

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22072

To cite this version:

Ben Amor, Nahla and El Khalfi, Zeineb and Fargier, Hélène and
Sabbadin, Régis Efficient Policies for Stationary Possibilistic
Markov Decision Processes. (2017) In: ECSQARU 2017: European
Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, 10 July 2017 - 14 July 2017 (Lugano,
Switzerland).

Open Archive Toulouse Archive Ouverte

Official URL :
https://doi.org/10.1007/978-3-319-61581-3_28

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/324185537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22072
https://doi.org/10.1007/978-3-319-61581-3_28

Efficient Policies for Stationary Possibilistic Markov
Decision Processes

Nahla Ben Amor 1, Zeineb EL khalfi 1,2, Hélène Fargier 2 and Régis Sabaddin 3

1 LARODEC,Le Bardo, Tunisie, email: nahla.benamor@gmx.fr, zeineb.khalfi@gmail.com
2 IRIT, Toulouse, France, email: fargier@irit.fr

3 INRA-MIAT, Toulouse, France, email: regis.sabbadin@inra.fr

Abstract. Possibilistic Markov Decision Processes offer a compact and tractable
way to represent and solve problems of sequential decision under qualitative un-
certainty. Even though appealing for its ability to handle qualitative problems, this
model suffers from the drowning effect that is inherent to possibilistic decision
theory. The present paper proposes to escape the drowning effect by extending
to stationary possibilistic MDPs the lexicographic preference relations defined in
[6] for non-sequential decision problems and provides a value iteration algorithm
to compute policies that are optimal for these new criteria.

Keywords: Markov Decision process, Possibility theory, lexicographic compar-
isons, possibilistic qualitative utilities

1 Introduction

The classical paradigm for sequential decision making under uncertainty is the one of
expected utility-based Markov Decision Processes (MDP) [11, 2], which assumes that
the uncertain effects of actions can be represented by probability distributions and that
utilities are additive. But the EU model is not tailored to problems where uncertainty
and preferences are ordinal in essence. Alternatives to the EU-based model have been
proposed to handle ordinal preferences/uncertainty. Remaining within the probabilis-
tic, quantitative, framework while considering ordinal preferences has lead to quantile-
based approaches [17, 15, 8, 18, 9]) Purely ordinal approaches to sequential decision
under uncertainty have also been considered. In particular, possibilistic MDPs [13, 12,
4, 1] form a purely qualitative decision model with an ordinal evaluation of plausibility
and preference. In this model, uncertainty about the consequences of actions is repre-
sented by possibility distributions and utilities are also ordinal. The decision criteria
are either the optimistic qualitative utility or its pessimistic counterpart [5]. However,
it is now well known that possibilistic decision criteria suffer from the drowning effect
[6]. Plausible enough bad or good consequences may completely blur the comparison
between policies, that would otherwise be clearly differentiable. [6] have proposed lex-
icographic refinements of possibilistic criteria for the one-step decision case, in order
to remediate the drowning effect. In this paper, we propose an extension of the lexico-
graphic preference relations to stationary possibilistic MDPs.

The next Section recalls the background about possibilistic MDPs, including the
drowning effect problem. Section 3 studies the lexicographic comparison of policies in

2 Nahla Ben Amor 1, Zeineb EL khalfi 1,2, Hélène Fargier 2 and Régis Sabaddin 3

finite horizon problems and presents a value iteration algorithm for the computation of
lexi-optimal policies. Section 4 extends these results to the infinite-horizon case. Lastly,
Section 5 reports experimental results. Proofs are omitted, but can be found in1.

2 Possibilistic Markov decision process

2.1 Definition

A possibilistic Markov Decision Process (P-MDP) [12] is defined by:

– A finite set S of states.
– A finite set A of actions, As denotes the set of actions available in state s;
– A possibilistic transition function: each action a ∈ As applied in state s ∈ S is

assigned a possibility distribution π(.|s, a);
– A utility function µ: µ(s) is the intermediate satisfaction degree obtained in state s.

