
Official URL
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0157

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22030

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Bouazzouni, Mohamed Amine and Conchon,

Emmanuel and Peyrard, Fabrice and Bonnefoi, Pierre-François Trusted Access

Control System for Smart Campus. (2016) In: Workshop on Smart and

Sustainable City @ UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld (WSSC

2016), 18 July 2016 (Toulouse, France).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/324185519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Trusted Access Control System for Smart Campus

Mohamed Amine Bouazzouni∗, Emmanuel Conchon†, Fabrice Peyrard∗, Pierre-François Bonnefoi†
∗University of Toulouse; INP; IRIT 2 rue Charles Camichel, Toulouse, France.

Email: {mohamedamine.bouazzouni, fabrice.peyrard}@enseeiht.fr
†University of Limoges, XLIM, UMR CNRS 6172, 123 avenue Albert Thomas, 87060 Limoges, France.

Email: {emmanuel.conchon, bonnefoi}@unilim.fr

Abstract—Many access control systems are still based on the

first generation of contactless technologies like RFID or NFC

despite well known cloning weakness. Furthermore, the cost

of the deployment of secure cards for large organizations

(DESFIRE for instance) is expensive. Also, These systems do

not always check authentication of the holders of RFID tags

or NFC cards. In this paper, we will present a proposal of

an architecture to build a secure access control system based

on Trusted Execution Environments (TEE) and Identity Based

Encryption (IBE) mechanisms. We also identify the challenges

to overcome before deploying such an architecture.

Index Terms—OP-TEE, Trusted Execution Environments,

Identity Based Encryption, RSA, AES, secure access control.

1. Introduction and context

The need of security and privacy led many organizations
to build control access systems for critical infrastructures
such as offices and residences. In University Campus for
instance several buildings have restricted access and can
be accessed either by students, academics or administrative
staff. Most of these systems are based on RFID (Radio-
Frequency IDentification) or low-cost NFC (Near Field
Communication) tags. However, these technologies are vul-
nerable to some attacks [1] [2] allowing the cloning of the
tag/card to gain access to the facility.

The weaknesses on these technologies are mainly due to
the limited storage and computational power. This limitation
does not allow the developer to use complex cryptographic
algorithms that could allow to address the cloning issue. Fur-
thermore, no user or platform authentication is performed.
Then, any user even non-authorized can access the facility
if he has a stolen access card. Even using a secure card
like DESFIRE for instance, induces two other drawbacks:
Deployment cost and no user and/or platform authentication.

To address these issues, new access control systems
have emerged relying on a smartphone which replaces the
tag/card. These new systems are based on the concept
of a virtual card where a smartphone can be used as a
substitute to a regular smart card. Such operation is called
dematerialization1. These new card-less systems enable the

1. In the remaining of the paper, the word dematerialization will mean
replacing a physical card with a virtual one saved on a smartphone

use of complex cryptographic algorithms to perform a user
authentication. These algorithms mainly rely on PKI [3]
(Public Key Infrastructure) where a couple of encryption
keys is provided to every user. This couple is composed of
a private key that remains secret and is used to decrypt an
encrypted message and of a public key that can be used
by anyone to encrypt message for the owner of the public
key. A major drawback of PKI is the ability to provide
the public key to every user in a secure way. A commonly
used solution is based on digital certificates that are emitted
by trusted certification authority to authenticate the public
key owner. But, the diffusion of these certificates and their
revocation when the certificate is expired for instance are
still problematic.

To avoid the use of certificates, a solution is Identity
Based Encryption (IBE) that has been introduced by Shamir
in 1984 [4]. To sum up, a user public key can be replaced by
the identity of the user (e.g. his email) avoiding the use of
digital certificates. IBE mechanisms can thus be deployed
easily without the need to any Public Key Infrastructure
(PKI). A IBE mechanism is relying on a Private Key Genera-
tor (PKG) which uses a master secret to derive the public key
based on the identity. In [5], an access control system based
on IBE has been proposed. However, no secure environment
was used to secure the PKG so that it can potentially be
compromised. Indeed, the storage of the master secret as
well as enforcing the confidentiality and the integrity of the
generation process are the main challenges to deal with.

