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a b s t r a c t 

Detection of a target with known spectral signature when this target may occupy only a fraction of the 

pixel is an important issue in hyperspectral imaging. We recently derived the generalized likelihood ratio 

test (GLRT) for such sub-pixel targets, either for the so-called replacement model where the presence of 

a target induces a decrease of the background power, due to the sum of abundances equal to one, or 

for a mixed model which alleviates some of the limitations of the replacement model. In both cases, the 

background was assumed to be Gaussian distributed. The aim of this short communication is to extend 

these detectors to the broader class of elliptically contoured distributions, more precisely matrix-variate 

t -distributions with unknown mean and covariance matrix. We show that the generalized likelihood ra- 

tio tests in the t -distributed case coincide with their Gaussian counterparts, which confers the latter an 

increased generality for application. The performance as well as the robustness of these detectors are 

evaluated through numerical simulations. 
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. Problem statement 

Hyperspectral imaging has become an increasingly popular tool

or remote sensing and scene information retrieval, whether for

ivil or military needs and in a large number of applications, in-

luding analysis of the spectral content of soils, vegetation or min-

rals, detection of man-made materials or vehicles, to name a few

1,2] . One of the challenges of hyperspectral imaging is to detect a

arget -whose spectral signature is assumed to be known- within a

ackground whose statistical properties are not fully known [3–5] .

epending on the spatial resolution of hyperspectral sensors and

he size of the target, the latter may occupy the totality or only a

raction of the pixel under test (PUT), in which case one speaks of

ub-pixel targets. In the latter case, the target replaces part of the

ackground in the PUT, leading to the so-called replacement model

6,7] . 

Whatever the case, full-pixel or sub-pixel targets, the problem

an be formulated as a conventional composite hypothesis prob-

em [3–9] : given a vector y ∈ R 

p -where p denotes the number of

pectral bands used- which represents the reflectance in the PUT,

s there a component along t -the signature of interest (SoI)- in

ddition to the background? Since the background statistics de-

end on unknown parameters (for instance mean and covariance
∗ Corresponding author. 

E-mail addresses: olivier.besson@isae-supaero.fr (O. Besson), 

rancois.vincent@isae-supaero.fr (F. Vincent). 
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atrix) a set of training samples Z ∈ R 

p×n , hopefully free of the

oI t , is observed whose statistics are assumed to match those of

he background in the PUT. These training samples are gathered in

he vicinity of the PUT (local detection) or along the whole image

global detection). 

Recently in [10] we addressed sub-pixel detection using the re-

lacement model under a Gaussian background, and we derived

he plain generalized likelihood ratio test (GLRT) by maximizing

he joint distribution of ( y, Z ) with respect to all unknown param-

ters. Moreover, motivated by some limitations of the replacement

odel, especially the fact that the filling factor of a sub-pixel tar-

et may not be in practice as large as expected, we also derived

he GLRT for a mixed model where presence of a target induces

 partial replacement of the background [11] . These two detec-

ors assume a Gaussian background. However, evidence of non-

aussianity of hyperspectral data has been brought [12,13] and

herefore it is of interest to extend detectors originally devised for

aussian background to the broader class of elliptically contoured

EC) distributions [14,15] . The aim of this communication is thus to

xtend our recent GLRTs from the Gaussian case to the matrix vari-

te t -distributed case. We will show that the GLRTs coincide with

heir Gaussian counterparts. The paper is organized as follows. In

ection 2 , we consider each of the three models and derive the

orresponding GLRTs. The latter are evaluated in Section 3 on sim-

lated data but where the target spectral signature, the mean and

ovariance matrix of the background are obtained from real hyper-

pectral images. 
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2. GLRT for matrix variate t -distributed background 

As stated before, let us assume that we wish to decide whether

a given vector y contains a signature of interest t in the presence

of disturbance z whose mean value μ and covariance matrix �
are unknown, and let us assume that a set of training samples z i ,

i = 1 , . . . , n are available which share the same distribution as z .

These samples can be collected around the PUT or along the whole

image. We simply assume here that n > p . Therefore, we would

like to solve the following problem: 

H 0 : y = z ; z i 
d = z , i = 1 , . . . , n 

H 1 : y = αt + βz ; z i 
d = z , i = 1 , . . . , n (1)

where 
d = means “has the same distribution as”. In (1) , t corre-

sponds to the assumed spectral signature of the target and α de-

notes its unknown amplitude. When β = 1 one obtains the con-

ventional additive model. When β = 1 − α the replacement model

is recovered, and the mixed model corresponds to an arbitrary β . 