The uncertainty about the effect of an action a taken in state s is a possibility distri-
bution π(.|s, a) : S → L, where L is a qualitative ordered scale used to evaluate both
possibilities and utilities (typically, and without loss of generality, L = [0, 1]): for any
s′, π(s′|s, a) measures to what extent s′ is a plausible consequence of a when executed
in s and µ(s′) is the utility of being in state s′. In the present paper, we consider sta-
tionary problems, i.e. problems in which states, the actions and the transition functions
do not depend on the stage of the problem. Such a possibilistic MDP defines a graph,
where states are represented by circles and are labelled by utility degrees and actions are
represented by squares. An edge linking an action to a state denotes a possible transition
and is labeled by the possibility of that state given the action is executed.

Example 1. Let us suppose that a “Rich and Unknown” person runs a startup company. Ini-
tially, s/he must choose between Saving money (Sav) or Advertising (Adv) and may then get
Rich (R) or Poor (P) and Famous (F) or Unknown (U). In the other states, Sav is the only
possible action. Figure 1 shows the stationary P-MDP that captures this problem, formally de-
scribed as follows: S = {RU,RF, PU}, ARU = {Adv, Sav}, ARF = {Sav}, APU =

{Sav}, π(PU |RU, Sav) = 0.2, π(RU |RU, Sav) = 1;π(RF |RU,Adv) = 1;π(RF |RF, Sav) =
1, π(RU |RF, Sav) = 1, µ(RU) = 0.5, µ(RF) = 0.7, µ(PU) = 0.3.

Solving a stationary MDP consists in finding a (stationary) policy, i.e. a function
δ : S → As which is optimal with respect to a decision criterion. In the possi-
bilistic case, as in the probabilistic case, the value of a policy depends on the util-
ity and on the likelihood of its trajectories. Formally, let ∆ be the set of all poli-
cies encoded by a P-MDP. When the horizon is finite, each δ ∈ ∆ defines a list
of scenarios called trajectories. Each trajectory is a sequence of states and actions
τ = (s0, a0, s1, . . . , sE−1, aE−1, sE).

To simplify notations, we will associate the vector vτ = (µ0, π1, µ1, π2, . . . , πE−1, µE)
to each trajectory τ , where πi+1 =def π(si+1|si, ai) and µi =def µ(si).

The possibility and the utility of τ given that δ is applied from s0 are defined by:

π(τ |s0, δ) = min
i=1..E

π(si|si−1, δ(si−1)) and µ(τ) = min
i=0..E

µ(si) (1)

1 https://www.irit.fr/publis/ADRIA/PapersFargier/XKRU17MDP.pdf

Efficient Policies for Stationary Possibilistic Markov Decision Processes 3

 R U R F Adv Sav
π =1

π =1

π =1

Sav P U
π =0.2

π =1

π =1

Fig. 1. A possibilistic stationary MDP

Two criteria, an optimistic and a pessimistic one, can then be used [5][13]:

uopt(δ, s0) = max
τ

min{π(τ |s0, δ), µ(τ)} (2)

upes(δ, s0) = max
τ

min{1− π(τ |s0, δ), µ(τ)} (3)

These criteria can be optimized by choosing, for each state, an action that maximizes
the following counterparts of the Bellman equations [12]:

uopt(s) = max
a∈As

min{µ(s),max
s′∈S

min(π(s′|s, a), uopt(s
′))} (4)

upes(s) = max
a∈As

min{µ(s),min
s′∈S

max(1− π(s′|s, a), upes(s
′))} (5)

This formulation is more general than the first one in the sense that it applies to
both the finite and the infinite case. It has allowed the definition of a (possibilistic) value
iteration algorithm which converges to an optimal policy in polytimeO(|S|2 · |A|2 · |L|)
[12]. This algorithm proceeds by iterated modifications of a possibilistic value function
Q̃(s, a) which evaluates the ”utility” (pessimistic or optimistic) of performing a in s.

2.2 The drowning effect

Unfortunately, possibilistic utilities suffer from an important drawback called the drown-
ing effect: plausible enough bad or good consequences may completely blur the com-
parison between acts that would otherwise be clearly differentiated; as a consequence,
an optimal policy δ is not necessarily Pareto eficient - it may exist a policy δ′ such that
upes(δ

′
s) = upes(δs) while ∀s, upes(δ′s) � upes(δs) and (ii) ∃s, upes(δ′s) � upes(δs)

where δs (resp. δ′s) is the restriction of δ (resp. δ′) to the subtree rooted in s.