The storage of encryption keys as well as the secure
execution of crytographic operations is a major issue es-
pecially on a mobile device. In the recent years, several
trusted mobile computing solutions have been proposed
among which are the Trusted Execution Environment (TEE).
TEE is a combination of a hardware part (processor) and
a software part (Secure Operating System) that allows the
secure storage and processing of the data on a smartphone. A
main drawback of TEE is the use of an hardware component
that is fully controlled by the manufacturer. Indeed, it does
not allow the user to use this component in an easy way
and often require a prior manufacturer agreement before
deploying a new secure application on it. But, new fully
software based solutions such as OP-TEE can be used to
bypass this agreement. This kind of solution can then be
considered as a good candidate for the storage of the PKG

DOI 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.95

in an IBE-based solution for trusted access control.

In this paper we propose a new access control archi-
tecture based on TEE and IBE for smart Campus. This
architecture is a part of the neOCampus operation [6] that
aims to provide new software and hardware components for
the university campus of tomorrow. The reminder of this
paper is organized as follow. First, we give an overview of
the neOCampus project and of our proposed architecture.
Then, the Identity Based Encryption mechanism that we
propose to use is presentedIn section 4 we present Trusted
Execution Environments detailing how they work and how
they can be used to secure the PKG. The general architecture
is presented in section 6 with a discussion of open research
opportunities.

2. The neOCampus operation

The objective of the neOCampus operation is to design
new products and services related to ambient systems. It
consists of many software and hardware interconnected
devices for the digital campus of tomorrow that are sustain-
able and intelligent and that combine innovative educational
materials. To achieve this, neOCampus deploys sensors,
storage facilities, tracking devices, simulation and innovative
materials in existing university buildings and around the
campus to increase users’ quality of life and reduce the
overall energy consumption.

So far, students and university staff have a card based on
the Mifare classic 1K NFC cards. These cards are used to
access to restricted areas of the university such as buildings.
Since these cards have vulnerabilities allowing an attacker
to clone it, the university has switched these cards for
DESFIRE NFC cards. These cards are more secure than
the previous one and can perform simple cryptographic
operations. However, there is still two major drawbacks:
Deployment costs and user authentication. Indeed, when a
Mifare 1K costs in average 0.02$, a DESFIRE card is three
times more expensive. Also, these cards are not able to
perform a user authentication. For instance, if a malicious
person steals a card from a regular user, he will be able
to access these facilities without a problem. Therefore, the
overall security is only partially enforced by these new
cards.

For these reasons, as a part of the neOCampus operation,
we propose to implement a new access control mechanism
based on the dematerialization of the card into a smartphone
and on the use of a secure cloud server. This server will
be used to perform a secure mutual authentication between
readers and users in order to increase the security level of
the overall system. To achieve this mutual authentication, we
propose to rely on Identity Based Encryption that avoid the
exchange of public keys between users. It will be coupled
with the use of Trusted Execution Environments to enforce
the overall system security.

3. Identity Based Encryption

The Identity Based Encryption scheme was first de-
signed to address some issues induced by the usage of
the asymmetric encryption related to the security of the
exchange of the public key. The common response to this
problem is to use a Public Key Infrastructure (PKI) that
issues a certificate to derive trust from a unique source,
known as the Certificate Authority (CA), in order to securely
link an entity’s identity to a particular public key. More
precisely, a signature performed by the CA ensures the
trusted bind between an identity and a public key. Deploying
and using a PKI is very challenging as the user needs to
enroll into the PKI and provide some proof of its identity
in order to obtain a certificate. A strong level of security is
achieved as users could trust each other through the trusted
third-party, but some issues arise with the need to verify if
a certificate has been revoked, especially in a context of an
embedded environment with limited network connectivity
or where the network hardware interface could not be fully
trusted.

In order to avoid some issues of certificate-based so-
lution, the IBE mechanism uses directly the identity of
a user (such as his email for instance) or a device for
authentication, encryption and decryption.

This approach is a trade-off between a straightforward
process of binding an identity to an asymmetric pair of
keys and the usage of a new kind of trusted third-party
acting as a mandatory key escrow (it is capable of producing
all the asymmetrical keys used). Moreover, adoption of
IBE has been hampered by the need to adapt common
security protocol and hardware to a new cryptosystem and to
provide the security proofs for all the required cryptographic
operations (uniqueness of one key, signature, encryption and
decryption). In the remaining of the section, we will expose
how to build an IBE system and the two main IBE schemes:
online and offline.

