along the 

deforestation chronotone appeared to be Rattus sp R3, which was found in all three zones but with 

higher abundance in disturbed forest. Forest disturbance may provide an advantage to this species, 

allowing its population to grow.  
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Following early invasion of disturbed areas by synanthropic generalist species, crop plantation on 

cleared land resulted in the persistence of some generalist species (Rattus tanezumi, Mus 

cervicolor) and the replacement of others with synanthropic specialists, reaching high rodent 

densities.  

Deforestation resulted in a significant increase of rodent densities during the process of land 

clearing. The highest rodent densities were detected in the recently planted fields. Though, their 

low richness and diversity indicated that the high density was due to a single species. There was a 

clear domination of the rodent community in recently cleared fields by Mus cervicolor.  

Seasonality  

Rodent densities in recently cleared fields appeared to be greatly influenced by the season, with 

high densities observed in the rainy season and a clear decrease during the dry season. In contrast, 

rodent diversity, richness and density in forest areas (intact and disturbed) did not vary greatly 

with the season, indicating some level of stability over the seasons. The change of total rodent 

density in agricultural zones was driven by Mus cervicolor, the most abundant species in this zone. 

In addition, there was a clear seasonal effect on Mus cervicolor zone preference. This species had 

a marked preference for agricultural fields during the rainy season but was found indifferently in 

the disturbed forest and the fields during the dry season. Additionally, field observations indicated 

that, even in agricultural zones, these mice were mostly captured in areas of denser vegetation in 

in the dry season. This suggests that the harsh conditions in the fields in the dry season (lower food 

and water resources) resulted in a retreat of this species into the nearby disturbed forest where food 

and cover may be more accessible. A study (Douangboupha et al., 2009) in Lao showed similar 

results but with migration of rodents from the fields to human settlements.  

Rattus sp.R3 also displayed seasonal changes of distribution across zones, with higher abundance 

in agricultural zones in the rainy season (possibly driven by food abundance). This trend was also 

observed in previous studies in the region (CERoPath).  

These seasonal movements among the deforestation stages and fluctuations in densities, influenced 

by agricultural activities, may have important consequences on the movement of Leptospira and 

other rodent-borne pathogens between zones, on their amplification, and on the exposure of 

humans to these pathogens. Our results allowed us to identify the species that could facilitate 

contact between forest and synantropic species. Thus Maxomys surifer, Rattus sp.R3 and Mus 

cervicolor represented key species between the different stages of deforestation. 
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2. Leptospirosis 

Surprisingly, we did not find significant variation of Leptospira prevalence between seasons. 

Previous studies have shown a seasonality of Leptospira in rodents in South East Asia with an 

increase of prevalence during the wet season (Cosson et al., 2014 ; Ivanova et al., 2012). Our data 

did not show such seasonality for Leptospira species prevalence. The low sample size limited our 

ability to assess this season effect on pathogenic Leptospira infection. A higher probability of 

infection was found during the wet season for the pathogenic and intermediate species (from the 

Leptospira sp. PCR). This difference of prevalence was however explained by only one site, which 

had no positive rodents during the dry season. The prevalence of the other four sites did not vary 

significantly between the two seasons. 

Our analyses revealed that male rodents had a higher probability of being infected than females. 

This finding is consistent with previous studies (Cosson et al., 2014) . Possible explanations raised 

by these studies were that males are more susceptible to infection because of the cumulative effect 

of androgens reducing their immune competence and steroid hormones altering their behaviour 

(Klein, 2000). Males have a more aggressive behaviour and larger home-ranges, which promotes 

greater contact with other rodents, and may increase their risk of exposure. 

Leptospira prevalence in rodents did not significantly vary across rodent species. Most rodent 

species were found to be infected with pathogenic or intermediate Leptospira species. 

Nevertheless, the disproportion of sampling size between species prevented us from highlighting 

any differences in prevalence between species. Human pathogenic species were found in three key 

rodent species: Mus cervicolor, Berylmys bowersii and Maxomys surifer. However, the low 

detection rate of pathogenic Leptospira strains meant that it was not possible to determine if these 

species were maintenance host and therefore if public health risks were associated with any 

individual rodent species. The presence of pathogenic Leptospira in species from intact and 

disturbed forest, though in low number, indicated that forestry activities could represent significant 

risk factor of human leptospirosis.  

