

DEVELOPMENT, ANALYSIS, AND IMPLICATIONS OF OPEN-SOURCE

SIMULATIONS OF REMOTELY PILOTED AIRCRAFT

by

© Oihane Cereceda Cantarelo, B.Eng., M.Eng.

A Doctoral Thesis submitted to the

School of Graduate Studies

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

February 2020

St. John’s Newfoundland and Labrador

i

Abstract

In recent years, the use of Remotely Piloted Aircraft (RPAs) for diverse purposes has increased

exponentially. As a consequence, the uncertainty created by situations turning into a threat for

civilians has led to more restrictive regulations from national administrations such as Transport

Canada. Their purpose is to safely integrate RPAs in the current airspace used for piloted

aviation by evaluating Sense and Avoid (SAA) strategies and close encounters. The difficulty

falls on having to rely on simulated environments because of the risk to the human pilot in the

piloted aircraft.

In the first part of this research, the technical difficulties associated with the development and

study of RPA computer models are discussed. It explores the rationale behind using Open-

Source Software (OSS) platforms for simulating RPAs as well as the challenges associated with

interacting with OSS at graduate student level. A set of recommendations is proposed as the

solution to improve the graduate student experience with OSS.

In the second part, particular challenges related to the design of OSS computer models are

addressed. Based on: (1) the differences and similarities between piloted and RPA flight

simulators and (2) existing Verification and Validation (V&V) approaches, a validation method

is presented as a solution to the subject of developing fixed-wing RPAs in OSS environments.

This method is used to design two flight dynamics models with SAA applications. The first

computer model is presented in tutorial format as a case study for the validation procedure

whereas the second computer model is specific for testing SAA strategies. In the last part, one of

the designed RPAs is integrated into a computer environment with a representative general

ii

aircraft. From the simulated encounters, a diving avoidance manoeuvre on the RPA is developed.

This performance is observed to analyze the consequences to the airspace.

The implications of this research are seen from three perspectives: (1) the OSS challenges in

graduate school are wide-spread across disciplines, (2) the proposed validation procedure is

adaptable to fit any computer model and simulation scenario, and (3) the simulated OSS

framework with an RPA computer model has served for testing preliminary SAA methods with

close encounters with manned aircraft.

iii

Acknowledgements

This thesis is dedicated to my parents, Luis Cereceda and Adelina Cantarelo, who always

believed in my potential and made from me the person that I am today. To my family and dear

friends, who encouraged me to stay strong during the most challenging times.

This research would not have been possible without the financial support of the InnovateNL of

Tourism, Culture, Industry and Innovation, Newfoundland and Labrador as part of the

ArcticTECH research program. I would like to express my sincere gratitude to my supervisors,

Dr. Siu O’Young and Dr. Luc Rolland, for their continuous support and assistance during my

PhD program. Their motivation and knowledge were vital. I would also like to thank the rest of

my thesis committee for their insightful comments and encouragement. I would like to express

my very great appreciation to Dr. Itziar Cabanes and her team at the University of the Basque

Country (UPV/EHU) during my research stay in the Faculty of Engineering in Bilbao. She is a

true inspiration and her support and help were invaluable.

During my program, I have worked with many brilliant graduate students who have been crucial

in defining and developing this thesis. I am especially grateful to Danielle Quinn, with whom I

shared countless discussions that contributed to shaping one of the chapters of this thesis.

I thank my fellow colleagues Iryna Borshchova, Bruno Artacho, and Robert MacIsaac for the

stimulating discussions and guidance they provided in the periods when I had lost all confidence.

The various groups I have been involved with at Memorial University have become my second

family. I want to thank each and every single one of the people I met through the MUN Mentors

iv

Program and Women in Science and Engineering Graduate Student Society for their

encouragement aside of my research work, without which I could not have succeeded.

Finally, this thesis would have not been possible without the unconditional support, patience and

dedication of my partner, Dave Noseworthy, who was always there to cheer me up and

encourage me to be positive.

v

Table of Contents

Abstract ... i

Acknowledgements .. iii

Table of Contents .. v

List of Figures ... ix

List of Tables .. xiii

List of Abbreviations .. xv

List of Appendices .. xviii

Chapter 1. Introduction ... 1

1.1. Context of the Remotely Piloted Aircraft Systems Problem.. 2

1.2. The Relevance of Simulated Frameworks for Testing SAA Methods 5

1.3. Objectives of this Research .. 6

1.3.1. Application Scope ... 8

1.3.2. Out of Scope .. 9

1.4. Significance .. 10

1.5. Thesis Outline .. 11

Chapter 2. Background .. 13

2.1. Remotely Piloted Aircraft: Definition, Context, and Requirements 14

2.2. Simulation Platforms: JSBSim and FlightGear .. 19

2.2.1. Existing Open-source FDM ... 20

2.2.2. JSBSim Open-source FDM ... 23

2.2.3. FlightGear Flight Simulator .. 26

2.3. Theoretical Background: JSBSim FDM .. 26

2.3.1. Frames of Reference ... 27

vi

2.3.2. Forces and Moments ... 28

2.3.3. Equations of Motion ... 31

2.3.4. Propulsion ... 33

2.3.5. Flight Control .. 34

2.4. Computer Model Development .. 35

2.4.1. Validation methods for RPAs .. 40

2.5. Sense and Avoid Basis ... 41

2.5.1. Scope of the SAA application ... 42

2.6. Summary .. 43

Chapter 3. Open-Source Software in Aerospace with RPA Applications: Challenges and

Solutions ... 44

3.1. Basic Flight Simulator Framework .. 45

3.2. Technical challenges of working on/with OSS in Academia ... 48

3.2.1. Software in the Scientific World ... 49

3.2.2. Benefits of Using OSS in Graduate School .. 50

3.2.3. Challenges of Developing OSS in Graduate School... 52

3.2.4. Challenges of Working with OSS in Graduate School ... 54

3.2.5. Overall Perspective on Best Practices for a Positive OSS Experience in Graduate

School 55

3.2.6. The Future of OSS in Academia... 59

3.3. Technical challenges of JSBSim .. 60

3.4. Summary .. 61

Chapter 4. High-level Validation Approach for OSS FDMs: JSBSim Application 63

4.1. High-level validation approach for OSS FDMs ... 64

vii

4.1.1. Validation of Aircraft Flight Simulators: Piloted vs. Remotely piloted Aircraft ... 65

4.1.2. Initial Procedure for a Correct Validation .. 69

4.1.3. Validation Methodology for the FDM Development ... 72

4.2. Simulation Assumptions for the Case Studies ... 75

4.3. EPP FPV Case Study: JSBSim Tutorial ... 76

4.3.1. EPP FPV Simulation Context ... 76

4.3.2. EPP FPV Computer Modelling and Development ... 77

4.3.3. EPP FPV Computer Model Validation ... 80

4.1.3. Simulation of SAA Manoeuvres ... 96

4.3. Summary .. 97

Chapter 5. Giant Big Stik Computer Model Development with Sense and Avoid

Applications ... 99

5.1. Giant Big Stik Computer Model Development .. 100

5.1.1. Giant Big Stick Simulation Context (Phase 1) ... 101

5.1.2. Giant Big Stik Computer Modelling and Development (Phase 1) 102

5.1.3. Giant Big Stik Computer Model Validation (Phases 2 and 3) 104

5.2. Giant Big Stik Application: Vertical Collision Avoidance .. 113

5.2.1. Encounter Geometry and Intruder’s Trajectory .. 114

5.2.2. Collision Avoidance Conditions and Methodology for Solving the SAA problem

for RPAs .. 116

5.2.3. Implications... 120

5.3. Summary .. 124

Chapter 6. Discussion, Recommendations, and Conclusion ... 126

6.1. Impact and Contributions ... 126

viii

6.1.1. Open-Source Software Contribution ... 128

6.1.2. JSBSim Contribution .. 129

6.1.3. Development and Validation of RPA Computer Models 130

6.1.4. Collision Avoidance Application .. 132

6.2. Future Research .. 133

6.2.1. Proposed Improvements to Open-Source Software in Academia 133

6.2.2. Proposed RPAS Flight Simulator Requirements Improvements 134

6.2.3. Proposed Computer Model Validation Improvements ... 134

6.2.4. Proposed Improvements to CA in RPAs .. 137

6.3. Conclusion .. 138

6.4. List of publications ... 139

References .. 142

Appendix A. A Simplified Manual of the JSBSim Open-source FDM for Fixed-wing RPA

Applications ... 162

Appendix B. Coefficients calculation for the EPP FPV R/C ... 184

Appendix C. Extended Sense and Avoid Basis and Existing Work 192

Appendix D. Encounter Geometries ... 207

Appendix E. Code and Configuration Files .. 210

ix

List of Figures

Figure 1.1. Thesis significance ... 11

Figure 2.1. Reported RPA incidents in Canada in the last 5 years ... 16

Figure 2.2. JSBSim block structure .. 24

Figure 2.3. Aircraft frames .. 28

Figure 2.4. Giant Big Stik. Forces and moments .. 34

Figure 2.5. Model and simulation within the system development cycle (Diston, 2010) 37

Figure 2.6. Modelling of a dynamic system (Buchholz et al., 1996) .. 37

Figure 2.7. The correlated inspection approach (Law, 2014) ... 40

Figure 3.1. Basic aircraft simulation framework .. 46

Figure 3.2. FDM blocks .. 46

Figure 4.1. Levels of an aircraft flight simulation model validation .. 65

Figure 4.2. Stages of a correct validation ... 70

Figure 4.3. Validation methodology for RPA FDM ... 72

Figure 4.4. Mini SGS-126 Glider (SimplePlanes, 2019) .. 78

Figure 4.5. Open-loop AeroSim layout in MATLAB/Simulink ... 81

Figure 4.6. EPP FPV static test. Airspeed (Va) .. 82

Figure 4.7. Airspeed error ... 82

Figure 4.8. EPP FPV elevator test. Pitch angle... 83

Figure 4.9. EPP FPV elevator test. Airspeed .. 83

Figure 4.10. EPP FPV aileron test. Roll angle .. 84

Figure 4.11. EPP FPV aileron test. Airspeed .. 84

Figure 4.12. 2-Sample standard deviation test for roll. Aileron test in the interval [5, 7) 86

Figure 4.13. EPP FPV aileron test. Sideslip ... 87

Figure 4.14. 2-Sample Standard Deviation Test for β. Aileron test in the interval [5, 7)............. 88

Figure 4.15. EPP FPV rudder test. Roll angle .. 89

x

Figure 4.16. EPP FPV rudder test. Sideslip .. 90

Figure 4.17. EPP FPV rudder test. Yaw rate .. 90

Figure 4.18. 2-Sample standard deviation test for β. Rudder test in the interval [5, 8) 90

Figure 4.19. 2-Sample standard deviation test for yaw rate. Rudder test in the interval [5, 8) 90

Figure 4.20. Aileron and elevator deflection for small and medium signals in Phase 3B 93

Figure 4.21. Computer model vs. real model. Roll output ... 93

Figure 4.22. Computer model vs. real model. Pitch output .. 93

Figure 4.23. Rudder horn and carbon strip in the EPP FPV (HobbyKing.com, n.d.)................... 95

Figure 4.24. EPP FPV avoidance manoeuvre. Pitch angle ... 97

Figure 4.25. EPP FPV avoidance manœuvre. Trajectory ... 97

Figure 5.1. The Giant Big Stik aircraft in FlightGear ... 103

Figure 5.2. Giant Big Stik static test. Steady-state airspeed ... 105

Figure 5.3. Giant Big Stik elevator test. Pitch angle ... 106

Figure 5.4. Giant Big Stik elevator test. Airspeed .. 106

Figure 5.5. Giant Big Stik elevator test for small signal (-0.015rad, -1°). Pitch angle 107

Figure 5.6. Giant Big Stik elevator test for a medium signal (-0.10rad, -6°). Pitch angle 107

Figure 5.7. Giant Big Stik aileron test. Roll angle .. 108

Figure 5.8. Giant Big Stik aileron test. Airspeed .. 108

Figure 5.9. Giant Big Stik rudder test. Yaw rate .. 109

Figure 5.10. Giant Big Stik rudder test. Sideslip angle (β) ... 109

Figure 5.11. Aileron and elevator deflections in Section 1... 110

Figure 5.12. Aileron and elevator deflections in Section 2... 110

Figure 5.13. Section 1. Computer model vs. real model. Roll angle .. 111

Figure 5.14. Section 1. Computer model vs. real model. Pitch angle ... 111

Figure 5.15. Section 2. Computer model vs. real model. Pitch angle ... 111

Figure 5.16. Φ encounter geometry and its waypoints ... 115

Figure 5.17. Φ manoeuvre: Giant Big Stik and Cessna’s trajectories with conflict points 115

Figure 5.18. CA flowchart procedure ... 118

Figure 5.19. CA Scenarios and solving procedure based on Figure 5.20 118

Figure 5.20. Elevator deflection vs. τ ... 122

xi

Figure 6.1. Thesis contributions (updated from Figure 1.1) ... 127

Figure A.1. JSBSim standalone mode structure ... 164

Figure A.2. JSBSim program command line and options .. 166

Figure A.3. JSBSim program command line in batch mode .. 166

Figure A.4. FlightGear interface. Advanced options. Input/output properties 169

Figure A.5. FlightGear block structure ... 170

Figure A.6. FlightGear interface. Advanced options. Flight Model ... 170

Figure A.7. FGFDMExec and JSBSim Initialization process (Berndt & JSBSim Development

Team, 2011) .. 175

Figure A.8. Multiplayer mode in FlightGear with a Cessna 172 as seen from the cockpit of

another aircraft .. 178

Figure A.9. Giant Big Stik on the field before tests.. 179

Figure A.10. RPA roll and pitch angles .. 181

Figure A.11. Giant Big Stik in FlightGear v2.0.0 performing an aerobatic manoeuvre in JSBSim

standalone mode.. 182

Figure A.12. Giant Big Stik manual flight in FlightGear v2.0.0 .. 183

Figure B.1. Top view of the RPA .. 185

Figure B.2. Side view of the RPA... 185

Figure B.3. Mini SGS-126 Glider (SimplePlanes, 2019) ... 190

Figure C.1. How TCAS Works (1/2) (Kochenderfer, Holland, & Chryssanthacopoulos, 2012) 194

Figure C.2. How TCAS Works (2/2) (Kochenderfer et al., 2012) .. 194

Figure C.3. Taxonomy of SAA systems (Fasano et al., 2016) ... 196

Figure C.4. Thresholds (Federal Aviation Administration, 2013b). SST: Self-separation threshold.