3.1. IBE components

Every IBE system is based on four basic algorithms as
defined by Shamir [4].

• Setup: This algorithm generates the global system
parameters and the master secret key.

• Key extraction: The master secret key is used by a
Private Key Generator (PKG) to extract every user’s
private key. In this algorithm lies the key escrow
problem. Indeed, as the owner of the master secret
key, the PKG is then able to generate every private
key to have access to every encrypted messages.

• Encryption: The encryption of a message is made
thanks to the public ID of the receiver.

• Decryption: The decryption is made with the cor-
responding private key provided by the PKG.

The first IBE scheme fully satisfactory in terms of
security and performances has been proposed by Boneh and
Franklin [7] in 2001. It is based on pairing on elliptic curves

with performances similar to ElGammal’s algorithm and a
security proof in the random oracle model. To achieve this,
it proposes an instantiation of Shamir’s encryption algorithm
that is performed thanks to a master public key and a hash
function applied to the identity. Waters in [8] has proposed a
transposition of Boneh and Franklin’s model in the standard
model that still rely on pairing but without random oracle.
However as these two schemes rely on pairing on elliptic
curves practical implementations has not been available for
a long time. Therefore, more practical IBE schemes based
on existing cryptographic standards has emerged such as
Callas [9].

3.2. IBE scheme from Callas

Callas [9] proposed an IBE scheme that can be integrated
to the common RSA cryptosystem providing the same cryp-
tographic capabilities. The advantage of this solution is its
ability to use off the shelve components compliant with the
RSA cryptosystem. This IBE scheme is intended to be as
secure as RSA is and sustain future security challenges such
as attacks on hash functions [10]. The IBE components they
used are described bellow. Moreover, it relies only on well-
known cryptographic operation that are widely spread in
programming languages libraries as well as tools.

3.2.1. System Setup. The algorithm below describes the
System Setup of the IBE solution proposed by Callas. First,
an Identity token named IDT is generated by applying and
Identity Digest Function (IDF) on the PKG master secret
Kpkg and on the identity of the user as presented as in
Equation 1.

IDT = IDF (Kpkg, Identity) (1)

The IDF function can be an HMAC or a CBC-MAC
or any other pseudo-random function. Another solution is
to use an asymmetric crypto-system such as RSA where
the Kpkg could be an RSA key and the IDT could be the
result of the RSA encryption of the Identity by the master
key. Since the IBE makes an unique association between an
identity and a key, we have to pay attention to the padding
which can disrupt the system determinism. Note that the
selection of the IDF function is critical and that the security
of the underlying system is relying on it to provide an
acceptable security level for the IDT .

The second step is to seed a Random Number Generator
(RNG) function with the IDT . This RNG function has
to be different of the IDF to increase the overall system
complexity. The result of this operation will then be used
in the key extraction process.

3.2.2. Key Extraction. The algorithm presented in Fig-
ure 3.2.2 shows the key extraction process for this IBE
scheme. It can be noted that the user has to authenticate
to the PKG to receive his private key. This critical com-
munication can be achieved through a regular SSL/TLS
communication. The public key can be provided by to any

IDT = IDF (K pkg , I d e n t i t y) ;
RNG seed (IDT) ;
Key Pa i r = KeyGenera to r (RNG) ;
i f (! a u t h e n t i c a t e d (u s e r)) t h e n

r e t u r n Pub Key ;
e l s e

r e t u r n Key Pai r ;

Figure 1. Key extraction algorithm

user authenticated or not. At this point the two users are
able to communicate and to encrypt/decrypt messages.

This Key extraction step is the main difference between
Callas and the previous IBE schemes as it induces a commu-
nication between the PKG and the user to find a public key.
This is caused by the use of RSA where it is not possible
to provide a way to generate a public key based only a
master public key and the receiver identity. Therefore this
operation has to be performed by the PKG. Nonetheless, due
to its simplicity in terms of implementation we choose to
rely on Callas Scheme as a starter for the proof of concept.