In order to derive the GLRT, we need to specify the joint dis-

tribution of y and Z where Z = 

[
z 1 z 2 . . . z n 

]
. As said in the

introduction, we assume that 
[
y Z 

]
follows a matrix-variate t -

distribution with ν degrees of freedom so that we need to solve

the following composite hypothesis testing problem: 

H 0 : 
[
y Z 

] d = T p,n +1 ( ν, M 0 , (ν − 2) �, I n +1 ) 

H 1 : 
[
y Z 

] d = T p,n +1 

(
ν, M 1 , (ν − 2) �, 

(
β2 0 

T 

0 I n 

))
(2)

where M 0 = 

[
μ μ1 T n 

]
, M 1 = 

[
αt + βμ μ1 T n 

]
, 1 n is a n × 1

vector with all elements equal to one, μ stands for the mean value

of the background while � denotes its covariance matrix. In (2) ,

T () stands for the matrix variate t -distribution [16,17] so that the

probability density function (p.d.f.) of the observations under each

hypothesis is given by 

p 0 (y , Z ) = C | �| − n +1 
2 

∣∣∣∣I p + 

�−1 

ν − 2 

[
y − μ Z − μ1 

T 
n 

]
×

[
y − μ Z − μ1 

T 
n 

]T 
∣∣∣− ν+ n + p 

2 

p 1 (y , Z ) = Cβ−p | �| − n +1 
2 

∣∣∣∣I p + 

�−1 

ν − 2 

[
˜ y − μ Z − μ1 

T 
n 

]
×

[
˜ y − μ Z − μ1 

T 
n 

]T 
∣∣∣− ν+ n + p 

2 

(3)

with 

˜ y = β−1 (y − αt ) and C = 

�p ((ν+ n + p) / 2) 

π p(n +1) / 2 �p ((ν+ p−1) / 2) 
. It should be

observed that the columns of 
[
y Z 

]
are only uncorrelated

but not independent, as p(y , z 1 , . . . , z n ) cannot be factored as

p(y ) 
∏ n 

i =1 p(z i ) . 

We now derive the GLRT for the problem in (2) . Let us start by

considering the following function f ( �) where S is some positive

definite matrix: 

f ( �) = | �| − n +1 
2 

∣∣I p + (ν − 2) −1 �−1 
S 
∣∣− ν+ n + p 

2 

= | �| ν+ p−1 
2 

∣∣� + (ν − 2) −1 S 
∣∣− ν+ n + p 

2 (4)

Differentiation of log f ( �) yields 

∂ log f ( �) 

∂ �
= 

ν + p − 1 

2 

�−1 − ν + n + p 

2 

( � + (ν − 2) −1 S ) −1 . (5)

Setting this derivative of to zero, we can see that f ( �) achieves its

maximum at 

�∗ = 

(ν + p − 1) S 

(ν − 2)(n + 1) 
= γ S (6)
t follows that 

max 
�

p 0 (y , Z ) = C ′ 
∣∣∣∣[y − μ Z − μ1 

T 
n 

][ (y − μ) T 

(Z − μ1 

T 
n ) 

T 

]∣∣∣∣
− n +1 

2 

ax 
�

p 1 (y , Z ) = C ′ β−p 

∣∣∣∣[˜ y − μ Z − μ1 

T 
n 

][ ( ̃ y − μ) T 

(Z − μ1 

T 
n ) 

T 

]∣∣∣∣
− n +1 

2 

(7)

ith C ′ = Cγ −p(n +1) / 2 [1 + (ν − 2) −1 γ −1 ] −p(ν+ n + p) / 2 . Since C ′ is the

ame under H 0 and H 1 it will cancel out in the GLR and therefore

he GLR does not depend on ν . This means that ν does not need to

e known since its estimation is not actually required to obtain the

LR. 

