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Abstract

To keep pace with the rapid expansion in data-exchange traffic around the world, optical

networks are anticipated to provide flexibility to maximize utilization of the deployed optical

fiber resources. On the other hand, digital signal processing (DSP) has been employed in

coherent optical systems to enable 100G and beyond optical fiber networks. The goal of

the thesis is to develop advanced DSP techniques for the flexible optical networks.

With the reconfigured modulation formats in the systems, modulation classification

(MC) is essential in the DSP to facilitate the sequential compensation modules which are

modulation format-dependent. Based on the cumulative distribution function (CDF) of

received signal’s amplitude, an MC algorithm for M -ary quadrature amplitude modulation

(M -QAM) formats with M = 4, 8, 16, 32, and 64 is proposed. Results show that the pro-

posed algorithm achieves accurate classification at optical signal-to-noise ratio (OSNR) of

interest and is robust to frequency offset and laser phase noise. Relying on the CDF of

received signal’s amplitude, a non-data-aided (NDA) OSNR estimation algorithm is devel-

oped for coherent optical systems employing multilevel constellations. It outperforms the

state-of-the-art NDA algorithm in terms of performance and complexity. Furthermore, a

joint OSNR estimation and MC algorithm enabled by support vector machine is designed.

Compared to deep neural network-based joint estimation approach, the proposed algorithm

achieves better performance with comparable complexity.

In addition, a low-complexity two-stage carrier phase estimation algorithm is proposed

for coherent optical systems with 16-QAM format. The proposed algorithm exploits the

second power operation instead of the conventional fourth power to remove the modula-

tion phase, which is enabled by constellation partition and rotation. Optical back-to-back

experiments and numerical simulations are carried out to evaluate the performance of the

algorithm. Results show that, compared with the conventional fourth power-based CPE al-
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gorithm, the proposed algorithm provides comparable tolerance to the carrier phase noise,

with reduced complexity.

Lastly, a novel transmission scheme is investigated for the open and disaggregated metro

coherent optical networks, which impose the requirements for multiple user connectivities

on the limited orthogonal frequency resources. Thus, it is desirable to provide connections

simultaneously to various users in a non-orthogonal way. A transmission scheme based

on the non-orthogonal sparse code multiple access in a digital subcarrier multiplexing is

proposed. Compared to power domain-based counterpart, the proposed scheme supports

more than 2 users without user pairing and clustering. The feasibility of the proposed

scheme is verified through numerical simulations. Three scenarios with 2, 4, and 6 users

over 1, 2, and 4 subcarriers, respectively, are considered. Performance evaluations show

that in all scenarios, the proposed scheme attains bit error ratio lower than the forward

error correction limits with the transmission ranges of interest in metro applications.
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Chapter 1

Introduction

1.1 Research Motivation

The influence of Internet on all aspects of today’s society is unchallengeable: the fast ex-

pansion of bandwidth-hungry applications across all areas (e.g., social networking, cloud

computing, and virtual reality) is profoundly shaping the world. The growing Internet traf-

fic generated by such applications is prompting an unprecedented demand for bandwidth.

According to Cisco’s recent white paper, the network traffic will increase nearly three-fold

over the next three years [1]. Optical fiber has demonstrated its incomparable superiority

over other media in terms of capacity and transmission reach to support data transmis-

sion. Dated back to 1970, the first low-loss silica fiber was fabricated and the era of optical

fiber communications started [2,3]. The early optical fiber communication systems suffered

slow progress owing to low efficient opto-electronical regeneration in a span-by-span way.

Since 1990s, the cost-effecitve wavelength-division multiplexing (WDM) technique signifi-

cantly boosted the transmission capacity, thanks to the advent of wide-band optical fiber

amplifiers [4, 5]. Along with the rise of WDM systems, optical networking and resource

management emerged and improved the system efficiency dramatically. This situation was
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driven by the fact that the capacity of WDM systems remarkably exceeded that of elec-

tronic devices such as switches and routers. Reconfigurable optical add-drop multiplexing

(ROADM) was introduced to incorporate the functions of aggregating, disaggregating, and

switching signal path in the optical domain [6, 7]. By 1997, commercial WDM systems

achieved an aggregate capacity of 40 Gb/s consisting of sixteen 2.5 Gb/s wavelengths [8].

Afterwards, optical fiber communication systems faced a slow-down in capacity increase be-

cause the bandwidth of wide-band optical amplifiers has been used to a maximum possible

extent and the available optical bandwidth had been completely saturated. Since 2000s, the

commercialization of high speed analog-to-digital converters (ADCs) and digital-to-analog

converters (DACs) paved the way to a new era of optical fiber communications: coherent

optical systems. With the help of the local oscillator (LO), the signal can be down-converted

to baseband and the amplitude and phase information of the signal can be acquired. Com-

bined with polarization division multiplexing (PDM) technique, the spectral efficiency (SE)

is increased by a factor of 4 when compared to direct detection systems. It is worth men-

tioning that digital signal processing (DSP) plays an essential role in this context, since it

is the foundation for fiber channel impairment compensation, frequency and phase synchro-

nization, and polarization demultiplexing [9]. Although coherent optical systems involve

higher cost and receiver complexity due to the requirements of one more laser at the re-

ceiver and powerful DSP, they have attracted very intensive attentions from both academic

and industrial sides for their outstanding benefits [10–12]. A 40 Gb/s coherent transmission

system employing polarization-division multiplexing quadrature phase-shift-keying (PDM-

QPSK) modulation format was demonstrated by Nortel in 2008, where DSP was used to

compensate chromatic dispersion and polarization effects [12]. The optical communications

systems progressively evolved into 100 Gb/s shortly and were widely deployed commercially,

most of which were in long-haul networks [13–15]. The community then focused on more
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complex, bandwidth-efficient solutions to increase capacity and achieve higher SE, such as

higher-order modulation formats and faster-than-Nyquist signaling [16–18]. For a given

system bandwidth, higher SE is mainly achieved by employing higher-order quadrature

amplitude modulation (QAM) formats. Ideally, 2log2(M) bits per symbol can be carried

on the M -QAM format. In order to achieve an adaptation of SE with a much finer gran-

ularity, probabilistic constellation shaping (PCS) has been proposed very recently [19–23].

In PCS systems, higher energy symbols are sent less frequently than lower energy ones. A

commercial long-haul C + L-band optical fiber PCS system has been reported; the system

consists of 192 channels and each channel is up to 250 Gb/s on a 50-GHz grid, leading to

an aggregate capacity of about 48 Tb/s with an SE of 5 bit/s/Hz [22].

To date, coherent optical systems with DSP techniques have dominated long-haul optical

transmission networks and are extending their domination to optical metro networks and

even short-reach data center interconnect [24]. However, the tremendous investment cost

for optical fiber infrastructure obliges the utilization of current networks resource to maxi-

mum extent. In such a context, flexible optical networks or elastic optical networks (EON)

are considered as a promising solution. Specifically, ROADMs, adaptive grid, flexible mod-

ulation format, and bandwidth have been considered to achieve high efficient utilizations

of the current network capacity [25]. The dynamic feature of EON emphasizes the impor-

tance of estimating various optical network transmission parameters, such as modulation

format and optical signal-to-noise ratio (OSNR) [26]. On one hand, M -QAM formats are

widely used in coherent optical fiber systems, due to their high SE and compatibility to

high speed DAC. This makes classification of different QAM formats very important. On

the other hand, optical amplifiers like erbium-doped fiber amplifier (EDFA) are employed

in optical links to compensate for the transmission power loss over long distances. How-

ever, EDFA introduces amplified spontaneous emission (ASE) noise into the optical signal.
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OSNR quantifies the impact of ASE noise and is thus an important parameter describing

the signal quality. Successful modulation classification (MC) and OSNR estimation play a

pivotal role in EON.

In addition, the DSP design becomes more challenging as the modulation format evolves

from PDM-QPSK to higher-order QAM formats. For example, in QPSK-based systems,

carrier phase can be efficiently estimated by the feed-forward Viterbi-Viterbi algorithm,

which employs the rotational symmetry of QPSK constellations to map onto a single point

of the in-phase-quadrature (IQ) plane when raised to the 4th power (an operation known as

modulation phase removal). Unfortunately, higher-order QAM formats do not show such

property. Thus, advanced carrier phase estimation (CPE) algorithms for higher-order QAM

formats in terms of good performance and low-complexity are desired [27].

Lastly, researches on providing high diversity and flexible solutions for optical metro net-

work have attracted interest recently [28]. Metro-access and metro-regional applications,

such as data center interconnect, mobile transport, and enterprise connectivity services,

prefer open, flexible, and disaggregated systems. This is in line with the general perception

that service providers are more willing to trade performance for interoperability and cost

savings. Other than transmitting data over orthogonal resources, non-orthogonal transmis-

sion schemes are favored, as they can improve the flexibility of time-frequency resources

utilization.

1.2 Thesis Outline

The main objective of this thesis is to investigate advanced DSP techniques for coherent

systems in flexible optical networks. On the basis of coherent optical systems, whose concept

is introduced briefly in Chapter 2, two categories of work has been performed. The former

is related to parameter estimation and is covered in Chapters 3 to 6, while the latter is on
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a novel flexible transmission scheme, and is covered in Chapter 7. Each chapter is detailed

as follows:

In Chapter 2, the digital coherent receiver and each subsystem is reviewed, respec-

tively. After giving an overview of the subsystems, DSP algorithms widely employed in the

subsystems are introduced. The algorithms are required to overcome the optical front-end

imperfections, compensate transmission impairments such as chromatic dispersion (CD) and

polarization mode dispersion (PMD), and synchronize the carrier frequency offset (CFO)

and carrier phase.

In Chapter 3, an MC algorithm is proposed for coherent optical receivers, which is based

on the received signal’s amplitude. The proposed algorithm classifies the modulation for-

mat from several possible candidates by differentiating the cumulative distribution function

(CDF) of their normalized amplitudes. The candidate with the most similar CDF to the

received signal is selected. The measure of similarity is the average distance between these

CDFs. Five commonly used QAM formats are considered. Optical back-to-back (B2B)

experiments and extended simulations are carried out to investigate the performance of the

proposed algorithm. Results show that the proposed algorithm achieves accurate classifica-

tion at OSNR of interest. Furthermore, it does not require carrier recovery.

In Chapter 4, a novel non-data-aided (NDA) OSNR estimation algorithm is proposed,

which provides enhanced performance for coherent optical systems employing multilevel

constellations. The proposed algorithm utilizes the empirical CDF of the signal’s ampli-

tude to extract the information on the noise variance. Analytical and extensive simulation

results show the feasibility and advantages of the algorithm. For the studied systems em-

ploying multilevel constellations such as 8-QAM, 16-QAM, 32-QAM, and 64-QAM, the

proposed algorithm attains the derived Cramér-Rao lower bound. Further, it achieves a

lower mean square error with significantly lower complexity when compared to the conven-
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tional moment-based NDA estimation approach. Moreover, the impact of fiber nonlinearity

is investigated with a 5-channel Nyquist wavelength division multiplexing system, and the

proposed algorithm outperforms the moment-based counterpart.

In Chapter 5, a support vector machine (SVM)-based algorithm is proposed to jointly

classify the modulation format and estimate the OSNR, by adopting the amplitude’s CDF

as feature. Three commonly-used QAM formats are considered. Numerical simulations

have been carried out in the OSNR ranges from 5 dB to 30 dB, and results show that the

proposed algorithm achieves a very good MC performance, as well as high OSNR estimation

accuracy with a maximum estimation error of 0.8 dB. Optical B2B experiments are also

conducted in OSNR ranges of interest. A 99% average correct MC rate is attained, and

mean OSNR estimation errors of 0.38 dB, 0.68 dB, and 0.62 dB are observed for 4-QAM, 16-

QAM, and 64-QAM, respectively. Furthermore, compared with neural networks-based joint

estimation algorithm, the proposed algorithm attains better performance with comparable

complexity.

In Chapter 6, a low-complexity two-stage CPE algorithm for coherent optical systems

with 16-QAM is proposed. The proposed algorithm uses the second power operation instead

of the conventional fourth power to remove the modulation phase, which is enabled by

constellation partition and rotation. Simulations and optical B2B experiments are carried

out to investigate the performance of the proposed algorithm. Results show that, compared

with the conventional fourth power-based CPE algorithm, the proposed algorithm provides

a comparable performance with reduced complexity.

In Chapter 7, a transmission scheme based on the non-orthogonal sparse code multiple

access technique in a digital subcarrier multiplexing system is proposed. Compared to the

power domain-based counterpart, the proposed scheme supports more than 2 users without

user pairing and clustering. The feasibility of the proposed scheme is verified through
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numerical simulations. Three scenarios with 2, 4, and 6 users over 1, 2, and 4 subcarriers,

respectively, are considered. Performance evaluations show that in all scenarios, the bit

error rate (BER) is lower than the forward error correction limits with the transmission

ranges of interest in metro applications. The proposed scheme is helpful to avoid large

buffer and long connection waiting time by providing connections simultaneously to various

users in a non-orthogonal way.

In Chapter 8, conclusions are reached by presenting a summary of the main findings, as

well as possible future research topics.
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Chapter 2

Review of Digital Coherent

Receivers

As mentioned in the previous chapter, coherent optical systems have attracted intensive

attention due to their high SE and tolerance to fiber channel impairments such as dispersion

and nonlinearity [29]. In this chapter, the structure of digital coherent receivers is briefly

discussed. To begin with, the concept of coherent detection is introduced.

2.1 Coherent Detection

An optical receiver employing coherent detection is shown in Fig. 2.1. After passing the

polarization controller (PC), the optical signal, Es, enters a 3-dB coupler; while the other

input of the coupler connects to a continuous-wave optical laser, which is the LO. Without

loss of generality, it is assumed that the state of polarization (SOP) of the transmitted

signal and the LO are aligned. The two incident electric field for the signal and LO are
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Fig. 2.1: Diagram of an optical receiver with coherent detection.

given by

Es(t) =
√
Psexp (j(ωst + φs(t))) ,

ELO(t) =
√
PLOexp (j(ωLOt + φLO(t))) , (2.1)

where Ps and PLO are the powers of the signal and the LO, respectively; ωs and ωLO are

the angular frequencies of the signal and the LO, respectively; φs and φLO are the phases

of the signal and the LO, respectively. The 3-dB optical coupler introduces a 180○ phase

shift between the two output ports. The electric fields incident on the upper and lower

photodiodes are given by

Er1 =
1

√
2
(Es +ELO),

Er2 =
1

√
2
(Es −ELO). (2.2)

The balanced detector output is then calculated as

I(t) = I1(t) − I2(t)

= 2R
√
Ps(t)PLO(t) cos (ωIF t + φs(t) − φLO(t)), (2.3)

where R is the responsivity of the photodiode, ωIF = ∣ωs−ωLO ∣ is the intermediate frequency

(IF). If ωIF = 0, the current is

I(t) = 2R
√
Ps(t)PLO(t) cos (φs(t) − φLO(t)), (2.4)
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which implies that the receiver measures the inner product between the signal phasor and the

LO phasor. This kind of coherent receiver is called homodyne receiver. In general, an optical

phase lock loop is required to ensure that the LO phase tracks the signal phase. However,

the implementation is complicated in practice. In addition, only the cosine component or

the projection of the signal on the LO is available, and thus, the homodyne receiver cannot

extract full information of the signal.

In order to obtain the sine component, another LO input with 90○ shift is required. By

separating the signal and the LO into two branches respectively and adding a 90○ shift on

one branch, both in-phase and quadrature components can be detected. This scheme is

shown in Fig. 2.2. Accordingly, the four electric field outputs are given by

Es

ELO

Er1

Er2

II1

II2

II

Er3

Er4

IQ1

IQ2

IQ

π/2 

Optical Hybrid

Fig. 2.2: Diagram of a homodyne receiver with phase diversity.