Example 2. The P-MDP of Example 1; it admits two policies δ and δ′: δ(RU) = Sav; δ(PU) =
Stay; δ(RF) = Sav; δ′(RU) = Adv; δ′(PU) = Stay; δ′(RF) = Sav. For horizon E = 2:

– δ has 3 trajectories: τ1 = (RU,PU, PU) with vτ1 = (0.5 0.2 0.3 1 0.3); τ2 = (RU,RU, PU)
with vτ2 = (0.5 1 0.5 0.2 0.3); τ3 = (RU,RU,RU) with vτ3 = (0.5 1 0.5 1 0.5).

– δ′ has 2 trajectories: τ4 = (RU,RF,RF) with vτ4 = (0.5 1 0.7 1 0.7); τ5 = (RU,RF,RU)
with vτ5 = (0.5 1 0.7 1 0.5).

Thus Uopt(δ) = Uopt(δ
′) = 0.5. However δ′ seems better than δ since it provides utility 0.5

for sure while δ provides a bad utility (0.3) in some non impossible trajectories (τ1 and τ2). τ3
which is good and totally possible "drowns" τ1 and τ2: δ is considered as good as δ′.

4 Nahla Ben Amor 1, Zeineb EL khalfi 1,2, Hélène Fargier 2 and Régis Sabaddin 3

2.3 Lexi-refinements of ordinal aggregations

In ordinal (i.e. min-based and max-based) aggregation a solution to the drowning effect
has been proposed, that is based on leximin and leximax comparisons [10]. It has then
been extended to non-sequential decision making under uncertainty [6] and, in the se-
quential case, to decision trees [3]. Let us first recall the basic definition of these two
preference relations. For any two vectors t and t′ of length m built on L:

t �lmin t′ iff ∀i, tσ(i) = t′σ(i) or ∃i∗, ∀i < i∗, tσ(i) = t′σ(i) and tσ(i∗) > t′σ(i∗) (6)

t �lmax t′ iff ∀i, tµ(i) = t′µ(i) or ∃i∗, ∀i < i∗, tµ(i) = t′µ(i) and tµ(i∗) > t′µ(i∗) (7)

where, for any vector v (here, v = t or v = t′), vµ(i) (resp. vσ(i)) is the ith best (resp.
worst) element of v.

[6] have extended these procedures to the comparison of matrices built on L. Given
a complete preorder D on vectors, it is possible to order the lines of the matrices (say,
A and B) according to D and to apply an lmax or an lmin procedure:

A �lmin(D) B ⇔ ∀j, a(D,j) ∼= b(D,j) or ∃i s.t. ∀j > i, a(D,j) ∼= b(D,j) and a(D,i)B b(D,i) (8)

A �lmax(D) B ⇔ ∀j, a(D,j) ∼= b(D,j) or ∃i s.t.∀j < i, a(D,j) ∼= b(D,j)and a(D,i) B b(D,i) (9)

where, for any c ∈ (LM)N , c(D,i) is the ith largest sub-vector of c according to D.

3 Lexicographic-value iteration for finite horizon P-MDPs

In (finite-horizon) possibilistic decision trees, the idea of [3] is to identify a strategy
with the matrix of its trajectories, and to compare such matrices with a �lmax(lmin)
(resp. �lmin(lmax)) procedure for the optimistic (resp. pessimistic) case. We propose,
in the following, a value iteration algorithm for the computation of such lexi-optimal
policies in the finite (this Section) and infinite (Section 4) horizon cases.

3.1 Lexicographic comparisons of policies

Let E be the horizon of the P-MDP. A trajectory being a sequence of states and actions,
a strategy can be viewed as a matrix where each line corresponds to a distinct trajectory.
In the optimistic case each line corresponds to a vector vτ = (µ0, π1, µ1, π2, . . . , πE−1, µE)
and in the pessimistic case to wτ = (µ0, 1− π1, µ1, 1− π2, . . . , 1− πE−1, µE).