Now, for any vector x , 

 ( μ) = 

[
x − μ Z − μ1 

T 
n 

][
x − μ Z − μ1 

T 
n 

]T 

= (x − μ)(x − μ) T + (Z − μ1 

T 
n )(Z − μ1 

T 
n ) 

T 

= xx 

T − μx 

T − x μT + μμT 

+ ZZ 

T − μ1 

T 
n Z 

T − Z1 n μ
T + n μμT 

= (n + 1) μμT − μ(x + Z1 n ) 
T − (x + Z1 n ) μ

T 

+ xx 

T + ZZ 

T 

= (n + 1) 
[ 
μ − x + Z1 n 

n + 1 

] [ 
μ − x + Z1 n 

n + 1 

] T 
+ xx 

T + ZZ 

T − (x + Z1 n )(x + Z1 n ) T 

n + 1 

= (n + 1) 
[ 
μ − x + Z1 n 

n + 1 

] [ 
μ − x + Z1 n 

n + 1 

] T 
+ 

[
x Z 

](
I n +1 −

1 n +1 1 

T 
n +1 

n + 1 

)[
x Z 

]T 
(8)

onsequently, 

in 

μ
| M ( μ) | = 

∣∣∣[x Z 

]
P 

⊥ 
n +1 

[
x Z 

]T 
∣∣∣ (9)

ith P 

⊥ 
n +1 the orthogonal projector on the null space of 1 n +1 .

ence, we arrive at 

max 
μ, �

p 0 (y , Z ) = C ′ 
∣∣∣[y Z 

]
P 

⊥ 
n +1 

[
y Z 

]T 
∣∣∣− n +1 

2 

ax 
μ, �

p 1 (y , Z ) = C ′ β−p 

∣∣∣[˜ y Z 

]
P 

⊥ 
n +1 

[
˜ y Z 

]T 
∣∣∣− n +1 

2 

(10)

ext, for any vector x and matrix Q (not necessarily P 

⊥ 
n +1 

), 

x Z 

]
Q 

[
x Z 

]T = 

[
x Z 

][Q 11 Q 12 

Q 21 Q 22 

][
x Z 

]T 

= Q 11 xx 

T + ZQ 21 x 

T + xQ 12 Z 

T + ZQ 22 Z 

T 

= Q 11 

[
x + Q 

−1 
11 ZQ 21 

][
x + Q 

−1 
11 ZQ 21 

]T 

+ ZQ 2 . 1 Z 

T (11)

here Q 2 . 1 = Q 22 − Q 21 Q 

−1 
11 

Q 12 . Therefore, ∣∣∣[x Z 

]
Q 

[
x Z 

]T 
∣∣∣ = 

∣∣ZQ 2 . 1 Z 

T 
∣∣ ×[ 

1 + Q 11 

(
x + Q 

−1 
11 ZQ 21 

)T (
ZQ 2 . 1 Z 

T 
)−1 (

x + Q 

−1 
11 ZQ 21 

)] 
(12)

oming back to the case Q = P 

⊥ 
n +1 

= I n +1 − (n + 1) −1 1 n +1 1 
T 
n +1 

, we

ave 

 = 

(
1 0 

T 

0 I n 

)
− (n + 1) −1 

(
1 1 

T 
n 

1 n 1 n 1 

T 
n 

)
(13)

o that 
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Fig. 1. ROC for the replacement model β = (1 − α) . 
Q 11 = 1 − (n + 1) −1 = n (n + 1) −1 

Q 21 = −(n + 1) −1 1 n 

Q 22 = I n − (n + 1) −1 1 n 1 

T 
n 

 2 . 1 = I n − n 

−1 1 n 1 

T 
n = P 

⊥ 
n (14) 

t follows that Q 

−1 
11 

ZQ 21 = −n −1 Z1 n = −z̄ and ZQ 2 . 1 Z 

T = ZP 

⊥ 
n Z 

T =
Z 

T − n ̄z ̄z T = S . Hence, the GLR is given by 

LR = 

[
1 + Q 11 (y − z̄ ) T S −1 (y − z̄ ) 

](n +1) / 2 

min α,β β p [ 1 + Q 11 ( ̃ y − z̄ ) T S −1 ( ̃ y − z̄ ) ] 
(n +1) / 2 

= 

[1 + 

n 
n +1 

(y − z̄ ) T S −1 (y − z̄ )] (n +1) / 2 

min α,β β p [1 + 

n 
n +1 

( y −αt 
β

− z̄ ) T S −1 ( y −αt 
β

− z̄ )] (n +1) / 2 
(15) 

A few important observations can be made regarding this re-

ult. First, for all three models, the GLRs in ( 15 ) coincide with their

aussian counterparts . For the additive model a proof is given in

ppendix A . A more intuitive way to figure out this equivalence is

o realize that the expression of the GLR in (15) does not depend

n ν and that, letting ν grow to infinity, one should recover the

LR for Gaussian distributed data. As for the replacement and the

ixed models, the expression in (15) is exactly that of the ACUTE

nd SPADE detectors of [10] and [11] respectively, where the GLRTs

or the replacement model and the mixed model are derived under

he Gaussian assumption. Therefore, the latter are still GLRTs for a

uch broader class of distributions than initially expected. 