Er1 =
1

√
2
(Es +ELO),

Er2 =
1

√
2
(Es −ELO),

Er3 =
1

√
2
(Es + iELO),

Er4 =
1

√
2
(Es − iELO), (2.5)
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where i2 = −1. Then, the photocurrents of the in-phase and quadrature parts are calculated

by

II(t) = R
√
Ps(t)PLO(t) cos (φs(t) − φLO(t)),

IQ(t) = R
√
Ps(t)PLO(t) sin (φs(t) − φLO(t)). (2.6)

The complex amplitude of the optical signal is obtained by such phase-diversity homodyne

receiver or indradyne receiver [30]. It should be noted that it is difficult to keep the SOP of

the signal identical to the LO due to the birefringence of the optical fiber in practice. The

polarization-diversity receiver is then introduced to address this issue. Two phase-diversity

homodyne receivers are incorporated by separating the signal and the LO into two linear

polarizations with the polarization beam splitter (PBS).

2.2 Digital Coherent Receiver

The schematic diagram of a digital coherent receiver with polarization and phase-diversity

homodyne detection is shown in Fig. 2.3. The PBS separates the signal and the LO wave

into two orthogonal polarizations. Then, the co-polarized signal and LO wave are mixed

in the optical hybrids to generate the in-phase and quadrature components. Signal with

complex amplitudes in two polarizations is then fed into linear trans-impedance amplifiers

(TIA). After sampling by ADCs, the four signals are digitalized and sent into DSP for

further processing.

The DSP can be split to several modules or subsystems to deal with different impair-

ments, as shown in Fig. 2.4. Firstly, the four digitalized signals pass through the subsystem

for front-end imperfection compensation. Basically, the imperfections include the skew be-

tween the four channels because of the differences among the paths; the power difference

between the output signal because of the difference in photodiodes of the four channels;
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TLA
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TLA

ADC

ADC

ADC

ADC

DSP

Fig. 2.3: Diagram of a digital coherent receiver with polarization and phase-diversity ho-

modyne detection.

the IQ imbalance because of the imperfect optical hybrids. Then, the signal is resampled

to 2 samples per symbol in the resampling subsystem. After that, equalizers are employed

to compensate for the channel impairments. The static equalizer deals with chromatic

dispersion, while the adaptive equalizer realizes polarization-demultiplexing and handles

the residual dispersive effect. Timing recovery is performed in between the two equaliz-

ers. After equalizing the channel impairments, carrier recovery is required, which includes

frequency offset compensation and laser phase noise compensation. The former deals with

the frequency offset between the transmit laser and the LO, while the latter corrects the

phase noise caused by both lasers. Finally, the symbol decision is performed and BER is

calculated.

2.3 Subsystems of Digital Coherent Receivers

In this section, each subsystems along with the typical DSP algorithms are introduced.
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Static Equalization

Adaptive Equalization

Frequency Synchronization

CarrierPhase Recovery

Front-end Imperfection 
Compensation & Resampling

Received Signal

Symbol Detection

Timing Recovery

Fig. 2.4: The subsystems of DSP in coherent optical receivers.
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2.3.1 IQ Imbalance Compensation

The received signal on the two polarizations can experience amplitude and phase imbalance

due to differences of the photodiode responsivity or incorrect bias point of the modulator

setup. This imbalance damages the orthogonality and degrades the system performance. To

compensate for this impairment, the Gram-Schmidt orthogonalization procedure (GSOP)

is usually employed [31]. The GSOP converts a set of non-orthogonal samples to orthogonal

samples. Given two non-orthogonal components of the received signal, denoted by I ′(t) and

Q′(t), the GSOP generates a new pair of orthogonal signals by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I(t)

Q(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1√
PI

0

− a√
PQ

1√
PQ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I ′(t)

Q′(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.7)

where a = IE{I ′(t)Q′(t)} is the correlation coefficient between the two received signal; PI

and PQ are the powers of the two signals, respectively. Note that IE denotes the expectation

operation.

2.3.2 Resampling

After compensating for front-end imperfections, the signal is resampled to 2 samples per

symbol. For a digital communication system transmitting symbols at a rate S symbols/s,

the minimum sampling rate is S Hz. However, a sampling rate of 2S Hz is advantageous

for the purpose of digital timing recovery [9].

2.3.3 Static Equalization

It is beneficial to separate the channel equalization into static and dynamic equalization

due to their differences in implementation. Typically, the former involves large static filters,

while the latter needs relatively short but adaptive filters to compensate for time-varying

effects. Here, static equalization is mainly to compensate for the CD. The transfer function
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of the CD is given by [32]

H(ω, z) = exp(−j
Dλ2

4πc
ω2z) , (2.8)

where D is the dispersion coefficient of the fiber, λ is the wavelength, c is the speed of

the lightwave, ω is the angular frequency, and z is the transmission distance. The static

equalizer is considered an all-pass filter with transfer function Hs(ω) =
1

H(ω) , which is ap-

proximately realized by a finite impluse response (FIR) filter. This can be realized either in

time domain, and thus referred to as time domain equalizer (TDE) [33], or in the frequency

domain, referred to as frequency domain equalizer (FDE) [34]. TDE and FDE show differ-

ent performance and complexity, and the selection depends on the dispersion of the channel

and the required filter length [35]. Next, TDE and FDE are introduced, respectively.

2.3.3.1 Time Domain Equalizer

Equation (2.8) is used to generate the impulse response of a dispersive fiber by inverse

Fourier transform, and the result is given by

h(z, t) = Aexp(j
πc

Dλ2z
t2) , (2.9)

where A =
√

c
jDλ2z

. Now the impulse function of the TDE is

hs(z, t) = Aexp(−j
πc

Dλ2z
t2) . (2.10)

Based on Eq (2.10), the impulse response is non-casual and infinite in duration. Therefore,

the impulse response is truncated to accommodate practical implementation. If the signal is

sampled at 2 samples per symbol, a fractionally spaced equalizer can effectively be realized

with the tap spacing equal to the sampling interval, T /2 (T denotes the symbol period).

Assuming that the tap number is N , the tap weights are given as [33]

an =

√
jcT 2

Dλ2z
exp(−j

πcT 2

Dλ2z
n2

) , ⌊
N

2
⌋ < n < ⌊

N

2
⌋. (2.11)
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Note that pulse shaping filters limit the effective bandwidth of the signal; as a result, the

filter design for CD compensation can be performed over a smaller frequency range, leading

to a reduction of complexity. Such consideration has been investigated in [36], where the

least square criterion is applied to design FIR filter. Infinite impulse response (IIR) filter is

also proposed; however, it is challenging to implement IIR filter in high speed applications

with parallelized signal processing [37].

2.3.3.2 Frequency Domain Equalizer

When the number of taps, N , is large, it is more efficient to implement the FIR in frequency

domain [38]. In principle, the received signals are converted to frequency domain by the

fast Fourier transform (FFT), then multiply by the inverse of (2.8). Finally, the inverse

FFT (IFFT) operation returns the signal to time domain.

2.3.4 Timing Recovery

Timing recovery deals with estimating the delay in order to realize the optimal detection of

data. Gardner’s algorithm [39] is widely used, owing to its low-complexity. Given the slow

change of the delay, block by block processing is typically employed by assuming constant

delay within each block [40]. It should be noted that Gardner’s timing recovery algorithm

is sensitive to high dispersion, and hence, it is performed after CD compensation.

2.3.5 Adaptive Equalizer

The adaptive equalizer aims to separate the two polarizations, as well as to compensate for

the residual CD and PMD. Different from CD, the polarization effect is time-varying and

thus requires an adaptive equalizer [9]. The structure of a butterfly equalizer is shown in

Fig. 2.5, where Ehi, Evi, Eho, and Evo are the input signal and output signal on the two
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Evi

whh

whv

wvh

wvv
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Fig. 2.5: The butterfly structure of an adaptive equalizer.

polarizations, respectively; whh, whv, wvh, wvv are the tap weights. The output of the

equalizer is calculated by

Eho = wT
hhEhi +wT

hvEvi,

Evo = wT
vhEhi +wT

vvEvi. (2.12)

Depending on the use of a training sequence (TS), the adaptive equalizer can be either TS-

based or blind. In general, a blind equalizer is used owing to increased spectral efficiency

and simplicity. Two blind algorithms, namely the constant modulus algorithm (CMA) [9]

and the radius directed equalizer (RDE) [41], are widely used in the transmission systems.

2.3.5.1 Constant Modulus Algorithm

In CMA, the cost function based on the constant modulus criterion is minimized. For

example, the cost function for the h polarization is given by

Jcma[n] = IE{(∣Eho[n]∣
2
−Rh)

2
}, (2.13)
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where Rh =
IE{∣Ehi[n]∣

4}

{∣Ehi[n]∣2}
is the reference. The stochastic gradient descent is usually employed

for CMA to update the filter coefficients on a symbol basis by

whh[n + 1] = whh[n] − µ∇Jcma[n], (2.14)

where µ is the step size and ∇ is the gradient operator. Accordingly, the tap weights are

updated by

whh = whh + µεhEhiE
∗
ho,

whv = wxy + µεhEhiE
∗
ho,

wvh = wyx + µεvEviE
∗
vo,

wvv = wyy + µεvEviE
∗
vo, (2.15)

where εh = ∣Eho∣
2 −Rh and εv = ∣Evo∣

2 −Rv.

2.3.5.2 Radius Directed Equalizer

CMA works for modulation formats with constant modulus; however, for higher-order mod-

ulation formats such as 16-QAM, the CMA cost function does not converge to zero. In order

to ensure that the error tends to zero, RDE is employed. The principle is to partition the

constellations into 3 classes based on the amplitude. Considering a power-normalized 16-

QAM constellations, the reference amplitudes Ri (i = 1, 2, and 3) are 2/10, 1, and 18/10,

respectively. If ∣Eho[n]∣ ≤ (
√
R1 +

√
R2)/2, the symbol belongs to the inner ring and the

reference Rh in (2.13) is R1; if ∣Eho[n]∣ ≤ (
√
R2 +

√
R3)/2, the symbol belongs to the outer

ring and the reference Rh in (2.13) is R3; otherwise, the symbol is consider to be in the

middle ring, and the reference Rh in (2.13) is R2. In general, CMA is still a good choice to

achieve a pre-convergence for 16-QAM [41].
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2.3.6 Frequency Offset Estimation and Compensation

After the aforementioned processing, the signal is expressed as

yn = xnexp(j(2π∆fnT + φn)) +wn, (2.16)

where yn is the corrupted signal, xn is the transmitted signal, ∆f is the frequency offset,

T is the symbol duration, φn is the carrier phase noise, and wn is the additive zero-mean

Gaussian noise (AWGN) [9]. To compensate for the frequency offset, it is required to first

obtain an estimate as accurate as possible. Significant efforts have been made to develop

feed-forward frequency offset estimation (FOE) algorithms for real-time implementation in

M -QAM systems, aiming to improve the accuracy and reduce the complexity. A training

symbol-based algorithm which utilizes Golay sequence is proposed in [42]. To reduce the

complexity, the differential phase-based FOE avoids the FFT operation at the price of

degrading the tracking speed, since only the consecutive pairs of the QPSK symbols are

utilized [43]. Fourth-power FFT-based algorithms achieve higher accurate FOE by finding

the peak of the power spectrum, at the cost of higher complexity [44,45]. Taking advantage

of QPSK partitioning and quasi-linear approximation, an FOE algorithm which balances

the complexity and performance is proposed in [46]. In the sequel, the details of the FFT-

based algorithm are provided as this achieves a good performance. To begin with, the

received signal is raised to the 4th-power as

y4
n = E{x4

n}exp(j2π4(n∆fT + φn)) + en, (2.17)

where en is a zero-mean process considered as a noise process [45]. FOE is then obtained

by maximizing the periodogram of y4
n, being expressed as

∆̂f =
1

4
arg max

∆f∈[−1/2T,1/2T ]

∣
1

N

n=N

∑
n=1

y4
nexp−2jπn∆fT

∣

2

. (2.18)
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2.3.7 Carrier Phase Recovery

The phase caused by the lasers is modeled as a random walk process; more specifically, the

difference between adjacent symbols’ phase is Gaussian distributed with zero-mean, and the

variance relates to the baud rate and laser linewidth. CPE algorithms with high linewidth

tolerance and low-complexity are important. After CFO compensation, the task remains to

estimate φn in (2.16). The CPE algorithms can be classified as blind or data-aided. More

details about CPE algorithms will be provided in Chapter 6.

2.3.8 Symbol Decision

After carrier recovery, the signal could be decoded by using a soft decision (SD) forward

error correction (FEC) or hard decision (HD) FEC. For hard decision, symbol estimation

and bit decoding is required. It should be noted that in the presence of nonlinear phase

noise, non-rectangular decision boundaries can improve the performance [47].

2.4 Concluding Remark

DSP-based coherent detection has led a revolution in the development of optical long haul

networks. With an anticipation that advanced DSP algorithms could relax the pressure on

photonic devices significantly, digital coherent transceivers will dominate the optical net-

works from long-haul to access scenarios in the near future. In this context, DSP algorithms

will play an even more important role in the next-generation optical networks.

21



Chapter 3

Modulation Classification Using

Received Signal’s Amplitude

Distribution for Coherent Optical

Receivers

3.1 Background

The modern optical fiber communication networks are faced with challenges due to the

significant demand for bandwidth. Furthermore, the fluctuating nature of the network

traffic reflects the inefficiency of the fixed spectrum grid in current WDM systems. Recently,

the EONs have been considered to deal with this dilemma by maximizing spectral and

energy efficiencies [25]. Multiple parameters such as the modulation format, bit rate, and

channel spacing can be changed dynamically to achieve flexibility for different scenarios. As

most digital coherent receivers are adopting modulation format-dependent signal processing
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algorithms, as well as due to the dynamic change of the modulation format, automatic MC

becomes an essential part of re-configurable coherent receivers.

Research on MC in wireless communications has been carried out for decades [48–50]. In

coherent optical communications, various techniques have been proposed in the most recent

years. For example, machine learning-based techniques are applied to recognize signal’s

amplitude histograms [51] or the Stokes space-based signal representation [52]; however,

they require either prior training or iterative processing. Image processing techniques like

the connected component analysis are employed in [53] to perform MC in the Stokes space

domain, but such features are appropriate only for lower-order modulation formats. A non-

iterative clustering algorithm is proposed in [54]; however, tracking the state of polarization

and recovering the initial polarization state are required before the MC stage. Algorithms

relying on the received signal’s power distribution have been also employed. The peak-to-

average power ratio is chosen as a feature to distinguish different modulation formats in [55];

however, different thresholds need to be established for each OSNR. Certain ratios obtained

from the normalized power distribution are selected to characterize the modulation formats

in [56]; nevertheless, selection of these ratios is necessary for different candidate modulation

formats. An MC algorithm is proposed, which requires relatively small number of samples

and is robust to frequency offset and carrier phase noise.

3.2 Proposed Algorithm

3.2.1 Extracted Discriminating Feature

The schematic diagram of a digital receiver including the MC module is shown in Fig. 3.1.

The IQ imbalance, resampling, and chromatic dispersion compensation are performed first.

Then, CMA is applied to separate the two polarizations. The proposed MC algorithm fol-
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Fig. 3.1: DSP structure including the MC subsystem.

lows, which employs the CDF of signal’s normalized amplitudes. After the MC module,

the RDE, frequency synchronization, and phase recovery are applied sequentially. The MC

algorithm is signal’s amplitude-based, and thus, does not require carrier recovery. On the

other hand, knowledge of the modulation format is beneficial for the succeeding digital

processing steps, such as frequency offset and phase noise compensation. The constella-

tions of different modulation formats affecting by frequency offset and laser phase noise are

shown in Fig. 3.2. To perform low-complexity classification, this two-dimensional pattern

is converted into the one-dimensional CDF of the constellations’ normalized amplitudes.