The PCR we used to genotype the pathogenic Leptospira species originated from a previously 

published method (Boonsilp et al., 2011). The alignment of the 481-bp rrs fragment of the eight 

samples showed the three different Leptospira species presented earlier but the differences seen at 

the nucleotide level were minimal. Blast analysis of these fragments split samples into three 

distinct Leptospira species. However, it is important to note that the sequenced fragment was 
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relatively short and somewhat conserved between species. Therefore, although it is a good 

indication of the presence of pathogenic Leptospira, in the future it may be more prudent to 

distinguish between Leptospira species by sequencing a larger fragment of the rrs gene or a more 

variable region of the genome. 

Our findings are consistent with the circulation of zoonotic Leptospira species in rodent 

communities in SEA (Cosson et al., 2014). The three pathogenic Leptospira species we identified 

in rodents had previously been associated with human cases worldwide and two of them had been 

isolated in human in Cambodia: L. interrogans and L. weilii (Mueller et al., 2014). The use of 

serological classification of Leptospira in the different studies conducted in Cambodia limited our 

comparison of Leptospira species circulation in human and in rodents (Berlioz-Arthaud et al., 

2010 ; Laras et al., 2002).  

L. interrogans is mainly known to cause illness in humans and Icterrohaemorrhagiae serovar is 

often associated with generalized form of leptospirosis and with poorer prognosis (Segura, 2005).  

However, we could not identify with certainty to which serovar corresponded our sequence as 

there were minimal differences in the blasting result between serovars (similar alignment score, 

query cover percentage and identity percentage).  

Though less common, L. borgpetersenii and L. weilii were also associated with human disease in 

the previous studies. Human cases of leptospirosis were diagnosed with L. weilii serovar Topaz in 

Australia and were often associated with cattle farming and banana plantations. Contamination of 

the environment by infected rodents or cows is thought to be the main route of transmission of L. 

weilii (Corney et al., 2008). 

L. borgpetersenii is mainly a pathogen of cattle and can also causes infections in humans. In cattle, 

the infection poses significant problems from reproductive dysfunction to high mortality rates 

(Chideroli et al., 2016). This Leptospira species unusually requires strict host-to-host transmission 

(Bulach, 2006). Interestingly, L. borgpetersenii has the smallest genome among the pathogenic 

Leptospira species, and this genome reduction is believed to reduce the species capacity to survive 

in the environment. Therefore L. borgpetersenii is more likely to be transmitted by direct contact 

with contaminated body fluids (Xu et al., 2016).   

Directly transmitted diseases can be modelled either with a density-dependant transmission, 

assuming that the rate of transmission increases with the host population density (Brearley et al., 

2013 ; McCallum, Dobson, 2002) or with a frequency-dependant transmission, assuming that 
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transmission increases with the proportion of infected hosts within a population (Brearley et al., 

2013 ; Begon et al., 2002). However, the separation between the two transmission models is not 

always straightforward and the transmission often follows intermediate patterns. Thus, we cannot 

ascertain which transmission model is followed by leptospirosis. Nevertheless, it is likely that 

higher density will increase contact and thus may increase opportunities for L. borgpetersenii 

transmission. Moreover, our data evidenced a higher prevalence in males which could be explained 

by their behaviour. A higher density is therefore likely to enhance the competitive behaviour of 

male rodents for territory and females, and consequently increases intra-specific contact and 

subsequent transmission of L. borgpetersenii. 

Additionally, L. borgpetersenii was mainly found in Mus cervicolor whose density and distribution 

were greatly influenced by the season. This could result in seasonal fluctuations of Leptospira 

occurrence and seasonal increases of the risk of outbreak. 

One Maxomys surifer from a disturbed forest zone during the dry season was also found to excrete 

L. borgpetersenii, the same Leptospira species that was found in mice during the rainy season.  

Because no Maxomys surifer from the intact forests were found to carry pathogenic Leptospira, it 

is possible that this species is not a usual host for L. borgpetersenii. Dispersion of Leptospira-

carriers Mus cervicolor into disturbed forest zones could have resulted in an introduction of the 

bacteria into these areas and its transmission to other species such as Maxomys surifer. In Cosson 

et al study (2014), L. borgpetersenii was mainly found in Mus species (Mus cervicolor, Mus caroli 

and Mus cookii) and in Rattus species occurring in rice-fields or households (Rattus losea, Rattus 

argentiventer) and only in one Maxomys surifer.   

However, we cannot conclude that this is the case as only one animal was found positive.  