Let us also briefly comment on the implementation of the GLRT.

or the additive model β = 1 , and the minimization problem in

15) is a simple linear least-squares problem for which a closed-

orm solution can be obtained. This yields 

LR 

2 / (n +1) 
AM 

= 

1 + 

n 
n +1 

(y − z̄ ) T S −1 (y − z̄ ) 

min α 1 + 

n 
n +1 

(y − z̄ − αt ) T S −1 (y − z̄ − αt ) 

= 

1 + 

n 
n +1 

(y − z̄ ) T S −1 (y − z̄ ) 

1 + 

n 
n +1 

(y − z̄ ) T S −1 (y − z̄ ) − n 
n +1 

[(y −z̄ ) T S −1 t ] 2 

t T S −1 t 

≡
n 

n +1 
[(y − z̄ ) T S −1 t ] 2 

[1 + 

n 
n +1 

(y − z̄ ) T S −1 (y − z̄ )][ t T S −1 t ] 
(16) 

he GLR in (16) generalizes Kelly’s detector to the case of a non-

entered Student distributed background. Note that (16) differs

rom Kelly’s detector by the n 
n +1 factor. 

As for the replacement model, β = 1 − α and the minimization

hould be conducted with respect to α only, i.e., 

LR RM 

= 

[ 
1 + 

n 
n +1 

∥∥S −1 / 2 (y − z̄ ) 
∥∥2 

] (n +1) / 2 

min α(1 − α) p 
[ 

1 + 

n 
n +1 

‖ S −1 / 2 (y −αt −(1 −α) ̄z ) ‖ 2 
(1 −α) 2 

] (n +1) / 2 
(17) 

s shown in [10] , this simply amounts to finding the (unique) pos-

tive root of a 2nd-order polynomial. Finally, for the mixed model

here β is arbitrary, one has a 2-D minimization problem. How-

ver, minimization over α can be done analytically, leaving only a

inimization over β: 

LR MM 

= 

[ 
1 + 

n 
n +1 

∥∥S −1 / 2 (y − z̄ ) 
∥∥2 

] (n +1) / 2 

min β β p 

[ 

1 + 

n 
n +1 

∥∥∥P ⊥ 
S −1 / 2 t 

S −1 / 2 (y −β z̄ ) 

∥∥∥2 

β2 

] (n +1) / 2 
(18) 

gain the solution is obtained as the unique positive root of a

econd-order polynomial equation [11] . Therefore for both the re-

lacement model and the mixed model, all unknown parameters

an be obtained in closed-form. 
. Numerical simulations 

In the present section, we will compare the detectors devel-

ped above. The additive model GLR AM 

in (16) will be referred to

s mKELLY in the sequel as it consists in a slight modification

f Kelly’s original GLRT [18] . The replacement model GLR RM 

in
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Fig. 2. P fa gain versus β for P d = 0 . 5 . 
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(17) and the modified model GLR MM 

in (18) will be referred as

to ACUTE [10] and SPADE [11] . These last two detectors have al-

ready been assessed against real data drawn from the RIT [19] and

Viareggio [20] experiments. Herein, we evaluate their performance

as well as their robustness on simulated yet realistic data. More

precisely we consider an image acquired in Viareggio (Italy) in May

2013 from an aircraft flying at 1200 meters. The original data is a

[450 × 375] pixels map in the Visible Near InfraRed (VINR) band

(400 − 1000 nm ) with a spatial resolution of about 0.6 meters. The

scene is composed of parking lots, roads, buildings, sport fields and

pine woods. Different kinds of vehicles as well as colored panels

served as known targets. For each of these targets, a spectral sig-

nature obtained from ground spectroradiometer measurements is

available. Herein, we consider t to be the signature of the V5 tar-

get, μ and � are respectively the sample mean and sample covari-

ance matrix obtained from the whole Viareggio image. It has to be

noticed that these raw radiance data have first been converted to

reflectance measurements using an ELM method [21,22] . The num-

ber of spectral bands used is p = 32 and the number of training

samples is n = 60 . The background is simulated using a t distribu-

tion with ν degrees of freedom. 