The CDF for M -QAM formats (M= 4, 8, 16, 32, and 64) are shown in Fig. 3.3. In order

to highlight the discriminating feature, an OSNR of 30 dB is considered. These recognizable

curves are employed as the feature for the proposed MC algorithm.
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3.2.2 CDF-based MC Algorithm

Before MC is performed, it is assumed that CD is compensated and the two polarizations

are separated. Therefore, the primary source of signal corruption is the AWGN. Similar

to [55], the OSNR of the received signal is assumed to be known. Hence, the receiver is able

to emulate the signals’ CDFs of all possible candidate modulation formats with the known

OSNR. The reference signal’s samples can be expressed as

yk,n = xk,n +wn,1 ≤ n ≤ N, (3.1)

where yk,n and xk,n are the nth symbol of the received and transmitted signals with the

kth modulation format, respectively, wn represents AWGN with variance σ2, and N is the

number of samples. Here are five candidates: k = 1 (4-QAM); k = 2 (8-QAM); k = 3 (16-

QAM); k = 4 (32-QAM), and k = 5 (64-QAM). To add the corresponding noise, the OSNR
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should be converted into signal-to-noise ratio (SNR) according to [57]

SNR(dB) = OSNR(dB) − 10log10(Rs/Bref), (3.2)

where Bref is the reference bandwidth (≈ 12.5 GHz at 1550 nm) and Rs is the symbol rate.

Once all possible signals are generated, their CDFs can be obtained as references. Then,

comparisons are carried out between the received signal’s CDF and each reference CDF.

The one with the most similar CDF shape to the received signal’s CDF is decided as the

transmitted modulation format.

To measure this similarity, the average distances between the received signal’s CDF

and each candidate reference CDF are calculated. In (3.3), F1,k(zn) is the CDF of the

kth candidate, and the received signal’s CDF is represented by F0(zn). Next, the average

distance is calculated by (3.4), where µk is the average distance between the received signal’s

CDF and the kth candidate CDF. The minimum average distance indicates the most likely

transmitted modulation format, according to (3.5).

Fk(zn) = ∣F1,k(zn) − F0(zn)∣ ,1 ≤ n ≤ N. (3.3)

µk = N
−1

N

∑
n=1

Fk(zn). (3.4)

k̂ = arg min
k

(µk). (3.5)

The amplitude-based feature of the proposed algorithm is appealing because it tolerates the

constellation rotation caused by the frequency offset and carrier phase noise. This enables

the application of MC at an earlier stage in the digital coherent receiver. However, the

similarity of the CDFs for different modulation formats increases when the OSNR decreases.

Therefore, investigations are needed to verify the MC performance in the OSNR range of

practical interest.
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3.3 Performance Evaluation

The performance of the proposed algorithm is evaluated by both experiments and simula-

tions.

3.3.1 Experiments and Results

AWG IQ
Modulator

Laser

VOA EDFA

OSA

OBPF PC

ICR Oscillo-
scope

Laser

LaserLaser

Fig. 3.4: Experimental B2B system setup.

The proposed algorithm is implemented in optical B2B experiments. The setup is shown

in Fig. 3.4. The arbitrary waveform generator (AWG) operates at 12.5 GBd. The sampling

rate of the oscilloscope is 50 Gsamples/s. Two free running lasers with 1550.12 nm wave-

length are acting as transmit laser and LO, respectively. The linewidth of each laser is about

100 kHz, and the frequency offset is around 200 MHz. An EDFA with fixed output power

and a variable optical attenuator (VOA) are combined to adjust the OSNR values from 10

dB to 20 dB. An optical bandpass filter (OBPF) with 0.6 nm bandwidth is placed after

the EDFA. The power entering the integrated coherent receiver (ICR) is around -2 dBm,

while the output power of the local oscillator is 13.5 dBm. The OSNR is measured with

the optical spectrum analyzer (OSA), and the PC is used to adjust the polarization state.

The data is collected from the oscilloscope and processed offline. After the resampling and

the IQ imbalance compensation modules, a symbol-spaced butterfly-type adaptive filter is

employed to separate the two polarizations. During the MC stage, similar to [56], 10000
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from experiments.
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samples of the received signal are collected to derive the empirical CDF of the normalized

amplitude.

The probability of correct classification obtained from 200 realizations for each modula-

tion format is shown in Fig. 3.5. The simulation results of back-to-back are also shown in

this figure. We can see that the experimental results have around 1.5 dB penalty compared

to simulation results for 16-QAM, 32-QAM and 64-QAM cases. This is mainly caused by

the additional electrical noise from imperfect devices such as AWG and ICR, as well as the

error introduced by the OSNR readings from the OSA. Note that 64-QAM can be detected

with lower OSNR than 16-QAM and 32-QAM; this can be explained as follows. From Fig.

3.3, it can be seen that the CDFs of 16-QAM, 32-QAM and 64-QAM are close to each other.

As the noise level increases, the received signal’s CDF curves corresponding to 16-QAM and

32-QAM are likely to be decided as 64-QAM.

It is worth to note that feature-based MC algorithms do not provide all optimal perfor-

mance; the features are usually selected in an ad-hoc way, and the corresponding algorithms

can be simple to implement and robust to transmission impairments such as frequency offset

and phase noise. Another category of MC algorithms is likelihood-based, which provide an

optimal solution. However, these are sensitive to transmission impairments and suffer of

high computational complexity.

3.3.2 Further Investigations with Numerical Simulations

In order to extend our investigation with optical fiber and higher data rate, the VPItransmis-

sionMaker 9.7 is used to carry out simulations. PDM 4-QAM, 8-QAM, 16-QAM, 32-QAM,

and 64-QAM signal at 32 GBd rate are considered. The laser linewidth is 100 kHz and the

fiber is 800 km long.

To simplify the simulations, the fiber nonlinearity is ignored. 500 independent simula-
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from simulations.
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tions with different noise seeds are carried out for each OSNR. Figure 3.6 illustrates the

required SNR and OSNR when the successful classification rate is larger than 0.75. The

OSNR ranges of different modulation formats are chosen based on pratical operation of co-

herent optical systems. The SD FEC thresholds for 28 GBd rate PDM system with 4-QAM,

8-QAM, 16-QAM, 32-QAM, and 64-QAM are illustratd by the vertical dash lines [54]. It can

be seen from Fig. 3.6 that the proposed algorithm can achieve 100% successful classification

rate with lower OSNR values than the SD FEC thresholds. According to Figs. 3.5 and

3.6, simulation results show the same tendency of correct classification rate as experimental

results.

Another important factor considered in MC is the number of samples needed to achieve

a good performance [53]. Figure 3.7 shows the successful classification rate with different

number of samples for 4-QAM, 8-QAM, 16-QAM, 32-QAM, and 64-QAM when the OSNR

equals 12 dB, 15 dB, 19 dB, 22 dB, and 24 dB, respectively. Note that the same OSNR

values as in [54] are utilized. To achieve 100% successful classification rate for all of these

five modulation formats, the proposed algorithm requires N = 5500 samples, while 8000

samples are needed for the algorithm in [54]. More specifically, the proposed algorithm needs

500, 3500, 5500, 5500, and 1000 samples to successfully classify 4-QAM, 8-QAM, 16-QAM,

32-QAM, and 64-QAM, respectively. On the other hand, the algorithm in [54] requires

about 3000, 3000, 4000, 1000, and 8000 samples to successfully identify 4-QAM, 8-QAM,

16-QAM, 32-QAM, and 64-QAM, respectively. The proposed algorithm utilizes less samples

to attain the same performance, which is a added advantage. Furthermore, the algorithm

in [54] employs a multi-dimensional tree to search among the neighbour points required for

the clustering process, which has a complexity of O(N logN), while the proposed algorithm

has a complexity of the order O(N).

The effect of fiber nonlinearity on MC is also investigated. The fiber nonlinearity is
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Fig. 3.8: Probability of correct classification vs. launch power.

related to the launch power and fiber length, and results in additional distortions that can

become indistinguishable from the amplified spontaneous emission noise [58]. The fiber

lengths are 11200 km, 7600 km, 2800 km, 1040 km, and 560 km for 4-QAM, 8-QAM, 16-

QAM, 32-QAM, and 64-QAM, respectively. In this case, the BER for each modulation

format is at the SD-FEC threshold when the launch power is 0 dBm. Then, the launch

power is varied from -2 dBm to 3.5 dBm to see the impact of fiber nonlinearity. According to

Fig. 3.8, 64-QAM has 100% successful classification due to the relatively short link length,

while 8-QAM suffers mostly from the fiber nonlinearity. In general, results show that the

modulation formats can be classified 100% successfully when the launch power is below -2

dBm.

Additionally, the performance comparison is provided versus the MC scheme in [56],

since this also utilizes the received signal’s amplitude. When the number of samples is

10000, the required OSNRs for PDM 4-QAM, 16-QAM, 32-QAM, and 64-QAM are listed
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in Table 3.1. It can be seen that the proposed algorithm requires higher OSNR for 16-QAM

only, while a lower OSNR is needed for 4-QAM, 32-QAM, and especially 64-QAM, when

compared with the algorithm in [56]. The complexity of the two algorithms is compared

in Table 3.2. It is assumed that N samples are observed, and the number of bins for CDF

plotting is 1000. It can be seen that both algorithms need only few real multiplications,

while the proposed algorithm requires more real additions. However, it is worth noting

that the extra processing time caused by the additions is not significant with high speed

micro-processors. Also note that the complexity for amplitude extraction is not considered

here because both algorithms use features based on the signal’s amplitude.

Table 3.1: Required OSNR (dB) for 100% successful classification.

Classification algorithm 4-QAM 16-QAM 32-QAM 64-QAM

Algorithm in [56] 11.2 16.5 22 24

Proposed algorithm 9 18 21 15

Table 3.2: Computational cost for the proposed algorithm and one of its counterparts.

Classification algorithm Real multiplications Real additions

Algorithm in [56] 3 4N

Proposed algorithm 5 44N + 4000
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3.4 Summary

An MC algorithm based on the CDF of the received signal’s normalized amplitude for co-

herent optical receivers is proposed. The proposed algorithm requires a fairly small number

of samples and can be performed in the presence of frequency offset and phase noise. Opti-

cal B2B experiments and extensive numerical simulations show that 100% successful MC is

achieved among PDM 4-QAM, 8-QAM, 16-QAM, 32-QAM and 64-QAM signals within the

OSNR range of practical interests. Furthermore, the MC algorithm works well for launch

powers below -2 dBm. Such results are achieved with modest computational cost.

35



Chapter 4

OSNR Estimation for Coherent

Optical Receivers Employing

Multi-level Constellations

4.1 Background

Optical performance monitoring (OPM) has emerged as an indispensable module for in-

telligent and flexible next-generation WDM optical fiber transmission systems [26]. As an

important mechanism to improve the control of transmission and fault management, OPM

involves evaluating the optical channel quality by measuring various optical characteris-

tics, such as the channel power and OSNR. The OSNR indicates a degree of impairment

in a transmission system caused by optical amplifiers. This is important because opti-

cal fiber transmission systems work properly only when the link OSNR is above a certain

threshold. On the other hand, the ever-increasing demand for high-speed data services has

led to a super-channel transmission architecture, with reduced or even no guard bands.
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In this context, the conventional optical spectrum-based OSNR measurement is not suit-

able [59]. Therefore, the OSNR estimation has been integrated in the coherent digital re-

ceivers [57–67]. Three types of digital approaches have been proposed for in-band OSNR es-

timation: DA [59–61], supervised machine learning-based [62], [63], and NDA [57,58,64–67].

The DA approaches require frame synchronization to extract pilots, and the overhead re-

sults in reduced SE. Supervised machine learning-based techniques need extensive training

data and computational resources. On the other hand, NDA methods have the advantage of

in-service estimation without reducing the SE. The existing NDA methods exploit the sta-

tistical moments from the signal’s amplitude after polarization demultiplexing [57, 64–66].

Using the correlation functions of the received symbols, the moment-based methods can

further be applied in the presence of fiber nonlinearity [68]. However, as proved in [69],

such moment-based OSNR approaches suffer performance degradation for multilevel con-

stellations such as 16-QAM. More specifically, the variance of these estimators considerably

departs from the Cramér-Rao lower bound (CRLB). Since multilevel constellations are es-

sential for optical fiber transmissions requiring high SE, more accurate estimation algorithms

are required [27].

In this chapter, a novel NDA OSNR esitmation algorithm for multilevel constellation, M-

QAM (M = 8, 16, 32, and 64), is proposed. The CDF of the received signal’s amplitude after

polarization demultiplexing is used as the statistical feature instead of the moments. The

proposed algorithm consists of two stages: a coarse and a fine estimation stage, respectively.

The first stage generates a coarse estimate from several predefined candidates, and the

result is used as the initial value to facilitate the convergence for the second stage. At

the second stage, the Newton’s method is employed to obtain a fine estimate based on

the empirical CDF. It is shown that the proposed algorithm provides an asymptotically

unbiased estimator which attains the CRLB. Moreover, a lower mean square error (MSE) is
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attained when compared to the popular NDA second-moment and fourth-moment (M2M4)

estimator [57,64–66]. Furthermore, the proposed estimation algorithm involves significantly

lower complexity than M2M4.

The remainder of this chapter is organized as follows: Section 4.2 introduces the system

model and the proposed estimation algorithm. Section 4.3 presents the error analysis of

the proposed algorithm and the CRLB derivation. Numerical results for the algorithm, as

well as comparisons with M2M4 are provided in Section 4.4, while simulation results in the

presence of fiber nonlinearity are given in Section 4.5. Section 4.6 discusses the complexity

of the proposed algorithm and M2M4. Finally, this chapter is summarized in Section 4.7.

4.2 Principle of Operation

4.2.1 System Model

In the coherent digital receiver, static and adaptive channel equalizers are applied sequen-

tially to compensate for the linear impairments, such as CD and PMD. Then, timing recov-

ery is performed. Without loss of generality, the signal after the above-mentioned processing

in the receiver is primarily impacted by frequency offset, phase noise, and ASE noise from

EDFA [9]. Accordingly, the signal of one polarization can be expressed by

yn = xne
j(2π∆fnT+φn) +wn,1 ≤ n ≤ N, (4.1)

where yn is the nth symbol of the received signal, xn is the nth symbol of the transmitted

signal drawn from unit-energy constellations, ∆f is the frequency offset, T is the symbol

duration, φn is the phase noise, wn is complex circular independently and identically dis-

tributed (i.i.d) Gaussian noise sample with zero mean and unknown variance of σ2, and N

is the number of samples.

The sets of possible amplitudes for the constellations are denoted as Mk, where k =
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1, 2, 3, and 4 represents 8-QAM, 16-QAM, 32-QAM, and 64-QAM, respectively. More

specifically, M1 = { 1/
√

3 +
√

3 (
√

2,
√

4 + 2
√

3)}, M2 = { 1/
√

10 (
√

2,
√

10,
√

18)}, M3 =

{ 1/
√

20 (
√

2,
√

10,
√

18,
√

26,
√

34)}, M4 = { 1/
√

42 (
√

2,
√

10,
√

18,
√

26,
√

34,
√

50,

√
58,

√
74,

√
98)}. Accordingly, the amplitudes of the transmitted signal, an, represent a

sequence drawn fromMk with probability pk. The probabilities for the elements inMk are

p1 = [1/2,1/2], p2 = [1/4,1/2,1/4], p3 = [1/8,1/4,1/8,1/4,1/4], and p4 = [1/16,1/8,1/16,1/8,

1/8,3/16,1/8,1/8,1/16].

4.2.2 OSNR and SNR

Based on the above model, the SNR estimation is achieved by ˆSNR = 1/σ̂2, given the

estimate of the noise variance. To obtain the OSNR, the relationship between OSNR and

SNR needs to be considered. Ideally, the OSNR can be calculated based on the SNR as

OSNR = Rs/(Bref) ⋅ SNR, (4.2)

where Rs is the baud rate and Bref is a reference bandwidth, which equals 12.5 GHz (0.1

nm). Several existing algorithms employ this relationship [57, 65]. However, it should be

noted that the received signal is affected by other kinds of noise from the transceiver in

addition to the ASE noise.

In the presence of transceiver noise, an alternative approach is based on

1

SNR
= ζ ⋅

1

OSNR
+ η, (4.3)

where ζ denotes a proportional constant between SNR and OSNR, and η is attributed to

the background noise of the transmitter and receiver [59]. The coefficients ζ and η uniquely

depend on the specific configuration, and can be obtained by fitting the estimated SNR and

known OSNR linearly. On the other hand, the OSNR estimation accuracy is determined

by the SNR estimation if ζ and η are obtained accurately. Throughout the chapter, the
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estimation of the SNR is studied, and (4.2) is employed in the simulations to convert OSNR

into SNR.