WCV: Well-clear violation. CAT: Collision avoidance threshold. NMAC: Near mid-air collision

... 197

Figure C.5. Aircraft recognition and reaction time (Unmanned Systems Canada, 2017) 198

xii

Figure C.6. Air ocurrences in 2017. Accidents involving Canadian-registered aircraft, by

operation type, 2017 (Transportation Safety Board of Canada, 2017) 201

Figure C.7. SAA encounter timeline (Federal Aviation Administration, 2013b) 204

Figure D.1. 4D Opposing circuits. Ideal case (Cereceda & Stevenson, 2014) 208

Figure D.2. Waypoint adjustments to synchronize the time of arrival (Fang, 2014) 208

Figure D.3. The Phi (Φ) manoeuvre (Cereceda & Stevenson, 2014) ... 209

xiii

List of Tables

Table 2.1. RPAS categories and requirements. Regulatory project .. 18

Table 2.2. Overview of available software ... 22

Table 4.1. EPP FPV Parameters ... 79

Table 4.2. EPP FPV aerodynamic coefficients ... 79

Table 4.3. Control surface deflections range .. 80

Table 4.4. Pearson correlation coefficients on results in Figure 4.21 and Figure 4.22 95

Table 4.5. Collision avoidance events for testing the EPP FPV in SAA (3D) manoeuvres 96

Table 5.1. Giant Big Stik Parameters.. 103

Table 5.2. Giant Big Stik aerodynamic coefficients ... 103

Table 5.3. Control surface deflections range .. 104

Table 5.4. Pearson correlation coefficients on results in Figure 5.13,Figure 5.14 and Figure 5.15

... 112

Table 5.5. Simulation runs for estimating τ .. 121

Table 5.6. CA stages for the avoidance study ... 123

Table B.1. List of simple geometries in the EPP FPV .. 185

Table B.2. Moment of inertia around X axis .. 186

Table B.3. Moment of inertia around Y axis .. 187

Table B.4. Moment of inertia around Z axis .. 187

Table B.5. Product moment of inertia in XZ .. 189

Table B.6. Mini SGS-126 drag force aerodynamic coefficients ... 190

Table B.7. Mini SGS-126 side force aerodynamic coefficients ... 190

Table B.8. Mini SGS-126 lift force aerodynamic coefficients ... 190

Table B.9. Mini SGS-126 roll moment aerodynamic coefficients ... 191

Table B.10. Mini SGS-126 pitch moment aerodynamic coefficients ... 191

Table B.11. Mini SGS-126 yaw moment aerodynamic coefficients .. 191

xiv

Table C.1. Most significant sensing technology for SAA .. 199

xv

List of Abbreviations

ABSAA Airborne-Based Sense and Avoid

ADS-B Automatic Dependent Surveillance-Broadcast

ATC Air Traffic Control

ATM Air Traffic Management

BVLOS Beyond Visual Line-of-Sight

CA Collision Avoidance

CAA Civil Aviation Authority

CAT Collision Avoidance Threshold

DAA Detect and Avoid

DoF Degrees of Freedom

EPP Expanded Polypropylene

FAA Federal Aviation Administration

FDM Flight Dynamics Model

FPV First Person View

GA General Aviation

GBSAA Ground-Based Sense and Avoid

GCS Ground Control Station

GNC Guidance, Navigation and Control

GS Ground Station

xvi

GUI Graphical User Interface

ICAO International Civil Aviation Organization

JOSS Journal of Open Source Software

M&S Modelling and Simulation

MAC Mid-Air Collision

MDP Markov Decision Process

NMAC Near Mid-Air Collision

NSP National Simulator Program

OSS Open-source Software

POH Pilot’s Operating Handbook

R/C Remote Control

RAs Resolution Advisories

RPA Remotely Piloted Aircraft

RPAS Remotely Piloted Aircraft System

RPV Remotely Piloted Vehicle

SAA Sense and Avoid

SDA Sense, Detect and Avoid

SFOC Special Flight Operations Certificate

SS Self-Separation

SST Self-Separation Threshold

SWaP Size, Weight and Power

xvii

TAs Traffic Advisories

TAS True airspeed

TCAS Traffic Collision Avoidance System

UAV Unmanned Aerial Vehicle

V&V Verification and Validation

VRAC Vertical Resolution Advisory Complement

xviii

List of Appendices

Appendix A. A Simplified Manual of the JSBsim Open-source Software for Fixed-wing RPA

Applications

Appendix B. Coefficients Calculation for the EPP FPV R/C

Appendix C. Sense and Avoid Basis and Existing Work

Appendix D. Encounter Geometries

Appendix E. Code and Configuration Files

1

Chapter 1

Introduction

Along with the development of aviation, the remotely piloted aircraft system industry has rapidly

advanced over the last 20 years. The current congested airspace is now shared by a wide range of

aircraft classes and sizes, creating a challenge for administrations globally. The main

consequence is that encounters between piloted and remotely piloted aviation are happening

more often. With more encounters, there are more chances of airborne collisions, and thus, there

is a need to study and minimize the negative effect (e.g. cost and injuries) of those encounters.

International administrations are currently addressing this problem with more restrictive

regulations that limit the flight tests for recreational and work/research purposes (Transport

Canada, 2018a, 2018b). As a result, flight simulators have become the main frameworks for

testing close encounters between aircraft.

For this research and application, flight simulators must be able to integrate piloted and remotely

piloted aircraft into the same context when testing encounters. On one hand, proprietary software

provides a specific library, which is limited by the available aircraft models when the license was

purchased (e.g. X-plane - (“X-Plane 11 Flight Simulator,” 2018)). This requires a constant

2

upgrade of their scenarios and capabilities to stay up-to-date. On the other hand, open-source

packages allow for the design and integration of new computer models, being the flexible setting

required for testing encounters between piloted and remotely piloted aircraft (e.g. FlightGear –

(“FlightGear Flight Simulator,” 2019)).

However, Open-Source Software (OSS) platforms have particular technical difficulties (e.g.,

limited user’s programming skills, lack of support and resources, and incomplete documentation),

which are singularly wide-spread in graduate school.

The research documented in this thesis addresses these issues and provides an OSS framework

for testing encounters between piloted and remotely piloted aircraft.

This chapter describes the motivation behind this study, explaining its objectives and specific

goals. The interest of the topic and its relevance are briefly introduced as well but are further

explained in Chapter 6.

1.1. Context of the Remotely Piloted Aircraft Systems

Problem

In aviation, simulating aircraft computer models requires computer models as the result of

lengthy studies. The recent integration of Remotely Piloted Aircraft Systems (RPAS) into the

airspace represents a challenge that current international administrations are addressing by

evaluating the effect and risk of close encounters between RPAS and piloted aircraft. The

uncertainty associated with their integration is especially critical in urban areas and near airports,

where their flights are limited (in case of flying with recreational purposes in urban areas) or

3

restricted (near airports) (Transport Canada, 2018a). The objective is for the current airspace to

incorporate a wide range of sizes and types of vehicles while ensuring a safe environment.

When the allowed flying areas are limited, the chances of encountering other aircraft increase,

and therefore, measures must be taken in order to avoid possible collisions. Large piloted aircraft

(e.g. passenger jets) carry onboard a Traffic Collision Avoidance System (TCAS) (Federal

Aviation Administration. U.S. Department of Transportation, 2011) (see also Appendix C –

Figure C.1 and Figure C.2), which is able to identify other aircraft with a transponder and issues

advisories to the pilot. However, General Aviation (GA) aircraft are limited to the capability of

the pilot to visually detect hazards and perform an avoidance manoeuvre on time. This setting

introduces two issues: (1) the inability of the TCAS to detect RPAS and (2) the human pilot’s

identification capabilities depend on the size and the airspeed of the intruder’s aircraft. Sense and

Avoid (SAA) systems provide the aircraft with the capability of detecting and avoiding other

aircraft in the vicinity and represent one of the main elements for the integration of RPAS into

the airspace.

The current regulations limit flight tests for testing close encounters, in real environments due to

their hazardous nature and, as a consequence, the simulated environment must provide a high

level of certainty in the absence of flight tests.

Flight simulators usually include the aircraft system and the models that interact with it:

propulsion system, weather and atmosphere, scenery, etc. The aircraft is represented by the

Flight Dynamics Model (FDM), which is a mathematical representation of the aircraft. During

the development of these systems and the FDM in particular, the designer must have a set of

reports on the aircraft performance and behaviour that can use as a reference. However, close

4

encounter scenarios require extreme manoeuvres, and therefore, the modelling signal range is

reduced to large signals. In general terms, the model does not need to provide a comparative

performance over all ranges, just those where the requirements of the application are defined.

1.1.1. Technical Difficulties

The computer model development approach presented will address the issue of relying on

computer software to test SAA strategies (application). Even though flight tests are a

determining element in the aircraft validation process, close encounters introduce undesirable

risks in the airspace. From the flight tests perspective, current regulations from Transport Canada

prevent the flight of RPAS in scenarios with piloted aircraft (for example, near airports)

(Transport Canada, 2018a). This means that during the computer validation process (further

explained in Chapter 4), the flight tests that serve as a reference are limited to regular missions.

In order for the model to be competitive and used by a wide group of developers in future

applications, the software must be open-source and easy to use. Proprietary software is

eliminated for this research since it does not allow for the integration of other computer models

not included in their corresponding libraries.

However, challenges were faced during the development of this thesis when working with OSS.

General challenges associated with the lack of programming skills, resources or academic

support are wide-spread in academia. Related to the aerospace application of this work,

particular challenges also arose with the OSS FDM: JSBSim. For example, their documentation

lacked guidelines on how to create and validate new models. As a result of this and other

technical difficulties encountered with the software (Chapter 3 – Section 3.3), a JSBSim guide

5

for the development of Remotely Piloted Aircraft (RPA) computer models was also created and

uploaded to the online community (Appendix A) (Cereceda, 2019).

1.2. The Relevance of Simulated Frameworks for Testing

SAA Methods

Modelling and Simulation (M&S) are important fields of study for the assessment of real models

in critical situations. Flight simulators and OSS packages in academia are commonly used as a

platform for simulated environments with piloted and RPA. First, flight simulators allow for

testing possible scenarios prior to take them to the field and second, OSS packages allow for the

integration of new models into existing frameworks.

JSBSim, the OSS used in this thesis, is a valuable tool for the integration of aircraft computer

models into versatile environments. However, the literature on JSBSim lacks information and

reports on RPA computer models. This thesis aims to fill the aforementioned gap with the

development of two RPA computer models for assessing close encounters with piloted aircraft.

Both models will be added to the JSBSim online platform for any designer to download and use.

The computer development process faced the issue of a lack of validation standards for RPA

computer models in the current literature. Therefore, the proposed validation methodology

should initialize discussion on this topic, encouraging future RPA model designs. The aim is to

establish standardized practices similar to the criteria used for piloted aircraft by the

administrations.

SAA methods are necessary for the correct functioning of the airspace. In piloted aviation, the

human has the capacity to identify and avoid any element surrounding the aircraft. However, an

6

additional challenge is faced when the pilot is not able to identify an RPAS due to its size or

travelling airspeed. For that reason, SAA methods are not only relevant for the RPAS but also for

pilots who lack the capability of detection.

Considering SAA as the application, it is important that the simulated environment is a true

representation of the main elements that interact in the airspace: piloted aircraft and RPAS.

Stable and validated models are required for establishing a framework able to test and evaluate

close encounters. Then, validation procedures are fundamental for developing computer models

with SAA applications.

1.3. Objectives of this Research

The purpose of this research is to provide a framework for the assessment of SAA methods based

on the RPA computer model design. This thesis seeks to address the following questions:

 What are the challenges that graduate students face while interacting with OSS? How do

graduate students fit in the OSS loop?

 Are RPA and piloted flight simulators equivalent? How reliable are RPA computer

models?

 Is JSBSim reliable for testing RPAs and encounters with piloted aircraft?

The first objective is to evaluate the educational and technical barriers of interacting with OSS

and the means to improve the graduate student experience. The second objective is to define the

particular challenges associated with the development of FDMs in open-source simulators. The

most relevant element of this objective is to define a methodology for the validation of FDMs

particular to SAA approaches that could be extendable to other RPAS and applications. Finally,

7

the third objective is to develop a simulated environment including a fit-for-purpose FDM whose

performance is proved to be equivalent to the real RPAS under certain conditions. This includes

contributing to the JSBSim sustainability by improving the documentation and adding UAV

aircraft models to their library.

Drawing from these primary objectives, the specific goals of this study are:

1) Describe the challenges of working with open-source platforms in academia and provide

an overview of the means to overcome these challenges.

2) Specify a validation methodology based on existing Verification and Validation (V&V)

techniques, proving that once a designed RPA FDM is validated, it is appropriate to run

the aircraft in simulations and obtain results without flight tests.

3) Develop a 6-DoF RPA FDM in JSBSim that expresses the actual performance of the

aircraft and serves for testing SAA strategies in simulations.

4) Validate the FDM designed according to the method described in (2).

5) Address the issues encountered when working with OSS packages such as JSBSim and

provide an alternative document to serve as a user’s guide for the development of RPA

computer models.

6) Assess the implications of the integration of the designed FDM in (3) into a computer

simulation in JSBSim for testing SAA applications.

While the first listed goal has a wide application to any scientific discipline, the remaining goals

have aerospace applications. In particular, goals 2, 4, and 6 focus on RPAS whereas goals in 3

and 6 directly affect the JSBSim package.

8

Although testing SAA methods is one of the motivations for this research, it is not the focus of

this thesis. Stable and reliable simulated frameworks are needed for assessing encounters and

SAA applications. Then, the issue addressed in this thesis is the technical difficulties associated

with the development and study of RPAs in simulated environments.

1.3.1. Application Scope

RPAS are under strict control by administrations that limit their flights depending on their size

and application. Additionally, close encounters are not permitted due to the hazard they present

to the airspace. As a consequence, the framework for the study of avoidance tasks is reduced to

simulated structures. The core of this study is related to the design and definition of the FDM in

a computer environment that is precise and well defined. Since the real flight tests are limited to

regular flight and usual manoeuvres, this work only presents the results of real tests when

adjusting and designing the FDM. The model is precise enough to be tested in a computer

environment but additional flight tests with extreme manoeuvres must be conducted in order to

increase the model reliability (Chapter 6).

The simulated environment represents a Class G airspace in the surrounding areas of Fogo Island

in Newfoundland and Labrador (NL), Canada. The representative RPAs for this research are the

EPP FPV and the Giant Big Stik, whereas the Cessna 172 is the representative general aircraft.

Likewise, the real flight tests for validation took place in the surrounding areas of St. John’s, NL,

Canada following the Transport Canada regulations in the allowed areas in Class G airspace.

9

1.3.2. Out of Scope

Some factors have been neglected or not included in the following research either because they

have been addressed before by other researchers or have been limited for the sake of simplicity.

An example of a factor not being taken into account is the wind. Its effect on the aircraft

performance and control presents a particular challenge since the wind is unpredictable.

Simulated environments allow for its modelling based on previously collected data of the area or

using constant winds with a pre-defined angle of incidence. Extensive work on this topic has

been carried out by other researchers belonging to the same team (Artacho, 2018; Fang, 2018).

By disregarding the wind component on an aircraft, its performance depends on three other

components: trajectory geometry, control, and airspeed. The control surfaces have the greatest

impact on the performance and, therefore, the other two components (trajectory and airspeed)

have been eliminated from the study. The geometry has been selected based on how often an

encounter takes place, whereas the airspeed is kept at optimum performance. Excluding factors

with particular behaviours not only simplifies the modelling problem, but it also helps investigate

how the control component affects the aircraft performance.

Remote SAA systems have also been eliminated from this study since it requires a

communication link between the aircraft and the SAA, adding extra challenges. For example, a

delay in communication could mean an inability of the aircraft to conduct an avoidance

manoeuvre on time, leading to a collision.

In the scenario described in Chapter 5, the SAA problem is not addressed as a whole; more

information about SAA and the rationale behind focusing on a particular component is further

explained in Appendix C.

10

Any simulation configurations other than JSBSim that are used as a reference (e.g. AeroSim in

MATLAB/Simulink) are not discussed in detail; they have been used and described in previous

work (Stevenson, 2015), and are solely used as reference systems.

Complementary recommendations on the conducted research, and its limitations and highlights

are further explained in Chapter 6.

1.4. Significance

The significance of this thesis is expressed through its contributions to the fields of academic

culture, aviation, and software engineering (belonging to M&S, V&V, and OSS). In the

following chapters, the research conducted is explained and documented, with the contributions

further discussed in Chapter 6.

Overall, the significance of this research is observed from four perspectives:

 A discussion on the process of working with OSS and overcoming difficulties from a

graduate student perspective, and how this affects the academic culture and the software

engineering field (#1 – Figure 1.1).

 The RPA model development and a set of guidelines for designing RPA models in

JSBSim (#2 – Figure 1.1).

 Introduction of a flexible methodology that uses straightforward approaches to validate

RPA computer models for particular purposes (#3 – Figure 1.1).

 Development of RPA FDMs for testing SAA methods and evaluating close encounters

between a piloted and RPA. RPAS applications (#4 – Figure 1.1).

11

Figure 1.1. Thesis significance

1.5. Thesis Outline

This first chapter has provided an introduction to the purpose and motivation of this thesis along

with the challenges and significance to the scientific community.

Chapter 2 gives a general overview of all the fields of engineering this thesis is based on: RPA

and RPAS concepts and definitions, the simulation platform (JSBSim) along with its theoretical

background, classic V&V techniques and model development approaches, and encounter

geometries.

Chapter 3 discusses and addresses, in detail, the technical challenges of modelling RPAs in open-

source platforms. The chapter starts with an introduction of the minimal elements for designing

RPA computer models. It continues with an overview of the current situation of OSS in

12

academia from a graduate student perspective, and justifies the use of these platforms in the

aerospace field. Then, the chapter continues with the particular technical challenges presented by

JSBSim.

Chapter 4 starts with the evaluation of the difference between piloted and remotely piloted flight

simulators. As a solution to the challenges in Chapter 3 and the lack of defined validation

methods for RPA computer models in flight simulators, a high-level validation procedure for

designing RPA FDMs is presented. An example of how to implement the validation procedure is

shown with the EPP FPV validation in a tutorial format.

Chapter 5 introduces another RPA computer model: the Giant Big Stik aircraft. The procedure

for their development is based on existing V&V techniques, established by the methodology

described in Chapter 4 and is fit for the purpose of testing SAA strategies. The simulation

environment for a close encounter is built where a diving manoeuvre is the consequence of an

encounter between two representative aircraft (the Cessna 172 for the piloted aircraft and the

Giant Big Stik as the RPA). The goal of this chapter is to study the performance of RPAS with

SAA applications and evaluate their implications.

Finally, Chapter 6 summarizes this thesis, defines its limitations, highlights its contributions and

adds recommendations for possible future work.