This allow us to define the comparison of trajectories and strategies by 2:
τ �lmin τ ′ iff (µ0, π1, . . . , πE , µE) �lmin (µ′0, π

′
2, . . . , π

′
E , µ

′
E) (10)

τ �lmax τ ′ iff (µ0, 1− π1, . . . , 1− πE , µE) �lmax (µ′0, 1− π′1, . . . 1− π′E , µ′E) (11)

δ �lmax(lmin) δ′ iff ∀i, τµ(i) ∼lmin τ ′µ(i)

or ∃i∗, ∀i < i∗, τµ(i) ∼lmin τ ′µ(i) and τµ(i∗) �lmin τ ′µ(i∗) (12)

2 If a trajectory is shorter than E, neutral elements (0 for the optimistic case and 1 for the
pessimistic one) are added at the end. If the policies have different numbers of trajectories,
neutral trajectories (vectors) are added to the shortest one.

Efficient Policies for Stationary Possibilistic Markov Decision Processes 5

δ �lmin(lmax) δ′ iff ∀i, τσ(i) ∼lmax τ ′σ(i)

or ∃i∗, ∀i < i∗, τσ(i) ∼lmax τ ′σ(i) and τσ(i∗) �lmax τ ′σ(i∗) (13)

where τµ(i) (resp. τ ′µ(i)) is the ith best trajectory of δ (resp δ′) according to �lmin
and τσ(i) (resp. τ ′σ(i)) is the ith worst trajectory of δ (resp δ′) according to �lmax.

It is easy to show that we get efficient refinements of uopt and upes.

Proposition 1. If uopt(δ) > uopt(δ
′) (resp. upes(δ) > upes(δ

′)) then δ �lmax(lmin) δ′
(resp. δ �lmin(lmax) δ′).

Proposition 2. Relations �lmin(lmax) and �lmax(lmin) are complete, transitive and
satisfy the principle of strict monotonicity3.

Remark. We define the complementary MDP, (S,A, π, µ̄) of a given P-MDP (S,A, π, µ)
where µ̄(s) = 1 − µ(s),∀s ∈ S. The complementary MDP simply gives complemen-
tary utilities. From the definitions of �lmax and �lmin, we can check that:

Proposition 3. τ �lmax τ ′ ⇔ τ̄ ′ �lmin τ̄ and δ �lmin(lmax) δ′ ⇔ δ̄′ �lmax(lmin) δ̄.

where τ̄ and δ̄ are obtained by replacing µ with µ̄ in the trajectory/P-MDP.
Therefore, all results which we will prove in the following for �lmax(lmin) also

hold for �lmin(lmax), if we take care to apply them to complementary strategies. Since
considering�lmax(lmin) involves less cumbersome expressions (no 1−·), we will give
the results for this criterion. Moreover, abusing notations slightly, we identify trajecto-
ries τ (resp. strategies) with their vτ vectors (resp. matrices of vτ vectors).

3.2 Basic operations on matrices of trajectories

Before going further, we define some basic operations on matrices (typically, on U(s)
representing trajectories issued from s). For any matrix U = (uij) with n lines and m
columns,[U]l,c denotes the restriction of U to its first l lines and first c columns.

Composition, U × (N1, . . . , Na) : Let U be a a × b matrix and N1, . . . , Na be a se-
ries of a matrices of dimension ni × c (they all share the same number of columns).
The composition of U with (N1, . . . , Na) denoted U × (N1, . . . , Na) is a matrix of
dimension (Σ

1≤i≤a
ni) × (b + c). For any i ≤ a, j ≤ nj , the (Σi′<ini′) + j)th line

of U × (N1, . . . , Na) is the concatenation of the ith line of U and the jth line of
Ni. The composition of U × (N1, . . . , Na) is done in O(n · m) operations, where
n = Σ

1≤i≤a
ni and m = b + c. The matrix U(s) is typically the concatenation of the

matrix U = ((π(s′|s, a), µ(s′)), s′ ∈ succ(s, a)) with the matrices Ns′ = U(s′).

