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 Abstract 
Industrial reliability and safety are important phenomena. The 
uncertainties play a key role in quantitative investigation of 
reliability of Systems with Complex Interconnections (SwCI). 
This paper proposes a modular approach matrix algebraic 
interval analysis method to investigate uncertainty of SwCIs 
reliability. Using results of uncertainty intervals of system 
reliability, maintenance cost and working expenditures of 
investigated manufacturing unit can be estimated, the 
maintenance management can receive specific supporting data 
to make correct decisions. 

1 Introduction  

The reliability of engineering systems and their components, and risk analysis are highly 
important tools in analyzing and quantifying technical safety. Within the framework of the Synergy 
Demands of Automated Transport Systems project (EFOP-3.6.2-16-2017-00016) at Óbuda 
University, Institute of Mechatronics and Vehicle Engineering sensor networks and systems 
including their reliable and safe operation are examined [4]. 

Balogh and Hanka discussed applicability of Bayesian methods to probabilistic risk 
assessment and engineering design problems [1]. The attraction of Bayesian methods lies in their 
ability to integrate observed data and prior knowledge to form a posterior distribution estimate of a 
quantity of interest. Conceptually, Bayesian methods are desirable because they have the property 
of taking prior estimates and updating them with data over time. This proposed methodology might 
be useful to engineering managers for rare event risk analysis in other applications and other 
disciplines as well. 

Theoretical background of reliability of engineering systems can be knowb by handbooks of 
Johanyák [2], [3] and book of Myers [6]. 

The reliability of Systems with Complex Interconnections (SwCIs) has become a crucial 
matter in several fields of engineering. The real complex systems, such as vehicle sensory 
networks, are not simply interconnected. The systems that have no so-called simple 
interconnections are the Systems with Complex Interconnection. The complex systems cannot be 
simplified by a combination of parallel and series blocks. The “traditional” reliability investigation 
methods – such as Reliability Block Diagram and Fault Tree Analysis – cannot be used to 
investigate reliabilities of the SwCIs. One approach to investigating the reliability parameters 
complex systems is Truth Table Method (TTM) that summarizes the probabilities of all the 
operating and non-operating states of the investigated system [2]. 

The main engineering task of mathematics is the mathematical modeling, model-based 
simulation and analysis or synthesis of technical systems. During mathematical model-based 
system investigation the modelers should meet different type, form and size of model uncertainties. 
Its reasons can be lack of knowledge of modelers’ part or data inaccuracy [10]. 
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Model uncertainties play vital role in investigating the reliability of safety-critical systems with 
complex interconnections such as the sensory-network of the electric vehicles [8]. This uncertainty 
can be described as an interval [12]. This describing method is called interval uncertainty analysis. 

The Bridge Structure System (BSS) such as sensors can be used as example of system 
reliability analysis. 

The research which is reported in this paper is related basically to followings publications: 
Oberkampf suggested a dialog between exploration experts of the reliability engineering, risk 

assessment, and information theory on the uncertainty representation, aggregation, and 
propagation [8] [9]. 

Möller and Beer explored an interval method of uncertainty modeling [5]. 
Pokorádi adapted the mathematical diagnostic methodology of aircraft gas turbine engines to 

determine system reliability sensitivity as Systems with Complex Interconnections (SwCI) [12] and 
as Bridge Structure Sensor, for example Wheatstone Like Bridge (WLB). These proposed methods 
are called TTM and Linear Sensitivity Model of System Reliability (LSMoSR). The paper showed a 
proposed method, and its applicability to investigate reliability of Bridge Structure Systems (BSS) 
by tree examples [11]; [12]; [13]. 

In paper [7] a real sensor and commutation network system of fully electric vehicle (Nissan 
Leaf Z0) was explored. 

The present article applies the approach of the publications mentioned above. The main aim 
of this paper is to present a modular approach interval analysis method in order to determine the 
uncertainty of BSS’s reliability. 

The paper is organized as follows: Section 2 shows the determination method of SwCIs 
reliability, using TTM. Section 3 describes the model uncertainty. Section 4 presents the linear 
sensitivity model theoretically.  Section 5 outlines the interval analysis of the most of BSS reliability. 
Section 6 summarizes the paper, outlines the prospective scientific work of the Author. 

2 Determination of System Reliability 

A BSS (see Figure 1) has five blocks, A; B; C; D; E. Their reliability can be characterized by 
reliability ri and probability of failure pi. 