Moreover, two different Leptospira species were identified in the same animal, one from a urine 

sample and the other from a renal sample. This could indicate a co-infection of the two Leptospira 

species. L. weilii that was found in the kidney but not in the urine, which could be explained by 

renal colonisation without excretion. L. borgpetersenii was extracted from the urine but not from 

the kidney as would be expected. It is also possible that the presence of multiple species is an 

artefact of the sequencing limitations described previously which would imply that only one 

Leptospira species was infecting this animal and better sequencing approaches are required to 

conclusively determine the infecting species. 
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Additionally, the presence of two species in the same area does not necessarily imply that there 

are contacts between them. Identifying intra- and inter-specific contact patterns in each zone would 

be essential to understand the transmission of Leptospira in these rodent communities. 

Nevertheless, the presence of Leptospira infected M. cervicolor in disturbed forest and recently 

converted agricultural land is a clear indication of an introduction of pathogenic Leptospira strains 

very early in the deforestation process. This highlighted that forestry activities could be potential 

risk factor of Leptospira transmission to human. Deforestation but also hunting and consumption 

of wild rodents could therefore increase the risk of leptospirosis.  

3. Methodological considerations 

3.1. Design 

Previous studies found modification of rodent composition consecutive to forest fragmentation 

and deforestation (Wells et al., 2007 ; Charles, Ang, 2010 ; Umetsu, Pardini, 2007 ; Suzán, Armién, 

et al., 2008) with a similar pattern of reduction in specialist forest species and invasion of 

opportunist species. However, these studies compared logged versus unlogged forest and often 

compared sites that were geographically different. Morand et al (2015) stated that the observed 

rodent community composition changes were likely due to the geographical distribution of the 

species rather than habitat fragmentation, as it induced sampling bias. Matching three stages of the 

deforestation process within each site and allowed comparing the rodent species diversity and 

richness between the zones of the same site (and not between zones of different sites), providing 

more confidence that the observed differences are related to the deforestation process, and not site-

to-site variation.  

Landscape changes have temporal components as well as a spatial components and to better 

understand how they influence disease infection and prevalence, it is important to incorporate time 

in studies (Brearley et al., 2013). Longitudinal design are ideally suited to study temporal processes 

such as deforestation, although the required length of follow up often make this design impractical 

and too costly. In contrast, the fast rate of deforestation in Cambodia, and its unpredictable nature 

were major impediments in the planning and implementation of longitudinal studies. A 

chronosequence design was used as an alternative to longitudinal studies, substituting space for 

time. This method is often used in ecology to study vegetation or geological succession but has 

drawbacks related to the underlying assumptions (Johnson, Miyanishi, 2008). A critical 

assumption of chronosequence designs requires that each zone in the deforestation sequence only 
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differs by the stage (time) along the process and follow the same pattern. This assumption implies 

that abiotic and biotic conditions remained constant over the time span of the deforestation process 

and during our study and that all zones had the same pattern of change. In our study, the three 

zones (intact forest; disturbed forest; recently cleared forest) were matched in close proximity in 

the same geographical location and the recently cleared fields were always less than one-year old 

since last at the intact forest stage. The fast rate of deforestation and the simultaneous sampling of 

all zones of a site ensured limited changes of biotic and abiotic factors, other than those related to 

the deforestation process. This avoided regrowth and recovery of the original vegetation structure 

in the logged forest. 

 However, “intact forest” often had ongoing selective logging and it was difficult to find untouched 

forest areas. Thus, we were not able to cover the entire chronotone of deforestation, starting from 

the pristine forest, since these no longer exist in most regions of Cambodia.  

3.2. PCR assay 

In previous studies there have been a large number of genes targeted by PCR to detect Leptospira 

infection. The rrs, gyrB and secY genes are common for all Leptospira species including 

pathogenic and non-pathogenic species. The ligA, ligB and LipL32 genes are restricted to 

pathogenic Leptospira. Therefore, PCRs targeting these genes detect pathogenic species only 

(Levett, 2001). This limited our ability to compare the Leptospira prevalence we found to other 

studies in SEA as the PCR methods often differed from one publication to another. Ivanova et al 

(2012) used the Mérien et al protocol (1992) that detected all Leptospira species including 

saprophytic species. Cosson et al (2014) performed a real-time PCR targeting the LipL32 gene 

similarly to our specific-PCR. They found a prevalence of 4% in Mondulkiri province (out of 125 

samples) and our overall Leptospira prevalence including both seasons was 3% (out of 522 

samples).  

Initially samples were screened using the real-time PCR method previously described 

(Thaipadunpanit et al., 2011 ; Slack et al., 2007 ; Smythe et al., 2002), targeting the rrs-gene. This 

allowed us to detect both pathogenic and intermediate pathogenic Leptospira species.  