After exposing IBE, we notice that all the security of
such a mechanism is dependent on the secure storage of
the master secret and the secure processing of the key
generation operation. In order to achieve this, the use of
a secure environment is mandatory. In the next section, we
will present the secure environment chosen to implement our
IBE-based solution: The Trusted Execution Environments
(TEE).

4. Trusted Execution Environment overview

4.1. General architecture

TEEs [11] [12] [13] are a combination of a hardware
and a software parts. Moreover, the system is divided into
two execution environments.

• The first environment is the Rich Execution Environ-
ment (REE) also called Normal World Execution En-
vironment. This environment represents the standard
OS of the smartphone such as Android for instance.
The term Rich describes the extensive features of the
OS such as camera management, telephony capabil-
ities and so on. These features significantly increase
the attack surface.

• The second environment is the Trusted Execution
Environment. It represents the Secure OS respon-
sible for performing sensitive processing such as
cryptographic operations. It also has the capability
to secure the display and the input by using a secure
communication channel to connect the processor to
the I/O peripherals. OP-TEE and OPEN-TEE pre-
sented in section 4.2 are examples of Secure OS.

One important feature of the TEE is the secure storage
where direct user access from the REE is forbidden. This

storage provides security to keys used for cryptographic
operations that are performed into the REE.

A secure boot process is also needed. It enables Rich
OS and Secure OS integrity checking. The secure process
follows the steps bellow:

1) Read a trusted ROM (locked at manufacturing),
2) Check Signature and integrity of the Secure OS,
3) Set up the Secure OS,
4) Transfer the control to the Secure OS.

In the TEE world, two heterogeneous systems coexist
and therefore it is necessary to set isolation rules between
them to avoid data leak. Thus, we need a third mode
called Monitor mode. This mode allows context saving and
switching between the Rich OS and the Secure OS. This
mode is triggered to perform security operations into the
TEE.

The Secure OS is a limited instruction set OS. This con-
straint is necessary to reduce the attack surface. It schedules
sensitive applications running on it. These applications are
called trustlets. Trustlets executes secure instructions like
cryptographic operation : key generation, data encryption
and decryption. The Secure OS manages the resources be-
tween all the trustlets. A trustlet is a secure application
which runs on the TEE. It must be signed by the chip
manufacturer and signature verification is performed before
loading on the TEE. Some Application Programming Inter-
faces (APIs) can be added to manage extra features but they
have to be checked to prevent eventual security breaches.

So far, the majority of Secure OS used for TEE are
proprietary which makes it difficult to get access to the
TEE to test a developer trustlet. In fact, if a third party
wants to get access to a TEE to test its application, this
application has to be signed with the private key of the
manufacturer. The manufacturers are reluctant to sign third
party applications. This restriction is motivated by the wish
to get a high security level by having only one source of ap-
plication provisioner. This is the biggest drawback for TEE
expansions. Developers continue to advocate for change
access rights to TEE to deploy their own applications.

4.2. Secure OS overview

At the time of writing, several implementations of Se-
cure OS for TEE are available. The most notable ones are:
Sierra TEE, Genode, Trusted Language Runtime, OP-TEE
and TrustKernel T6.

• Sierra TEE: According to the OS maker [14], the
Sierra TEE OS performs an integrity management
process and several scanner checks. Among these
scanners, Sierra TEE checks the integrity of the An-
droid file system, the Android OS, processes running
and the interrupt table. These checks are performed
to ensure the security of the Android execution.
It also allows to perform key management, device
management, Data Right Management (DRM) and
I/O operations securisation. Furthermore, for secure

input/output, the peripherals communicate directly
with the TEE. In this case, the Android OS cannot
intercept passwords and sensitive information from
I/O operations.

• Genode: Genode is a secure OS with a very low
complexity [15]. Its source code is approximately
10,000 lines. This feature is very important as it al-
lows a simple security verification of the OS. More-
over, Genode manages the execution of touchscreen
driver and hardware as well as the frame buffer
driver. These executions are run in the secure world
ensuring secure interactions between the TEE and
the user. Genode also controls the Graphical User
Interface (GUI) textboxes used to collect user pass-
words and screen used to display secure information
from the TEE. This OS ensures that no information
leakage occurs.