3 A criterion O satisfies the principle of strict monotonicity iff: ∀δ, δ′, δ′′, δ �O δ′ ⇐⇒
δ+ δ′′ �O δ′+ δ′′. δ+ δ′′ contains two disjoint sets of trajectories: the ones of δ and the ones
of δ′′ (and similarly for δ′ + δ′′). Then, adding or removing identical trajectories to two sets
of trajectories does not change their comparison by �lmax(lmin) (resp. �lmin(lmax)) - while
it may transform a strict preference into an indifference if uopt (resp. upes) were used.

6 Nahla Ben Amor 1, Zeineb EL khalfi 1,2, Hélène Fargier 2 and Régis Sabaddin 3

Ordering matrices U lmaxlmin : Let U be a n × m matrix, U lmaxlmin is the matrix
obtained by ordering the elements of the lines of U in increasing order and the lines of
U according to lmax (in decreasing order). The complexity of the operation depends
on the sorting algorithm: if we use QuickSort then ordering the elements within a line is
performed inO(m·log(m)), and the inter-ranking of the lines is done inO(n·log(n)·m)
operations. Hence, the overall complexity in O(n ·m · log(n ·m)).

Comparison of ordered matrices : Given two ordered matricesU lmaxlmin and V lmaxlmin,
we say that U lmaxlmin > V lmaxlmin iff ∃i, j such that ∀i′ < i,∀j′, U lmaxlmini′,j′ =

V lmaxlmini′,j′ and ∀j′ < j, U lmaxlmini,j′ = V lmaxlmini,j′ and U lmaxlmini,j > V lmaxlmini,j .
U lmaxlmin ∼ V lmaxlmin iff they are identical (comparison complexity: O(n ·m)).

3.3 Lexicographic-value iteration

In this section, we propose a value iteration algorithm (Algorithm 1 for the lmax(lmin)
variant; the lmin(lmax) variant is similar) that computes a lexicographic optimal pol-
icy in a finite number of iterations. This algorithm is an iterative procedure that updates
the utility of each state, represented by a finite matrix of trajectories, using the utilities
of the neighboring states, until a halting condition is reached. At stage t, the procedure
updates the utility of every states s ∈ S as follows:

– For each a ∈ As, a matrix Q(s, a) is built which evaluates the “utility” of perform-
ing a in s at stage t: this is done by combining TUs,a (comparison of the transition
matrix Ts,a = π(·|s, a) and the utilities µ(s′) of the states s′ that may follows s
when a is executed) with the matrices U t−1(s′) of trajectories provided by these
s′. The matrix Q(s, a) is then ordered (the operation is made less complex by the
fact that the matrices U t−1(s′) have been ordered at t− 1).

– The lmax(lmin) comparison is performed on the fly to memorize the best Q(s, a)
– The value of s at t, U t(s), is the one given by the action δt(s) = a which provides

the best Q(s, a). U t and δt are memorized (and U t−1 can be forgotten).

Proposition 4. lmax(lmin)-Value iteration provides an optimal solution for�lmaxlmin.

Time and space complexities of this algorithm are nevertheless expensive, since it
eventually memorizes all the trajectories. At each step t its size may be about bt · (2 ·
t + 1), where b is the maximal number of possible successors of an action; the overall
complexity of the algorithm is O(|S| · |A| · |E| · bE), which is problematic. Notice
now that, at any stage t and for any state s [U t(s)]1,1 (i.e. the top left value in U t(s))
is precisely equal to uopt(s) at horizon t for the optimal strategy. We have seen that
making the choices on this basis is not discriminant enough. On the other hand, taking
the whole matrix is discriminant, but exponentially costly. Hence the idea of considering
more than one line and one column, but less than the whole matrix - namely the first l
lines and c columns of U t(s)lmaxlmin; hence the definition of the following preference:

δ ≥lmaxlmin,l,c δ′ iff [δlmaxlmin]l,c ≥ [δ′lmaxlmin]l,c (14)

≥lmaxlmin,1,1 corresponds to �opt and ≥lmaxlmin,+∞,+∞ corresponds to ≥lmaxlmin.