This thesis also contains three appendices that add extra information: (A) a simplified guide for

the development of small fixed-wing aircraft in JSBSim; (B) the inertia and aerodynamic

coefficients calculation for the representative RPA modelled in Chapter 4 (the EPP FPV); (C) the

SAA basis, regulations, and recommendations; and (D) the aircraft configuration files created for

this research.

13

Chapter 2

Background

The Sense and Avoid (SAA) issue has become a very popular research topic in the field of

Remotely Piloted Aircraft (RPAs) since it allows for evaluating their integration into airspace. A

direct consequence is that RPAs must have an SAA capability implemented to reduce the risk of

Mid-Air Collisions (MAC). Simulators are now essential for the development of SAA strategies.

In particular, the Flight Dynamic Model (FDM) expresses the dynamics of the aircraft in a

simulator, including all forces and moments involved in the performance. In other words, it is the

computer-generated expression of the aircraft’s performance in a simulated context.

Considering the importance of flight simulators for RPA applications, the goal of this chapter is

to provide an overview of the existing work and background related to the different fields

mentioned in this thesis.

This chapter begins by discussing the concepts related to RPAs and the current Transport Canada

regulations. An overview of existing open-source platforms is presented next with a particular

analysis of the software tools used in this thesis. This frames the FDM, which is explained from

14

a physical perspective. This chapter concludes with a summary of general computer model

development techniques and a description of the encounter geometries for the RPA application.

2.1. Remotely Piloted Aircraft: Definition, Context, and

Requirements

In recent years, the use of RPAs, commonly referred to as “drones”, for recreational purposes has

increased exponentially. However, these devices should not be considered harmless; records and

studies have proved that their incorrect use and underestimation has led to an increase in risk

situations (Boivin, 2017; Dunn, 2018; Kesteloo, 2018; Starmetro Staff, 2018).

These uncertain situations can turn into a threat, and this has led to new regulations from various

international administrations, such as Federal Aviation Administration (FAA) and Transport

Canada, to include RPAs in the current airspace. The purpose of this section is to define RPAs

and summarize their current status in Canada along with the regulations in effect.

2.1.1. Remotely Piloted Aircraft vs. Remotely Piloted Aircraft System

In the literature, RPAs are known by different names, such as Unmanned Aerial Vehicles (UAV)

and Remotely Piloted Vehicle (RPV). RPA and RPAS are the term used and defined within the

Canadian Aviation Regulations SOR/96-433 (“Canadian Aviation Regulations,” 2018).

According to those, an RPA is “a navigable aircraft, other than a balloon, rocket or kite, that is

operated by a pilot who is not on board” and an RPAS is “a set of configurable elements

consisting of a remotely piloted aircraft, its control station, the command and control links and

any other system elements required during flight operation”.

15

Since the initial development of RPAs in World War I with the experimental Kettering Bug

project (National Museum of the US Air ForceTM, 2015), significant achievements have been

accomplished in remotely piloted aviation (Newcome, 2005). At the beginning of the 20th

century, technology was limited in terms of automatic stabilization, remote control, and

autonomous navigation. Once those barriers were overcome, the development of RPAs

accelerated, not yet reaching its peak. A promising future shows piloted flight complemented by

remotely piloted flight.

A Remotely Piloted Aircraft System (RPAS) is a system that includes an aircraft or vehicle, a

Ground Station (GS) that the pilot uses to operate the aircraft, and a communication link between

the two. It is important to distinguish between RPA and RPAS since the vehicle itself (RPA) is

part of a larger system needed for its operation (RPAS).

2.1.2. RPAS in Canada

RPAS development in Canada presents a great opportunity for innovation and technology.

However, international and national regulators, in particular Transport Canada, are facing

demands from the aviation industry to adopt existing regulations to these newly developed

technologies.

2.1.2.1. The Growth of RPAS in Canada

Over the last few years, the number of reported incidents between piloted and RPA in Canada

has grown (Transport Canada, 2019a). Those reported incidents include RPAS encountered near

airports and by piloted aircraft. Since the reports started to being collected in 2014, the incidents

where RPA were involved increased over 200% until 2017 (Figure 2.1).

16

Figure 2.1. Reported RPA incidents in Canada in the last 5 years

Over the last year (2018), the concerns associated with those incidents and the more restrictive

measures taken by international administrations have resulted in a reduction of the number of

incidents. However, a shared airspace with piloted aircraft has been questioned over the last few

years. The concerns arising from these events have led to the establishment of regulations for the

safe integration of RPAs into a shared airspace with piloted aircraft. Two main issues have been

addressed in the latest regulatory projects. The first issue is directly related to the fact that there

is no pilot on board, meaning the control of the vehicle is remote and dependent on the

communication link between the pilot and vehicle. This discussion is out of the scope of this

thesis but it has been addressed in the literature (Gupta, Jain, & Vaszkun, 2016; Heppe, 2015;

Zeng, Zhang, & Lim, 2016).

The second issue is the fact that the RPA is not aware of its surroundings in the way that a pilot

is when operating a piloted aircraft. In order to operate correctly and independently, the RPA

17

must carry a system onboard capable of identifying and avoiding all kinds of air-to-air

surrounding threats. This system is called “Sense and Avoid” and it will be discussed in later

sections in this chapter.

2.1.2.2. Flying Safely: Canadian Aviation Regulations SOR/96-433 Part IX

(Government of Canada, 2019)

RPAs range in size and weight from small to large aircraft and therefore, the requirements and

regulations vary depending on the type of vehicle, the application of its flight, and the

environment it operates in. As of November 2019, the current Canadian Aviation regulations

make a distinction depending on whether the drone is operated within the pilot’s visual line-of-

sight. Whereas (1) beyond-line-of-sight operations and (2) drones over 25kg need a Special

Flight Operations Certificate (SFOC), (3) drones under 25kg require a pilot certificate (Transport

Canada, 2019c). For example, for the flight tests carried out in Chapter 4, two representative

RPAs have been flown as part of a project for which an SFOC was issued.

Current regulations have recently been implemented on June 1, 2019. The main changes did not

affect the need for an SFOC for flying RPA Beyond Visual-Line-of-Sight (BVLOS), whereas

work/research flights with less than 25kg operated within Visual-Line-of-Sight (VLOS) are now

exempt from the permission certificate. These updated regulations, which are summarized in

Table 2.1, introduce three categories depending on the size, pilot, and environment (rural – small

limited and urban – small complex). For more information about the requirements for flying

RPAs in Canada, visit (Transport Canada, 2019b).

18

Table 2.1. RPAS categories and requirements. Regulatory project

RPAS category General operating and flight rules

19

2.2. Simulation Platforms: JSBSim and FlightGear

Simulators are a crucial tool of the aviation industry. The importance of simulators is allowing

pilots to train without increasing flight hours and allowing to minimize associated costs. This

allows the pilot to lead the system into unsafe situations where its limits are tested. This fact also

allows designers to test all possible circumstances that could lead to avoiding eventual accidents

with significant damage.

In the application addressed in this thesis, a computer environment is crucial for the correct

implementation of dynamic simulation models in aviation, whereby small and large RPAs pose a

threat to other aircraft.

Computer models must provide sufficiently high levels of fidelity with a performance proven to

be sufficiently precise to the real RPA under certain conditions. In particular, its dynamic

performance is given by the FDM, which is the combination of physical models based on

mathematical equations that express the aircraft dynamics in a simulator; including all forces and

moments involved during the flight.

It is obvious to think that the first approach to a reliable model and simulator can be found in

aircraft manufacturers; the aircraft is designed, improved and widely tested before going to

market. This information and software are only used for internal purposes, making it proprietary.

This makes it challenging for a researcher to find a good platform to test applied algorithms

where the purpose is not to discuss or test the aircraft itself; it is a tool to develop, verify and test

new methods and algorithms. Open-source packages provide the flexibility for designing and

validating new computer models that can be later integrated into existing simulations. Therefore,

in this section, open-source FDMs are presented and discussed.

20

2.2.1. Existing Open-source FDM

LaRCSim was an FDM developed by NASA in the early 90s (Jackson, 1995) and renamed

UIUC after some modifications by the University of Illinois in the early 2000s (Selig, Deters, &

Dimock, 2002). It was also implemented with FlightGear (Section 2.2.3) as its default FDM.

LaRCSim was one of the first 6-DoF FDM to use subroutines for the description of

aerodynamics, atmosphere and other elements involved in the flight. This practice created shorter

processing times and enabled real-time simulation. LaRCSim and UIUC models are currently in

disuse and both projects are inactive.

Another FDM, YaSim (“YASim - FlightGear,” 2018) is currently one of the most used open-

source FDM. However, there is little documentation available, and the documentation that does

exist has been made difficult to follow by developers. Its modelling approach is very simple: it

uses the geometry of the aircraft to generate base flight characteristics such as aerodynamic

coefficients. YaSim is the appropriate model to work with if the final application does not

require an accurate solution, or when the aerodynamic coefficients of the aircraft are unknown,

since it is an approximation to the real flight. However, if the model needs to match the real

flight, either using another FDM or adjusting the YaSim model are better alternatives.

JSBSim is a 6-DoF FDM that has been used in aeronautics for over 20 years (Berndt & JSBSim

Development Team, 2011). It is an open-source software with a large library that is in constant

development, which makes the dynamic model versatile and easy to use for any designer. The

programming source code is in C++, the configuration files are implemented in XML-format and

it runs under most of the operating systems. Although it has been used in previous projects for

RPA modelling (Vogeltanz & Jašek, 2015; Wong et al., 2008), JSBSim was initially developed

21

for general and commercial aircraft. As a result, there was a lack of reliability analysis for RPA

models, raising concerns associated with its quality and limitations for small fixed-wing aircraft.

JSBSim requires a knowledge of aerodynamics and the fundamentals of flight that makes

working with it an arduous task. However, the time invested in understanding the software is

made worthwhile by the results provided by the model.

In order to avoid incompatibilities and future complications (e.g. unsupported system updates),

only Open-Source Software (OSS) is going to be examined in this thesis. The tools and packages

presented in this section have come as a result of limiting the search to software used in robotics,

specifically in RPAs or aviation.

To start with, ODE (Smith, 2001) is a widely used physics simulator developed in 2001 and

currently used for modelling any type of robotic system. It is used for simulating rigid bodies and

is considered very useful for analyzing the collisions of dynamic bodies and their interactions in

mobile robots. It has also been used in several applications and games. ODE is part of other

robotics simulation software such as Gazebo and V-REP. Since the objective of this thesis is not

the study of collisions, ODE is eliminated as a potential software.

Gazebo (“Gazebo,” 2014) is a visual software commonly used with ROS (“ROS,” 2008). The

structure of the system is based on nodes that send messages and communicate with each other

through a publish/subscribe system. During 2015, our research team, including this author, tried

to implement JSBSim FDM into the ROS environment. The task was more arduous than

expected due to the software’s framework and a large number of properties to be shared and the

project was cancelled after a few months. The use of ROS would have been useful since it allows

22

the integration of different types of robotic models into the same simulation. The development of

fixed-wing aircraft computer models in ROS remains as future work.

For the last few years, the research team has used the MATLAB/Simulink AeroSim toolkit

(Unmanned Dynamics, 2006) to model RPAs and run simulations (Cereceda & Stevenson, 2014)

combined with FlightGear. AeroSim was widely used in different projects (Yun, Li, & Zheng,

2013) and known as a reliable tool for creating RPA simulations. MATLAB is a licensed

software largely used for academic purposes, but its need for frequent updates results in

incompatibilities. Even though AeroSim is easy to use due to its graphic environment, it is

currently out-of-date and the simulations are only limited to versions up to MATLAB R2010a.

This led this author to seek out another FDM that would substitute the AeroSim FDM for RPA

simulations, although this software will have a relevant role in the validation process and design

of the optimal FDM in Chapter 3.

Table 2.2. Overview of available software

Software (FDM)
Visual

Environment
Highlights Status Comments

ODE + V-REP or ROS
Included in

the software
 Models collisions between

dynamic bodies
Active Rejected

ROS + Gazebo Gazebo

 Does not require significant

computation

 Publish/subscribe system

Active
Dismissed

in 2015

MATLAB

Simulink

AeroSim

Simulink or

FlightGear

 Graphical environment and

setup

 Well-known software

Out-of-date Not viable

JSBSim

In current

develop-

ment

Insufficient

resources

JSBSim + scripts FlightGear

 Open to design with an

online library

 Flexible programming

 No incompatibilities with

OS or older versions

Up-to-date
Best

solution

23

For a more extensive survey on existing OSS platforms for the modelling and simulation of an

RPA, visit the following reference: (Vogeltanz, 2015). The described software and applications

are not only limited to the design and simulation of the FDM; it also includes tools for the

estimation of aerodynamic coefficients and the design of propulsion systems, among others.

2.2.2. JSBSim Open-source FDM

The versatility of JSBSim is one of its strongest attributes. This software can be downloaded

from its website (JSBSim Development Team, 2005b) or directly from SourceForge (JSBSim

Development Team, 2018). In this section, two different options for its implementation are

described. The software analysis included in this paper, as well as the work shown, has been

done on a Windows-based computer. Therefore, the software commands in this and the

following sections are run under the Windows operating system. However, in the past, the full

package has also been tested under the Linux operating system.

2.2.2.1. Standalone Mode: Scripting

In the simplest case scenario, JSBSim can be run through scripts entirely implemented through

code with FlightGear as the visualization software. In the diagram in Figure 2.2, a simple

simulation with JSBSim is shown formed by four main blocks.

 The inputs block defines the initialization of the system as well as future commands or

tasks to do by the model.

 The core of the FDM includes the dynamics of the system as well as other physical

entities like the atmosphere.

24

 The FDM also needs extra information from other systems such as the propulsion. Other

specifications like actuator and sensors could be added as well.

 The outputs are defined at the end of the FDM configuration file where the type of output

will also define its use; for example, an output to FlightGear allows for a visualization of

performance, while the generation of an excel file permits the evaluation of certain

parameters.

Figure 2.2. JSBSim block structure

For more information on how to set up the package and become familiar with its operation,

please follow the referenced tutorial (Galbraith, 2010).

2.2.2.2. Integration into FlightGear

In this simulation mode, FlightGear hosts the execution of the simulation. The current version is

2019.1.1 (as of November 2019) but the user can download the most suitable version for a

specific computer, since the latest version is not always the most appropriate.

In earlier FlightGear developments, JSBSim was its representative aircraft FDM. Currently, this

option is still available but also shared with other popular FDM such as YaSim. This flight

25

simulator only needs the user to select an aircraft, a scenario, and particular conditions in the

launching interface. Unlike the standalone version, there is no need to download the entire

JSBSim package as only the aircraft configuration and the propulsion files along with additional

systems are needed. FlightGear also requires the files associated with the visual model to each

aircraft. The base package only includes basic aircraft but a complete list of available models to

download can be found online (“FlightGear Flight Simulator,” 2019). Unfortunately, the current

online aircraft library does not include any RPA, thus the graphic models used in this thesis were

designed from scratch and later imported.

2.2.2.3. JSBSim for RPA Applications

The main reason for developing RPA computer models using the JSBSim package is its

capabilities. JSBSim allows the developer to create new aircraft based on the basic package and,

simultaneously, its code is also configurable for adding new features. This thesis wants to initiate

a discussion on the development of fixed-wing RPA computer models in JSBSim. Considering

that an RPA offers a different scenario than jets or other aircraft, slow airspeed and low altitude

flying conditions simplify the modelling effort in gravity and air density calculations.

Unlike other flight simulators, JSBSim does not incorporate any graphics and as a result, the

processing time required decreases. Certain simulations for this research, such as the computer

tests in Sections 4.3.3.1 and 5.1.3.1, do not need any visual display, therefore, the simulation

becomes more efficient.

As with any OSS, JSBSim is license-free, capable of working on any platform, and has a large

online community. As of November 2019, it has 57 aircraft/aerodynamic models and a large

selection of additional systems.

26

The integration of JSBSim into FlightGear also provides the ability to run two aircraft in the

same scenario when in multiplayer mode. This allows for the analysis of their interactions, and is

a helpful tool in the development of SAA trajectories for fixed-wing RPAs.

Appendix A includes a full discussion of this topic and a short version of the aforementioned

document was also presented at the Newfoundland Electrical and Computer Engineering

Conference (NECEC2017) in 2017.

2.2.3. FlightGear Flight Simulator

Flight Gear (“FlightGear Flight Simulator,” 2019) is an open-source flight simulator which has

been in constant development since 1997 (at time of publication, the last version was released on

March 14th, 2019). The aircraft visual models and environmental components including scenery

and airports from different parts of the world are available for download from its online library.

It also allows the developer to design new aircraft in SketchUp (“SketchUp,” 2019) and import

them later. It is usually run alongside JSBSim as their roles are complementary; JSBSim

provides the dynamics of the system and FlightGear the visual performance.