• Trusted Language Runtime (TLR): This OS [16],
based on a .NET platform, relies on a multiple
trustboxes2 system. Each trustbox is like a container
isolated from the others. The device manufacturer
initializes a pair of key (public/private) in a trustbox
to allow remote verification and attestation. For now,
TLR is not able to communicate securely with users
because the I/O operations are managed by the REE.
This allows attackers to intercept, modify and alter
the data flowing between the users and the TEE.

• TrustKernel T6: T6 is a secure OS for ARM pro-
cessors with TrustZone capability. It can run simulta-
neously the secure OS with one of the multiple Rich
OS supported (Android, Linux, etc.) [17]. It provides
strong security properties and enhances the ease
use. The TrustKernel team provides all the source
code and the support. T6 is provided with multiple
libraries like LibC and OpenSSL to facilitate the user
application development. Finally, T6 is fully compat-
ible with the GlobalPlatform specifications [11].

• OP-TEE project: OP-TEE [18] is a secure OS for
TEE developed by STMicroelectronics in collabo-
ration with LINARO [19] that is fully compatible
with the GlobalPlatform specifications [11]. OP-TEE
consists of a client API, a Linux kernel driver and a
Secure OS. As mentioned previously in this section,
the switching between the Rich OS and the Secure
OS is managed by a monitor mode. OP-TEE has
also a multi-core capability. The unique constraint
is that only one core can be in the secure world at
the same time.

Regards to the difficult deployment of a solution on a
real device due to the manufacturer restrictions, the use of
an open environment seems to be a good alternative. In our
work, we choose to use OP-TEE to implement and deploy
our secure control access system based on the Identity Based
Encryption mechanism.

2. A trustbox is a runtime environment which protects the confidentiality
and the integrity of code and datas

Figure 2. OPTEE Architecture

5. The open source TEE implementation

OP-TEE [18] is a Linaro [19] and STMicroelectronics
project with the objective to release a totally virtualized
and open source TEE. Indeed, in OP-TEE the platfom is
either virtualized by using Qemu3 [20] or Fixed Virtual
Platform (FVP) [21] or consists of a physical develop-
ment card of ARM called JUNO[22]. For the virtualized
platform, a Debian based OS is needed to download and
install OP-TEE. The OP-TEE implementation follows the
GlobalPlatform[11] standards. We can execute a trusted
application on OP-TEE by loading the application in the
Rich OS side first. When the application needs to perform a
sensitive operation, it uses the API to invoke this operation
in the Secure World side (TEE). The TEE sends the response
to the REE side for display or other purposes. A debug and
web interface are provided to facilitate the management of
the platform. Figure 2 represents our architecture of OP-
TEE. We use FVP to virtualize OP-TEE which can be run
on the top of a Debian OS.

Since almost all the implementations of TEE are pro-
prietary, using such a platform is linked to the signature of
agreements with the manufacturers. The use of OP-TEE al-
lows bypassing such restrictions. OP-TEE provides certified
APIs and other cryptographic libraries like LibTomCrypt
[23] to ease application development. In the next section,
we will present our implementation of an IBE in OP-TEE
and highlight the advantages of such implementation in this
secure environment.

6. A control access system for a smart campus

In previous sections, we saw that IBE is a very inter-
esting mechanism to deliver an encryption key according to

3. Qemu is a generic and open source machine emulator and virtualizer

an identity. In an environment where the identity is verified
by a specific organism (emails for instance), the identity
management problem of IBE is avoided. In our case of
study, we want to build a trusted access control system for a
smart campus based on secure communication between the
user and the ”card reader”. Our IBE implementation follows
the proposal of Callas’s scheme.

However, as described in section 3, the storage of the
master secret of the IBE is challenging. Thus, we consider
using OP-TEE in a server to secure the master key storage
and the sensitive PKG operations (key generation, encryp-
tion and decryption) as described in Figure 3. As previously
discussed, an OP-TEE application is divided into two parts:
a host application running in normal world and a trusted
application running in the secure world. The host sends the
data to encrypt to the trusted application where the IBE
system is implemented. Figure 3 shows the architecture we
select to deploy our secure building access control.

6.1. Proposed architecture

Figure 3. Trusted access control architecture based on IBE

Our architecture is composed of three parties: A user, a
secure server where the IBE is deployed and a card reader.