According to Thaipadunpanit et al. (2011) and Slack (2007)  samples with a cycle threshold (CT) 

value below 40 should be considered positive. However, when we ran our analyses, we observed 

high levels of background for many samples with a CT between 35 and 40.We thus defined 

positive samples as having a CT below 35. Samples with a CT between 35 and 40 that displayed 
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a well-defined sigmoidal curve were considered potentially positive and will be retested. 

Comparing our results with studies that used the same PCR method was thus problematic as their 

cut off was possibly different.  

The second real-time PCR from Stoddard et al. (2009)   targeted the LipL32 gene which is found 

only in pathogenic species. Three samples were positive with this pathogen specific PCR but were 

negative with the broad range Leptospira PCR. This is not entirely unexpected as the main 

advantage of a broad range PCR is to detect the largest panel of Leptospira species possible. The 

primers are designed to match a gene conserved in the widest range of species but if this sequence 

is not conserved in a species it will escape detection. Thus, this could explain why the three 

samples were identified using specific PCR methods but escaped the broad range detection. It is 

also possible that these PCR result were false positives as the fragments could not be amplified. 

3.3. Barcoding 

The individuals of Rattus sp.R3 “species” identified by barcoding, were capture in all three zones 

during both the rainy and dry seasons. However, the taxonomic status of these rodents is unclear 

and has not yet been explored. It seemed several species could be included in this clade. Moreover, 

the morphology of some of the captured rats was quite different but no clear species identification 

was possible, thus they were grouped with Rattus sp.R3 for the analysis, but this group may 

actually be comprised of multiple Rattus species. In similar studies (Morand et al., 2015 ; 

CERoPath, [sans date]) individuals from this clade were regrouped with Rattus tanezumi species, 

genetically the closest.   
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PART 7: CONCLUSION 

 

Leptospirosis is major public health problem in Cambodia due to its endemic and yet neglected 

status.  Socioeconomic conditions, host density, climatic and environmental conditions and 

occupational habits of humans are determinants of the incidence and prevalence of the disease in 

humans. There is a need of transdisciplinary approaches to understand the complex role of these 

different determinants in leading to human infections. These approaches will need to include an 

epidemiological approach of Leptospirosis to identify the risk factors for exposure. There is a need 

to include ecological components as well: the Leptospira ecology to describe its survival in the 

environment, the host ecology to assess the transmission modes and describe the relationship 

between rodent population parameters and infection rates, and finally the ecosystem ecology to 

understand how landscape alteration affects all of the aspects above and its impact on human 

leptospirosis risk. 

The current study, provided important information about the ecology, epidemiology and 

transmission of Leptospira in rodents in Cambodia. These findings may have important public 

health consequences, particularly in rural areas where the burden of leptospirosis is believed to be 

highest. Studies in these sites to evaluate the exposure of humans and domestic animals to 

leptospires are ongoing. These studies will investigate the seroprevalence of Leptospira in people 

engaged in land-clearing and planting to determine factors associated with a higher risk of 

Leptospira exposure. Water was collected from streams or puddles along random transects 

between traps of all three zones. Analysis of the water samples will provide information on the 

presence or absence of leptospires in the environment of each zone and on the Leptospira spp. 

strains if present, and their importance in Public Health. 

Further work is needed in the public health sector to improve the knowledge of clinicians about 

the symptoms of leptospirosis and greater capacity for the laboratory detection of Leptospira in 

patients is urgently needed in Cambodia and the region.  
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APPENDIX 1: Serological classification of Leptospira spp 

 

Table A : Serogroups and serovars of pathogenic leptospires (L. interrogans complex) 

SOURCE : Levett (2011) 
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APPENDIX 2: Serological and genomic classification of Leptospira spp 

 

 

Table 1 : Genomic anc serologic classification of Leptopira spp 

SOURCE : Bharti (2003)  
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APPENDIX 3 : Host - serovars associations 

 

Table : Typical reservoir hosts of common leptospiral serovars 

SOURCE : Bharti (2003) 
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APPENDIX 4 : Summary of the trend of infectious disease response to land 

use changes from reviews 

 

 
 

With n, the number of documented observational or experimental studies assessed in the review  

 

 

   

53%
(n=10)

26% (n=5)

21% (n=4)

Brearley et al. Review (2012)

Increase

Variable responses

(increase and decrease)

Decrease

56,9%
(n=116)

30,4%
(n=62)

10,3%
(n=21)

2,5% (n=5)

Gottdenker et al. Review (2014)

Increase

Variable responses

(increase and decrease)

Decrease

No significant

association
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APPENDIX 5 : Capture sites on the Cambodia Map 

 

 

 

 

 

 

 
 

Figure 1: Cambodia Map with the five sites of capture 

 

 

  

 Site 1 

 

 Site 2 

 

 Site 3 

 

 Site 4 

 

Site 5 

Mondulkiri  
Province 



 

90 

 

APPENDIX 6 : Gridline 

 

Trapping gridline in Site 2 in Mondulkiri province. Each trap was located with a global positioning 

system (GPS) receive. 