The components have only two states – good (it is performing its required function – 
designated as the 1) and fault (it is not performing its required function – designated by 0). Sum of 
their probabilities should be one: 

 1i ip r   (1) 

One of the approaches is to correctly calculate the reliability of BSS by sum of the 
probabilities of all good system states of the investigated system. 

 

Figure 1. Bridge Structure System 

A table listing the probabilities of each possible states for a system is referred as a Truth 
Table (TT). 

The possible system states are summarized in the form of a Truth Table, shown in Table 1., 
with each component being assigned either a good or a fault state. The Qj   column comprises the 



 Interval Uncertainty Analysis of Reliability of Systems with Complex Interconnections 

  147 

probabilities of each of the system states. Since the table covers all of the possible combinations, 
the sum of all of the state probabilities should be 1. 

In general case the BSS is operating if a sign or matter can “go across” it. For example it can 
be an industrial plant, where there are two parallel production lines that should be connected by a 
buffer store to balance their fluctuation. 

Table 1. Truth Table of BSS 

i A B C D E System Qi 

1 0 0 0 0 0 0 pA pB pC pD pE 

2 1 0 0 0 0 0 rA pB pC pD pE 

3 0 1 0 0 0 0 pA rB pC pD pE 

4 1 1 0 0 0 0 rA rB pC pD pE 

5 0 0 1 0 0 0 pA pB rC pD pE 

6 1 0 1 0 0 1 rA pB rC pD pE 

7 0 1 1 0 0 0 pA rB rC pD pE 

8 1 1 1 0 0 1 rA rB rC pD pE 

9 0 0 0 1 0 0 pA pB pC rD pE 

10 1 0 0 1 0 0 rA pB pC rD pE 

11 0 1 0 1 0 1 pA rB pC rD pE 

12 1 1 0 1 0 1 rA rB pC rD pE 

13 0 0 1 1 0 0 pA pB rC rD pE 

14 1 0 1 1 0 1 rA pB rC rD pE 

15 0 1 1 1 0 1 pA rB rC rD pE 

16 1 1 1 1 0 1 rA rB rC rD pE 

17 0 0 0 0 1 0 pA pB pC pD rE 

18 1 0 0 0 1 0 rA pB pC pD rE 

19 0 1 0 0 1 0 pA rB pC pD rE 

20 1 1 0 0 1 0 rA rB pC pD rE 

21 0 0 1 0 1 0 pA pB rC pD rE 

22 1 0 1 0 1 1 rA pB rC pD rE 

23 0 1 1 0 1 1 pA rB rC pD rE 

24 1 1 1 0 1 1 rA rB rC pD rE 

25 0 0 0 1 1 0 pA pB pC rD rE 

26 1 0 0 1 1 1 rA pB pC rD rE 

27 0 1 0 1 1 1 pA rB pC rD rE 

28 1 1 0 1 1 1 rA rB pC rD rE 

29 0 0 1 1 1 0 pA pB rC rD rE 

30 1 0 1 1 1 1 rA pB rC rD rE 

31 0 1 1 1 1 1 pA rB rC rD rE 

32 1 1 1 1 1 1 rA rB rC rD rE 

The state probabilities resulting in an operating system are included in the rows 6; 8; 11; 12; 
14; 15; 16; 22; 23; 24; 26; 27; 28; 30; 31 and 32. The 
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        

       

6 8 11 12 14 15 16 22

23 24 26 27 28 30 31 32

 (2) 

sum of the operating system state probabilities included in this column is the reliability of the 
system.  

In general case the BSS is operating if a sign or matter can “go across” it. The Figure 2 
shows system reliabilities Rsys in case of different reliabilities of component ri. For example it can 

be an industrial plant, where there are two parallel production lines that should be connected by a 
buffer store to balance fluctuation of their productivities that are characteristics of applied 
technology. 

         

Figure 2. System Reliabilities in Cases of Different Reliabilities of Components 

In so called “full” working state of a BSS the all components should operate. In this case the 
reliability Rfull can be calculated as the probability of the system state 32 of Truth Table of BSS (see 

Table 1.). The “full” system reliabilities are shown by Figure 3 in cases of different component. 

 

Figure 3. “Full” System Reliabilities in Cases of Different Reliabilities of Components 

3 Model Uncertainties 

The mathematical modeling is the description of the process occurring on the investigated 
system from the point of view of the given investigation by mathematical equation or system of 
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equations. A real technical system is precise but complex. Additionally, a system of systems 
consists of large number of inter-connected systems and aggregates. But, the mathematical model 
should be simplified therefore can be imprecise. 