Efficient Policies for Stationary Possibilistic Markov Decision Processes 7

Algorithm 1: Lmax(lmin)-value iteration
Data: A possibilistic MDP and an horizon E
δ∗, the policy built by the algorithm, is a global variable

1 // δ a global variable starts as an empty set
Result: Computes and returns δ∗ for MDP

2 begin
3 t← 0;
4 foreach s ∈ S do U t(s)← ((µ(s)));
5 foreach s ∈ S, a ∈ As do TUs,a ← Ts,a × ((µ(s′)), s′ ∈ succ(s, a)) ;
6 repeat
7 t← t+ 1;
8 foreach s ∈ S do
9 Q∗ ← ((0));

10 foreach a ∈ A do
11 Future← (U t−1(s′), s′ ∈ succ(s, a)); // Gather the

matrices provided by the successors of s;

12 Q(s, a)← (TUs,a × Future)lmaxlmin;
13 if Q∗ ≤lmaxlmin Q(s, a) then Q∗ ← Q(s, a); δt(s)← a ;

14 U t(s)← Q∗(s, δt(s))

15 until t == E;
16 δ∗(s)← argmaxaQ(s, a)
17 return δ∗;

The combinatorial explosion is due to the number of lines (because at finite horizon,
the number of columns is bounded by 2 · E + 1), hence we shall bound the number of
considered lines. The following proposition shows that this approach is sound:

Proposition 5. For any l, c δ �opt δ′ ⇒ δ �lmaxlmin,l,c δ′.
For any l, c, l′ such that l′ > l, δ �lmaxlmin,l,c δ′ ⇒ δ �lmaxlmin,l′,c δ′.
Hence �lmaxlmin,l,c refines uopt and the order over the strategies is refined for a fixed
c when l increases. It tends to �lmaxlmin when c = 2.E + 1 and l tends to bE .

Up to this point, the comparison by ≥lmaxlmin,l,c is made on the basis of the first l
lines and c columns of the full matrices of trajectories. This does obviously not reduce
their size. The important following Proposition allows us to make the l, c reduction of
the ordered matrices at each step (after each composition), and not only at the very end,
thus keeping space and time complexities polynomial.

Proposition 6. Let U be a a × b matrix and N1, . . . , Na be a series of a matrices of
dimension ai × c . It holds that:
[(U×(N1, . . . , Na))

lmaxlmin]l,c = [(U×([N lmaxlmin
1]l,c, . . . , [N

lmaxlmin
a]l,c))

lmaxlmin)]l,c.

In summary, the idea of our Algorithm, that we call bounded lexicographic-value it-
eration (BL-VI) is to compute policies that are close to lexi-optimality, by keeping a
sub matrix of each current value matrix - namely the first l lines and c columns. The
algorithm is obtained by replacing line 12 of Algorithm 1, with:

Line 12′ : Q(s, a)← [(TUs,a × Future)lmaxlmin]l,c;

8 Nahla Ben Amor 1, Zeineb EL khalfi 1,2, Hélène Fargier 2 and Régis Sabaddin 3

Proposition 7. Bounded lmax(lmin)-Value iteration provides a solution that is optimal
for �lmaxlmin,l,c and its time complexity is O(|E| · |S| · |A| · (l · c) · b · log(l · c · b)).

In summary, this algorithm provides in polytime a strategy that is always as least as good
as the one provided by uopt (according to lmax(lmin)) and tends to lexi optimality
when c = 2 · E + 1 and l tends to bE .

4 Lexicogaphic-value iteration for infinite horizon P-MDPs

In the infinite-horizon case, the comparison of matrices of trajectories by equations (12)
or (13) may not be enough to rank-order the policies. The length of the trajectories may
be infinite, and their number infinite as well. This problem is well known in classical
probabilistic MDP where a discount factor is used that attenuates the influence of later
utility degrees - thus allowing the convergence of the algorithm [11]. On the contrary,
classical P-MDPs do not need any discount factor and Value Iteration, based on the
evaluation for l = c = 1, converges for infinite horizon P-MDPs [12].

In a sense, this limitation to l = c = 1 plays the role of a discount factor - which is
too drastic; it is nevertheless possible to make the comparison using ≥lmaxlmin,l,c. Let
us denote U t(s) the matrix issued from s at horizon t when δ is executed. It holds that:

Proposition 8. ∀l, c, ∃t such that, forall t′ > t, (U t)lmaxlminl,c (s) = (U t
′
)lmaxlminl,c (s).