For more information about how to run FlightGear with JSBSim see Appendix A.

2.3. Theoretical Background: JSBSim FDM

The mathematical model used in JSBSim is derived from the most widely used method,

Newton’s second law (𝐹 = 𝑚 𝑎), where the position, velocities, and accelerations are solved

from the total forces and moments, assuming that the aircraft is a 6-DoF rigid body (Cook, 2007).

Other methods include the blade element theory (Chen, 1989), which is used in the X-Plane

Flight Simulator.

27

2.3.1. Frames of Reference

The frames of reference define the structure where the dynamics of flight are calculated. Thus, in

order to avoid certain design mistakes that lead to wrong calculations of forces and moments,

those frames need to be stated beforehand. There are general standards, but those presented here

are particular of the JSBSim package.

A. Structural frame (Figure 2.3(a)): The frame relative to the dimensions of the aircraft

such as the locations of the masses and the Center of Gravity (CG). The X-axis increases

from the nose towards the tail, the Y-axis from the fuselage to the right side and the Z-

axis is positive upwards following a right-hand coordinate system. The origin of this

frame is located in front of the nose; generally at the tip.

B. Body frame (Figure 2.3(b)): Where the forces and moments are summed and calculated.

It is important that the location of this frame be perfectly referenced from the other

frames in order to have correct calculations in the equations of motion (Section 2.3.3).

The X-axis points from the tail towards the nose, the Y-axis is placed similarly to the

structural frame, pointing right and the Z-axis points downwards. The origin is located in

the CG of the aircraft.

C. Wind frame (Figure 2.3(c)): The frame where the airspeed is calculated, where the X-

axis points directly to the relative wind, the Y-axis points to the right and the Z-axis

points downwards or upwards depending on the velocity vector, but always in the plane

of symmetry and according to the right-hand coordinate system.

28

D. Stability frame (Figure 2.3(d)): The X-axis points to the projection of the relative wind

in the plane of symmetry, the Y-axis points towards the right and the Z-axis downwards.

This frame is fixed despite the changes in the direction of the relative wind.

(a) Structural frame axis

(b) Body frame axis

(c) Wind frame axis

(d) Stability frame axis

Figure 2.3. Aircraft frames

Besides those listed above, there are other frames of reference relative to the Earth that are useful

from a navigation point of view but are not important for the present case. Therefore, they are

dismissed from this study.

2.3.2. Forces and Moments

JSBSim obtains the aerodynamic forces and moments using the coefficient buildup method,

meaning that all the contributions to the generation of a specific force or moment are calculated

29

and summed in order to obtain that total force/moment. The coefficients are taken from flight

tests, calculated by hand or using software. JSBSim, through its tool Aeromatic v2.0 found on its

website (JSBSim Development Team, 2005a), also provides an approximate set of coefficients

calculated from the aircraft dimensions.

The dynamic pressure expresses the approximate relationship between pressure and speed for

low flow speeds (e.g. RPA case). By definition, the dynamic pressure represents the kinetic

energy by a unit of volume of air used to calculate the force (e.g. lift: L) by multiplying a surface

area and the aerodynamic coefficient.

𝑞 =
1

2
 𝜌 𝑉2 (2.1)

𝐿 =
1

2
 𝜌 𝑉2𝑆 𝐶𝐿 = 𝑞 𝑆 𝐶𝐿 (2.2)

Where q is the dynamic pressure, ρ is the density and V is the airspeed –expressed in the wind

frame, S is the wing area and CL is the non-dimensional lift coefficient.

The other two forces (drag (D) and side force (Y)) are calculated by following the same concept:

𝐷 = 𝑞 𝑆 𝐶𝐷 (2.3)

𝑌 = 𝑞 𝑆 𝐶𝑌 (2.4)

CD represents the drag coefficient and CY is the side force coefficient. Note that all the

aerodynamic coefficients are non-dimensional.

The expressions for the moments (roll (l), pitch (m), and yaw (n)) are similar:

𝑙 = 𝑞 𝑆 𝑏 𝐶𝑙 (2.5)

𝑚 = 𝑞 𝑆 𝑐 𝐶𝑚 (2.6)

30

𝑛 = 𝑞 𝑆 𝑏 𝐶𝑛 (2.7)

Where b is the wingspan, c is the wing chord and Cl, Cm and Cn are the coefficients for roll, pitch

and yaw coefficients respectively.

As mentioned earlier, each coefficient is calculated from all the contributions to the force. As an

example, the lift dependencies are the following:

𝐶𝐿 = 𝐶𝐿(𝛼, 𝛼̇, 𝑞, 𝛿) (2.8)

Where α represents the angle of attack, 𝛼̇ the rate of angle of attack, q the pitch rate and δ the

flight deflections given by the control surfaces. For the slow airspeed and low altitude of the

RPA case, the Mach number and altitude elements are neglected because their dependencies in

all the coefficients are not significant.

Therefore, the lift coefficient, including the dependencies and its coefficients, is as follows:

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿
𝛼𝛼 + 𝐶𝐿

𝛼̇𝛼̇ + 𝐶𝐿
𝑞𝑞 + 𝐶𝐿

𝛿𝛿 (2.9)

CL0 represents the lift force at zero angle of attack and each of the lift coefficients

(𝐶𝐿
𝛼 , 𝐶𝐿

𝛼̇, 𝐶𝐿
𝑞 , 𝐶𝐿

𝛿) is consequence of the corresponding 𝛼, 𝛼̇, 𝑞, 𝛿 component (superscript).

Following the same approach as expressed for the lift coefficient, the drag coefficient CD, the

side force coefficient CY, the roll coefficient Cl, the pitch coefficient Cm and the yaw coefficient

Cn for an RPA case in JSBSim are expressed as:

𝐶𝐷 = 𝐶𝐷0 + 𝐾𝐶𝐿
2 + 𝐶𝐷

𝛼𝛼 + 𝐶𝐷
𝛿𝛿 (2.10)

𝐶𝑌 = 𝐶𝑌
𝛽

𝛽 + 𝐶𝑌
𝑝𝑝 + 𝐶𝑌

𝑟𝑟 + 𝐶𝑌
𝛿𝛿 (2.11)

𝐶𝑙 = 𝐶𝑙
𝛽

𝛽 + 𝐶𝑙
𝑝𝑝 + 𝐶𝑙

𝑟𝑟 + 𝐶𝑙
𝛿𝛿 (2.12)

31

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚
𝛼 𝛼 + 𝐶𝑚

𝛼̇ 𝛼̇ + 𝐶𝑚
𝑞

𝑞 + 𝐶𝑚
𝛿 𝛿 (2.13)

𝐶𝑛 = 𝐶𝑛
𝛽

𝛽 + 𝐶𝑛
𝑝𝑝 + 𝐶𝑛

𝑟𝑟 + 𝐶𝑛
𝛿𝛿 (2.14)

Where β is the sideslip angle, p is the roll rate, r is the yaw rate and each of the corresponding

coefficient dependencies is indicated by their subscript.

The drag coefficient includes a special term 𝐾𝐶𝐿
2, which indicates the induced drag consequence

of the lift. Equations (2.9)-(2.14) are general statements, but they must be modified according to

the aircraft. JSBSim allows modifications in the aircraft configuration file in case the design

carries other dependencies.

Each contribution is expressed as a function of the corresponding “LIFT”, “DRAG”, “SIDE”,

“ROLL”, “PITCH”, “YAW” axes in the JSBSim setup. Each of the coefficients may be

expressed either as a constant coefficient or as a value dependent on a certain property taken

from a lookup table.

For further information about the physics involved in the flight, the following references are

recommended: (Barnard & Philpott, 2010; Shevell, 1989; Stevens, Lewis, & Johnson, 1992)

2.3.3. Equations of Motion

The performance of the aircraft is defined by its motion variables as expressed in the body frame

by:

{𝑣}𝐵 = [
𝑢
𝑣
𝑤

] , {𝑣̇}𝐵 = [
𝑢̇
𝑣̇
𝑤̇

] (2.15)

Where [𝑢, 𝑣, 𝑤] are the linear velocities and [𝑢̇, 𝑣̇, 𝑤̇] their corresponding derivatives. According

to the Newton’s second law, where 𝐹 = 𝑚 𝑎, the forces equation expressed in the body frame is:

32

{𝐹}𝐵 = [
𝐹𝑋

𝐹𝑌

𝐹𝑍

] = 𝑚 {𝑣̇}𝐵 + 𝑚 {Ω}𝐵{𝑣}𝐵, where {Ω}𝐵 = [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] (2.16)

The total force calculated in the body frame {𝐹}𝐵, [𝐹𝑋 , 𝐹𝑌, 𝐹𝑍] is calculated from the mass, m, the

acceleration, {𝑣̇}𝐵, and the cross-product equivalent matrix consequence of the derivation of the

rotating frame, {Ω}𝐵. Thus, the linear velocities are directly calculated by:

[
𝑢̇
𝑣̇
𝑤̇

] =
1

𝑀
[

𝐹𝑋

𝐹𝑌

𝐹𝑍

] − [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] [

𝑢
𝑣
𝑤

] (2.17)

 Additionally, the motion rate is given as the angular velocities [𝑝, 𝑞, 𝑟] and their corresponding

derivatives [𝑝̇, 𝑞̇, 𝑟̇], can be calculated following the next equations according to the rotating

moment of inertia definition:

{𝑤}𝐵 = [
𝑝
𝑞
𝑟

] , {𝑤̇}𝐵 = [
𝑝̇
𝑞̇
𝑟̇

] (2.18)

{𝑀}𝐵 = [
𝑀𝑋

𝑀𝑌

𝑀𝑍

] = 𝐼𝐵 {𝑤̇}𝐵 + {Ω}𝐵𝐼𝐵{𝑤}𝐵 (2.19)

[
𝑝̇
𝑞̇
𝑟̇

] = 𝐼𝐵
−1 [

𝑀𝑋

𝑀𝑌

𝑀𝑍

] − 𝐼𝐵
−1 [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] 𝐼𝐵 [

𝑝
𝑞
𝑟

] (2.20)

Where {𝑀}𝐵 is the angular momentum of the aircraft in each of the axis [𝑀𝑋 , 𝑀𝑌, 𝑀𝑍] and 𝐼𝐵is

the inertia matrix.

The Euler angles [𝜙, 𝜃, 𝜓], which specify the orientation of the aircraft, are obtained from the

transformation stated by the matrix 𝑇𝐻,𝐵:

[

𝜙̇

𝜃̇
𝜓̇

] = 𝑇𝐻,𝐵 [
𝑝
𝑞
𝑟

] (2.21)

33

The Euler angles are expressed in the local-horizontal reference frame used for navigation. Its

origin is the CG of the aircraft with the X-axis pointing north, the Y-axis east, and the Z-axis to

the centre of the Earth. Although the Euler angles are important parameters during flight, this

transformation is usually carried out using quaternions due to singularities generated by general

rotation matrices.

In summary, when all the forces and moments involved in the flight due to aerodynamics, thrust,

weight, external forces, etc. are given, it is possible to compute and derive the motion variables

expressed by the linear/angular velocities and the Euler angles.

JSBSim executes the equations stated in this section in the file called FGAccelerations under the

FGModel hierarchy. For more information about the different classes used in the core of the

software, see Appendix A or visit (JSBSim Development Team, 2017).

2.3.4. Propulsion

JSBSim includes different types of propulsion systems depending on the engines used to

generate the thrust: a piston engine model, a jet turbine engine model, a turboprop engine model,

a rocket engine model, and an electric engine model. In case of RPAs, only the piston and

electric models will be used. The thrust generation presents the same setting where among all the

options found in JSBSim –direct, nozzle, propeller and rotor- only the propeller is used in the

fixed-wing RPA case.

The propulsion system, including the engine and the origin of the thrust generation, are called

from the aircraft configuration file. The thrust generated in this system has its own reference

frame relative to the structural frame, which is defined in the aircraft configuration file and later

taken to the body frame with the rest of the forces during flight.

34

The thrust generated in the body frame is given by:

𝑇ℎ𝑟𝑢𝑠𝑡 = 𝐶𝑇 𝑞 𝑆, 𝑤ℎ𝑒𝑟𝑒 𝐶𝑇 = 𝐶𝑇(𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠) (2.22)

Where q is the dynamic pressure, S is the wing area and CT is the non-dimensional thrust

coefficient.

Two types of propulsion systems in JSBSim with a piston engine in the Giant Big Stik case and

an electric engine in the case of the EPP FPV are shown later in Sections 3.3.2 and 3.3.1

respectively; the other systems are irrelevant.

2.3.5. Flight Control

In a simple simulation, the primary controls for the model are the surface command elements of

the aircraft: ailerons, elevator, rudder, and flaps (if existed).

Each of the control surfaces has a specific range according to the characteristics of the physical

model. The convention for positive or negative deflections according to (Durham, 2013) is as

follows (Figure 2.4):

Figure 2.4. Giant Big Stik. Forces and moments

35

 The aileron deflection is positive when the right aileron is trailing-edge down and the left

aileron is trailing-edge up. Under this condition, there is a difference in the lift being

greater on the right wing, creating a positive roll and causing the aircraft to turn left.

 The elevator deflection is positive when positioned downward, lifting the tail. Thus, the

nose points down and the angle of attack decreases.

 The rudder deflection is positive when the rudder is trailing-edge right, heading right.

Staging these requirements for a true flight will allow the designer to implement a correct

validation and future model modifications.

The main focus of this thesis in terms of validation (Chapter 3) is on the manual or open-loop

control where the model is directly evaluated from changes to the control inputs. Note that

automatic flight involves an autopilot, requiring a closed-loop test. This control structure may

lead to wrong conclusions; the adjustments of the model can be done by the control, but that does

not mean that the model expresses the dynamics of the system.

The source of the surface deflections for the purpose of this work comes from a pilot’s

manual/open-loop control, whereas closed-loop control with autopilot will be used mainly in

Chapter 5.

2.4. Computer Model Development

By definition, a model is a representation of a system for a particular purpose and application,

meaning that the model is not required to be an exact representation as long as its limitations are

clearly defined.

36

Computational modelling plays an important role in the aerospace industry for the development

of the aircraft and its environment. Modelling and Simulation (M&S) methods are used to

replicate aircraft performance with a wide range of applications. The aircraft is considered a

system composed of subsystems that need to be modelled such as the aerodynamics, atmosphere

and control systems.

In software development, the system lifecycle is generally expressed by the classic V-diagram

(Forsberg & Mooz, 1991). As expressed in Figure 2.5, time runs from left to right, the tasks

related to the early stages of the computer development are located on the left side, and the

integration of the model into its application is on the right side. In the early stages of model

development, the design is validated by M&S, whereas physical tests are used as a validation

tool later in its development.

 In (Diston, 2010) – Figure 2.5, each stage of the lifecycle is divided into mini “V” lifecycles that

allows the systems to be tested in each stage. The system must satisfy the requirements before

continuing with the next step, preventing problems to be extended to other development stages.

For example, the first part of Chapter 4 is based on the “V-diagram” where the computer model

development and its mini-lifecycles are the focus. The first part of Chapter 4 relates to the

simulation viability and Chapter 5 integrates a model into the final simulation and application.

Verification and Validation (V&V) procedures are critical aspects of model development. As

defined in (Murray-Smith, 2012), the verification concept certifies the correctness of the

specifications while the validation confirms the behaviour of the system according to the

requirements. The validation stage is important to demonstrate that the model can reproduce real

scenarios.

37

Figure 2.5. Model and simulation within the system development cycle (Diston, 2010)

Figure 2.6. Modelling of a dynamic system (Buchholz et al., 1996)

Figure 2.6 in (Buchholz, Bauschat, Hahn, & Pausder, 1996) expresses the basic structure of the

modelling of a dynamic system (aircraft). In this configuration, the real system is what is to be

modelled, the numerical model contains the mathematical description of the real system (M&S),

and the computer model is the algorithm of the numerical model in a particular programming

language (programming). The main requirement for any computer system is to be the

38

representation of the real system, which is evaluated by model validation techniques. Model

verification is defined as the correctness of the computer model compared to the mathematical

expression of the real system.

For this thesis, the focus is on the programming and model validation tasks, assuming the

relationship between the real system and the numerical model is approximate and the errors in

programming depend on the coding approach (or FDM tool) of choice.

In Aerospace, the methods for computer model validation in general aircraft are assorted

(McGovern, 2007) and dependent on the company/country regulations:

1- Military services criteria: Most military entities have their own requirements that are

either agreed to with other entities or followed according to the regulatory agencies’

standards; the requirements are specific to the final purpose of the project.