4.2.3 Proposed Estimation Algorithm

The empirical CDF of the received signal’s amplitude is generated according to [70]

FE(z) =
1

N

N

∑
n=1

C(an <= z). (4.4)

Here z denotes the discrete amplitude of the signal, ranging from 0 to Z with a step of Z/B.

B is the number of bins, set to 100 in the following simulations. Z is set to 3.5 to guarantee

that, within the considered SNR range, the CDFs of the four modulation formats is 1 when

z approaches Z. In addition, C is a specific function, which equals one if the input is true

and zero if the input is false. Then, assuming that the kth modulation is transmitted, the

theoretical CDF of the signal’s amplitude for AWGN channel is given by

Fk(z, σ) = 1 −
dim(pk)

∑
m=1

pk[m]Q1 (

√
2ak[m]

σ
,

√
2z

σ
) , (4.5)

where dim(⋅) means the dimension of the vector, and Q1 is the Marcum-Q function [71].

Thus, σ can be determined based on equation (4.5), given the information on z and Fk.
1

The details are provided in the sequel.

Firstly, using the empirical CDF, the following equation is established:

Fk(z, σ) = FE(z). (4.6)

Assuming z is determined, then the only unknown σ can be obtained by solving (4.6). In

Section 4.3, it is shown that z impacts the estimation accuracy. To solve (4.6), the Newton’s

method, which is a powerful technique to solve nonlinear equations and has the merit of

1The estimate of SNR can be obtained, given the estimate of σ. Henceforth, focus will be placed on the

estimation of σ.
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Algorithm 1 Newton’s method for (4.6).

Input:

Obtained empirical CDF, FE(z);

Output:

σ̂, estimate of σ;

1: The initial value of σ̂ is σ̂(0);

the initial iteration counter i = 0;

the iteration threshold is TH = 0.0005;

maximum iteration imax = 10;

2: while (∣∆σ∣ ≥ TH) and (i ≤ imax) do

3: ∆FE(z) = FE(z) − Fk(z, σ̂
(i));

4: ∆σ = (
∂Fk(z,σ)

∂σ )
−1

∣σ=σ̂(i)∆FE(z);

5: σ̂(i+1) = σ̂(i) +∆σ;

6: i = i + 1;

7: end while

8: σ̂ = σ̂(i);

9: return σ̂;

quadratic convergence speed [72–74], is employed. To begin with, the differential equation

of (4.6) with respect to σ is given by

∆FE(z) =
∂Fk(z, σ)

∂σ
×∆σ. (4.7)

The general expression of the gradient
∂Fk(z,σ)

∂σ for different QAMs is given in (4.8) at the

top of the next page. To obtain the expression, some important features of Marcum Q

function is needed [75] and they are given in the appendix. In this equation, Iα(α = 0,1)

is the modified Bessel function of the first kind, and the value of α represents the order.
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∂Fk(z, σ)

∂σ
=
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√
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pk[m](

√
2z

σ
I1 (

2z ⋅ ak[m]

σ2
) exp

⎛

⎝
−

2z2

σ2 +
2ak[m]2

σ2

2

⎞

⎠
(−

√
2ak[m]

σ2
)−

√
2z

σ
I0 (

2z ⋅ ak[m]

σ2
) exp

⎛

⎝
−

2z2

σ2 +
2ak[m]2

σ2

2

⎞

⎠
(−

√
2z

σ2
))

=

dim(pk)

∑
m=1

pk[m] [
2z

σ3
exp(−

z2 + ak[m]2

σ2
)(ak[m]I1 (

2z ⋅ ak[m]

σ2
) − zI0 (

2z ⋅ ak[m]

σ2
))] .

(4.8)

Assuming that the initial estimate of σ is σ̂(0), the details of the Newton’s method are shown

in Algorithm 1 on the previous page. Although the speed of convergence is quadratic, the

Newton’s method requires an initial estimate that is sufficiently closed to the true value

to guarantee the convergence. Supposing that Fk(z, σ) is a twice differentiable function on

an interval containing the root of interest, β, and supposing that
∂Fk(z,σ)

∂σ ≠ 0, to ensure

convergence, the initial estimate needs to satisfy

T =
∣β − σ̂(0)∣ ⋅ ∣

∂2Fk(z,σ)
∂2σ

∣σ=β ∣

∣2
∂Fk(z,σ)

∂σ ∣σ=β ∣
< 1. (4.9)

As T relates to the actual value of σ which is unknown, it is very challenging to provide

a closed-form solution to determine the initial estimate. Instead, a practical approach is to

introduce a coarse estimation stage before applying the Newton’s method. At this stage,

the most likely candidate is selected from several predefined variances; the procedure is

similar to that in our previous work [67]. CDFs corresponding to these predefined variances

are generated, and the average distances between these CDFs and the empirical CDF are

used to determine the likelihood. More concisely, a group of J possible initial estimates are

defined as [σ̂
(0)
1 , σ̂

(0)
2 ,⋯, σ̂

(0)
J ]. Then, the corresponding CDFs are generated accordingly as

Fk(z, σ̂
(0)
j ), where j = 1,2,⋯, J . After that, the average distances between the generated
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CDFs and the empirical CDF are calculated as dj = ∑
Z
z=0[Fk(z, σ̂

(0)
j ) − FE(z)]/B. Finally,

the candidate σ̂
(0)
j that attains the minimum average distance, dj , is selected as the coarse

estimate.

4.3 Estimation Error Analysis and CRLB on the Variance of

the Proposed Estimator

In this section, the estimation error is analyzed and the CRLB on the variance of the

proposed estimator is derived.

4.3.1 Measurement Error of the Empirical CDF

Because measurement error of the empirical CDF is inevitable, it is important to review

the statistical characteristic of the measurement error before performing analysis on the

estimation error. The measurement error of the empirical CDF is denoted as εFE . It is

shown in [76] that the measurement error of the empirical CDF is asymptotically normal

distributed with mean E{εFE} = 0 and variance

σ2
F =

Fk(z, σ) ⋅ [1 − Fk(z, σ)]

N
. (4.10)

According to (4.10), the variance of the measurement error of the empirical CDF is de-

termined by the number of samples, N , and the actual CDF, Fk(z, σ). In addition, the

variance depends on z. When N is fixed, the variance attains its maximum at zm, where

Fk(zm, σ) = 1/2. On the other hand, the variance is 0 when Fk(z, σ) is 0 or 1.

4.3.2 Estimation Error Analysis

According to Step 4 in Algorithm 1, the estimation error is approximately

εσ = σ̂ − σ ≈ (
∂Fk(z, σ)

∂σ
)

−1

εFE . (4.11)
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This approximation is accurate when the variance, σ2
F , is relatively small. Based on

(4.10), σ2
F is small when N is relatively large, since Fk(z, σ) ranges from 0 to 1. Un-

der such conditions, the proposed estimator is asymptotically unbiased because E{εσ} =

(
∂Fk(z,σ)

∂σ )
−1

E{εFE} = 0. Based on (4.10) and (4.11) , the variance of σ̂ is obtained as

var(σ̂) = E{εσεσ} =
σ2
F

(
∂Fk(z,σ)

∂σ )2
=
Fk(z, σ) ⋅ [1 − Fk(z, σ)]

N(
∂Fk(z,σ)

∂σ )2
. (4.12)

It can be seen that the variance of the estimates is inversely proportional to the number of

samples. In addition, it is important to choose a proper value for z, as it impacts the value

of Fk(z, σ) and its derivative with respect to σ. A typical approach to choose z is finding

the extrema of (4.12), by setting the derivative of (4.12) with respect to z to zero. This

is given in (4.13), with the second and first partial derivatives of Fk(z, σ) with respect to

σ and z provided in (4.14) and (4.15), respectively. Lastly, it is noted that the estimation

accuracy relates to the actual σ, which is unknown.

∂ (Fk(z, σ) ⋅ [1 − Fk(z, σ)]/(
∂Fk(z,σ)

∂σ )2)

N ⋅ ∂z

=
∂ (Fk(z, σ) ⋅ [1 − Fk(z, σ)]/(

∂Fk(z,σ)
∂σ )2)

N ⋅ ∂σ
⋅

∂σ

∂Fk(z, σ)
⋅
∂Fk(z, σ)

∂z

=
[1 − 2Fk(z, σ)](

∂Fk(z,σ)
∂σ )2 − 2Fk(z, σ)[1 − Fk(z, σ)]

∂2Fk(z,σ)
∂2σ

N(
∂Fk(z,σ)

∂σ )4
⋅
∂Fk(z, σ)

∂z
. (4.13)
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(4.14)

∂Fk(z, σ)

∂z
=

∂ (1 −∑
dim(pk)
m=1 pk[m] ⋅Q1 (

√
2ak[m]

σ ,
√

2z
σ ))

∂z

=

dim(pk)

∑
m=1

pk[m] [
2z

σ2
I0 (

2z ⋅ ak[m]

σ2
) exp(−

z2 + ak[m]2

σ2
)] . (4.15)

4.3.3 CRLB on the Variance of the Proposed Estimator

After gaining the information on the mean and variance of the proposed estimator, the

CRLB is derived as a performance reference. Because the measurement error of the empirical

CDF is asymptotically normal distributed, the probability density function of the empirical

CDF FE , conditioned on the unknown parameter σ, is given by

f(FE ∣σ) =
1

√
2πσ2

F

⋅ exp(−
(FE − Fk(z, σ))

2

2σ2
F

) . (4.16)
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Then, the logarithm of (4.16) is

lnf(FE ∣σ) = −
1

2
ln2πσ2

F −
(FE − Fk(z, σ))

2

2σ2
F

= −
1

2
ln2π −

1

2
ln
Fk(z, σ)[1 − Fk(z, σ)]

N

−
N(FE − Fk(z, σ))

2

2Fk(z, σ)[1 − Fk(z, σ)]
. (4.17)

Through tedious but straightforward calculations (given in the appendix), the Fisher In-

formation is finally obtained, as presented in (4.18). Then, the CRLB is the inverse of the

Fisher Information, i.e., CRLB(σ̂) = 1/I(σ̂). Based on (4.12) and (4.18), the proposed algo-

rithm can achieve the CRLB when the aforementioned assumption holds and the Newton’s

method converges.

I(σ̂) =E

⎡
⎢
⎢
⎢
⎢
⎣

(
∂lnf(FE ∣σ)

∂σ
)

2⎤
⎥
⎥
⎥
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⎦

=E[(
∂Fk(z, σ)

2 ⋅ ∂σ
)

2

×

(
(N − 2NFk(z, σ))F

2
E + 2NFk(z, σ)

2FE − 2Fk(z, σ)
3 + 3Fk(z, σ)

2 − Fk(z, σ) −NFk(z, σ)
2

Fk(z, σ)2(1 − Fk(z, σ))2
)

2

]

=
N(

∂Fk(z,σ)
∂σ )2

Fk(z, σ)[1 − Fk(z, σ)]
.

(4.18)

4.4 Numerical Investigations and Discussion

The performance of the proposed algorithm is firstly investigated through simulations for

AWGN channel (i.e., an optical system with only ASE noise and Rs = Bref ). Throughout

this section, the number of samples to build the empirical CDF is 10000, unless otherwise

specified. The number of realizations for obtaining the mean and MSE is 50. The investiga-

tion is performed for a typical SNR range from 1 dB to 25 dB. On one hand, the ability to
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accurately estimate SNR in a low range is vital as it provides alerts of signal quality degra-

dation. On the other hand, the FEC thresholds for the four modulation formats are within

this range. More specifically, the SNRs corresponding to a BER of 10−2 are approximately

9 dB, 12 dB, 14 dB, and 16 dB for 8-QAM, 16-QAM, 32-QAM, and 64-QAM, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
F

10-4

10-2

100

102

C
R

LB

CRLB for 8-QAM (9 dB)
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Fig. 4.1: CRLB for different QAMs and SNRs.

4.4.1 Discussion on the CRLB

Based on (4.18), the CRLB relates to the number of samples, the CDF location point z, and

the actual σ. 8-QAM, 16-QAM, 32-QAM, and 64-QAM with their FEC threshold SNRs

are investigated, respectively. The CRLBs for the four QAM formats are shown in Fig.

4.1. Note that for a more intuitive demonstration, the x-axis here is F instead of z. It can

be seen that a smaller CRLB can be attained when F is close to 1 for all the four QAM
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Fig. 4.2: CDFs for two QAM formats with different SNRs.
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formats. It is also worth noting that several spikes occur at some particular points of F . To

explain this observation, the CDFs for different SNRs are shown in Figs. 4.2(a) and 4.2(b)

for 8-QAM and 16-QAM, respectively. It can be noticed that the CDFs for different SNRs

are close to each other at some particular locations of F , which correspond to the locations

of spikes in Fig. 4.1. Similar observations are made for 32-QAM and 64-QAM. It is obvious

that using z at these spikes provides limited information for estimating σ, and should be

avoided.

4.4.2 Convergence of the Newton’s Method

As aforementioned, the initial estimate should be close to the actual value to guarantee

the convergence of the Newton’s method. The term “close to the actual value” in this

context means that (4.9) should be valid. Since T depends on several factors including

the unknown actual σ, the cases with typical SNRs of 9 dB, 12 dB, 14 dB, and 16 dB for

8-QAM, 16-QAM, 32-QAM, and 64-QAM are studied, respectively. Figure 4.3 shows the

numerical results of T for the four QAM formats with different initial estimate error. It

can be seen that an initial estimate closer to the actual value leads to convergence with a

wider selection of F (or z alternatively). Furthermore, for higher-order modulation formats

such as 64-QAM, it is more important to have an accurate initial estimate. Therefore, a

coarse estimation stage is necessary and essential. In the simulations, the coarse estimation

includes 4 possible values as σ̂coarse = [0.1,0.15,0.3,0.5]. Because the convergence requires

better initial estimate when the SNR is high, the pre-defined values are not evenly spaced.

When the convergence condition is guaranteed, the number of iterations is small due to the

quadratic convergence speed. In all simulations, the maximum number of iterations is set

to 10.
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Fig. 4.3: Convergence behavior for the four QAM modulation formats.
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Fig. 4.4: Choice of location by investigating derivative with respect to z.
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4.4.3 Selection of z

The location on the CDF, z, impacts the accuracy of the estimation. Basically, local

extrema can be found by setting (4.13) to zero. However, finding such an optimal or sub-

optimal location is challenging since it depends on the actual value of σ, which is unknown.

Nonetheless, it is still necessary for the estimation to use the sampling locations where the

derivative of (13) is close to zero. According to Fig. 4.1, the lowest CRLB is attained when

F is close to 1. Therefore, this particular range of F from approximately 0.8 to 1 is worthy

to be investigated. Figure 4.4 shows the numerical value of (4.13) for the four QAM formats

with three typical SNRs. The derivative is very large when F is 1. Based on the results, it

can be seen that the selection requirement is loose at low SNR, while it is tighter at high

SNR. Because the actual SNR is not known, a practical approach for the estimator is to

choose a location when F is close to 1, such as F = 0.99.

4.4.4 Performance vs. SNR

Figure 4.5 shows the mean and normalized MSE (NMSE) of SNR estimate (i.e., 1/σ̂2) versus

the SNR for the four QAM formats. The NMSE is obtained by normalizing the MSE with

respect to σ2. Accordingly, the corresponding CRLB is normalized with respect to σ2 as

well.2 For reference, results for M2M4 are also displayed. From these results, it can be seen

that the proposed algorithm is asymptotically unbiased within SNR ranging from 1 dB to

25 dB, while M2M4 is biased when increasing the SNR. As for the MSE performance, the

proposed algorithm approximately achieves the CRLB for the four QAM formats, which

agrees with the discussion in Section 4.3. Furthermore, the proposed algorithm outperforms

the M2M4 for all four modulation formats in general, impressively in the low and high SNR

2It should be noted that CRLB( ˆSNR) = ( ∂(1/σ
2
)

∂σ
)
2CRLB(σ̂) = 4σ−6CRLB(σ̂), which can be easily shown

based on the parameter transformation method for CRLB [77].
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range.