This means that from a given stage t, the value of a strategy is stable if computed
with the bounded lmax(lmin) criterion. This criterion can thus be soundly used in the
infinite-horizon case and bounded value iteration converges. To adapt the algorithm to
the infinite case, we simply need to modify the halting condition at line 15 by:

Line 15’ : until (U t)
lmaxlmin
l,c ==

(
U t−1

)lmaxlmin
l,c

.

Proposition 9. Whatever l, c, Lmax(lmin)-Bounded Value iteration converges for infi-
nite horizon P-MDPs.

Proposition 10. The overall complexity of Bounded lmax(lmin)-Value iteration algo-
rithm is O(|L| · |S| · |A| · (l · c) · b · log(l · c · b)).

5 Experiments

We now compare the performance of Bounded lexicographic value iteration (BL-V I)
as an approximation of (unbounded) lexicographic value iteration (UL-V I), in the
Lmax(lmin) variant. The two algorithms have been implemented in Java and the ex-
periments have been performed on an Intel Core i5 processor computer (1.70 GHz)
with 8GB DDR3L of RAM. We evaluate the performance of the algorithms by carrying
out simulations on randomly generated P-MDPs with |S| = 25. The number of actions
in each state is equal to 4. The output of each action is a distribution on two states
randomly fired (i.e. the branching factor is equal to 2). The utility values are uniformly
randomly fired in the set L = {0.1, 0.3, 0.5, 0.7, 1}. Conditional possibilities relative to
decisions should be normalized. To this end, one choice is fixed to possibility degree 1

Efficient Policies for Stationary Possibilistic Markov Decision Processes 9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(2,2) (20,20) (40,40) (100,100) (200,200)

E=10

E=15

E=20

E=25

Su
cc

es
s

ra
te

(l,c)

0,01

0,1

1

10

100

1000

5 10 15 20 25

UL-VI

BL-VI (40,40)

BL-VI (20,20)

BL-VI (10,10)

BL-VI (2,2)

CP
U

 ti
m

e
in

 s
ec

Horizon of MDPs

Success rate (b) Average CU time in second (a)

Fig. 2. Bounded lexicographic value iteration VS Unbounded lexicographic value iteration

and the possibility degree of the other one is uniformly fired in L. For each experience,
100 P-MDPs are generated. The two algorithms are compared w.r.t. 2 measures: (i)
CPU time and (ii) Pairwise success rate: Success, the percentage of optimal solutions
provided by Bounded value iteration with fixed (l, c) w.r.t. the lmax(lmin) criterion in
its full generality. The higher Success, the more important the effectiveness of cutting
matrices with BL-V I; the lower this rate, the more important the drowning effect.

Figure 2 presents the average execution CPU time for the two algorithms. Obvi-
ously, for both UL-V I and BL-V I , the execution time increases with the horizon.
Also, we observe that the CPU time of BL-V I increases according to the values of
(l, c) but it remains affordable, as the maximal CPU time is lower than 1s for MDPs
with 25 states and 4 actions when (l, c) = (40, 40) and E = 25. Unsurprisingly, we
can check that the BL-V I (regardless of the values of (l, c)) is faster than UL-V I es-
pecially when the horizon increases: the manipulation of l, c-matrices is obviously less
expensive than the one of full matrices. The saving increases with the horizon.

As with the success rate, the results are described in Figure 2. It appears thatBL-V I
provides a very good approximation especially when increasing (l, c). It provides the
same optimal solution as the UL-V I in about 90% of cases, with an (l, c) = (200, 200).
Moreover, even when the success rate of BL-V I decreases (when E increases), the
quality of approximation is still good: never less than 70% of optimal actions returned,
with E = 25. These experiments conclude in favor of bounded value iteration: its
approximated solutions are comparable in terms of quality for high (l, c) and increase
when (l, c) increase, while it is much faster than the unbounded version.