 

 

 

 

 

 

 

 

 

Picture 1: 

Locally-made non-lethal Havahart trap.   
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APPENDIX 7 : Animal identification 
   

     

General Marking 

Site Zone Trap Number Capture Class Tag # Fate Animal ID                      

     NC (new capture) 

 RC (recapture) 

 

   RT (Release with tag) 

 D(Dead) 

 E(escape without tag) 

 ( Site-Zone-Trap-Tag# e.g. S1-Z3-

T45-0005) 

General Male Female 

Sex Age Species Testicule score Testicule length Vagina Teats score Condition 

 Male 

 Female 

 Adult 

 Juvenile 

   Partially Descended 

 Non Descended 

 Fully Descended 

   Closed 

 Open 

 

 Indistinct 

 Raised 

 Lactating 

  

Measurements 

Left hind-

foot length 

Left ear 

length 

Anal genital 

distance 

Head + 

body length 

Skull 

length 

Tail 

length 

Total (bag+ 

animal) weight 

Bag 

weigth 

Animal 

Weigth 

Number 

injuries 
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APPENDIX 8: Exemple of Barcoding protocol and result 

 
Gel picture: detection of rodent DNA, diluted and extracted either with the RNeasy kit or DNeasy kit. 

 

 
 

Sequence trimming, cleaning and analysis of a 700 bp fragment and alignment of the reverse and 

forward sequences on CLC Genomic.  

 

 

 

 

 

 

 

 

 

 

 

Blasting results on NCBI  
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APPENDIX 9: Capture tables 

 

Species 

  Rainy Season 2015 

 Site 1   Site 2   Site 3   Site 4   Site 5  Total Rainy 

Season   Z1 Z2 Z3   Z1 Z2 Z3   Z1 Z2 Z3   Z1 Z2 Z3   Z1 Z2 Z3   

Berylmys berdmorei  0 0 0  1 0 0  0 1 0  0 0 0  0 0 0  2 

Maxomys surifer  3 5 0  0 1 0  4 2 0  9 3 0  18 4 0  49 

Mus caroli  0 0 1  0 0 0  0 0 0  0 0 0  0 0 5  6 

Mus cervicolor  0 20 40  0 6 39  0 13 49  0 0 35  0 0 65  267 

Niviventer fulvescens  0 0 0  0 1 0  0 0 0  0 0 0  0 3 0  4 

Rattus andamanensis   1 0 0  0 0 0  0 0 0  0 0 0  0 0 0  1 

Rattus exulans  0 0 0  0 0 3  0 0 1  0 0 0  0 0 0  4 

Rattus sp. R3  0 10 4  0 12 2  1 11 11  0 0 3  2 9 1  66 

Total   4 35 45   1 20 44   5 27 61   9 3 38   20 16 71   399 

Tupaia belangeri   0 0 0  0 0 0  0 0 0  0 0 0  2 4 0  6 

 

Species 

  Dry Season 2016 

 Site 1  Site 2  Site 3  Site 4  Site 5  Total Dry 

Season  Z1 Z2 Z3   Z1 Z2 Z3   Z1 Z2 Z3   Z1 Z2 Z3   Z1 Z2 Z3   

Berylmys berdmorei   0 0 0  0 0 0  0 0 0  0 0 0  0 1 0  1 

Berylmys bowersi  0 0 0  2 0 0  0 0 0  0 0 0  0 0 0  2 

Leopoldamys sabanus  1 0 0  0 0 0  0 0 0  0 0 0  0 0 0  1 

Maxomys surifer  1 3 0  4 1 0  3 0 0  2 1 0  7 4 0  26 

Mus cervicolor  0 3 2  0 4 10  0 28 14  0 0 1  0 1 6  69 

Niviventer fulvescens  0 1 0  0 0 0  1 0 0  0 0 0  0 0 0  2 

Rattus sp. R3  1 0 0  0 2 1  2 2 0  0 2 0  2 7 0  19 

Vanderleuria oleracea  0 0 0  0 0 0  0 2 1  0 0 0  0 0 0  3 

Total   3 7 2   6 7 11   6 32 15   2 3 1   9 13 6   123 

Tupaia belangeri    0 1 0  0 0 0  1 1 0  0 0 0  0 5 0  8 

Tables : Number of captured individuals per species per zone and per site for the Rainy and the dry season 
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APPENDIX 10 : Relative abundance of each species per season 