4.4.5 Performance vs. Number of Observed Samples

The impact of the number of observed samples is also investigated. The SNRs for 8-

QAM, 16-QAM, 32-QAM, and 64-QAM are chosen as 9 dB, 12 dB, 14 dB and 16 dB,

respectively. Figure 4.6 shows the mean and variation of the NMSE versus the number

of observed samples. As can be seen, the estimate is asymptotically unbiased when the

number of observed samples is between 1000 and 10000. In addition, the NMSE decreases

for all modulation formats with increasing the number of observed samples, which verifies

the analysis in Section 4.3. The proposed algorithm achieves the corresponding CRLB for

the four QAM formats, respectively. Note that the algorithm outperforms M2M4 for all

modulation formats.

4.5 Numerical Results and Discussions for Nyquist WDM

System

The advantages of the proposed algorithm over M2M4 for the AWGN channel have been

verified above. In an optical fiber communication system, the linear impairments can effi-

ciently be compensated for, leaving the fiber nonlinearity as the main contributor for system

performance degradation. In this section, the performance of the proposed algorithm is in-

vestigated for a Nyquist WDM system with various launch powers. The simulation setup

is shown in Fig. 4.7. Dual polarization 8-QAM, 16-QAM, 32-QAM, and 64-QAM Nyquist

signals at 28 Gbaud with a roll-off factor of 0.01 are generated to modulate an optical carrier

through IQM. The carrier is provided by an ECL with 1550.12 nm center wavelength and

100 kHz linewidth. Dual polarization is achieved by employing the PBS and the PBC. Then,

the modulated signal from five Tx spaced without any guard band (alternatively speaking,
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Fig. 4.7: Simulation setup for Nyquist WDM system. Tx: transmitter; PBC: polarization

beam combiner; IQM: in-phase quadrature modulator; MUX: multiplexer.

the channel spacing is 28 GHz) is multiplexed and fed into the recirculating loops with

SSMF and EDFA. The SSMF is 80 km long with an attenuation coefficient of 0.2 dB/km, a

dispersion parameter of 16 ps/nm/km, and a nonlinear coefficient of 1.4 /W/km. The PMD

coefficient is 0.1 ps/
√

km. The EDFA has a 6 dB noise figure and 16 dB gain. The number

of loops for 8-QAM, 16-QAM, 32-QAM, and 64-QAM are 25, 20, 15, and 8, respectively.

An LO laser with a linewidth of 100 kHz is used and its frequency offset with respect to the

transmitter laser is set to 200 MHz. The received signal is collected and processed off-line.

The processing at the receiver includes static equalization for CD compensation and adap-

tive equalization for polarization demultiplexing. Then, the amplitudes of the processed

signal are extracted and used for the SNR estimation. Afterwards, the OSNR is calculated

from SNR according to (4.2). In simulation, 10000 samples are employed to obtain the

empirical CDF; the launch power varies from -4 dBm to 4 dBm; and 10 realizations are

performed for each launch power. The OSNR estimation error in dB is presented in Fig.

4.8, where the mean values of the estimation error are connected by curves. For reference,

results for a WDM system with 50 GHz channel spacing are also shown. According to Fig.

4.8, both the proposed algorithm and M2M4 are affected when the launch power increases.

This is due to fiber nonlinearity, which results in Gaussian noise-like non-linear interference
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Fig. 4.8: OSNR estimation error (dB) versus launch power. CS: channel spacing.
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(NLI) to the signal [78]. In such case, the SNR is given by

SNRtotal =
Pch

PASE + PNL
, (4.19)

where Pch, PASE , and PNL represent the signal power, ASE noise power, and NLI power,

respectively. The proposed algorithm and M2M4 estimate the total variance, i.e., the de-

nominator part of (4.19). However, because the OSNR is defined by measuring the impact

from the ASE noise without considering NLI, the estimated OSNR becomes biased when

increasing the launch power, as shown in Fig. 4.8. Furthermore, when the channel spacing

increases from 28 GHz to 50 GHz, the inter-channel NLI reduces and the performance of

both algorithms improves. Nonetheless, it is noticed that the proposed algorithm is more

robust to fiber nonlinearity than M2M4. Similar to M2M4, the proposed algorithm can be

combined with the approach from [68] to improve the performance in the presence of fiber

nonlinearity. On the other hand, high OSNR does not guarantee that the signal quality

is good. When the OPM requires the information on the signal characteristics affected

by both ASE and fiber nonlinearity, estimating SNRtotal is important. Accordingly, the

proposed algorithm is suitable for such practical case.

4.6 Complexity Analysis

The complexity of the proposed algorithm is analyzed, taking into account both the coarse

and fine estimation stages. Assume that N samples are observed, the number of bins used

for CDF is B, the number of iterations is P , and the number of coarse estimate candidates

at the first stage is J . Since the second stage is an iterative process, only one iteration is

needed to be analyzed for the computational complexity. With the signal’s amplitude as

input, Table 4.1 shows the computational complexity for the proposed algorithm and M2M4.

It can be seen that M2M4 requires a number of real multiplications and additions of 4N and
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2N , respectively, as it involves power operation for each sample. On the other hand, the

proposed algorithm (both the coarse and fine stage) employs the CDF with a bin number of

B, which is significantly smaller than N . With N = 10000, P = 10, B = 100, and J = 4 in the

simulations, the proposed algorithm attains better performance with significantly less real

multiplications, though with more additions and look-up table operations. The details are

presented in Table 4.2. Furthermore, it should be noted that real multiplications require

significantly more computational resources than real additions [79]. Overall speaking, the

proposed algorithm involves less complexity compared to M2M4.

Table 4.1: Complexity for the proposed algorithm and M2M4.

Multiplications Additions Look-up table operations

Proposed algorithm

Coarse stage 0 (2B + 1)J +N logB JB

Fine stage 2P 2P 2P

Overall 2P (2B + 1)J +N logB + 2P 2P + JB

M2M4 4N 2N 0

Table 4.2: Complexity with typical values for the proposed algorithm and M2M4.

Multiplications Additions Look-up table operations

Proposed algorithm

Coarse stage 0 70804 400

Fine stage 20 20 20

Overall 20 70824 420

M2M4 40000 20000 0
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4.7 Feasibility to PCS Systems and TDHM Systems

Non-uniformly distributed QAM constellations, such as PCS QAMs and time domain hybrid

modulations (TDHM) QAMs, are also very popular in current designs in order to achieve

an improved trade-off between capacity and required OSNR. The proposed algorithm is

applicable for the two systems. The reasons are presented in the sequel.

Taking PCS 64-QAM as an example, the possible amplitudes for its constellation are

the same as uniformly-distributed 64-QAM and denoted asMps = { 1/
√

42 (
√

2,
√

10,
√

18,

√
26,

√
34,

√
50,

√
58,

√
74,

√
98)}. Accordingly, the amplitudes of the transmitted signal, an,

represent a sequence drawn from Mps with probability pps. The probabilities for the ele-

ments inMps depend on the system configuration and are denoted as pps = [p1ps, p2ps, p3ps,

p4ps, p5ps, p6ps, p7ps, p8ps, p9ps]. By providing the designed probabilities for different ampli-

tudes, all the calculations aforementioned can be applied as well.

Without loss of generality, an TDHM system with 4-QAM and 16-QAM is considered,

which has equal duration for each QAM. The constellation is shown in Fig. 4.9, where the

red dots represent 4-QAM signal, and the blue dots represent 16-QAM signal. Since the du-

ration is identical for both QAM formats, the probability of each dot is uniform. According

to the constellation, there are three amplitudes (
√

2/10, 1,
√

18/10), and the probabilities

for the amplitudes are 1/5, 3/5, and 1/5, respectively. for an unevenly-composited TDHM

QAM formats, one can attain the amplitudes and corresponding probabilities by similar

reasoning, given the uniform QAM formats and their durations. Therefore, the proposed

algorithm is applicable for TDHM QAM formats as well.

63



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4.9: Constellations for TDHM with 4-QAM and 16-QAM.

4.8 Summary

Although the moment-based OSNR estimation algorithm is an attractive choice due to its

robustness to frequency offset and laser phase noise, it is only efficient for constant modulus

constellations. In this chapter, an OSNR estimation algorithm based on the empirical CDF

of the received signal’s amplitude has been proposed, which can be efficiently implemented

with significantly reduced complexity. The proposed algorithm first acquires a coarse esti-

mate of the noise variance from several predefined values; then, a fine estimate is obtained

by using the Newton’s method. Mathematical analysis shows that the estimator achieves

the CRLB, and extensive numerical investigations verify its improved performance over the

conventional M2M4. Above all, the proposed algorithm is compatible with standard digital

signal processing procedures without requiring any additional overhead. The advantages in

terms of both performance and complexity over M2M4 make the proposed algorithm an ap-

pealing NDA OSNR estimation option for optical fiber communications systems employing

spectral-efficient multilevel constellations.
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Chapter 5

Joint Modulation Classification

and OSNR Estimation for

Coherent Optical Systems

5.1 Background

Chapters 3 and 4 only tackle one task each: either MC or OSNR estimation. The proposed

algorithms for the two task both employ the CDF of the signal’s amplitude as the feature.

System complexity can be reduced if the two parameters are determined jointly. Recently,

joint estimation of the modulation format and OSNR by employing machine learning (ML)-

based algorithms have been reported. Artificial neural networks and principal component

analysis are used in heterogeneous fiber-optic networks for modulation format identification

and OSNR estimation [80]. Utilizing eight features that are extracted from the direct-

detected eye-diagram, [81] applies neutral networks and support vector machine (SVM)

to estimate the OSNR and classify the modulation format, respectively. However, these
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methods exploit statistical features of directly detected signals, and are not applicable to

dispersion-unmanaged coherent optical systems. In [82], deep neural networks (DNN) are

applied to identify the modulation format and monitor the OSNR based on the histograms

of the signal’s amplitude. However, the OSNR monitoring is performed after the MC.

Therefore, a misclassification of the modulation format can result in failure of the OSNR

estimation.

In this chapter, an algorithm enabled by SVM is proposed to jointly classifies the mod-

ulation format and estimate the OSNR. Compared with neural networks, SVM has the

advantage of a stronger ability to find the global minimum and of being insensitive to the

over-fitting problem [83]. Moreover, SVM is considered computationally efficient compared

with many other kernel-based algorithms because it stores only support vectors, which

is a subset of the training matrix [81]. It is proven that SVM exhibits strong ability in

classifications and regression in optical fiber communication systems [81, 84]. The CDF

is used widely in applications to differentiate the distribution, such as in the well-studied

Kolmogorov-Smirnov test [76]. In wireless communiation systems, the CDF of the received

signal is usually applied to identify the modulation format [49]. In this paper, the CDF of

the received signal after polarization demultiplexing is used as the feature for SVM. Com-

pared with the constellation used in [62], the CDF reduces the dimensionality of the feature

space. In order to analyze the capability of the proposed algorithm, both numerical simu-

lations and experiments are carried out. QAM formats are widely used in coherent optical

communications due to their spectral efficiency [82]. Three modulation formats, namely,

4-QAM, 16-QAM, and 64-QAM, as well as the OSNR ranges of interest are considered.

The results show that the algorithm achieves good performance for the multi-parameter

estimation tasks.
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5.2 Proposed Algorithm

CD Compensation

CMA Equalizer

Joint Modulation Classification and OSNR Estimation

RDE Equalizer

Frequency 
Synchronization

Phase Recovery
Resampling & IQ 

Imbalance Compensation

Received Signal Symbol Detection

Timing Recovery

Optical Networks Operation Control

Fig. 5.1: DSP structure including the joint MC and OSNR estimation subsystem.

The DSP flow in the coherent receiver, including the proposed algorithm, is presented in

Fig. 5.1. Note that the algorithms before the joint MC and OSNR estimation subsystem are

modulation format-independent. The signal affected by the frequency offset, phase noise,

and the ASE noise after the CMA equalizer can be express as in (4.1).

The CDFs for different QAM formats and different OSNRs are distinct, as shown in

Fig. 5.2. A specific CDF can indicate the corresponding modulation format and OSNR,

especially in higher OSNR range. To identify the modulation format and estimate the

OSNR, an SVM-based algorithm is proposed. The proposed algorithm employs support

vector classifier (SVC) and support vector regressor (SVR) to address the MC and OSNR

estimation task, respectively. The schematic of the algorithm is shown in Fig. 5.3. Unlike

the DNN-based algorithm in [82], the MC and OSNR estimation are performed simulta-
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neously. In general, both classifier and regressor establish a mapping model between the

training data and the label, according to the extracted features. Once the mapping is built,

the testing data is determined and labeled.

For the training of the SVC and SVR, a group of training CDFs are firstly generated,

which correspond to all possible modulation format candidates and OSNRs. Each CDF is

represented by the bin-count vector x, and the corresponding labels are: y1 for modulation

type and y2 for the OSNR value. More specifically, y1 = 0,1,2 represents 4-QAM, 16-QAM,

and 64-QAM, respectively. For the classification tasks, the one-over-rest strategy is applied

to perform the three-class SVC [85]. Kernel function is used to map the training data into a

higher dimensional space, where a hyperplane is built to distinguish the target class from the

rest of classes. For OSNR estimation, an epsilon-SVR [85] is used to construct a mapping

based on the input vectors and their corresponding scalar labels. After the supervised

training procedure, a group of testing data sets is utilized to evaluate the behavior of the

SVM-based system. The output ŷ1 indicates the modulation format, while the output ŷ2

provides the estimated OSNR value. Lastly, both classification and estimation outputs

are compared with actual ones, respectively. After the module of joint MC and OSNR

estimation, the acquired information on the modulation format is beneficial for the following

DSP procedures, such as carrier phase recovery and symbol detection. On the other hand,

the estimated OSNR provides feedback to the networking operation decision. For example,

when the OSNR is high enough, reducing the transmit power can improve the tolerance

to fiber non-linearity and still meet the desired BER requirements; alternatively, a higher

modulation format can be adopted to increase the data rate. It should be noted that, the

training procedure of the proposed algorithm is carried out offline and beforehand. Thus

the actual OSNR estimation and MC process in an optical network employing trained SVM

does not cause any overhead.
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5.3 Performance Evaluation

In this section, the performance of the proposed algorithm is evaluated by numerical simu-

lations and experiments.

5.3.1 Simulation Results and Discussion

To begin with, the performance of the proposed algorithm is investigated through numerical

simulations. The simulation model considers a 32 Gbaud PDM system. 800 km standard

single mode fiber with typical CD and PMD is used as in [70]. The attenuation and fiber

nonlinearity are neglected to simplify the investigations. The OSNR is adjusted by loading

the noise. The frequency offset is 1 GHz, and the linewidth of the lasers is 100 kHz. At

the receiver, 10000 samples after the CMA equalizer are used to create the CDF. Note

that the bin size is 100. A data set including 78 CDFs that correspond to 3 modulation

candidates and 26 OSNRs (from 5 dB to 30 dB, with a step size of 1 dB) are generated

to train the classifier and regressor. Throughout the paper, the OSNR is measured with a

noise reference bandwidth of 0.1 nm, and the corresponding SNR is provided in the results.

For the SVM-based algorithm, the open-source LIBSVM is employed [85]. In the simu-

lation, the kernel function is the default radial basis function kernel. In addition, the 5-fold

cross-validation method is used to ensure the model fits the training data well. The cross

validation divides the training data set into 5 subsets with identical size. Then, 4 subsets

are utilized for the training process, while 1 subset is used for validation. This procedure

occurs 5 times, and eventually the model is summarized based on the five iterations. Figure

5.4 illustrates the 5-fold cross validation, and more details can be found in Chapter 5 of [86].

Once the training is finished, a testing data set is generated to evaluate the performance.

100 realizations are performed for each OSNR value and each modulation format, there-

fore the number of total testing CDFs is 7800. Simulations for DNN is also conducted as
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Fig. 5.4: Illustration of the 5-fold cross validation.

a reference by using the same training and testing data. The DNN structures are based

on [82], which includes two hidden layers. Optimization for the numbers of neurons in the

hidden layers is performed using grid searching. The number of neurons varies from 5 to 80

with a step size of 5, and the combination providing the best results is selected. The final

parameters are shown in Table. 5.1.