• User: The user owns a smartphone acting as an
NFC contact-less card. He communicates with the
secure server through a secure communication that is
assumed to be based on SSL/TLS for authentication
purposes and to receive the encryption keys.

• Secure server: It consists of an OP-TEE server
used to host the IBE mechanism and an Authen-
tication Server. The OP-TEE sever is responsible
for the key generation and encryption/decryption
operations. The Authentication Server is used to au-
thenticate the users of the system (it can be an LDAP
server or an active directory for instance) based on
a regular login/password. This authentication server
also maintains a database of access rights of every
user of the system.

• The card reader: Basically, it is a classical card
reader. It can either authorize or decline the access
to a user based on the answer provided by the
authentication server. Only legitimate readers are
able to communicate with the secure server. To
achieve mutual authentication, it relays challenges
and responses exchanged between the secure server
and the user to determine if the user is legit.

The current card used now in the campus are not able to
perform a user and/or reader authentication therefore the use
of smartphone-based solution improves the overall security.
In our proposal, both reader and user are authenticated by
the secure server. Indeed, the used IBE mechanism enforces
that if the user and the reader can use its identity to decrypt
the received message, they are legitimate entities of the
system.

6.2. Challenges

At the time of writing, a proof of concept of the proposed
trusted access control system is under development to make
a performance evaluation. But, several challenges have still
to be tackled.

6.2.1. Encryption key storage for a decentralized solu-
tion. : The current proposition relies on a fully centralized
solution where every cryptographic operation are performed
in the secure server. But, it is investigated to provide a
decentralized solution where the smartphone can be used
to perform parts of the encryption/decryption operations. To
achieve this, TEE solutions has to be deployed in the smart-
phone to store encryption keys and to perform cryptographic
operation in a secure way.

6.2.2. Identity management. : In an IBE-based system, the
management of the identities is critical. In our use case the
identity of a user can be his email address or a student card
number. With this option, we are sure that every user has
an exclusive identity. But the identity of readers has also to
be enforced before a large dissemination of the system.

6.2.3. neOCampus cloud authentication. : If a user and/or
a reader wants to use the trusted access control system,
he has to be authenticated to the neOCampus cloud. We
propose to use the existent architecture based on a LDAP
server or an Active Directory.

6.2.4. Deal with the NFC timeout. : The NFC com-
munication has a timeout of 5 ms [24]. It is critical to
design an authentication protocol which can tackle these
time constraints. Another solution consists of dividing the
communication into two steps. In the first step, the user
requests reader information and communicates with the
secure server. In the second step, he transmits the encrypted
challenge by tapping his smartphone on the reader. This
solution can limit the impact of the communication time
with the secure server on the timeout.

6.2.5. scaling problem. : The number of students using
this system to authenticate can be very large. Moreover,
they usually come up at the university campus at the same
time so that we have to be sure that the proposed system
is responsive enough. This issue is linked to the problem of
using a fully centralized solution that may not be able to
support a large number of simultaneous communications.

7. CONCLUSION

In this paper, we proposed a secure access control system
based on TEE and IBE for university campus. First, we
gave a detailed presentation of IBE highlighting the pros and
cons. Then we exposed the TEE architecture and presented
OP-TEE that provides a secure OS enabling secure storage
of encryption keys and secure computation of cryptographic
operation that improves the security of the IBE’s PKG. A
trusted access control architecture is then proposed based on
a TEE cloud architecture relying on OP-TEE. As a future
work, we plan to improve the overall access control protocol
with a more decentralized solution. More specifically, it is
plan to use the TEE on the smartphone to embed securely
the different encryption keys and to perform some crypto-
graphic operations to reduce the number of communications
with the secure cloud. From the secure server standpoint, it
is investigated to implement our solution on a JUNO [22]
card which is an hardware based TEE to improve scalability.

Acknowledgment

This research is part of the neOCampus[6] project to
promote a demonstrator of connected campus, innovative,
smart and durable. The authors wish to thank the committee
for its support.

References

[1] A. Mitrokotsa, M. Beye, and P. Peris-Lopez, Unique Radio Innovation

for the 21st Century, ch. Security Primitive Classification of RFID
Attacks, pp. 39–63. Springer, 2011.