Fig. 1 plots the Receiver Operation Curve (ROC) obtained for the

replacement model [ β = 1 − α] with α = 0 . 05 , for different values

of ν ranging from ν = 5 (heavy-tailed distribution) to ν = 10 , 0 0 0

(nearly Gaussian distributed background). As could be anticipated,

ACUTE exhibits the best performance since it corresponds to the

GLRT for the specific case β = 1 − α. However, SPADE is shown

to incur a small degradation compared to this optimal detector.

On the contrary, mKELLY exhibits a significant performance loss,

mostly because E { z } � = E { z k } , a fact that is not accounted for in

the additive model, contrary to the other two detectors. 

We now assess the robustness of ACUTE and SPADE. More pre-

cisely, we study their performance when β varies between β =
1 − α (replacement model) and β = 1 (additive model). In Fig. 2 ,

we display the probability of false alarm ( P fa ) gain of ACUTE and

SPADE with respect to mKELLY, i.e., 10 log 10 

P fa ( GLR AM 

) 

P fa ( GLR RM/MM 

) 
. This P fa 

gain allows to measure the improvement (if positive) or the loss

(when negative) of both ACUTE and SPADE with respect to mKELLY.
n this figure α is fixed to 0.05 and the probability of detection is

 d = 0 . 5 . Fig. 2 confirms that ACUTE is slightly better than SPADE

hen the actual value of β is close to 1 − α. However, as soon as β
eparts from 1 − α SPADE shows better performance than ACUTE.

oreover, SPADE performs better than mKELLY for most values of

unless β comes very close to 1, but in this case the loss of SPADE

ith respect to mKELLY is marginal. Therefore, SPADE provides the

est robustness, with small performance loss compared to the op-

imal solution whatever the value of β . 

. Concluding remarks 

In this communication, we considered the detection of a sub-

ixel target in hyperspectral imaging when the background is no

onger Gaussian but t -distributed. The GLRTs for a general mixed

odel, including the standard additive case and the replacement

ne, were derived, generalizing the Gaussian versions previously

erived. For the three specific values of β considered in the liter-

ture, it was shown that the GLRTs remain the same and hence

he detectors initially proposed under a Gaussian framework have

ore generality than expected. Moreover, they do not depend on

he unknown degree of freedom of the t -distribution. Numerical

imulations showed that SPADE provides a very good trade-off as

t is always close to or better than Kelly and ACUTE which are op-

imal only for specific values of β . 
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ppendix A. GLR for the additive model and Gaussian 

istributed background 

In this appendix, we derive the GLRT for Gaussian distributed

ackground and for the additive model. We thus consider the fol-

owing detection problem 
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(A.1) 

he p.d.f. of ( y, Z ) is in this case 
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(A.2) 

t is well-known that | �| − n +1 
2 etr {− 1 

2 �
−1 S } achieves its maximum

t �∗ = (n + 1) −1 S , and hence 

ax 
�
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2 etr 
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�−1 
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(
e 

n + 1 

)− n +1 
2 | S | − n +1 

2 (A.3) 

t follows that max �p 0 ( y, Z ) and max �p 1 ( y, Z ) are proportional to

7) which holds for Student distributions. From there, everything

ollows and the GLRs for Student or Gaussian distributions are the

ame and are given by (15) . 

RediT authorship contribution statement 

Olivier Besson: Conceptualization, Methodology, Validation, 

riting - original draft, Writing - review & editing, Visualization.

rançois Vincent: Conceptualization, Methodology, Software, Writ- 

ng - original draft, Writing - review & editing. 

eferences 

[1] M.T. Eismann , Hyperspectral remote sensing, SPIE, 2012 . 

[2] D.G. Manolakis , R.B. Lockwood , T.W. Cooley , Hyperspectral Imaging Remote

Sensing, Cambridge University Press, 2016 . 
[3] D. Manolakis , G. Shaw , Detection algorithms for hyperspectral imaging appli-

cations, IEEE Signal Process. Mag. 19 (1) (2002) 29–43 . 
[4] D. Manolakis , E. Truslow , M. Pieper , T. Cooley , M. Brueggeman , Detection algo-
rithms in hyperspectral imaging systems: an overview of practical algorithms,

IEEE Signal Process. Mag. 31 (1) (2014) 24–33 . 
[5] N.M. Nasrabadi , Hyperspectral target detection : an overview of current and

future challenges, IEEE Signal Process. Mag. 31 (1) (2014) 34–44 . 
[6] D. Manolakis , G. Siracusa , G. Shaw , Hyperspectral subpixel detection using

the linear mixing model, IEEE Trans. Geosci. Remote Sens. 39 (7) (2001)
1392–1409 . 