Figure 5.5 demonstrates the MC accuracies for the three modulation formats. The

proposed algorithm requires 5 dB, 17 dB, and 5 dB to achieve 100% correct MC rate for

4-QAM, 16-QAM, and 64-QAM, respectively. It is worth mentioning that the errors for

16-QAM come from the misclassification with 64-QAM, because the CDF shape for 64-

QAM within a wide OSNR range is similar to that of 16-QAM at lower OSNR. In the case

of modulation classification, during the training stage, the training data are signals with

3 modulation formats spanning a wide range of OSNR. Within this OSNR range, CDFs

for 4-QAM change obviously, but are still distinct; CDFs for 64-QAM change relatively

unnoticeably; CDFs for 16-QAM are distinct in high OSNR, while close to 64-QAM in
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Table 5.1: Parameters of optimized DNNs.

Hidden layer 1 Hidden layer 2

Modulation classification 10 30

OSNR estimation for 4-QAM 60 10

OSNR estimation for 16-QAM 50 10

OSNR estimation for 64-QAM 60 10
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Fig. 5.5: Correct modulation classification rate vs. OSNR.

lower OSNR. Fig. 5.2 demonstrates this trend. Alternatively speaking, the CDF shape

for 64-QAM over a wide OSNR range is similar to that of 16-QAM at lower OSNR. When

this kind of CDFs are obtained, the SVM tends to decide the modulation format as 64-

QAM to reduce the overall chance of misclassification. Note that the OSNR of the test

signal is unknown when the modulation classification is performed. On the other hand, the

theoretical SD FEC thresholds corresponding to a BER of 2.4 × 10−2 in 32 Gbaud dual-
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polarization systems for 4-QAM, 16-QAM, and 64-QAM are around 10 dB, 16 dB, and

22 dB, respectively. As can be seen, both SVM-based and DNN-based algorithms achieve

virtually 100% correct classification for the three modulation formats at OSNRs below their

corresponding FEC thresholds.
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Fig. 5.6: Mean of estimated OSNR vs. actual OSNR.

Figure 5.6 shows OSNR estimation errors versus the actual OSNR for the three modu-

lation formats. It is observed that, compared with the proposed algorithm, estimation by

the DNN-based algorithm exhibits more errors. The proposed algorithm attains maximum

estimation errors of 0.24 dB, 0.8 dB, and 0.8 dB for 4-QAM, 16-QAM, and 64-QAM, re-

spectively; however, the maximum estimation errors obtained by the DNN-based algorithm

for the three modulations formats are higher, namely, 0.67 dB, 1.9 dB, and 2.05 dB, respec-

tively. Generally speaking, DNN requires relatively large training data set to learn nonlinear

transformations. Alternatively, it could suffer performance degradation when training data

sets are relatively small.
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The transmission in EON could embed some dispersive distortion such as the residual

chromatic dispersion, which widens the pulses and causes inter-symbol interference. As a

result, the amplitude of the received signal is affected. Fig. 5.7 shows the CDFs with three

residual CD amounts. Specifically, Fig. 5.7 (a), (b), and (c) show the CDFs for 4-QAM,

16-QAM, and 64-QAM, all with the residual CD amounts of 50 ps/nm, 100 ps/nm, and

200 ps/nm. The OSNR are 14 dB, 18 dB, and 24 dB, respectively. It can be seen that

the CDFs change slightly with a residual CD of 50 ps/nm, while a considerable deviation

is observed when the residual CD is 200 ps/nm. Therefore, severe residual CD could result

in performance degradation. However, it should be mentioned that many algorithms have

been proposed to estimate the residual CD in elastic optical network systems, which will

eliminate the impact of the residual CD on the following signal processing modules [26]. In

addition, an adaptive equalizer like CMA also compensates some amount of the residual

CD. To further investigate the robustness of the proposed algorithm, simulation verification

is performed with a residual CD of 100 ps/nm. MC and OSNR estimation results are shown

in Fig. 5.8 and Fig. 5.9, respectively. In Fig. 5.8, the correct MC rates for 4-QAM, 16-

QAM, and 64-QAM at the FEC thresholds are 100%, around 92%, and 100%, respectively.

In Fig. 5.9, the OSNR estimation error versus OSNR is shown. One can notice that the

mean of the estimation error for the three modulation formats are still within 1 dB. In

general, the proposed algorithm is still applicable in the presence of a moderate amount of

residual CD.

It is worth noting that the proposed algorithm performs MC and OSNR estimation

simultaneously, i.e., the estimation of OSNR does not rely on the prerequisite knowledge of

modulation format. On the other hand, the DNN-based algorithm achieves them sequen-

tially, starting with MC. The proposed algorithm can avoid estimation errors if misclassifi-

cation occurs. Indeed, such OSNR estimation error can not be ignored. Supervised learning
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algorithms, such as the DNN, perform a prediction based on the training data. It is difficult

for the DNN to predict a category of data when it is trained by a different data category.

For example, a training data set including CDFs for 16-QAM will help the DNN establish a

mapping relationship between the OSNRs and the CDFs for 16-QAM only. When CDFs for

4-QAM is tested, the DNN will generate error in the OSNR prediction, since the CDFs for

4-QAM and 16-QAM are distinct from each other, as can be seen in Fig. 5.2. To illustrate

that, simulation results are provided in Fig. 5.10. One can see that the estimation error is

not negligible especially at high OSNR, where the CDFs for different modulation formats

are distinguishable. When 64-QAM is misclassified as 16-QAM, simulation results show a

maximum OSNR estimation error of about 7 dB, as it is difficult for the DNN to predict a

category of data when it is trained by another category.
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Table 5.2: Experimental results for MC.

SVM / DNN

Transmitted MF

Classified MF

4-QAM 16-QAM 64-QAM

4-QAM 45 (100%) 0 0

16-QAM 0 33 (97%) 1 (3%)

64-QAM 0 0 29 (100%)
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Fig. 5.11: Experimental results for OSNR estimation.

5.3.2 Experimental Results and Discussion

The experimental setup of the dual-polarization optical B2B system is similar to the one in

Chapter 3. The OSNR ranges for 4-QAM, 16-QAM and 64-QAM are 10 ∼ 25 dB, 14 ∼ 25

dB, and 16 ∼ 25 dB, respectively. 10000 samples are used to form the CDF with 100 bins.

Similar to [82], a total data set including 144 CDFs for 4-QAM, 16-QAM, and 64-QAM

modulations for all OSNRs is collected. 36 CDFs (25%) is randomly selected and used to
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train the SVM-based classifier and regressor. 5-fold cross-validation is also applied. The

remaining 108 CDFs (75%) are used to conduct the evaluation. DNNs are also optimized

using grid searching. Note that the OSNR estimation with DNNs is under the assumption

that perfect knowledge of the modulation format is known, which is not always the case in

practice.

Table 5.2 summarizes the MC results for the proposed algorithm and the DNN-based

one, which obtain same performance. Note that MF stands for modulation formats here.

The proposed algorithm achieves 100% accuracy classification for 4-QAM and 64-QAM,

and makes 1 misclassification for 16-QAM. The average MC accuracy is 99%. Similar to

simulation results, the experimental results indicate that the probability of misclassification

for 16-QAM is higher than that of the other two modulation formats.

The OSNR estimation results for the three modulation formats with the proposed al-

gorithm are shown in Fig. 5.11. The mean estimation errors for 4-QAM, 16-QAM, and

64-QAM are 0.38 dB, 0.68 dB, and 0.62 dB, respectively; and the overall mean estimation

error is 0.54 dB. The DNN-based algorithm obtains a higher overall mean estimate error

of 0.63 dB; more specifically, the mean estimate errors for 4-QAM, 16-QAM, and 64-QAM

are 0.52 dB, 0.68 dB, and 0.75 dB, respectively.

5.3.3 Complexity

In the training stage, the complexity of SVM is O(N3
s +N

2
s ⋅Nt +Ns ⋅ d ⋅Nt) [83], where Ns

is the number of support vector, Nt the number of training samples, and d the dimension

of the input data. Note that in most cases, the number of support vectors is far less than

the number of samples. In the testing stage, O(Ns ⋅ d ⋅N) operation is required when RBF

kernel is applied [83], where N is the number of testing samples. Therefore the complexity

of SVM is linear with the input samples, which is similar to that of the DNN [87].
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5.4 Conclusion

In this chapter, a joint MC and OSNR estimation algorithm for coherent optical receivers

is proposed. The proposed algorithm relies on the CDF of the received signal’s amplitude

in combination with SVM-based classification and regression. Numerical simulations and

experiments are carried out to evaluate its performance. Results show that good classi-

fication accuracies for three widely-used modulation formats are achieved. Moreover, a

very small mean estimation error is obtained within the OSNR range of practical interest.

Compared with the DNN-based algorithm, the proposed one achieves better performance.

The presented algorithm can be applied in the presence of frequency offset and laser phase

noise, and is compatible with existing digital coherent receivers. Therefore, it represents

an advisable choice for joint MC and OSNR estimation in future optical communication

systems.
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Chapter 6

Carrier Phase Estimation for

Coherent 16-QAM Systems

6.1 Background

The emergence of bandwidth-intensive applications has driven optical fiber communications

to employ spectrally-efficient modulation formats instead of the PDM QPSK. However,

these systems set stringent requirement on the performance of CPE algorithms, since the

Euclidean distance between the constellation points reduces as the modulation order in-

creases. Therefore, CPE algorithms for spectrally-efficient modulation formats that exhibit

better laser phase noise tolerance and low-complexity, are essential in high-speed coher-

ent optical transmission systems [27]. The existing CPE algorithms for spectrally-efficient

modulation formats can be categorized as DA [88] and NDA [89–93]. The NDA algorithms,

which have the advantages of overhead reduction and improved spectral efficiency, are of

particular interest. The most prominent NDA CPE algorithms are based on the blind

phase search (BPS) or the Mth-power [94]. The BPS proposed in [89] demonstrates a good

phase noise tolerance, but at the price of very high computational complexity. Other NDA
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algorithms are based on QPSK partitioning [90, 91], which enables the application of the

conventional Viterbi-Viterbi phase estimation (VVPE) after constellation partition. While

this reduces the complexity, it increases the sensitivity to phase noise. Multi-stage esti-

mation algorithms, which combine a coarse estimation stage and a fine estimation stage,

provide a trade-off between complexity and phase noise tolerance [92,94–99].

Systems employing the 16-QAM format represent a solution of interest for WDM long-

haul transmission systems beyond 100 Gb/s [100–102]. On the other hand, complexity

reduction on 16-QAM coherent optical systems is essential [27].

In this chapter, a low-complexity two-stage CPE algorithm is proposed for 16-QAM

coherent systems. Firstly, after frequency offset compensation, symbols are partitioned

and a coarse estimation is performed. After that, particular symbols are rotated properly

in order to perform the second power operation, which removes the modulation phase.

Simulations and optical B2B experiments are carried out. Results show that the proposed

algorithm provides a comparable performance with reduced complexity when compared

with the conventional fourth power-based CPE algorithm.

6.2 Proposed Algorithm

Assuming that channel equalization and frequency offset compensation are performed, the

signal contaminated by both AWGN and laser phase noise can be expressed as

yn = xne
jφn +wn, 1 ≤ n ≤ N, (6.1)

where xn is the transmitted symbol, wn is the AWGN, φn is the laser phase noise which

is modeled as a Wiener process [27], and N is the number of observed samples. The

phase difference between adjacent symbols is treated as an independent and identically

distributed Gaussian random variable with zero mean and variance σ2
p = 2πδfT , where δf
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is the combined linewidth of the transmitted laser and local oscillator, and T is the symbol

duration.

6.2.1 QPSK Partition for 16-QAM

As shown in Fig. 6.1(a), the symbols for 16-QAM can be divided into three classes, based

on their amplitudes. Without loss of generality, it is assumed that E{∣xn∣
2} = 1, where E{⋅}

is the expectation operator. The boundaries for the three classes are (1 +
√

2/10)/2 and

(1+
√

18/10)/2 (the two dash circles in Fig. 6.1(a)). The symbols of the inner circle (η1) and

those of the outer circle (η3) are QPSK-like, and therefore, their modulation phase can be

removed by the fourth power operation and their carrier phase estimated afterwards by the

VVPE algorithm. However, these symbols account for 50% of the total symbols, and might

not be enough to provide the phase information when the phase noise variance is large.

The algorithm in [92] exploits the symbols on the middle circle (η2) by rotating them after

the fourth power operations, resulting in enhanced performance. A two-stage algorithm

employing second power operation is proposed to achieve a more efficient processing.

6.2.2 Proposed Two-stage CPE Algorithm for 16-QAM

After the constellation is partitioned into three classes, the coarse estimation is achieved by

using the symbols of the outer circle, since they have a relatively higher SNR than those of

the inner circle. Furthermore, an average with a block of length L1 is used to reduce the

impact of the AWGN. Similar to [92], the coarse estimate φest1 is obtained as

φest1 =
1

4
arg

L1

∑
k=1

y4
k , yk ∈ η3. (6.2)

Note that if the processed symbol does not belong to η3, the value of the symbol is set to

zero in order to avoid the influence from the symbols of other circles [103].

83



B
η1

η2
η3

BB

(a) Constellation for 16-QAM.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Q
ua

dr
at

ur
e

In−phase

Scatter plot

η
2,1

η
2,2

η
2,3

η
2,4

η
2,4

η
2,3

η
2,2

η
2,1

(b) Constellation for 16-QAM after coarse compen-

sation.

-5 0 5

In-phase

-5

-4

-3

-2

-1

0

1

2

3

4

5

Q
ua

dr
at

ur
e

Scatter plot

(c) Constellation for 16-QAM after rotations.

Fig. 6.1: Illustrative diagram for the proposed CPE algorithm.

84



After a coarse phase estimation and compensation, the constellation contains a residual

phase noise, as shown in Fig. 6.1(b). The symbols are then properly rotated. More specifi-

cally, for η1 and η3, the clusters η1,1, η3,1 are rotated by −π/4, while η1,2, η3,2 are rotated

by π/4; for η2, the clusters η2,1, η2,2, η2,3 and η2,4 are rotated by −arctan 3, −arctan 1/3,

arctan 1/3, and arctan 3, respectively. The constellation after rotation is illustrated in Fig.

6.1(c). Then, these symbols are raised to the second power for modulation phase removal.

The second-stage phase estimate with a block length of L2 is obtained as

φest2 =
1

2
arg

L2

∑
k=1

y2
rotated,k , (6.3)

where yrotated,k represents the kth symbol, rotated as in Fig. 6.1(c).

The proposed algorithm is illustrated in Fig. 6.2. The phase unwrapping adopts the

algorithm from [90], and it ensures that the phase estimation follows the trajectory of the

physical phase. Most of the existing QPSK partition-based CPE algorithms use the fourth

power operation to remove the modulation phase, and involve higher complexity than the

second power operation. This is further discussed in the next sections.

Symbol block length L1

Partition

∑
y∈η3

y4

arg(.)/4 & unwrap

Coarse compensation Symbol block length L2

Partition

Rotate η123 and ∑
y∈η123

y2

arg(.)/2 & unwrap

Fine compensation

Fig. 6.2: Principle of the proposed two-stage algorithm.



6.3 Performance Evaluation

In this section, the performance of the proposed algorithm is evaluated by numerical simu-

lations and experiments.

6.3.1 Simulation Results

In this section, the performance of the proposed ’η4
3 + η

2
123’ algorithm (η4

3 represents the

symbols used for coarse estimation at the first stage and η2
123 represents the second power

operations at the second stage) is examined through Monte Carlo simulations and compared

with that of two conventional algorithms. One algorithm is the BPS [89], while the other

one is proposed in [92] and referred to as ’η4
3 + η

4
123’ ( η4

123 represents the fourth power

operations at the second stage). In the simulations, phase noise and AWGN are considered.

The required SNR for each algorithm at a BER of 10−2 is shown in Fig. 6.3 versus the

linewidth-symbol duration product. The number of test phases used by the BPS is 32 [89],

and similar to [92], the block lengths for all algorithms are optimized. The SNR is 14.9 dB

at BER = 10−2 when the phase noise is absent. Differential encoding is applied to deal with

the cyclic slip [94].