[2] A. Mitrokotsa, M. R. Rieback, and A. S. Tanenbaum, “Classifying
RFID attacks and defenses,” Information Systems Frontiers, vol. 12,
no. 5, pp. 491–505, 2010.

[3] R. Housley and T. Polk, Planning for PKI: best practices guide for

deploying public key infrastructure. John Wiley & Sons, Inc., 2001.

[4] A. Shamir, “Identity-based cryptosystems and signature schemes,”
in Advances in Cryptology, Proceedings of CRYPTO ’84, Santa

Barbara, California, USA, August 19-22, 1984, Proceedings, vol. 196
of Lecture Notes in Computer Science, pp. 47–53, Springer, 1984.

[5] A. Juels and M. Szydlo, “Attribute-based encryption: using identity-
based encryption for access control.” http://www.arijuels.com/
wp-content/uploads/2013/09/JS04.pdf. [Online; accessed 12 April
2016].

[6] “neOCampus.” https://www.irit.fr/neocampus/. [Online; accessed 12
April 2016].

[7] D. Boneh and M. K. Franklin, “Identity-based encryption from the
weil pairing,” in Advances in Cryptology - CRYPTO 2001, 21st An-

nual International Cryptology Conference, Santa Barbara, California,

USA, August 19-23, 2001, Proceedings, vol. 2139 of Lecture Notes

in Computer Science, pp. 213–229, Springer, 2001.

[8] B. Waters, “Efficient identity-based encryption without random ora-
cles,” in Advances in Cryptology - EUROCRYPT 2005, 24th Annual

International Conference on the Theory and Applications of Crypto-

graphic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceed-

ings, vol. 3494 of Lecture Notes in Computer Science, pp. 114–127,
Springer, 2005.

[9] J. Callas, “Identity-based encryption with conventional public-key
infrastructure,” PGP Corporation Palo Alto, California, USA jon@

pgp. com, 2005.

[10] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions
md4, md5, haval-128 and ripemd.,” IACR Cryptology ePrint Archive,
vol. 2004, p. 199, 2004.

[11] GlobalPlatform, “TEE System Architecture.” http://www.
globalplatform.org/specificationsdevice.asp.

[12] ARM, “ARM Security Technology. Building a Secure System using
TrustZone Technology.” http://infocenter.arm.com/help/topic/com.
arm.doc.prd29-genc-009492c/PRD29-GENC-009492C trustzone
security whitepaper.pdf. [Online; accessed 12 April 2016].

[13] “M-Shield mobile security technology, techical report.” http://focus.
ti.com/pdfs/wtbu/ti mshield whitepaper.pdf. [Online; accessed 12
April 2016].

[14] “Sierra TEE virtualization system for TrustZone.”

[15] “Genode operating system framework.”

[16] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Trusted Language
Runtime (TLR): enabling trusted applications on smartphones,” in
Proceedings of the 12th Workshop on Mobile Computing Systems

and Applications, pp. 21–26, ACM, 2011.

[17] “T6 : The TrustedKernel secure OS for TrustZone processors.” https://
www.trustkernel.com/products/tee/t6.html. [Online; accessed 12 April
2016].

[18] “OP-TEE official wiki page.” https://wiki.linaro.org/WorkingGroups/
Security/OP-TEE. [Online; accessed 12 April 2016].

[19] “LINARO security working group official website.” https://wiki.
linaro.org/WorkingGroups/Security. [Online; accessed 12 April
2016].

[20] Qemu, “Qemu, a generic and open source machine emulator and
virtualizer..” http://wiki.qemu.org/Main Page. [Online; accessed 12
April 2016].

[21] ARM, “Fixed Virtual Platform.” http://www.arm.com/products/tools/
models/fast-models/foundation-model.php. [Online; accessed 12
April 2016].

[22] ARM, “Juno ARM Development Platform.” http://www.
arm.com/products/tools/development-boards/versatile-express/
juno-arm-development-platform.php. [Online; accessed 12 April
2016].

[23] LibTomCrypt, “LibTomCrypt cryptographical library.” http://www.
libtom.net/. [Online; accessed 12 April 2016].

[24] ISO/IEC, “NFC Technology Full specification.” https://www.iso.org/
obp/ui/#iso:std:53424:en. [Online; accessed 12 April 2016].