2- Regulatory agencies simulation qualification: Agencies such as the FAA, Transport

Canada, International Civil Aviation Organization (ICAO), and Civil Aviation Authority

(CAA) include special standards for the development of aircraft simulators. They mostly

cover flight simulators and their requirements are very specific. For example, simulators

for aircraft under the jurisdiction of the FAA are validated by the corresponding FAA

Advisory Circular under the National Simulator Program (NSP) (Federal Aviation

Administration, 2019). In Canada, similar qualifications are included in the Aeroplane

and Rotorcraft Simulator Manual (TP9685E) (Transport Canada, 1998) under the

National Simulator Evaluator Program (Transport Canada, 2010a).

3- Experimental flight testing: This method collects data from experimental flights to

analyze the limitations and accuracy of the computer models.

39

4- Pilot validation: The Pilot’s Operating Handbook (POH) regularly contains general data

and recommended practices useful for the validation of the model by a pilot.

5- Operational flight procedures: Similar to the Cooper-Harper handling qualities for

aircraft flight (Cooper & Harper, 1969), a computer model can be evaluated by following

the same scale for its intended purpose.

6- Observation/inspection of aircraft model performance: This includes traditional

software testing: inspection, results verification by exercising the real model, and

observation of the model’s behaviour. These techniques are used to observe and

determine the viability of a model in a more accessible way when the model design is

highly limited.

In a general modelling simulation, traditional methods for validating include (Law, 2014):

- Consulting with experts on the real model performance.

- Conducting sensitivity analysis to determine important factors.

- Using statistical procedures to evaluate the similarities between the real model and the

simulation output.

These techniques, the latter in particular, present a resourceful tool since both models (real and

simulated) receive exactly the same observations from input variables. This procedure is called

the correlated inspection approach (Figure 2.7) and it has been frequently used in V&V since it

provides comparable output data to evaluate whether the simulation model correlates to the real

model and follows the assumptions.

40

In most simulation model scenarios in this research, there is not a high interest in expressing all

the real characteristics of the model. The historical data must represent the simulation context

and define the level of model detail in the simulation.

Figure 2.7. The correlated inspection approach (Law, 2014)

A successful model validation must also include detailed documentation, including the model

requirements and limitations. Additionally, the problem formulation is essential in the first stage

of the validation procedure whereas the model credibility discussion is essential in the closing

section.

2.4.1. Validation methods for RPAs

To the best of the author’s knowledge and as of November 2019, there are no official

recommendations for validating RPAs computer models. The most common practice found in

the literature is to integrate the physical and aerodynamic models into the simulation framework

and compare the performance against flight test data. This informal procedure has been followed

by many researchers (Ke, Wang, & Chen, 2018; Liu, Egan, & Santoso, 2015; Zekry, Nabil

41

Mobarez, Ouda, & Zekry, 2016). However, this practice lacks standardization and it becomes

hard to compare computer models at the same level.

Other means of validation include the application. These particular approaches focus on the task

to be carried out by the system rather than the computer model itself. In these cases, the aircraft

performance is not considered; the mission scope determines the relevant stages for the

validation (M. Mueller, Smith, & Ghanem, 2016; Villa, Salimi, Morton, Morawska, & Gonzalez,

2016).

The design of flight simulations also lacks guidelines and researchers have validated their

simulators by testing the final application of the simulator (e.g. multi-RPA missions in

Rodriguez-Fernandez, Menendez, & Camacho, 2015) instead of the computer aircraft

performance.

As shown, this gap of standards in the literature is one of the main motivators of this research.

2.5. Sense and Avoid Basis

In (Government of Canada, 2019), the concept of SAA, is defined as “the capability to see, sense

or detect conflicting traffic or other hazards and take the appropriate action to comply with the

applicable rules of flight”. Although there are comparable terms used in the literature such as

Detect and Avoid (DAA) and Sense, Detect and Avoid (SDA), they are often misused.

Considering the application of this thesis, the term SAA is preferred.

The term sense describes the ability of the system to identify the hazard either through a

cooperative system (e.g. TCAS transponder ((Federal Aviation Administration. U.S. Department

of Transportation, 2011) and Appendix C) or Automatic Dependent Surveillance-Broadcast

42

(ADS-B)(Ramasamy & Sabatini, 2015)) or using a non-cooperative approach (e.g. RADAR or a

vision-based system); whereas the second term, avoid, refers to the automated control required to

avoid a collision that has been detected in the first stage. Both elements have equal importance

and offer a challenge in order to integrate the UAVs into the shared airspace.

The minimum requirement for intruder detection and the SAA task is that there is enough time

for the aircraft to perform a manoeuvre and remain safe. The functional boundaries and

thresholds define the risk of an airborne collision. The two major components of the SAA task

are (1) Self-Separation (SS) and (2) Collision Avoidance (CA) (Federal Aviation Administration,

2013b).

2.5.1. Scope of the SAA application

The SAA application on this thesis focuses on the avoidance stage. This means that the concept

of detecting (Mcfadyen & Mejias, 2016), tracking (Bharati, Wu, Sui, Padgett, & Wang, 2018),

and estimating the Closest Point of Approach (CPA) (Fasano, Accado, Moccia, & Moroney,

2016) are out of the scope of this work.

Regarding the avoidance task, the SS component is also out of scope since the goal of SAA is to

avoid a close encounter. CA represents the last stage prior to a collision and the focus of this

particular application. The objective of the CA task is to perform a manoeuvre when all previous

avoidance measures have been failed and the intruder is close to the ownship’s collision volume

(Federal Aviation Administration, 2013b).

For more detailed information and related concepts to SAA, please see Appendix C.

43

2.6. Summary

The author is aware of the diversity of the fields covered in this document and for that reason,

the main goal of this chapter was to provide a strong context for the understanding of the

research conducted and justify the methodologies and applications presented.

The application of the work that follows is the safe integration of RPAS into the airspace and

considering their interaction with piloted aircraft. As part of that, basic concepts, definitions and

an overview of the RPAS problem in Canada were introduced. The new regulatory project

(recently in effect since June 2019), deserved a special mention to present the future steps of this

technology. Even though this chapter has provided a brief overview of the SAA issue, more

specific context and background are included in Appendix C.

Overall, this chapter can be divided into three main topics: (1) the RPA and the SAA challenge,

(2) the simulation platform and (3) the tools used to calculate the results, which includes M&S

concepts and computer model development methods.

44

Chapter 3

Open-Source Software in Aerospace with RPA

Applications: Challenges and Solutions

The technical difficulties associated with the development and study of Remotely Piloted

Aircraft (RPA) computer models in flight simulators were the main motivation for the creation of

this chapter. It aims to join concepts from the fields of Modelling and Simulation (M&S),

Verification and Validation (V&V) methods, engineering education and computer science.

Even though the application in this research is oriented towards RPA M&S, certain sections are

expandable to other disciplines within and outside engineering. This chapter is organized with

three main objectives: (1) to discuss why open-source platforms are the most suitable framework

for the design, development and evaluation of RPA computer models, (2) to analyze the

technical difficulties that graduate students face when using Open-source Software (OSS), and (3)

to list the main challenges of in JSBSim, which are not only limited to designing small fixed-

wing aircraft.

45

3.1. Basic Flight Simulator Framework

Chapter 2 – Section 2.1. observed and evaluated the current situation of RPAS in Canada and the

regulations as a consequence of their integration into the airspace. However, the challenges of an

increasing RPAS industry are not only limited to this integration. Every year, a large variety of

vehicles with different designs and capabilities (“Taking flight,” 2017) as well as sensors and

other related devices are created and validated.

Performance and visual simulators are a crucial element in the RPAS industry development. Real

models must be tested and analyzed in a simulated context before implementing them in a real

situation. Special cases, like Sense and Avoid (SAA) and Collision Avoidance (CA) studies

require simulators in each of their implementations due to the hazard that they represent in the

airspace.

In general terms, a flight simulator must be divided into the following blocks (Figure 3.1), which

are not only limited to the vehicle model (Allerton, 2009). These include:

 The Flight Dynamics Model (FDM) expressed by the mathematical equations that

represent the forces and moments acting on the aircraft.

 The 3D graphical model able to display the aircraft performance.

 The control system and/or autonomous flight control.

 The flight path expressing the route of the aircraft.

46

Figure 3.1. Basic aircraft simulation framework

In particular, the minimum representation of an FDM must include the following blocks:

Figure 3.2. FDM blocks

Whereas the Atmosphere and Earth blocks are unchanging models for any vehicle size, the

Aerodynamics, Propulsion and Landing Gear blocks are particular of an aircraft configuration.

For the low altitude and slow airspeed case of the RPAs, the atmosphere and Earth models are

not relevant. Considering the application of SAA and the study of in-flight manoeuvres, the

landing gear is neither relevant. Similarly, the propulsion system can be simplified by indicating

47

the power of the engine and the propeller configuration (see Appendix D). Finally, the

mathematical foundation and solving method (Section 2.3.3) is based on known approaches that

are common to any vehicle.

Therefore, the FDM, excluding the Equations of motion block, represents the computer

expression of the real aircraft performance that is designed in the modelling stage in an RPA

simulation (Diston, 2010). The Control and Flight path blocks (Figure 3.1), belonging to the

control stage in the aircraft design, are defined and tuned after the computer model is verified.

Overall, the challenge of simulating RPAs is to find a platform able to integrate new models

while maintaining the context of the simulation (e.g. 3D graphical model). Ideally, the

simulation platform would be expandable to other models and allow for the interaction of the

model with other elements in the airspace, such as piloted and other RPA.

Most of the available flight simulators used for training are proprietary software (“Flight

Simulator : Plane Pilot - Microsoft,” 2018; “X-Plane 11 Flight Simulator,” 2018), limiting the

aircraft library to what was available when the license was purchased. A possible solution to this

problem is to model the blocks in Figure 3.1 and Figure 3.2 from scratch, which adds

unnecessary extra workload and cost.

OSS offers a framework able to integrate computer models into existing simulated environments.

With the possibility of accessing the code, the simulation becomes flexible to modifications

depending on the application and expandable to other and even external models. Formally, OSS

refers to any software that is available to the public, including the concept and its development. It

also allows for collaborative work across disciplines by integrating computer theory into solving

real cases.

48

Designing an RPA is not an easy task; existing OSS packages (Section 2.2) cover a wide range

of applications that help the user with the aircraft modelling and control task. As an example of

its complexity, the aerodynamic coefficients are particular of a vehicle and are usually estimated

from its geometry; an arduous task that could be simplified by using software.

While the OSS applications are widely varied, its quality is usually questioned (Pandey & Tiwari,

2011). An open-source FDM must represent the aircraft performance with a certain confidence

level. V&V procedures are required to not only rate the quality of the software but also the

authenticity of the FDM. The first issue associated with the validation of the OSS simulated

platform is further discussed in Section 3.2, whereas validation procedures for RPA FDMs

present a particular challenge that is introduced and addressed in Chapter 4.

3.2. Technical challenges of working on/with OSS in

Academia

Overall, OSS is an increasingly important tool used for producing scientific research. It has

received the attention of both academia and the private sector over the years. Its adaptability to a

specific set of requirements as determined by a project is what has resulted in the common

application of OSS in academia. In fact, most academics agree that software is a significant part

of their work and, without said software, their research would be ineffective (Nangia & Katz,

2017).

In most of the scientific fields outside of technology, however, programming skills are not taught

(Bowlick, Goldberg, & Bednarz, 2017). This lack of skillset in a student’s curricula may be

translated into practical setbacks at the graduate level (van de Schoot, Yerkes, Mouw, &

49

Sonneveld, 2013). While experiencing difficulties with understanding and working with

somebody else’s code is expected (Vanhanen, Lehtinen, & Lassenius, 2012), this journey could

be eased by following a simple set of practices from the software developer.

Other barriers faced by graduate students and researchers include the lack of standards for

publishing and citing code. The amount of time required to learn the basics of programming, and

the traditional view of software as “just a tool” and not a scientific output, has resulted in many

students to avoid OSS entirely (A. M. Smith et al., 2018).

This section discusses the issues associated with OSS from the software developer and user’s

perspectives and aims to create a debate about its correct use in academia. A session on this topic

was presented at The ACM Canadian Celebration of Women in Computing 2018 in Halifax,

Canada and the Teaching and Learning Conference 2019 at Memorial University, St. John’s,

Canada, in May 2019. A more extensive work including more specific barriers and

recommendations is currently pending publication for the open-access Facets journal (Canadian

Science Publishing, 2019).

3.2.1. Software in the Scientific World

According to a survey by the US National Postdoctoral Association, 95% of the scientists used

software as the main tool for their work and 63% said that their work would be meaningless

without it (Nangia & Katz, 2017). Scientists spend 30% of their time developing software, and

for 90% of them, the ability to use software is self-taught (Prabhu et al., 2011).

Nowadays, it is incongruous to think of doing science as a discipline without the contribution of

software developers and the input of computer science. Software and its development represent

50

an important research output and must be understood as a significant part of science (Carey &

Papin, 2018).

Discussion around the correct development of OSS has been taking place since the 90s, with the

book The Cathedral and the Baazar and other related publications (Nikolai, 1999; Raymond,

2001). However, there are still no clear solutions, standards, or recommendations established

worldwide for the development of OSS. The scientific community is greatly in need of

guidelines to organize and administer the best practices for the development and use of OSS.

The reliability of OSS has also been questioned in the scientific community. Much of this

discussion comes from closed source defenders, who claim that OSS is more vulnerable to

security flaws and attacks due to its accessibility. On the contrary, it has been demonstrated that

publishing source code allows for peer review and ensures that the code executes what it should

do. Studies have shown that OSS has the same or better level of reliability compared to

proprietary software (Pandey & Tiwari, 2011; Wheeler, 2015).

3.2.2. Benefits of Using OSS in Graduate School

There is a high interest in integrating OSS in academia since it allows for modifications, the

addition of extra features, and it is distributed without cost. However, according to the Open

Source Initiative (OSI), OSS must not only be viewed as free software. It also needs to meet

certain criteria in terms of its source code, integrity and license (“The Open Source Definition,”

2007).

With the digitalization of education through online courses, virtual universities, and education

portals, academic institutions want to make code more accessible to everyone (Shaheen E.

51

Lakhan, 2008). Through the use of OSS, these organizations are capable of having a source code

base that the students can access and work with for a specific course.

The main advantages of using OSS in general, and in academia in particular include:

1) OSS is license-free. Academic institutions currently pay a large amount of money for

using licensed software when it is used by many students. Specialized software is missing

from academia due to a high cost per student; with no license cost associated, OSS is

accessible to every student.

2) OSS is constructed from the fruitful collaboration of a group of developers. It allows for

continuous maintenance and expansion, depending on the user’s needs and the progress

of the technology in the field of application. Every OSS has a community behind it and a

large network that is maintained by volunteers; bugs are fixed in hours due to accessible

and transparent code. The growth of the internet worldwide has also contributed to the

remote communication between developers allowing the production of hundreds of

thousands of new projects.

3) OSS provides a large opportunity for research. Research teams develop software that will

be useful to other students/researchers in the future. Similarly, if source code is divulged,

another team in the same or a similar field can integrate the software and save time in

favour to research work.

4) OSS is interdisciplinary. As with any other software, OSS provides an apparatus for

solving problems, with applications varying from business to biology and education. The

flexibility of OSS means that the same source code can be adjusted from one discipline to

another.

52

5) OSS communities create quality software. Software projects are validated and tested

before they are released. Recognized OSS projects include Linux, Mozilla and Open

Office. Current OSS trends in the industry show that OSS drives the expansion and

maintenance of web browsers, artificial intelligence, operating systems, financial services,

machine learning, etc (Burning Glass Technologies, 2016).

From the academic instructors’ perspective, the use of OSS in their courses allows the students to

develop their ideas, motivate a collaborative environment and serve as a link with industry in

hackathons (Shaheen E. Lakhan, 2008). From the students’ perspective, OSS presents an

attractive tool to build their programming skills and other marketable features like teamwork and

interdisciplinary research.

Unfortunately, developing software demands time, maintenance, and an overall commitment that

not everyone in the community is willing to deliver.

3.2.3. Challenges of Developing OSS in Graduate School

The main problem faced by graduate students in most fields is getting approval from the

scientific community by publishing their work. This allows them to be considered an accepted

researcher and to build their curricula. Publishing research software is a complicated obstacle for

graduate students: there are no formulated citation standards, not enough journals that accept

OSS for submission, and other obstacles associated with its publication and review. This debate

has begun to be addressed, and within the last few years, some journals have been founded in

order to fill that gap (“Journal of Open Research Software,” 2018; “SoftwareX,” 2019; “The

Journal of Open Source Software,” 2018). As an example, in the first year and a half since its

formation, the Journal of Open Source Software (JOSS) published nearly 200 articles (Smith et

53

al., 2018). These journals have shown that they are clearly in great demand based on the

increasing number of submissions every month.