It can be seen that with 0.5 dB SNR penalty at BER = 10−2, the BPS algorithm can

tolerate a linewidth-symbol duration product of 1.1×10−4; the proposed η4
3+η

2
123 algorithm’s

tolerance is 8 × 10−5, while the η4
3 + η

4
123 has a tolerance of 7 × 10−5. Considering a coherent

system working at 32 Gbaud/s, the equivalent linewidths for the three algorithms are 3.52

MHz, 2.56 MHz, and 2.24 MHz, respectively. The BPS algorithm requires the smallest SNR

when compared with the partition-based algorithms, but is significantly more complex. The

proposed algorithm shows slightly better performance than the η4
3 + η

4
123.

Furthermore, the partition-based algorithms require a relatively large SNR when the

linewidth-symbol duration product is large, compared with the BPS algorithm. The reason
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algorithms.
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is that a large residual phase noise might exist when the linewidth symbol duration product

is large [92]. Therefore, at the second stage, some symbols of η123 might rotate excessively

and cross the boundary (the dashed line in Fig. 6.1(b)). For example, the symbols belonging

to η2,1 can cross the vertical dash line and be considered as part of η2,4.

The lengths of the block for the proposed algorithm at the two different stages are also

studied. In Table 6.1, the optimal lengths at the first and second stages, which minimize

the BER, are given when the SNR is 16 dB. It can be seen that the block lengths are smaller

for larger linewidth-symbol duration product. The reason is that, although it can reduce

the impact of AWGN, a long block length results in a performance degradation of the CPE

tracking.

Table 6.1: Optimal block lengths at SNR = 16 dB.

∆fTs 2e-4 1e-4 4e-5 1e-5 1e-6

L1 30 30 70 110 120

L2 10 20 20 30 80

BER 9.5e-3 7.2e-3 5.2e-3 4.3e-3 3.5e-3

6.3.2 Experimental Results

Optical PDM B2B experiments are carried out to verify the system performance of the

proposed CPE algorithm. The experimental setup is similar to the one in Chapter 3.

In the off-line processing, the collected signal is processed by a matched filter, and then

down-sampled to one sample per symbol. After the timing recovery, the constant modulus

algorithm is employed to separate the two polarizations. Then, the frequency offset is

compensated by using the method in [45]. Subsequently, the phase noise is estimated.
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After compensating for the phase noise, the demodulation is performed and the BER is

calculated.
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Fig. 6.4: The BER vs. OSNR for different CPE algorithms.

The experimental results for the BPS, η4
3 + η

4
123, and the proposed η4

3 + η
2
123 are depicted

in Fig. 6.4. The results show that the BPS attains the lowest BER. The proposed algorithm

exhibits approximately 0.1 dB penalty when compared with the BPS, and similar perfor-

mance with the η4
3 + η

4
123. Since the linewidth-symbol duration product in the experiments

is around 1.6 × 10−5, the differences among all those algorithms are trivial; however, this

observation complies with the simulation results at the same linewidth-symbol duration

product range.
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6.4 Complexity Analysis

The complexities of the BPS, η4
3 + η

4
123, and proposed η4

3 + η
2
123 algorithms are compared

in Table 6.2. The complexities are evaluated in the case of single polarization with phase

unwrapping. Here, B denotes the number of trial phase, and L is the window length used by

the BPS. L1 and L2 are the block lengths for all partition-based algorithms at the first stage

and second stage, respectively. N is the number of the observed symbol. It can be observed

that the BPS requires remarkably larger number of multiplications than the others. The

proposed second power-based algorithm involves less multiplications than its fourth power-

based counterpart. It is worth mentioning that the number of real multiplications for one

fourth power operation is 8 in [90, 91], while [92] pointed out that this can be reduced to

6 by using some optimum implementation. In the comparisons here, the latter is adopted.

Nonetheless, complexity reduction is achieved since one second power operation requires

only 4 real multiplications.

Table 6.2: Complexity comparison for the CPE algorithms.

η43 + η
4
123 Proposed η43 + η

2
123 BPS

Real multiplications 21N + 1
2
N + ( 1

L1
+ 1
L2

)N 19N + 1
2
N + ( 1

L1
+ 1
L2

)N 6BN + 4N

Real additions 13N + 1
2
N + 3( 1

L1
+ 1
L2

)N 13N + 1
2
N + 3( 1

L1
+ 1
L2

)N (2L + 1)BN + 6N

Comparisons 2N + 1
2
N + 2( 1

L1
+ 1
L2

)N 6N + 1
2
N + 2( 1

L1
+ 1
L2

)N 5BN + 2N

Look-up table operations ( 1
L1

+ 1
L2

)N ( 1
L1

+ 1
L2

)N 0

6.5 Summary

In this chapter, a novel two-stage CPE algorithm for 16-QAM coherent optical systems is

proposed. Different from the conventional fourth power-based CPE algorithms, the pro-
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posed algorithm considers the second power operation to remove the modulation phase

of the symbols at the second stage. Simulations and optical B2B experiments verify the

performance of the proposed algorithm consistently. With a significantly reduced complex-

ity, the proposed algorithm exhibits only approximately 0.1 dB performance penalty when

compared with the BPS in the experiments. Compared with the conventional fourth power-

based algorithm, the proposed algorithm provides comparable performance with reduced

complexity.
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Chapter 7

Flexible Transmission Scheme for

Optical Metro Networks

7.1 Introduction

After dominating long-haul optical transmission networks for several years, coherent optical

systems with DSP techniques are extending their domination to optical metro networks [24].

On the other hand, the optical metro networks are evolving into an open and disaggregated

architecture to achieve high flexibility, interoperability, and diversity for the increasing

metro applications [28]. The demand for wavelength services among businesses has been

driven primarily by the rise of cloud computing. As the cloud ecosystem develops, many

organizations prefer wavelength services for interconnecting their data centres to public

cloud providers [104]. In this context, service providers need the metro optical networks to

provide more wavelength connectivity to their customers instead of just speed. However,

the existing wavelength-to-users allocation is orthogonal, and frequency resources could be

soon saturated with the increasing number of users. When large number of users require

service connectivities, a typical solution is to share the wavelength resources with users
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and sort these users with different priorities [105]. However, for many businesses, the

downtime is unacceptable and the continuous connectivity is essential for productivity. The

mission-critical applications, such as high-frequency trading, can be severely affected by

just a few nanoseconds of downtime. To deal with this challenge, non-orthogonal multiple

access (NOMA) approach is one promising solution to support multi users’ connectivity

simultaneously without service interruption.

Power-domain NOMA in optical fiber communications has been investigated very re-

cently [106] [107]. It supports multiple users with the same time and frequency resources

by allocating different power levels to users based on the their channel conditions. In [106],

power domain NOMA is employed in optical access networks, and provides improved system

performance when compared to the orthogonal frequency domain multiple access. In [107],

it is shown that non-orthogonal digital domain power division multiplexing provides much

higher spectral efficiency, and is compatible with current dual polarization WDM and space

division multiplexing systems. However, clustering and pairing of users based on their

channel conditions are needed in the presence of large number of users, and thus the system

complexity increases. On the other hand, only the scenario with 2 users is investigated

in [106] and [107]. Systems involving more than 2 users need to be developed.

In this chapter, a novel transmission scheme, which is based on sparse code multiple

access (SCMA), for metro coherent optical systems is proposed. In the proposed scheme,

digital subcarrier multiplexing (SCM) [108] is employed, and several users are served with

the same subcarrier. Simulations involving 2 users, 4 users, and 6 users are conducted,

and the results show that in the transmission ranges of interest for metro applications, the

proposed transmission scheme attains BER lower than the FEC threshold.
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7.2 Principle of Operation

7.2.1 Proposed Scheme

Without loss of generality, an SCM system with N subcarriers, which provides connectivity

to J users, where 1 ≤ N ≤ J , is employed. At the transmitter, the input bits, bj , from

the jth user are mapped to an M point p-dimensional signal constellation. The mapping

is denoted as fj ∶ Blog2(M) → cj , cj ∈ Cj , where B = {0,1} and Cj is p-dimensional complex

constellation set for the jth user. After the mapping, each p-dimensional constellation point

is spread to an N -dimensional codeword by applying the spreading matrix Vj ∈ BN×p.

The overall process from bits to codewords can be expressed as xj = Vjfj(bj), xj ∈ Xj ,

where Xj represents the codebook set for the jth user. Because only p dimensions of the

N -dimensional codeword are used to carry data information while the remaining N − p

dimensions are set to zeros, the codeword is sparse. The sparsity of the codewords is

important, as it helps to reduce the interference from other users and the complexity at the

detection stage. To describe the allocation of users to subcarriers, anN×J binary matrix, A,

is defined as the user-to-subcarrier indicator matrix. The elements in the rows of A represent

the users assigned to each subcarrier, while those in columns denote the subcarriers assigned

to each user. Each column of A, i.e. aj , is calculated by aj = diag(VjV
T
j ), where superscript

T represents transpose of the vector and/or matrix, and diag() denotes the vector containing

the diagonal elements of the objective matrix. The (n, j)th element of A is denoted as

an,j , and it is 1 if the jth user contributes its data to the nth subcarrier. Furthermore,

φn = {j ∶ 1 ≤ j ≤ J, an,j = 1} is defined to represent the index set of users contributing to the

nth subcarrier. Similarly, ψj = {n ∶ 1 ≤ n ≤ N,an,j = 1} is defined to show the index set of

subcarriers occupied by the jth user.

After upsampling and passing through a pulse shaping filter, the codewords on different
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subcarriers are shifted to different center frequencies in the spectrum and multiplexed before

being transmitted through the channel.

At the receiver, all subcarriers are captured simultaneously. After bulk chromatic dis-

persion compensation and frequency offset compensation, each subcarrier is successively

shifted to the baseband and filtered out by a digital low-pass filter (LPF). Next, each sub-

carrier is equalized individually. Assuming that the channel impairments are compensated

and the synchronizations are performed, the received signal on a symbol-by-symbol base is

expressed as

y =
J

∑
j=1

xj + z, (7.1)

where y = [y[1], ..., y[N]]T is the received signal, xj is the N -dimensional codewords of user

j, and z is independent and identically distributed complex Gaussian noise with zero-mean

and a covariance matrix σ2I.

7.2.2 Codebook Design

The design of SCMA codebook has been discussed in [109] and [110]. In general, the

design goal is to obtain the optimum multidimensional constellations, c� and the optimum

user-to-subcarrier spreading matrix, V�. Accordingly, the process is formulated as

c�,V�
= arg max

c,V
d(λ(c,V;J,N,M,p)), (7.2)

where d denotes a given design criteria and λ represents the SCMA system. In [110],

a sub-optimal optimization method is introduced, which consists of two steps. To begin

with, a mother constellation of size M , C+, is designed from the Cartesian product of two

p−dimensional real constellations with a desired Euclidean distance. Then, user-specific

unitary rotations are performed on the mother constellation. These rotations are used to

generate decodable symbols for users over the same subcarrier. Assuming that J = 4, N = 2,
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and M = 4, based on the above procedures, the M -point p-dimensional constellation sets,

Cj , where j = 1,2,3,4, are provided in (7.3) [111].

C1 = {−0.1815 − 0.1318j, −0.6351 − 0.4615j, 0.6351 + 0.4615j, 0.1815 + 0.1318j}

C2 = {−0.0055 − 0.2242j, −0.0193 − 0.7848j, 0.0193 + 0.7848j, 0.0055 + 0.2242j}

C3 = {0.7851, −0.2243, 0.2243, −0.7851}

C4 = {0.1392 − 0.1759j, 0.4873 − 0.6156j, −0.4873 + 0.6156, −0.1392 + 0.1759j}. (7.3)

In addition, the spreading matrix, V, is given by

V =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.4)

Accordingly, the allocation matrix is obtained as

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.5)

In this example, V is identical to A; however, this is not always the case, as the example

involving 6 users provided in [111] illustrates. After the spreading, the codebook sets for

the jth user, Xj , are shown in (7.6).

X1 =

⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−0.1815 − 0.1318j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−0.6351 − 0.4615j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0.6351 + 0.4615j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0.1815 + 0.1318j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

X2 =

⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0055 − 0.2242j

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0193 − 0.7848j

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0193 + 0.7848j

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0055 + 0.2242j

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭
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Fig. 7.1: System model for the proposed transmission scheme.

X3 =

⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.7851

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
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⎢
⎣
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0

⎤
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0
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⎦
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0

⎤
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⎦
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X4 =

⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0.1392 − 0.1759j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0.4873 − 0.6156j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−0.4873 + 0.6156

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−0.1392 + 0.1759j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

.

(7.6)

7.2.3 DSP Subsystems in the Receiver

Figure 7.1 shows the system architecture for the proposed scheme, when 4 users transmit

over 2 subcarriers (↑ and ↓ represent upsampling and downsampling, respectively). The

DSP consists of CD compensation, coarse frequency offset compensation, subcarrier de-

multiplexing, adaptive equalization, and phase recovery. More details can be found in [108].
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However, since the constellation is non square-QAM, conventional blind algorithms such as

CMA and RDE are vulnerable. A TS-least mean squares (LMS) equalizer [17, 18] is more

appropriate to achieve polarization demultiplexing for non square-QAM formats.

As decision is involved and thus carrier phase recovery is required in the butterfly equal-

izer, a one-tap adaptive filter is added on both polarizations after the butterfly filter. For

the butterfly equalizer, the output is given by

Eho[i] = whhEhi +whvEvi

Evo[i] = wvhEhi +wvvEvi, (7.7)

where Eho[i] and Evo[i] are the ith output of the equalizer, the suffixes h and v represent

the two orthogonal polarizations; whh, whv, wvh, and wvv are the tap weights with length of

L; Ehi (Ehv) denotes a sliding block of L symbols, {Ehi[k−L+1],Ehi[k−L+2], ...,Ehi[k]},

entering the equalizer. The weights are updated according to

whh = whh + γεhE
∗
ho,

whv = whv + γεhE
∗
ho,

wvh = wvh + γεvE
∗
vo,

wvv = wvv + γεvE
∗
vo, (7.8)

where γ is the step size and ∗ represents the complex conjugation operation. The error is

given by

εh,v = ŷh,v ∣Γh,v ∣/Γh,v −Eh,vo,

Γh,v = Γyh,v + βξh,vE
∗
h,vo/∣Eh,vo∣

2,

ξh,v = ŷh,v − Γyh,vEh,vo . (7.9)

In the above equations, Γh,v represents the tap coefficient of the one-tap equalizer that

handles phase noise [88] and is controlled by the error ξh,v and step size β, ŷh,v denotes
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either the training symbols or the decided symbols. The structure of the equalizer is shown

in Fig. 7.2, where Ψ represents the operation of ∣Γ∣/Γ on Γ.

Ehi

Evi

whh

whv

wvh

wvv

+ ŷh

+ ŷv

LMS

LMS

−

−

×

×

Ψ

Ψ

LMS

LMS

Γh

Γv

−

−

Symbol decision

Symbol decision

Fig. 7.2: The structure of the decision-directed adaptive equalizer.

7.2.4 MPA Detection

Given the equalized and synchronized signal on each subcarrier, the maximum a posteriori

(MAP) detection estimates the transmitted codewords for the jth user, expressed by



x̂j = arg max
b∈Xj

∑
xj=b,X∈X

p(X∣y), (7.10)

where X = ∑
J
j=1 xj and X = X1 ×X2 ×⋯ ×XJ .

With the assumption that the noise vector on each subcarrier is identically independently

distributed and uncorrelated with the transmitted codewords, p(y∣X) is factorized as

p(y∣X) =
N

∏
n=1

p(y[n]∣X), (7.11)

where p(y[n]∣X) is the probability of receiving y[n] on the n-th subcarrier given that the

transmitted codewords are X, and is given in (7.12). In pratice, the knowledge of the noise

variance can be obtained through parameter estimation methods or measurement from

optical spectrum analyzer [112].

p(y[n]∣X) =
1

√
2πσ2

exp
⎛

⎝
−

1

2σ2
∣y[n] − ∑

j∈φn

xj∣

2
⎞

⎠
. (7.12)

By using Bayes’ rule and removing all the unnecessary constant scalars, the estimate of the

codeword is given by

x̂j = arg max
b∈Xj

∑
xj=b,X∈X

p(X)
N

∏
n=1

p(y[n]∣X), (7.13)

where p(X) =∏
J
j=1 p(xj).