[7] D. Manolakis , Hyperspectral signal models and implications to material detec-

tion algorithms, in: Proceedings ICASSP, volume 3, 2004, pp. 117–120 . 
[8] R. DiPietro , D. Manolakis , R. Lockwood , T. Cooley , J. Jacobson , Performance

evaluation of hyperspectral detection algorithms for sub-pixel objects, in: Pro-
ceedings of SPIE - The International Society for Optical Engineering, 2010 . 

[9] J. Frontera-Pons , F. Pascal , J.-P. Ovarlez , Adaptive nonzero-mean Gaussian de-
tection, IEEE Trans. Geosci. Remote Sens. 55 (2) (2017) 1117–1124 . 

[10] F. Vincent, O. Besson, Generalized likelihood ratio test for subpixel target

detection in hyperspectral imaging, IEEE Trans. Geosci. Remote Sens. 58 (6)
(2020) 4 479–4 489, doi: 10.1109/TGRS.2020.2965212 . 

[11] F. Vincent, O. Besson, Generalized likelihood ratio test for modified replace-
ment model in hyperspectral imaging detection, Signal Process. 174 (2020) pa-

per 107643, doi: 10.1016/j.sigpro.2020.107643 . 
[12] D. Manolakis , D. Marden , G. Shaw , Hyperspectral image processing for auto-

matic target detection applications, Lincoln Lab. J. 14 (1) (2003) 79–116 . 

[13] S. Matteoli , M. Diani , G. Corsini , A tutorial overview of anomaly detection in
hyperspectral images, IEEE Aerosp. Electron.Syst. Mag. 25 (7) (2010) 5–27 . 

[14] T.W. Anderson , K.-T. Fang , Theory and Applications of Elliptically Contoured
and Related Distributions, Technical Report, Department of Statistics, Stanford

University, 1990 . 
[15] F. Kai-Tai , Z. Yao-Ting , Generalized Multivariate Analysis, Springer Verlag,

Berlin, 1990 . 

[16] A.K. Gupta , D.K. Nagar , Matrix Variate Distributions, Chapman & Hall/CRC, Boca
Raton, FL, 20 0 0 . 

[17] S. Kotz , S. Nadarajah , Multivariate T Distributions and their Applications, 2004 .
[18] E. Kelly , An adaptive detection algorithm, IEEE Trans. Aerosp.Electron. Syst. 22

(2) (1986) 115–127 . 
[19] D. Snyder , J. Kerekes , I. Fairweather , R. Crabtree , J. Shive , S. Hager , Develop-

ment of a web-based application to evaluate target finding algorithms, in: Pro-

ceedings IGARSS 2008, volume 2, Boston, MA, 2008 . 
20] N. Acito , S. Matteoli , A. Rossi , M. Diani , G. Corsini , Hyperspectral airborne

“Viareggio 2013 trial” data collection for detection algorithm assessment, IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 9 (6) (2016) 2356–2376 . 

[21] G. Ferrier , Evaluation of apparent surface reflectance estimation methodolo-
gies, Int. J. Remote Sens. 16 (1995) 2291–2297 . 

22] G.M. Smith , E.J. Milton , The use of the empirical line method to calibrate re-

motely sensed data to reflectance, Int. J. Remote Sens. 20 (1999) 2653–2662 . 

http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0001
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0001
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0002
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0002
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0002
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0002
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0003
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0003
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0003
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0004
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0004
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0004
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0004
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0004
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0004
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0005
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0005
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0006
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0006
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0006
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0006
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0007
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0007
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0009
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0009
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0009
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0009
https://doi.org/10.1109/TGRS.2020.2965212
https://doi.org/10.1016/j.sigpro.2020.107643
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0012
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0012
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0012
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0012
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0013
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0013
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0013
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0013
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0014
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0014
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0014
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0015
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0015
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0015
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0016
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0016
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0016
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0017
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0017
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0017
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0018
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0018
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0021
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0021
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0022
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0022
http://refhub.elsevier.com/S0165-1684(20)30205-X/sbref0022

	Sub-pixel detection in hyperspectral imaging with elliptically contoured t-distributed background
	1 Problem statement
	2 GLRT for matrix variate t-distributed background
	3 Numerical simulations
	4 Concluding remarks
	Declaration of Competing Interest
	Appendix A GLR for the additive model and Gaussian distributed background
	CRediT authorship contribution statement
	References