The creation of any OSS depends on the project’s program and the developers’ motivation. Most

of the OSS contributors get involved with a project because they have an interest and they

maintain the platform voluntarily. In larger research projects, OSS relies on awarded funding,

similar to the applied sciences. The problem associated with this scenario is that the funding can

run out and as a result, the project might be left incomplete.

If supported voluntarily, the main creator of the software might be the only person that keeps the

software alive. Under these circumstances, there is a high risk of technical support being

discontinued due to the burnout of the only developer. Significant projects could die because of a

lack of funding, active contributors, and interest from the community.

In the absence of funding, the main developers need cooperation from other contributors to keep

the software alive. However, graduate students do not appreciate the importance of collaborating

with OSS projects, since traditional science does not consider developing software as a scientific

contribution (A. M. Smith et al., 2018). The student questions whether the effort of producing

code will be useful towards completing their graduate degree.

This situation can be avoided if the code is adaptable to other scientific fields, according to the

criteria listed by OSI. The source code should be constructed for a group of people who will use

it in the future, and not because the original developers want to create an application that only

interests themselves. There is a high risk that this code will disappear unless the software is one

of interest. From a graduate student’s perspective, there is no incentive to develop software if it

is not going to be useful to others. Therefore, the code must be adaptable, as listed by OSI in

54

their criteria for OSS. These and other practices are suggested in (Wilson et al., 2017). These

recommendations were designed based on the experience of both software developers and users

in order to maintain communication between the two groups and make the code more accessible

and easy to understand.

The importance of keeping sufficient documentation deserves a special mention, since manuals

help users understand the code. In the same way the research is documented, code must be

described and referenced. Furthermore, the reference manual should also be reviewed by users,

taking into account that the creator of the source code will likely take certain key elements for

granted. Weak and incomplete documentation leads to unnecessary delays on the user’s end.

Another issue faced by researchers is that most of them do not know how reliable their software

is because of the lack of validation by external reviewers (Bacharakis, 2018; Barnes, 2010). This

might result in errors in other projects and published research where that software has been used.

There is a demand for revision and validation of OSS from other developers that can also

contribute towards its publication.

3.2.4. Challenges of Working with OSS in Graduate School

As pointed out in Section 3.2.2, OSS provides a powerful source for graduate students to build

their programming skills and develop a tool that they will use in their research. However, the

main problem encountered by students who work with OSS and are not part of the developer's

team are the difficulties associated with working with an unfamiliar code (Vanhanen et al., 2012).

If a minimum set of documentation is not provided along with the software, using the tool

becomes an arduous task and adds unnecessary delays and extra barriers that are not related to

the research. Complications with the learning process, system incompatibilities (List, Ebert, &

55

Albrecht, 2017), and lack of guidance are the most common barriers that students experience

during their program.

In addition to the current lack of journals and publications mentioned in Section 3.2.3, there is

also a lack of citation standards. Little has been commented on this topic (Smith, Katz, &

Niemeyer, 2016) and it remains one of interest for both software developers and users. Graduate

students need to cite their code as part of their research work; a wrong citation could cause

misleading arguments.

Lack of cooperation and community support is another big issue when working with OSS

(Geiger, Varoquaux, Mazel-Cabasse, & Holdgraf, 2018). The technical support for OSS is

inferior and more inconsistent in comparison to commercial software, especially when the

platform is maintained by a single person.

3.2.5. Overall Perspective on Best Practices for a Positive OSS Experience in

Graduate School

Many challenges often discourage students from integrating these computing skills into their

research and interacting with the OSS community. The following series of recommendations

address these barriers from the perspectives of the students, supervisors, administrators, and OSS

members and present solutions that if conducted simultaneously, can significantly improve the

graduate student experience. This will motivate the students to conduct effective research with

the support of OSS mentors and peers while the OSS community benefits from the students’

involvement.

56

a) Recommendations for graduate students: be active and contribute back

Students are usually aware of their limitations but are unaware of what falls beyond their

knowledge. Keeping the research application as the framework, students could learn computing

skills without considering it a wasted effort. Learning takes time and patience but ultimately, it

benefits the student and it helps to advance their research. Eventually, these newly acquired

computer skills are added to the students’ curricula, making an impact and opening it for new

opportunities.

Some students do not recognize the strong environment that academia offers: in addition to

attending workshops to improve their skills and learn new ones, students are encouraged to talk

about their research and the barriers they face. Specific to OSS and coding, graduate students

often avoid speaking about the challenges they encounter because they do not want to show their

own limitations. However, they will likely find support and guidance from other students and/or

researchers who are familiar with the issue, and who might be interested in getting involved with

the OSS project. An example of a direct local resource is senior graduate students: they have the

knowledge and experience of dealing with similar difficulties. More opportunities can arise

outside academia: for example, Twitter and other social media platforms provide an incredible

setting for the student to involve themselves with the OSS community. The more visible and

active the student is, the more support they will have when integrating OSS into their research.

Students should not also limit themselves to only generating a piece of code that facilitates the

analysis of their results. They should ask for feedback, document, and publish their code. This is

not only beneficial to the student from an academic perspective, but it also contributes to

sustaining the OSS loop. Additionally, it is important that the student remains active even after

they have contributed to the OSS community. Future students may encounter the same issues,

57

and the expertise of former students will help others avoid unnecessary delays and support the

whole community.

b) Recommendations for supervisors: be a resource and a role model

The support and involvement of a student’s supervisor is crucial throughout the research process.

As a mentor, they are encouraged to defend the creation of software as a research product, and

motivate students to code, develop, and contribute back to the OSS community.

Supervisors must also acknowledge their own limitations and direct students to other members of

the academic community who can offer additional support. They should offer students

opportunities to complete an introductory course to programming before the skills are required in

their research. They must make their expectations of the students clear, and provide constant

feedback on goals and timelines. This will ensure that the students follow the academic

procedures and the research plan without missing the perspective of the application.

Introducing the full perspective of a research problem and showing a student the importance of

interdisciplinary research showcases how broad research is and the opportunities it offers.

Supervisors should connect peers in an interdisciplinary setting; knowledge is naturally shared

between the members of a team and therefore, a diverse group promotes faster learning.

c) Recommendations for administrators: influence the academic culture

Current undergraduate and graduate programs often miss the fundamental coding skills that

research, technology, and the job market currently demand. Administrators are encouraged to

evaluate these knowledge gaps and integrate basic programming courses into the current

curriculum across all disciplines. However, this process is lengthy, and so, a series of actions can

be taken in the meantime to ease the graduate experience. For instance, institutions can offer

58

seminars/workshops with the purpose of providing a computing skillset to those students who

require additional training to carry out their research work.

The main challenge of short coding seminars is that instructors are not familiar with a student’s

background and, as a result, neglect to provide applicable resources for the integration of these

skills. Thus, the students may fail at changing those computing skills from the workshops into a

useful tool that can help them during their research. Follow-up sessions and additional advisory

support are encouraged. Administrations should organize and operate a centralized framework to

connect individuals and share code within their institutions.

d) Recommendations for OSS community members: share the expertise on the software

The OSS community represents the main resource that students access to when facing specific

technical issues. As seen in Section 3.2.4, insufficient or incomplete documentation is a common

barrier that students face, which may dissuade students from using these resources in the future.

Aside from maintaining the code, the OSS community should work to improve the existing

documentation, while making it comprehensive for all levels of expertise.

The main communication platform for any OSS is online, which introduces particular challenges.

For example, most software users regularly consult online discussions that are disorganized and

hard to understand. If an inexperienced user is looking for help online on a particular issue, and

they are not able to fully understand the responses/solutions or even relate to their initial issue,

there is a high chance that they will become discouraged and quit. OSS platforms are encouraged

to classify the topics from low to high complexity in order for students or other novice users to

answer their questions without feeling overwhelmed. Instructive solutions, as opposed to definite

ones, create dialogue, transforming forums into a learning resource.

59

Additionally, it is important that the OSS community members review the graduate students’

work in order to ensure that no bugs have been extended to other parts of the research, and the

application has been correctly addressed. While the students benefit from the community’s

feedback, the community benefits by gaining new contributors to the software.

From the OSS community’s perspective, creating a supportive community around graduate

students is exceptionally significant, since they will likely remain contributors if their experience

is positive.

3.2.6. The Future of OSS in Academia

This section has introduced an overview of the technical challenges that graduate students

usually face when working with OSS. It has also provided a series of best practices for

promoting a positive graduate student experience with OSS.

Over the last few years, the software community has started to identify another growing issue

with its development: as OSS spreads, there is a concern associated with its sustainability (Roads

and Bridges: History and Background of Digital Infrastructure, n.d.). Many software ecosystems

are currently based on OSS. The community does not want these programs to disappear, but at

the same time, there is a lack of contributors to these projects due to insufficient technical

expertise and economic support.

The cost involved in the development of OSS is not generally appreciated, and only a few

patrons finance certain projects (Crichton, 2018). The sustainably of OSS remains a problem and

the software community must look for other alternatives, more contributors, and encourage

graduate students to keep their code alive even after they graduate.

60

The education system is gradually adopting OSS for online learning initiatives and courses with

the idea of initiating collaborations and building a community around software (Lakhan &

Jhunjhunwala, 2008). In research, GitHub has become a popular tool for sharing free data. It

uses version-control software to keep track of the changes that the code and data have had since

its first appearance on the application (Perkel, 2016).

Overall, there is a lack of interest from the scientific community in this topic where little

research has been done and the formalization of standards/guidelines remains uncertain after

decades. OSS will be the leading platform for the new generation of but as of now, its framework

is still undefined.

3.3. Technical challenges of JSBSim

As an OSS FDM, JSBSim also presents particular challenges that will be addressed throughout

this thesis. Over the years, JSBSim has been mostly used by enthusiasts who wanted to fly large

aircraft in a simulated environment. When flying commercial aircraft models, the user does not

need to have a deep understanding of software development methodologies, since they can

access a large online aircraft library and fly any aircraft manually (JSBSim Development Team,

2018). The problem associated with this running mode is that JSBSim does not include a

visualization environment and FlightGear must be used to provide the graphics of the simulation.

In situations where the user wants to run scripts for autonomous flight, the JSBSim manual is

impractical (Berndt & JSBSim Development Team, 2011) since it does not have any tutorials

that explain how to create and run the software in standalone mode. However, they provide a

user-created tutorial on their website (Galbraith, 2010; JSBSim Development Team, 2017). This

61

document focuses on how to run simulations, but it lacks the guidelines on how to create the

scripts for the simulations.

Since it is an open-source FDM, the package allows for modifications and new models to be

integrated into simulations in standalone mode, or simply as part of FlightGear in manual mode.

If the user wishes to visualize the model, graphics must go through FlightGear, since JSBSim

does not support it. At this stage, users with aerospace knowledge are also required to understand

software development basics in order to adjust and develop the required code for their particular

cases.

Currently, there are no guidelines on how to create, develop and fine-tune new computer models.

Furthermore, there are no recommendations on how to validate computer models in JSBSim.

Additionally, the creators claim that JSBSim can be run under MATLAB/Simulink (JSBSim

Development Team, 2005b). Even though there is an FDM block that can be downloaded and

integrated into Simulink (Gong, De Marco, & Berndt, n.d.), it is still under development and

does include the same features as the standalone running mode.

In order to overcome some of the challenges described above, this author has created a short user

guide for the development of RPA computer models in JSBSim that is included in Appendix A

and it has been shared with the JSBSim community as a technical report (Cereceda, 2019).

3.4. Summary

The importance of simulators is well-known across disciplines not only limited to engineering.

The FDM is the combination of physical and mathematical equations that express the dynamics

of the aircraft in a simulator. For the RPA with SAA applications case, the focus of the

62

modelling and design of computer models is the aerodynamic and propulsion forces that are

solved based on the general equations of motion.

With a larger variety of RPAs in the market nowadays, open simulators and OSS are merely the

platform that allows for the implementation of computer models into existing software, since

proprietary flight simulators do not enable the addition of new models. RPA integration also

permits to evaluate their performance, as well as their interaction with other elements in the

airspace.

Additionally, OSS presents particular challenges especially in academia and common to graduate

students conducting research in all fields of science. Nowadays, research would not be possible

without software. However, the lack of computing knowledge or community resources can easily

discourage students from working with tools that require coding or OSS. To encourage a positive

experience, a series of practices want to establish a framework for all levels of academia and

OSS from which the graduate students and the OSS community can benefit. Even though these

recommendations focus on the graduate student, they can also be applied to researchers in

general.

As part of the solutions proposed in this thesis to overcome barriers associated with OSS,

specific challenges related to JSBSim were evaluated and a simplified manual for the

development and use of fixed-wing RPA computer models in JSBSim was created. This short

manual aims to help any user who does not have a deep understanding of computer programming

with the simulation of RPAs in JSBSim.

63

 Chapter 4

High-level Validation Approach for OSS

FDMs: JSBSim Application

Verification and Validation (V&V) techniques have wide use in engineering and other scientific

fields, being the common goal to establish the credibility of a certain model or system in order to

reduce risks for a specific task. Discrepancies might happen depending on the organization so it

is important to define what is relevant to evaluate the feasibility of the simulation/model.

Finding a V&V method that could be applied to a dynamic model is a big part of its success. In

aviation, regulations and recommended guides for commercial and military aircraft model

validation are well known (Chapter 2 – Section 2.4) making the validation stage as relevant as

the design of the model itself. Smaller vehicles such as Remotely Piloted Aircraft (RPAs) present

a different case but the same scenario, and some of the steps in general aircraft validation could

be adapted.

Based on the technical challenges of working with Open-Source Software (OSS) and with

JSBSim in particular, this chapter: (1) evaluates the differences between piloted and remotely

64

piloted flight simulators, (2) lists the minimal requirements for RPA simulators, and (3)

introduces a validation method based on existing V&V approaches for the development of fixed-

wing RPA computer models.

The application of the validation method is presented with the modelling and development of the

EPP FPV JSBSim FDM in a tutorial format. This case study was used as an application example

of the extended validation method in paper currently submitted for review to a scientific journal

whose initial procedure is included in (Cereceda, Rolland, & O’Young, 2019). In the following

chapter, the Giant Big Stik computer model will be created and improved with the purpose of

implementing it in scenarios with piloted aircraft for the study of avoidance manoeuvres.

For more details on JSBSim and how to run the package and integrate it into FlightGear, see

Appendix A. This chapter aims to serve as a tutorial and, therefore, relevant pieces of code are

added into this chapter. The complete code and configuration files can be found in Appendix D.

4.1. High-level validation approach for OSS FDMs

The technical difficulties associated with the incomplete and inactive JSBSim GUI (JSBSim

Commander (Gong et al., n.d.)), led to a review of how RPA computer models are developed and

validated. As pointed out in Chapter 3 (Section 3.1), when a computer model is designed, a V&V

methodology is required in order to define the limitations and accuracy. This represents the real

system in a simulated environment.

The purpose of this section is to define a validation process, composed by direct steps, with the

intent to guide any developer who does not have a deep understanding of software development

and validation methods in the design and improvement of an RPA computer model.

65

The work presented is an extended version of a previously presented work (Cereceda, Rolland, &

O’Young, 2016) and is the initial stage for the study of RPA in simulated frameworks (Cereceda

et al., 2019). A second case study with more specific SAA applications is shown in the following

chapter where the model is integrated into NMAC scenarios.

4.1.1. Validation of Aircraft Flight Simulators: Piloted vs. Remotely piloted

Aircraft

Traditionally, the validation task for a piloted aircraft flight simulator has been conducted by a

pilot from the manufacturing company, a pilot from the corresponding regulating agency, or a

military officer. Training has been the main application of flight simulators and the input from

pilots has been a crucial element in the development, validation and documentation of these

systems over the decades.

Figure 4.1. Levels of an aircraft flight simulation model validation

The AC 120-45A advisory circular, created by the FAA, defines the procedure for developing

and validating flight simulators (Federal Aviation Administration, 2019). The equivalent in

66

Canada is regulated by the TP9685E (Transport Canada, 2010a). In those, flight simulators are

validated on four levels (Figure 4.1). In this section, each of these levels are evaluated from the

RPA’s perspective and a series of minimal requirements for developing and validating RPA

FDM as part of a flight simulator are listed.

In the first level, elements in the flight simulator are tested individually at a low level. Each

element is evaluated on whether it satisfies the minimal requirements for that particular module

(e.g. if the mathematical method is correctly solved). The second level evaluates the interaction

of modules or packages. For example, the propulsion system with a propeller and an engine is

evaluated individually in level 1, and on its interaction in input/output with the rest of the

elements in the FDM in level 2.