Solving (7.13) is proportional to MJ and thus the complexity grows exponentially with

the number of users. Due to the sparse feature of the porposed scheme, a message passing

algorithm (MPA) [113] is employed instead, as the complexity is only proportional to the

number of users colliding on each subcarrier. Figure 7.3 shows the factor graph with N = 2

function nodes (FNs) and J = 4 resource nodes (VNs); FNs and VNs represent the sub-

carriers and users, respectively. In MPA, the soft information of codewords are iteratively

exchanged between FNs and VNs. After a given number of iterations, the log-likelihood

ratio of the bit is obtained [114].
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VN1

FN1 FN2

VN2 VN3 VN4

Fig. 7.3: Factor graph of MPA with 2 function nodes and 4 resources nodes.

To formulate the MPA, the message flow from the nth FN to the jth VN at the τth

iteration is denoted as S
(τ)
fn→vj

. Similarly, the message flow from the jth VN to the nth

FN at the τth iteration is denoted as S
(τ)
vj→fn

. Initially, all messages from VNs to FNs are

assumed to be equiprobable:

S
(0)
vj→fn

(xj) = 1/M. (7.14)

Then, the FNs update and send message to the connected VNs:

S
(τ+1)
fn→vj

(xj) = ∑
xi∈Xi,∀i∈φn∖j

p(yn∣X) × ∏
i∈φn∖j

S
(τ)
vi→fn(xi)

. (7.15)

The update of the nth FN is based on the extrinsic information. Taking Fig. 7.3 as

an example, when FN1 sends information to VN1, message from VN3 is extrinsic. Next,

message passes from the jth VN to the connected nth FN:

S
(τ+1)
vj→fn

(xj) = p(xj) ∏
l∈ψj∖n

S
(τ+1)
fl→vj

(xj). (7.16)

After a number of iterations, τmax, the output of the MPA for the jth user is given by

Sj(xj) = p(xj) ∏
n∈ψj

S
(τmax)
fn→vj

(xj). (7.17)

Then, the log-likelihood-ratios (LLR) of the mth bit for the jth user is calculated by

LLR(bj,m) = log
∑xj∈X 1

j,m
Sj(xj)

∑xj∈X 0
j,m

Sj(xj)
, (7.18)
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where X 1
j,m represent subsets of Xj for bj,m = 1 and X 0

j,m are those for bj,m = 0. Next, the

BER is calculated from the LLR. It is also worth noting that the exponential function in

MPA might require large memory; therefore, MPA in log-domain is preferred in pratical

implementation [115].

7.3 Performance Evaluation

The feasibility and performance of the proposed scheme is investiaged by numerical simu-

lation. Three scenarios are considered: 2 users over 1 carrier, 4 users over 2 subcarriers,

and 6 users over 4 subcarriers. The sampling rate is 50 GS/s in all scenarios. Without loss

of generality, the simulation setup for 2 users over 1 subcarriers is introduced. The digital

transmitter and receiver are the same as in Fig. 7.1. For each user, every 2 bits are mapped

into a codeword and modulated onto the subcarriers. Then, the symbols are up-sampled

by a factor of 4 and digitally shaped by a raised cosine filter with a roll-off factor of 0.1.

The SSMF in one span is 100 km long. For the fiber parameters, the attenuation coefficient

is 0.2 dB/km, the dispersion parameter is 16 ps/nm/km, the polarization mode dispersion

coefficient is 0.1 ps/
√

km, and the nonlinear coefficient is 1.4 /W/km. The noise figure and

the gain of the EDFA are 5 dB and 20 dB, respectively. The frequency offset and the laser

linewidth is set to 200 MHz and 100 kHz, respectively. After subcarriers demultiplexing, the

signal is sampled at 2 samples/symbol, and the CD is compensated in frequency domain.

Then, the signal is downsampled to 1 sample/symbol and the frequency offset is compen-

sated by applying the algorithm in [42]. After that, the signal is processed by the adaptive

equalizer mentioned in Sec. 7.2.3. The transmission distances are selected based on the fact

that metro networks range is less than 500 km [24] and the scale of metro networks with a

range of about 100 km grows rapidly [28]. More specifically, the transmission distances are

set to 400 km and 800 km for both 2 users over 1 carrier and 4 users over 2 subcarriers. In
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the case of 6 users over 4 subcarriers, because the Euclidean distance between constellation

points reduces considerably, 200 km transmission distance is used. The system performance

is shown in Figs. 7.4-7.6 in terms of BER versus various launch powers. Figures 7.4 and 7.5

show the results for the scenarios of 2 users over 1 carrier and 4 users over 2 subcarriers,

respectively. In Fig. 7.6, the results for 6 users over 4 subcarriers are shown. In this case, 3

users collide on 1 subcarrier and the interference is higher than for the two aforementioned

scenarios. Note that the typical SD FEC threshold with 20% overhead is 2.4 × 10−2, while

HD FEC threshold with 7% overhead is 3.8 × 10−3. It can be seen that in all scenarios, the

obtained BER is lower than the HD FEC threshold with the optimal launch powers.

-3 -2 -1 0 1 2 3 4
Launch power (dBm)

10-6

10-5

10-4

10-3

10-2

10-1

BE
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User 2 (400 km)

Fig. 7.4: Simulation results for 2 users.
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Fig. 7.5: Simulation results for 4 users.
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Fig. 7.6: Simulation results for 6 users.
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7.4 Summary

In order to provide connectivity for more users, a novel transmission scheme for metro

optical coherent systems is proposed. In this framework, the construction of SCMA code-

words is first introduced. By exploring the sparse structure of the codewords, the MPA is

implemented. The complexity of MPA grows exponentially only with the number of users

occupying each subcarrier, which is significantly less than that of MAP. Three scenarios

with different numbers of users are investigated numerically. Simulation results show that

the attained BER before FEC is lower than FEC thresholds within the transmission reaches

of interest. By providing simultaneous connectivity for 2 users and beyond with limited re-

sources, the proposed scheme can improve the flexibility and interoperability for the open

and disaggregated metro coherent optical systems.
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Chapter 8

Conclusion

The development of communication electronics will reach a bottleneck, as Moore’s Law

cannot continue forever. Therefore, future optical networks will face challenges to meet the

IP traffic demands by only relying on high symbol rate devices. In addition, static sys-

tem configuration in legacy WDM systems are becoming barrier for efficiency improvement

on the network resources utilization. In response to this problem, next generation optical

fiber networks are expected to be flexible and adaptive. In such flexible networks, trans-

mission parameters are not longer predefined, but adaptive based on the existing demands

and channel conditions. For example, 1 Tb/s and beyond transmission can be realized by

flexible grid Nyquist superchannel with flexible modulation format, according to the sce-

narios. This flexibility of the network requires performance monitoring to help perceive

transmission parameters such as modulation format and OSNR. Persistent and continuous

self-observation is essential for the networks to operate in an efficient way. The advent of

coherent detection with DSP has dramatically boosted the networks throughput, and paves

the way for networks to achieve flexibility by DSP approaches. In addition, coherent optical

systems have been widely employed in long-haul networks, and are swinging their impact

to metro networks even access networks; hence, it is important to investigate and develop
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advanced DSP techniques to for next-generation flexible optical networks.

8.1 Summary

This thesis studies advanced DSP techniques for flexible optical networks. Parameter es-

timation for performance monitoring has been investigated. These parameters include the

modulation format, OSNR, and carrier phase noise. Additionally, a novel flexible transmis-

sion scheme for coherent optical systems has been explored.

1. In Chapter 3, an MC algorithm based on the CDF of the received signal’s normalized

amplitude has been proposed for coherent optical receivers. The proposed algorithm

requires a fairly small number of samples and can be performed in the presence of

frequency offset and phase noise.

2. In Chapter 4, an OSNR estimation algorithm has been introduced, which can be

efficiently implemented with significantly-reduced complexity. Furthermore, it shows

improved performance over the conventional M2M4 estimator.

3. In Chapter 5, a joint MC and OSNR estimation algorithm has been developed by ap-

plying SVM. Results show a good classification accuracy for three widely-used mod-

ulation formats. Moreover, a very small mean estimation error is obtained within the

OSNR range of practical interest.

4. In Chapter 6, CPE for coherent optical systems employing 16-QAM has been investi-

gated. The proposed algorithm considers the second power operation to remove the

modulation phase of the symbols at the second stage, and it provides slightly better

performance with reduced complexity when compared with the conventional fourth

power-based algorithm.
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5. In Chapter 7, a novel transmission scheme for optical metro network has been pro-

posed. Three scenarios with different numbers of users are investigated. Simulation

results show that the proposed scheme attains BER lower than the FEC thresholds

within the transmission reaches of interest. By providing simultaneous connectiv-

ity for multiple users with limited resources, the proposed scheme can improve the

flexibility and interoperability for the open and disaggregated metro coherent optical

systems.

8.2 Future Directions of Research

8.2.1 Effective SNR Estimation

In the absence of fiber nonlinearity, the transmission performance is largely determined by

the OSNR since almost all linear impairments can be compensated well. However, OSNR

does not provide any insight into the impact from other sources such as fiber nonlinearity.

Knowledge of the probability distribution of noise sources is important for characterizing

the system performance. Recently, several works have reported progress on estimating the

effective SNR, considering individual impacts from both ASE noise and nonlinear noise

[58, 116, 117]. More specifically, employing the amplitude correlation among neighbouring

symbols, the nonlinear noise variance can be estimated [58]. Further, ML-based methods

such as artificial neural networks are employed to calculate the nonlinear noise variance

[116,117]. The effective SNR can be calculated after equalization and carrier phase recovery

in the DSP. It reflects the overall signal quality, considering the impact from different sources

such as ASE noise, nonlinear noise, and even DSP itself. In such a case, some interesting

potential topics can be explored:

1. The approach proposed in [58] requires a calibration process to connect the ampli-
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tude correlation with the true nonlinear noise variance for each individual system

configuration, which is impractical for real implementation. On the other hand, the

ML-based techniques in [116,117] employed the amplitude correlation and phase corre-

lation among symbols as features. Are there any other features that can be employed

to represent the impact of fiber nonlinearity? If so, it is expected that a better per-

formance or reduced complexity can be achieved based on these features.

2. The above-mentioned works only consider four-wave mixing (FWM) among signals in

the WDM system, and do not account for the FWM between the signal and the co-

propagating noise. Evaluating the impact of the signal-noise interaction will be helpful

to quantify the system performance degradation in various system configurations (e.g.,

different symbol rates, number of spans, and amplification schemes).

8.2.2 SCMA Codebook Design

A novel transmission scheme based on SCMA for metro optical coherent systems is proposed

in Chapter 7. In this framework, the codebooks are designed for AWGN channel. For better

results, the codebooks suitable for optical fiber channel with nonlinearity considered are

worthy to be investigated.
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Appendix

Partial Differentials of Marcum’s Q Function

Here, information for obtaining (4.8) is provided. A Marcum Q function is defined as

Q(a, b) = ∫
∞

b
exp{−

a2 + b2

2
}xI0(ax)dx. (A.1)

The partial derivative of Q(a, b) with respect to b is given by integrating the Q(a, b) at b:

∂Q(a, b)

∂b
= −bI0(ab)exp{−

a2 + b2

2
}. (A.2)

By using the identity

Q(a, b) = 1 + exp{−
a2 + b2

2
}I0(ab) −Q(b, a), (A.3)

the partial derivative of Q(a, b) with respect to a is found to be

∂Q(a, b)

∂a
= bI1(ab)exp{−

a2 + b2

2
}. (A.4)
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Fisher Information Derivation

Here, the details on obtaining (4.18) are provided. For simplification, F is used instead of

Fk in the appendix. The derivative for the first term of (4.17) with respect to σ is given by

∂(−1
2 ln

F (1−F )

N )

∂σ

=
∂ (−1

2 lnF (1 − F ))

∂σ

= −
1

2

∂lnF

∂σ
−

1

2

∂ln(1 − F )

∂σ

= −
F ′

2

1

F
+
F ′

2

1

1 − F

=
F ′(2F − 1)

2F (1 − F )
. (A.5)

Similarly, the derivative for the second term of (4.17) with respect to σ is given by

∂(−
N(FE−F )2

2F (1−F )
)

∂σ

=
N

2

∂
(FE−F )2

F (F−1)

∂σ

=
N

2

∂ ( F
F−1 −

2FE
F−1 −

F 2
E

F +
F 2
E

F−1)

∂σ

=
N

2

∂ (1 +
1−2FE+F

2
E

F−1 −
F 2
E

F )

∂σ

=
N

2
(

1 − 2FE + F
2
E

(F − 1)2
(−F ′

) −
F 2
E

F 2
(−F ′

))

=
−NF ′

2
(

1 − 2FE + F
2
E

(F − 1)2
−
F 2
E

F 2
) . (A.6)
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Then, the sum of the above two terms is

F ′(2F − 1)

2F (1 − F )
+
−NF ′

2
(

1 − 2FE + F
2
E

(F − 1)2
−
F 2
E

F 2
)

=
F ′

2
(
(2F − 1)

F (1 − F )
−N (

1 − 2FE + F
2
E

(F − 1)2
−
F 2
E

F 2
))

=
F ′

2
(
(2F − 1)F (1 − F ) −N(1 − 2FE + F

2
E)F

2 +N(1 − F )2F 2
E

F 2(1 − F )2
)

=
F ′

2
(
−2F 3 + 3F 2 − F −N(1 − 2FE + F

2
E)F

2 +N(1 − F )2F 2
E

F 2(1 − F )2
)

=
F ′

2
(
(N − 2NF )F 2

E + 2NF 2FE − 2F 3 + 3F 2 − F −NF 2

F 2(1 − F )2
) . (A.7)

Next, the expectation of the power of the sum is given by

E{(
F ′

2
)

2
(
(2NF −N)F 2

E + 2NF 2FE − 2F 3 + 3F 2 − F −NF 2

F 2(1 − F )2
)

2

}. (A.8)

The following variables are defined: a = N − 2NF , b = 2NF 2, c = −2F 3 + 3F 2 − F −NF 2,

and d = F 2(1 − F )2. Thus, (A.8) is expressed as

E{(
F ′

2
)

2

(
aF 2

E + bFE + c

d
)

2

}

=E{(
F ′

2
)

2

(
a2F 4

E + b
2F 2

E + c
2 + 2abF 3

E + 2acF 2
E + 2bcFE

d2
)}

=(
F ′

2d
)

2

E{a2F 4
E + 2abF 3

E + (b2 + 2ac)F 2
E + 2bcFE + c

2
}

=(
F ′

2d
)

2

E{a2
(F + δ)4

+ 2ab(F + δ)3
+ (b2 + 2ac)(F + δ)2

+ 2bc(F + δ) + c2
}

=(
F ′

2d
)

2

E{a2
(F 4

+ 4F 3δ + 6F 2δ2
+ 4Fδ3

+ δ4
)+

2ab(F 3
+ 3F 2δ + 3Fδ2

+ δ3
) + (b2 + 2ac)(F 2

+ 2Fδ + δ2
) + 2bc(F + δ) + c2

}

=(
F ′

2d
)

2

E{a2δ4
+ (4Fa2

+ 2ab)δ3
+ (6F 2a2

+ 6Fab + b2 + 2ac)δ2

+ (4F 3a2
+ 6F 2ab + 2Fb2 + 4Fac + 2bc)δ + F 4a2

+ 2F 3ab + F 2b2 + 2F 2ac + 2Fbc + c2
},

(A.9)
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where E{δ4} = 3
F 2(1−F )2

N2 , E{δ3} = 0, E{δ2} =
F (1−F )

N , E{δ} = 0. Finally, the simplified

expression is obtained as

E{(
F ′

2
)

2

(
aF 2

E + bFE + c

d
)

2

}

=(
F ′

2d
)

2 ⎧⎪⎪
⎨
⎪⎪⎩

3a2F
2(1 − F )2

N2
+ (6F 2a2

+ 6Fab + b2 + 2ac)
F (1 − F )

N

+ F 4a2
+ 2F 3ab + F 2b2 + 2F 2ac + 2Fbc + c2

⎫⎪⎪
⎬
⎪⎪⎭

=
NF ′2

F (1 − F )
. (A.10)
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