         

Figure 4. System and Model 

 
Seeing Figure 4., a mathematical model has 
 

M – structure (e.g. stochastic, as reliability model of BSS in this study); 
p  – inner system parameters (e.g. number of element of system in our case); 
u  – input signs (e.g. reliabilities of elements of investigated BSS); 

 
and responds by output parameters y. 

For interpretation of types of uncertainty and their investigation methods, let 

  ( )fy x  (3) 

general mathematical model, where y is the vector of dependent (output) variables, x is the vector 

of independent variables. 
One of the most widely accepted types of uncertainties are aleatory and epistemic ones.  
Model uncertainties are called as epistemic, if the modeler reduces the model improperly. 

This uncertainty may be comprised of substantial amounts of both objectivity and subjectivity. 
The epistemic uncertainty means the incorrection of model structure M (Figure 5.a). 

        
a                                                            b 

Figure 5. Epistemic and Aleatory Uncertainty 

Aleatory uncertainties are inseparable variation associated with the modeled system or its 
environment and also are called parametric uncertainty. Their possible engineering sources are: 

• inaccurate measuring; 
• measuring noises; 
• unconscionable digitalization; 
• wrong statistical information. 
 
The parametric uncertainty means anomalies of parameters (see Figure 5.b).  
Referring to Equation (3), there are two fundamental approaches to investigate parametric 

uncertainties. The first method is the interval uncertainty analysis that characterizes a given 
uncertainty by 

 ( )y i xfi i  (4) 

general equation, where 
ix – vector of intervals of input variables; 
iy – vector of intervals of output variables; 
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Another fundamental investigation method is the probabilistic analysis that describes 
uncertainty by probability distributions. In this case the 

 ( )y d xfd d  (5) 

general equation is used, where 
dx – vector of distributions of independent variables; 
dy – vector of distributions of dependent variables; 
 

During uncertainty analysis the functions fi and fd should be determined by applied 

mathematical model. 

4 Linear Sensitivity Model 

The theoretical method of setting up Linear Sensitivity Model can be read in references [12] 
and [13] in detail. The probabilities of possible system states (see Table 1.) can be described by 

 
E

j i i
i A

Q u (r )


  (6) 

general equation form. 
If the state of component is good, the inner function ui = ri, then the sensitivity coefficient is: 

 jiK  1  (7) 

If the state of the component is faulty, the inner function ui = 1 - ri, then the sensitivity 

coefficient is: 

 

k i

E
i

ji i
j k A

r
K u

Q



    (8) 

In case of functions determining directly the probabilistic system parameters – see equations 
(2) – the sensitivity coefficients can be determined by 

 
j

j
sys

Q
K

R
  (9) 

Following the general determinations mentioned above we can now set up the linear 
sensitivity models of system. 

According to the references [10], [12] mentioned before the connection between relative 
changes of the independent and the dependent parameters can be described by 

   A y B x  (10) 

equation, where A and B coefficient matrices are independent and dependent parameters, and   ,   

are vectors relative changing of independent and dependent parameters. Using the 

 
1D A B  (11) 

relative sensitivity coefficient matrix of the investigated system, the equation 

   y D x  (12) 

can be used for relative sensitivity investigations [12]. The independent parameter vector consists 
of component reliabilities: 

  T
A B C D Er r r r rx  (13) 
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The vector of dependent parameters consists of the probability of system reliability and 
probabilities of operating system states – see equation (2): 

 
T
sys sys 6 8 11 12 14 15 16 22 23 24 26 27 28 30 31 32R Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q   y  

(14) 

The coefficient matrix of the dependent parameters: 

6 8 11 12 14 15 16 22 23 24 26 27 28 30 31 321

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0

               

Asys

K K K K K K K K K K K K K K K K

0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
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 
 
 
 
 
  

 

(15) 

The coefficient matrix of independent parameters: 
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

 (16) 

5 Interval Uncertainty Analysis 

In this study the fi function of BSS reliability will be determined based on the TTM mentioned 

above. 
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The first step is determining the vectors of relative maximum and minimum values of 
independent parameter values: 

 
 

 





 

 





1
max max

1
min min

nom

nom

x X x x

x X x x
 (17) 

where: 
X     – matrix of nominal values of independent variables 

 1 2nom nom Nnomx x xX   .  

xnom  – vector of nominal values of independent variables; 
xmax  – vector of maximal values of independent variables; 
xmin   – vector of minimal values of independent variables 
 