At the third level, the aircraft is considered as a system of several systems as expressed in

Chapter 3 (Section 3.1). Two test tools are used at this level: an open-loop test and aircraft flight

test data. In the first test, the FDM is assessed in an open-loop for a series of generated signals

(step, ramp and sine wave). Since the inputs are simulated and steady, the tests are reproducible

and the dynamic response of the aircraft is easily monitored. In the second test, an additional

program simulates aircraft flight data as an input to the mathematical aircraft model, so the FDM

is driven by the same controls as the real aircraft. The flight control system can be validated by

examining each of the controls in the aircraft, one by one. If the FDM has the same inputs as the

aircraft flight controls, the aero surface deflection is the same, and the response of the simulator

is equivalent.

67

The final at level 4 adds a pilot-in-the-loop. Although the mathematical model has been

evaluated in previous levels, a pilot must approve a realistic simulated environment, including

different visual elements and human limitations during manoeuvres.

In general terms, piloted flight simulators differ from remotely piloted simulators in three ways:

(1) the role of the human pilot, (2) the application and (3) the instrumentation.

In piloted aviation, human pilots ensure the separation from other aircraft and the ground during

the tasks of take-off and landing with no instrumentation, whereas their role is to supervise the

control during level flight. However, R/C pilots can only operate the aircraft from the ground,

limiting the flights to visual line-of-sight missions. Therefore, the simulation context where the

human pilot is located onboard and controlling the aircraft is not extendable to RPAs. The

onboard cameras that the pilot remotely monitors from the ground do not provide the same

viewpoint, since there is no sense of depth and the perception is inaccurate. This means that the

cockpit controllers (e.g. stick, throttles, rudder pedal, and brakes) are translated into the manual

joystick that the pilot has on the ground and it is independent of a particular FDM. The cockpit

instrumentation is not applicable to the RPA case. The aural system (used to generate engine

sounds and wind noise) is not relevant since there is no human on board. With an RPA, the

visual and motion systems are controlled or supervised by the ground control station.

Although the main purpose of flight simulators in both the piloted and the RPA cases, is training,

there are also differences in the way modules are tested in flight simulators. While the pilot

defines the fidelity of an improved element in the aircraft, quantitative test procedures are the

relevant elements of the RPAs computer model validation. For example, Beyond Visual Line-of-

Sight (BVLOS) missions with RPAs depend on the aircraft data collected in the ground station.

68

In this circumstance, the actual performance of the aircraft from a human’s perspective is not

relevant.

Considering the differences mentioned above and that RPA flight simulators can be considered

as a subset of piloted aircraft flight simulators, the minimal requirements for RPA flight

simulators are:

1 - Main modules: flight control, FDM, and visualization system.

2 - Main FDM modules: aerodynamics, propulsion, and equations of motion (Chapter 3 –

Figure 3.2).

3 - Each of the modules must be tested individually.

4 - Additional modules must be flexible and must not affect the aircraft capabilities.

5 - Open-loop tests are required to evaluate the effect of the flight controls on the aircraft

response.

6 - Aircraft flight test data as the primary validation procedure.

Concepts described in points 1, 3, 4, and 6 are also shared with piloted aircraft flight simulators,

whereas number 5 is particular of RPAs and number 2 might change depending on the aircraft

system and the class airspace.

The main difference between a piloted and an RPA simulator is the role of the pilot. Instead of

acting as the approving figure, the pilot in an RPA flight simulator acts as a support to the

validation quantitative procedures. This means that levels 3 and 4, as expressed in Figure 4.1,

switch their positions in an RPA flight simulator. However, the expertise of the human pilot is

recommended in each of the levels to assure that the computer model effectively represents the

real system.

69

Even though a brief evaluation of the differences between piloted and remotely piloted flight

simulators has been presented, along with a list of minimal requirements for RPA simulators, this

topic has more aspects to consider and it remains as future work.

In the following subsections, a methodology is introduced based on the minimal requirements

listed above. Supplementary elements, such as the manufacturer’s flying recommendations and

the comparison with a trusted FDM, are added to support the absence of the pilot-in-the-loop

during the validation.

4.1.2. Initial Procedure for a Correct Validation

Along with the computer model design, evaluation and validation procedures are required to

define the limitations and accuracy in order to represent the original aircraft in a simulated

environment. The following steps (Figure 4.2) specify the different aspects the designer must

consider when the validation stage is reached. This section defines the minimum categories from

which the proposed methodology is derived.

4.1.2.1. Code/software Evaluation

This step reviews the computer platform where the mathematical model is expressed. There are

many examples of available software for implementing the code like those previously mentioned

in Chapter 2: MATLAB/Simulink, JSBSim or LaRCSim. At this point, the visual software

should be considered as well since incompatibilities might happen between the code and the

simulator. If needed, there is often the chance of sketching a new aircraft and implementing an

FDM linked to it (only possible in OSS frameworks). The designer has to assess the

70

requirements of the task and the final purpose of the model in order to choose the suitable

software.

Figure 4.2. Stages of a correct validation

4.1.2.2. Flying Recommendations

Manufacturers provide indications for first users and test flights. In general and commercial

aircraft, the Pilot’s Operating Handbook (POH) is a guide for the pilot that contains limitations,

procedures, performance and other useful information related to the aircraft. Similar to this

document, small fixed-wing manufacturers sometimes provide an instruction manual that

includes flying recommendations. Although it is actually a rough set of suggestions for the tasks

of take-off, landing and straight flight, following these instructions gives a first representation of

the computer model performance and similarity to the real aircraft.

4.1.2.3. Model Observation

Not every aircraft belonging to the same series reacts equally. Even though the model performs

in a similar manner to the manufacturer recommendations, specific procedures might produce a

better performance; this non-official concept comes from the experience of a pilot. Given a flight

71

controller and a visual simulator linked to the FDM, the system is tested by a pilot. The tasks are

mainly to lead the aircraft to its control limits, and based on its execution, the pilot gives useful

feedback about its performance and possible improvements.

4.1.2.4. Comparison with a Trusted FDM Model

When working with simulators, there is a noticeable difference depending on the software used;

in this document, the JSBSim FDM is validated against another reliable FDM

(MATLAB/Simulink - AeroSim toolkit). Two identical computer simulations, one for each FDM,

are configured where both models are exposed to the same conditions/inputs and compared.

When the dynamics are evaluated, the airspeed and the Euler angles, which express orientation,

are essential to acquiring valuable conclusions in this particular RPA scenario.

Note that even though the model to be validated and the reference model of choice derive from

the same physic principles, differences are expected based on the simulation platform and

additional protection systems that could be reflected in the performance. This step prior to

validating the model against flight data is recommended since it minimizes the error towards an

acceptable level in the following test. However, in cases where there is no possibility of

accessing a reference computer model, this step could be skipped.

4.1.2.5. Experimental Test

In a real flight, data are collected from a planned mission and compared to the data under the

same conditions for the FDM designed. The inputs to the real model must be recorded as well in

order to simulate them in the computer simulation.

72

4.1.3. Validation Methodology for the FDM Development

The previous section framed the important elements to address during the validation. The

validation methodology used in this work is presented below in two main stages: the first stage

being related to the modelling and requirements definition and the second to the validation itself.

The main difference between this validation methodology and the existing methods is that the

final computer model is particular to a pre-defined task.

Figure 4.3. Validation methodology for RPA FDM

4.1.3.1. Modelling and Development

First, the simulation objectives are defined and listed as part of the final goals that the entire

system needs to achieve. The baseline of the model development is the formulation of its

requirements from the specification, which will define the decisions to take in future steps during

the design process. According to the simulation goals, at this stage (Phase 1 -Figure 4.3), the

tests in later stages should be defined and the level of confidence determined.

73

The computer platform where the mathematical model is expressed must be reviewed as well.

There are many examples of existing software suites such as open-source visualization software

and build FDM packages that help with the RPA design process. Open source visualization

software exists and can be linked to the FDM software. This initial phase is open to the model

performance criteria and the future application of the simulation. By the end of this evaluation,

the designer is expected to have assessed the task requirements, the final purpose of the model,

and have designated the most suitable software for the desired application.

4.1.3.2. Computer Model Validation

The second phase provides the sanity test as the first approach to the computer validation. Two

methods are suggested:

A. Flying recommendations

B. Experienced pilot’s test

Small fixed-wing manufacturers provide an instruction manual that includes flying

recommendations similar to the POH for piloted aircraft (Method A). Although it is in fact a

rough set of suggestions for the tasks of take-off, landing, and straight flight, following these

instructions provides an estimated approach to the computer model performance. Additional

flight procedures might improve performance, and this comes from the test pilot’s experience. In

Method B, given a remote control (R/C) controller and a visual simulator linked to the FDM, a

pilot tests the system and gives feedback about its performance and possible improvements.

Although this second stage is valuable, no quantitative data are present; the verification test in

both methods is done by user inspection. The qualitative results in Phase 3 should be able to

confirm whether the model fulfils the requirements. In case the computer model fails the

74

inspection test, the sanity test in Phase 2 must be done iteratively until the model passes the

sanity test.

Thus far, the RPA simulation model has been fine-tuned as far as possible. In order to closely

evaluate its performance, a standard model is used as a reference in two scenarios: a reference

computer model (Phase 3A) and the real RPA (Phase 3B). Note that Phase 3 directly relies on the

specifications defined in Phase 1.

In the computer test (Phase 3A), two identical computer simulations, one for each FDM, are

configured so both models are exposed to the same conditions/inputs and compared. These

simulations should be divided into two main categories: a static test and an open-loop dynamic

test. Starting with a static test, the aircraft is left to glide without any command. This test is

useful when analyzing how the model performs in a situation where there are no perturbations to

the system. In the second test, the aircraft characteristics and performance are evaluated for

simple primary control inputs. The isolation of the inputs one at a time is crucial to determine the

stability of the aircraft in the corresponding axis and towards understanding the effects of

disturbances. The open-loop dynamic procedure is divided into three tests corresponding to the

surface deflections: an elevator test, an aileron test, and a rudder test. By the end of each test in

Phase 3A, the similarities of both computer models are evaluated following inspection and

statistical analysis tools (Goldberg et al., 1994).

In the real flight test (Phase 3B), data generated by multiple inputs are collected from a task

mission and compared to the simulation data from the FDM under the same conditions. The

computer model vs the real model response is evaluated by inspection and statistical analysis

similarly to the computer test in Phase 3A.

75

Particular observations in Phases 2 or 3 might have more relevance than others in order to define

the accuracy and reliability of the computer model. The end phase evaluates the conclusions and

the validation procedure all together in order to define the limitations of the computer model

This methodology expands, step by step, the different aspects of the design of the computer

model. It evolves from the simplest approach in Phase 2 to the final evaluation using statistical

and analytical tools. This allows the designer to identify the error and refine the model at any

time during the design process.

The unpredictable atmospheric conditions and disturbances must be taken into account in order

to select the valuable data from the open-loop flight test and the level of accuracy in the

computer model inspection.

4.2. Simulation Assumptions for the Case Studies

This thesis focuses on the implications of OSS on RPAs with aviation applications. Therefore,

particular assumptions related to the aerodynamics model were considered in order to frame the

research. The author is aware of the limitations that this brings and hopes that it encourages

future work from the fluid mechanics and system dynamics’ perspective. The following

assumptions were considered:

1. The aerodynamics model in JSBSim was not questioned and it was assumed that it

follows the physical principles defined in Section 2.3 – Chapter 2.

2. The deflection input signals for testing the models in Phase 3A were pulses/steps; this

scenario is only possible in simulated frameworks.

76

3. Particular cases consequence of extreme manoeuvres were not taken into account.

4. Diving manoeuvres are particular to aerobatic and military aircraft.

5. The airflow is assumed to be steady, incompressible, and the friction by viscosity is

assumed to be negligible in order to apply Bernoulli’s question.

4.3. EPP FPV Case Study: JSBSim Tutorial

The EPP FPV vehicle is an Expanded Polypropylene (EPP) foam RPA manufactured and sold by

HobbyKing.com (HobbyKing.com, n.d.). It is primarily designed for First Person View (FPV)

camera flight. The expanded polypropylene foam makes it light (perfect for gliding) and robust

during landings and crashes, making it perfect for beginners. The thrust is provided by a

propeller-driven by a DC electric motor. The propulsion system is located in the rear of the

fuselage to allow for electronic equipment and batteries installation in the front of the aircraft.

4.3.1. EPP FPV Simulation Context

The model designed and validated in this section serves as the example for the validation

procedure with a focus on Collision Avoidance (CA) in Near Mid-air Collisions (NMAC). The

application is related to the context of this research although this procedure is adaptable to any

RPA application. Following the diagram showed in Figure 4.3, the context of the task is defined

as Phase 1 and can be summarized as:

- Simulation objectives: The model must be able to perform critical manoeuvres. Extreme

performance is only applicable for a computer test and in order to validate the model

using real flight data, they are changed to small and medium signals due to the concern

77

associated to flying large signals on the field. Thus, the scope of the tests covers the

entire range of the deflections.

- Model requirements: In Phase 3A, aside from the static test, large signals are simulated

in the elevator, ailerons, and rudder for the open-loop computer test whereas, in Phase 3B,

small/medium signals are tested. The system is evaluated by inspection and statistical

analysis with a 95% confidence level.

- Code evaluation, programming, and development of the Flight Dynamics Model

(FDM): FlightGear provides the visualization platform in Phases 2 and 3. It supports

JSBSim and instead of running the model as an external system, the aircraft is integrated

into FlightGear for Phase 2. The AeroSim FDM (Unmanned Dynamics, 2006) run in

MATLAB/Simulink is the reference model used to validate EPP FPV JSBSim FDM in

Phase 3A.

The wind is also a disturbance that must be taken into consideration as its influence in small

aircraft is more significant than in larger aircraft. One alternative when addressing this issue is to

model the steady wind and wind gusts and add them to the computer model as disturbances.

However, the wind does not affect how the validation is carried out or the results of it, and

therefore, it is not evaluated in this chapter or thesis.

4.3.2. EPP FPV Computer Modelling and Development

The modelling process starts with the parameters, coefficients and metrics identification for the

design of the RPA (Table 4.1 and Table 4.2). The manufacturer often provides information on

their manual and in case certain metrics are missing, they can be measured from the real model

78

(Appendix B). However, the aerodynamic coefficients remain unavailable and with that in

consideration, JSBSim offers an online tool (Aeromatic v2.0 (JSBSim Development Team,

2005a)) that computes the aerodynamic coefficients based on metrics and other features.

The initial aerodynamic coefficients for the EPP FPV model were taken from a similar aircraft

called “mini sgs glider” (Figure 4.4), found in the online JSBSim aircraft library (“JSBSim Flight

Dynamics Model - Code aircraft/minisgs,” 2016).

Figure 4.4. Mini SGS-126 Glider (SimplePlanes, 2019)

During the development of the model, some of the coefficients have been modified from the

initial version as part of its tuning. During the validation process, the model was adjusted

according to (1) the suggested coefficients given by Aeromatic v2.0 based on the aircraft metrics,

and (2) the differences and similitudes found between the computer and the reference models in

Phase 3A and between the computer and real models in Phase 3B. The most common identified

differences were offsets due to previous no neutral states, gains consequential of the inputs range,

and delays due to real elements in the equipment. The tuning was carried out accordingly by

adding gains in the control commands and delays in the aero surfaces.

79

Table 4.1. EPP FPV Parameters

<metrics> <mass_balance>

Wing area (ft2) 4.24 Ixx (Slug*ft2) 0.05034

Wing span (ft) 5.90551 Iyy (Slug*ft2) 0.01701

Chrod (ft) 0.7217848 Izz (Slug*ft2) 0.12940

H tail area (ft2) 0.7 Ixy (Slug*ft2) 0

H tail arm (ft) 2.723097 Ixz (Slug*ft2) 0.00911

V tail area (ft2) 0.23 Iyz (Slug*ft2) 0

V tail arm (ft) 2.559055 Empty weight (lbs) 4.4

AERORP

(in)
[13.9764, 0, 3.937] CG (in) [16.54, 0, 0]

Table 4.2. EPP FPV aerodynamic coefficients

Lift Coefficient Drag Coefficient
Side

Coefficient

Roll

Coefficient

Pitch

Coefficient

Yaw

Coefficient

𝐶𝐿0 0.0 𝐶𝐷0 0.0007 𝐶𝑚0 0.102

𝐶𝐿
𝛼 α 𝐶𝐿

𝛼 𝐶𝐷
𝛼 α 𝐶𝐷

𝛼 𝐶𝑚
𝛼 -1.573

-0.1571

-0.1369

…

1.3963

1.5708

0.0

0.06

…

0.26

0.03

 -0.0175

0.0

…

1.3963

1.5708

0.01

0.015

…

1.5

1.46

 𝐶𝑚
𝛼̇ -5.2

 𝐶𝑌
𝛽

 -0.83 𝐶𝑙
𝛽

 -0.0313 𝐶𝑛
𝛽

 0.017

 𝐶𝑙
𝑝

 -0.47 𝐶𝑛
𝑝

 -0.18

 𝐶𝑚
𝑞

 -9.0

 𝐶𝑙
𝑟 0.15 𝐶𝑛

𝑟 -0.25

𝐶𝐿
𝛿 Elevator -0.3420 𝐶𝐷

𝛿 𝛿𝑒

-1.0

0.0

1.0

𝐶𝐷
𝛿𝑒

0.114

0.0

0.114

𝐶𝑌
𝛿 0.0 𝐶𝑙

𝛿 0.0

𝐶𝑚

𝛿 -1.261

𝐶𝑛

𝛿 0.0

Aileron 0.0 0.0 -0.0456 0.25 0.0 0.0115

Rudder 0.0 0.0 0.1880 -0.0046 0.0 -0.037

The information provided by the manufacturer about the range of the control surfaces for the

EPP FPV is approximate. Our pilots carried out flight trials to identify the operational limits and

have confirmed that in real flight, the aircraft is unlikely to fly under extreme conditions. Thus,

the deflection ranges have been corrected as recommended (Table 4.3).