 

            
                    Wet Season          Dry Season 

 

Relative abundance of each species in the different zones of capture per site and per season. The species 

are ordered (COA first axis). 
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APPENDIX 11 : Ecological indexes   

Graph 1 Mean species richness for each 

zone for the rainy season (full line) and 

the dry season (dotted line).  

1: Intact forest 

2: Disturbed forest 

3: Recent fields  

 

Graph 2  Mean species diversity (Shannon 

index) for each zone for the rainy (full line) 

and the dry seasons (doted line). 

1: Intact forest 

2: Disturbed forest 

3: Recent fields  

Graph 3 Mean of log transformed rodent densities 

for each zone for the rainy (full line) and the dry 

seasons (doted line). 

1: Intact forest 

2: Disturbed forest 

3: Recent fields  
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APPENDIX 12 : Habitat specialization per species per season 
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APPENDIX 13 : Leptospira prevalence 
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APPENDIX 14 : LACANET Project 

 

LACANET project objectives 

 

The LACANET One Health Surveillance and Laboratory Network project (also referred to as 

“LACANET”) is an EU-funded project which brings together partners in the human health, wildlife 

health and animal health sectors to create capacity to survey, diagnose and understand the drivers of 

disease at human-animal-environmental interfaces. 

 

The overall objective is to develop a bi-national Lao PDR-Cambodia One Health Surveillance and 

Laboratory Network that will enable both countries to: 

 

1-      Build capacity for surveillance and field investigation for zoonotic diseases: 

For this to happen, we are training district, provincial and national wildlife and livestock health 

authorities in both Lao PDR and Cambodia to jointly conduct surveillance for zoonotic disease pathogens 

in vectors, wildlife and livestock populations using various sampling techniques. 

We are also developing capacity to implement diagnostic testing for national priority diseases at the 

human-animal-environment interface between both human and veterinary diagnostic laboratories, using 

whenever possible similar techniques and standard operating procedures. 

 

2-      Improve laboratory capacity to detect zoonotic diseases 

Laboratory experiments and analysis represent a significant part of the LACANET project, since we 

need to analyze all samples taken from the field. The Cambodian National Veterinary Research Institute 

(NaVRI) and the Lao PDR National Animal Health Laboratory (NAHL) regularly receive animal 

samples from suspected disease outbreaks from various Lao and Cambodian provinces for testing. 

Improving Lao and Cambodian laboratory capacity therefore appears as being critical. Therefore, the 

Institut Pasteur du Cambodge (IPC) and the Lao-Oxford-Mahosot Hospital-Wellcome Trust Research 

Unit (LOMWRU) are providing laboratory training to NaVRI and NAHL respectively from year 1 to 

year 4. 

 

3-      Improve national and regional cross-sectoral collaborations by establishing a One Health 
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Surveillance and laboratory network 

Much of our efforts are designed to initiate lasting connections between One Health practitioners (field 

biologists and veterinarians, laboratory diagnosticians and medical microbiologists) within and between 

Lao PDR and Cambodia to promote knowledge transfer through exchanges, workshops and trainings, to 

encourage timely information sharing for effective and coordinated responses to zoonotic outbreaks. We 

are also hosting workshops on disease epidemiology and diagnostic techniques, across both animal and 

human sectors, and meetings to discuss One Health coordination as well as the economic and sociological 

aspects of these pathogens. 

 

4-      Conduct strategic research on two important drivers of disease emergence – Wildlife trade and 

land-use change: 

We are investigating the role that land use change plays in disease dynamics by conducting surveillance 

for diseases with domestic and wild animal reservoirs, including Japanese encephalitis, leptospirosis and 

rickettsial diseases (as model disease systems) in vectors along a land use gradient, from pristine forest 

to industrial landscape. 

We are also examining the role wildlife trade plays in disease emergence, including diseases such as 

rabies, anthrax, leptospirosis, typhus and trichinellosis, by conducting surveillance at high risk human-

wildlife interfaces in wildlife market. 
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