6 Conclusion

In this paper, we have extended to possibilistic Markov Decision Processes the lexico-
graphic refinement of possibilitic utilities initially introduced in [6] for non-sequential
problems. It can be shown that our approach is more discriminant than the refinement
of binary possibilistic utility [16] since the latter does not satisfy strict monotonicity.
Our lexicographic refinements criteria allowed us to propose a Lmax(lmin)-Value It-
eration algorithm for stationary P-MDPs with two variants: (i) an unbounded version
that converges in the finite horizon case, but is unsuitable for infinite-horizon P-MDPs,

10 Nahla Ben Amor 1, Zeineb EL khalfi 1,2, Hélène Fargier 2 and Régis Sabaddin 3

since it generates matrices which size continuously increases with the horizon and (ii)
a bounded version which has polynomial complexity. It bounds the size of the saved
matrices and refines the possibilistic criteria, whatever the choice of the bounds. The
convergence of this algorithm is shown for both the finite and the infinite horizon cases,
and its efficiency has been observed experimentally even for low bounds.

There are two natural perspectives to this work. First, as far as the infinite horizon
case is concerned, other types of lexicographic refinements could be proposed. One of
these options could be to avoid the duplication of the set of transitions that occur sev-
eral times in a single trajectory and consider only those which are observed. A second
perspective of this work will be to define reinforcement learning [14] type algorithms
for P-MDPs. Such algorithms would use samplings of the trajectories instead of full
dynamic programming or quantile-based reinforcement learning approaches [7].

References

1. K. Bauters, W. Liu, and L. Godo. Anytime algorithms for solving possibilistic mdps and
hybrid mdps. In Proc FoIKS’2016, pages 24–41, 2016.

2. R. Bellman. A Markovian decision process. J. of Mathematics and Mechanics, 6, 1957.
3. N. Ben Amor, Z. El Khalfi, H. Fargier, and R. Sabbadin. Lexicographic refinements in

possibilistic decision trees. In Proc ECAI’16, pages 202–208, 2016.
4. N. Drougard, F. Teichteil-Konigsbuch, J.L. Farges, and D. Dubois. Qualitative possibilistic

mixed-observable mdps. In Proc UAI’13, pages 192–201, 2013.
5. D. Dubois and H. Prade. Possibility theory as a basis for qualitative decision theory. In Proc

IJCAI’95, pages 1925–1930, 1995.
6. H. Fargier and R. Sabbadin. Qualitative decision under uncertainty: back to expected utility.

Artificial Intelligence, 164:245–280, 2005.
7. H. Gilbert and P. Weng. Quantile reinforcement learning. In Proc JMLR’2016, pages 1–16,

2016.
8. H. Gilbert, P. Weng, and Y. Xu. Optimizing quantiles in preference-based markov decision

processes. In Proc AAAI’2017, 2017.
9. I. Montes, E. Miranda, and S. Montes. Decision making with imprecise probabilities and

utilities by means of statistical preference and stochastic dominance. European Journal of
Operational Research, 234(1):209–220, 2014.

10. H. Moulin. Axioms of Cooperative Decision Making. Cambridge University Press, 1988.
11. M.L. Puterman. Markov Decision Processes. John Wiley and Sons, 1994.
12. R. Sabbadin. Possibilistic Markov decision processes. Engineering Applications of Artificial

Intelligence, 14:287–300, 2001.
13. R. Sabbadin, H. Fargier, and J. Lang. Towards qualitative approaches to multi-stage decision

making. International Journal of Approximate Reasoning, 19:441–471, 1998.
14. R.S. Sutton and A.G. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.
15. B. Szörényi, R. Busa-Fekete, P. Weng, and Eyke Hüllermeier. Qualitative multi-armed ban-

dits: A quantile-based approach. In Proc ICML’2015, pages 1660–1668, 2015.
16. P. Weng. Qualitative decision making under possibilistic uncertainty: Toward more discrim-

inating criteria. In 21st Conference in Uncertainty in Artificial Intelligence (UAI’05), July
26-29, Edinburgh, Scotland, pages 615–622, 2005.

17. P. Weng. Markov decision processes with ordinal rewards: Reference point-based prefer-
ences. In Proc ICAPS’2011, 2011.

18. Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The k-armed dueling bandits problem.
Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