For interval uncertainty analysis the relative sensitivity model – see equation (12) – should be 
modified. The so-called “positive diagnostic matrix” and “negative diagnostic matrix” 

 

if

if

if

if

ij ij

ij
ij

ij ij

ij
ij

d d 0
d

0 d 0

d d 0
d

0 d 0

 

 

 
  

  

 
  

  

D

D

 (18) 

should be introduced. 
Knowing the matrices mentioned above, the vectors of relative minimum and maximum 

values of the dependent parameters: 

 
max max

min min

 

 

      
     

      

y D D x

y D D x
 (19) 

Knowing the elative minimum and maximum values, the measured minimum and maximum 
output parameter values should be determined 

 
max nom max

min nom min

  

  

y y Y y

y y Y y
 (20) 

where: 
Y      – matrix of nominal values of dependent variables 

 1 2nom nom Mnomy y yY     ;  

ynom  – vector of nominal values of dependent variables. 
 

5.1 Determinations of Uncertainty Intervals Depend on  Reliabilities of Components  
(Theoretical Investigation) 

Firstly the interval uncertainty analysis method was used to determine uncertainty intervals of 
system reliability. During simulation reliabilities of all components were same and different between 
maximum, minimum and nominal values were 0.02. 

In general case the system reliability Rsys was determined by equation (2) and the above 

mentioned method was used. The results are shown by Figure 6. 
In so called “full” working state of a BSS the maximum and minimum values of uncertainty 

interval are the 17th elements of measured minimum and maximum output parameter vectors. The 
figure 7 shows the results of interval uncertainty analysis of “full” system reliability. 
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Figure 6. Results of Interval Analysis of System Reliabilities in Cases of Different  
Reliabilities of Components (Δri=±0.02) 

 

Figure 7. Fig. Results of Interval Analysis of “Full” System Reliabilities in Cases of Different 
Reliabilities of Components (Δri=±0.02) 

5.2 Investigation of Production Line’s Reliability 
(Practical Case Study) 

The author aimed to investigate two parallel production lines that are connected by a buffer 
store to balance unsteadiness of their productivities. These two parallel production lines and buffer 
store system can be investigated as a BSS – from the point of view of its reliability.  

When determining of the reliabilities of failures of sublines and storage statistically, 
remarkable uncertainties where observe. These statistical data are shown by Table 2 and Table 3 
shows of the results of interval uncertainty analysis of the manufacturing line reliabilities. 

Table 2. Data of Reliability Intervals of Items 

i A B C D E 

rimax 0.885 0.874 0.911 0.877 0.958 

rinom 0.871 0.872 0.901 0.881 0.955 

rimin 0.861 0.870 0.899 0.884 0.951 
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Table 3. Result of Interval Reliability Investigation 

j Sys „Full” 

rjmax 0.97387 0.59192 

rjnom 0.97092 0.57576 

rjmin 0.96933 0.5661 

These results can be used for the estimation of expected minimum and maximum values of 
maintenance cost and working expenditures of investigated manufacturing unit. Thus, the 
maintenance management can receive specific supporting data to make correct decisions. They 
can determine the maximum and minimum number of required spare parts to ensure continuous 
operation of investigated manufacturing line. 

5.3 Discussions 

The following conclusions can be drawn from the results of interval uncertainty analysis: 
 

A1: In general case, the system reliability is approaching 1 asymptotically when reliabilities of 
components increase (see Figure 2.). 

A2: In general case, the uncertainty interval of system reliability decreases if the reliabilities of 
the elements increase (see Figure 6.). 

B1: The “full” system reliabilities is approaching 1 when reliabilities of components increase 
exponentially (see Figure 3.). 

B2: The uncertainty interval of “full” system reliability increases if the reliabilities of the elements 
increase (see Figure 7.). 

C1: Using the proposed method the intervals of probabilities of the system can be determined. 
The results of interval uncertainty analysis of reliability give important information for the 
maintenance management to make correct decisions. 

6 Closing Remarks 

This paper presented a new interval uncertainty investigation method of SwCIs’ reliability. Its 
possibilities of use have been shown by way of theoretical investigation and a practical case study 
of the BSSs’ reliabilities. 

The Author’s proposed prospective future research direction is the study of uncertainty 
analysis methodologies of systems with complex interconnections, such as vehicle sensory 
network, reliability based on probabilistic uncertainty analysis, probability-bounds analysis and 
Monte-Carlo Simulation. 
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