Taking the information given by the tables into account, the aircraft configuration file is built

along with the engine and propeller files (Appendix D in sections D.2.1., D.3.1. and D.4.1.

respectively)

80

Table 4.3. Control surface deflections range

Control surface
Manufacturer Pilot Recommendations

𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥 𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥

Elevator -20° (-0.3491rad) 20° (0.3491rad) -15° (-0.2618rad) 15° (0.2618rad)

Aileron -25° (-0.4363rad) 25° (0.4363rad) -20° (-0.3491rad) 20° (0.3491rad)

Rudder -20° (-0.3491rad) 20° (0.3491rad) -15° (-0.2618rad) 15° (0.2618rad)

4.3.3. EPP FPV Computer Model Validation

The validation stage of the fixed-wing aircraft computer model starts with Phase 2 (Figure 4.3).

In this phase, the two suggested evaluation methods are carried out simultaneously. First, the

manufacturer’s manual was consulted (HobbyKing.com, n.d.) and unfortunately, it was observed

that the flying recommendations did not give relevant information. However, as the EPP FPV is

a widely used R/C aircraft, different forums provided reviews from R/C pilots (RCGroups, 2017)

that were useful to obtain general information on the aircraft’s performance. According to their

comments, the rudder should be used in order to compensate the turns during roll manoeuvres.

At the beginning of the manual simulation in FlightGear, the EPP FPV was hard to operate due

to a shift in control that affected its stability. Therefore, establishing those initial conditions is

crucial for the pilot to have enough time to control the aircraft in the simulation. After these

initial moments, the model was quite sensitive to the change of the commands as expected.

As described in Phase 3 and specified in the context, the FDM in this phase is run in two

scenarios: (1) extreme manoeuvre scenario where large input signals are used to test the SAA

capabilities and (2) small input signals under the same conditions as in a real flight mission.

81

4.3.3.1. EPP FPV Phase 3A: Computer Test

The reference model needs to be addressed at this point. The EPP FPV fixed-wing RPA

implemented in MATLAB/Simulink using the AeroSim toolkit is used as the reference model in

this research (Figure 4.5)1. In this case study, a simple simulation in AeroSim includes a set of

simulated control inputs and an FDM block expressing the RPA dynamics. With a FlightGear

interface block, the visualization of the performance is optional but recommended.

Figure 4.5. Open-loop AeroSim layout in MATLAB/Simulink

Assuming that the FDM in JSBSim has already been designed following Section 4.3.2, and with

the help of Appendix A, the analysis starts with the static test.

1The reader may consider another reference computer model.

82

Note that the initial conditions –location and airspeed- must be the same on both platforms and

all simulations last 35s. The performance evaluation is given by the Euler angles (ϕ,θ,ψ),

airspeed (Va) and other relevant properties (depending on the final application).

In the static test, with no inputs, the airspeed is evaluated for both computer models.

Figure 4.6. EPP FPV static test. Airspeed (Va)

Figure 4.7. Airspeed error

As shown in Figure 4.6, both models perform likewise in the static test. The difference in

airspeed between the models (Figure 4.7) shows a constant value of ~0.02 m/s (0.25% error)

during the full simulation2. This error is nearly non-existent and consequently, both models are

considered equivalent under the static test.

In the open-loop test, the system, represented by the FDM, is assessed for input combinations of

the flight control surfaces: elevator, ailerons, and rudder with no closed-loop feedback. Similar to

the static test, the first seconds of the simulation correspond to the transient response of the

system, which were removed from the static test.

2The beginning of the simulation is neglected since the results show the transient response from the initial conditions

to the simulation system steady state and are not relevant.

83

Following the requirements specified in Section 4.3.2 and Table 4.3, the elevator test runscript

for the JSBSim simulation is:

Figure 4.8. EPP FPV elevator test. Pitch angle

Figure 4.9. EPP FPV elevator test. Airspeed

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl" href="http://jsbsim.sf.net/JSBSimScript.xsl"?>

<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"

 name="Initial test">

 <description>

 EPP-FPV Elevator test

 </description>

 <use aircraft="EPPFPV" initialize="ini00"/>

 <run start="0" end="35" dt="0.01">

 <event name="Set engine throttle">

 </event>

 <event name="Set elevator max">

 <condition>simulation/sim-time-sec ge 10.0</condition>

 <set name="fcs/elevator-cmd-norm" action="FG_STEP" value="- 0.174533
tc="0.1"/>

 <notify/>

 </event>

 <event name="Set elevator back to zero">

 <condition>simulation/sim-time-sec ge 25.0</condition>

 <set name="fcs/elevator-cmd-norm" action="FG_STEP" value="0.0" tc="0.1"/>

 <notify/>

 </event>

 </run>

</runscript>

84

According to the forces and moments produced, when there is a negative elevator deflection, the

angle of attack is greater producing an increment in the pitch angle (Figure 4.8). The coherence

of the performance is also demonstrated with the airspeed response (Figure 4.9): when the

aircraft angle of attack increases due to a downward lift created by a negative elevator deflection,

the nose pitches up and the airspeed decreases; the opposite effect occurs when the elevator

deflection is positive. This behaviour indicates that both models follow the same sign convention

and their performance is similar in terms of airspeed when the elevator changes come from a

steady situation. The initial seconds of the simulation show that both FDMs have positive static

stability in pitch; the aircraft tends to return to a stable state.

The maximum error produced in pitch represents 1% of the response and the error in the airspeed

represents a 2.5% with a maximum of 5%. With a low discrepancy between models, they are

considered equivalent.

For the aileron test, a maximum deflection (limited by the pilot’s recommendation) is sent as the

input to the model going back to zero, 2s after:

Figure 4.10. EPP FPV aileron test. Roll angle

Figure 4.11. EPP FPV aileron test. Airspeed

85

When banking due to a turning manoeuvre caused by the ailerons, the aircraft pitches down due

to a general loss in lift. As a consequence, the RPA airspeed increases because of the glide. This

flight performance is reflected in Figure 4.11 supporting the coherence of the system from the

physical point of view; the airspeed increases due to a turn and comes back to its initial state

when the ailerons return to zero.

Two aspects are observed in both responses (excluding differences from the mathematical

perspective):

- JSBSim has greater positive dynamic stability in roll (Figure 4.10), meaning that the

ability to control the aircraft is also greater.

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl" href="http://jsbsim.sf.net/JSBSimScript.xsl"?>

<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"

 name="Initial test">

 <description>

 EPP-FPV Aileron test

 </description>

 <use aircraft="EPPFPV" initialize="ini00"/>

 <run start="0" end="35" dt="0.01">

 <event name="Set engine throttle">

 </event>

 <event name="Set elevator max">

 <condition>simulation/sim-time-sec ge 5.0</condition>

 <set name="fcs/aileron-cmd-norm" action="FG_STEP" value="- 0.349066"
tc="0.1"/>

 <notify/>

 </event>

 <event name="Set elevator back to zero">

 <condition>simulation/sim-time-sec ge 7.0</condition>

 <set name="fcs/aileron-cmd-norm" action="FG_STEP" value="0.0" tc="0.1"/>

 <notify/>

 </event>

 </run>

</runscript>

86

- The airspeed reached by the JSBSim model is approximately 15% more than the airspeed

in the AeroSim simulation. This indicates that the JSBSim model is 15% faster in

performance (Figure 4.11).

When the FDM recovers from the turn, as shown in roll Figure 4.10, JSBSim comes back to its

initial state in 10s and as a result, the airspeed reached when recovering is 2m/s greater than the

AeroSim model as noted in Figure 4.11. Both models are solved by using the first principle of

Newton’s second law, and any differences are assumed to be a consequence of the simulation

solving method (syntax error).

The recovery transition depends on the FDM itself whereas in this test the attitude response is

evaluated. Therefore, in order to conclude whether both models are similar under the aileron test,

a statistical analysis is done for the relevant time interval between 5 and 7s.

Using Minitab 17 (“Minitab,” 2019) as the statistical software and using the two-sample standard

deviation test (𝜎
𝜎⁄) to evaluate how the data is spread, it can be concluded that, for Bonett’s

method with a 95% confidence level, the JSBSim and AeroSim roll responses are equally spread

and not significantly different (Figure 4.12).

Figure 4.12. 2-Sample standard deviation test for roll. Aileron test in the interval [5, 7)

87

As stated by the pilots in Phase 2, changes in the ailerons will need the support of the rudder in a

real flight. Thus, the sideslip angle is also evaluated in order to discuss the effects of the aileron

deflection on the lateral stability.

Figure 4.13. EPP FPV aileron test. Sideslip

According to the results shown in Figure 4.13, there is a significant effect of roll on the sideslip

motion, being more noticeable in the JSBSim case. Most aircraft can perform a smooth turn

using ailerons alone but it varies depending on the aircraft. This special fact supports the

comments from the pilots on the suggested use of a combination of ailerons and rudder for

turning manoeuvres.

From examining the β time response (Figure 4.13) it is difficult to confirm whether both FDM

could be considered equivalent. However, a further statistical analysis for the interval [5,8) in

Figure 4.14 shows that both responses are similar with 95% of confidence level. This means that

the coupling effect that exists between yaw and roll is the same or has the same effect in both

FDMs.

88

Figure 4.14. 2-Sample Standard Deviation Test for β. Aileron test in the interval [5, 7)

An unnecessary use of the rudder control might generate a skidding turn resulting in an excessive

sideslip. In most fixed-wing RPAs, the turns and changes in heading are usually controlled by

the ailerons alone due to the cross-coupling effect between yaw and roll. But despite that, a

rudder test cannot be ignored since the pilots commented on the RPA needing a rudder support

when banking and this effect has also been shown in the aileron test.

As pointed out in Table 4.3, the rudder test in the computer simulation is defined as:

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl" href="http://jsbsim.sf.net/JSBSimScript.xsl"?>

<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"

 name="Initial test">

 <description>

 EPP-FPV Rudder test

 </description>

 <use aircraft="EPPFPV" initialize="ini00"/>

 <run start="0" end="35" dt="0.01">

 <event name="Set engine throttle">

 </event>

 <event name="Set rudder">

 <condition>simulation/sim-time-sec ge 5.0</condition>

 <set name="fcs/rudder-cmd-norm" action="FG_STEP" value="0.261799" tc="0.1"/>

 </set>

 <notify/>

 </event>

 <event name="Set rudder back to zero">

 <condition>simulation/sim-time-sec ge 8.0</condition>

 <set name="fcs/rudder-cmd-norm" action="FG_STEP" value="0.0" tc="0.1"/>

 <notify/>

 </event>

 </run>

</runscript>

89

When the command is set to its maximum deflection, both roll (𝜙) and pitch (𝜃) angles do not

add extra relevant information to previous tests. For example, in the roll angle response (Figure

4.15), JSBSim shows a greater stability in roll axis similar to Figure 4.10 in the aileron test.

Positive static stability is preferable when controlling the aircraft and no modifications have been

done until Phase 3B when flight tests will reject or accept this performance.

Figure 4.15. EPP FPV rudder test. Roll angle

Changes in rudder angle lead to changes in heading and the effects can be examined in the

sideslip angle (𝛽); a constant heading means no sideslip whereas a direction change shows a

positive or negative sideslip angle. Following the same concept, the yaw rate (𝑟) gives the

angular velocity in the horizontal axis, which expresses the rate of change of the heading.

Analyzing 𝑟 and 𝛽 provides a more accurate visualization of the effects of the rudder in the

horizontal axis and heading.

90

Figure 4.16. EPP FPV rudder test. Sideslip

Figure 4.17. EPP FPV rudder test. Yaw rate

Figure 4.16 and Figure 4.17 show an appreciable difference between both responses, especially

when the rudder is set to a maximum value. However, a difference in the error does not mean

that both responses are not similar and a more detailed statistical analysis is needed in order to

confirm this fact.

From both properties (β, r) in Figure 4.18 and Figure 4.19, it can be confirmed that, at 95%

confidence level, the lateral response of both FDMs is not significantly different in terms of its

data distribution and, therefore, JSBSim and AeroSim are considered equivalent under the rudder

test.

Figure 4.18. 2-Sample standard deviation test for β.

Rudder test in the interval [5, 8)

Figure 4.19. 2-Sample standard deviation test for

yaw rate. Rudder test in the interval [5, 8)

91

4.3.3.2. Phase 3: Flight Test

For this test, an EPP FPV RPA was flown following the current regulations established by

Transport Canada (TC) (Transport Canada, 2018a) in the allowed areas surrounding St. John’s,

Newfoundland and Labrador (NL), Canada, in Class G airspace. The mission included an R/C

controller, a Ground Control Station (GCS), an EPP FPV R/C and an onboard autopilot

(ArduPilot, APM 2.6 (“ArduPilot documentation,” 2017)) for recording the aircraft performance

during flight. Considerations on this test included:

- The tasks of taking off and landing are removed from the analysis since they do not give

significant information on a regular flight.

- The turns were only commanded by the ailerons leaving the rudder out from the analysis.

- The throttle control is ~50% during regular flight and assumed to be of that value for the

entire Phase 3B of the EPP FPV case study.

- The output generated by the autopilot during the flight test includes the airspeed (Va), the

Euler angles roll (ϕ), pitch (θ) and yaw (ψ), the linear (𝑢̇, 𝑣̇, 𝑤̇) and angular (p, q, r) rates,

and the location in terms of latitude, longitude and altitude.

The full flight mission has been narrowed down to a section where small and medium signals

have been recorded as inputs to the computer model (Figure 4.20). The goal of adjusting the

model for a particular range of inputs is to have the most accurate possible computer model for a

specific task defined in the context. The selected simulation lasts 14s with an initial model

transition of 5s expressed in the script file below.

92

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl" href="http://jsbsim.sf.net/JSBSimScript.xsl"?>

<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"

 name="">

 <description>

 Flight test – small and madium signals

 </description>

 <use aircraft="EPPFPV" initialize="inis2"/>

 <run start="0" end="14" dt="0.02">

 <event name="Set engine throttle">

 <condition>simulation/sim-time-sec ge 0.5</condition>

 <set name="fcs/throttle-cmd-norm" action="FG_RAMP" value="0.0" tc="5.0"/>

 <set name="fcs/elevator-cmd-norm" action="FG_RAMP" value="0.006318266"

tc="5.0"/>

 <set name="fcs/aileron-cmd-norm" action="FG_RAMP" value="-0.05624498"

tc="5.0"/>

 <notify/>

 </event>

 <event name="Set the inputs from file" continuous="true">

 <condition>simulation/sim-time-sec ge 5.0</condition>

 <set name="fcs/elevator-cmd-norm">

 <function>

 <product>

 <value>0.5</value>

 <table>

 <independentVar lookup="row"> simulation/sim-time-sec

</independentVar>

 <tableData>

 5 0.006318266

 5.02 0.00356658

 … …

 13.98 -0.002128429

 14 -0.002128429

 </tableData>

 </table>

 </product>

 </function>

 </set>

 <set name="fcs/aileron-cmd-norm">

 <function>

 <table>

 <independentVar lookup="row"> simulation/sim-time-sec

</independentVar>

 <tableData>

 5 -0.05624498

 5.02 -0.058899626

 … …

 13.98 0.00619941

 14 0.005185199

 </tableData>

 </table>

 </function>

 </set>

 <notify/>

 </event>

 </run>

</runscript>

93

Figure 4.20. Aileron and elevator deflection for small and medium signals in Phase 3B

For this particular test, the relevant variables are roll (𝜙) and pitch (𝜃) angles. This stage is

essential for the correct development of the system since the real flight data is the resource to use

as a reference. The first 5 seconds of the simulation correspond to the transient response from the

initial to a neutral state and thus, they are omitted from the study.

Figure 4.21. Computer model vs. real model. Roll

output

Figure 4.22. Computer model vs. real model. Pitch

output

The performance in Figure 4.21 and Figure 4.22 express the final model performance obtained

after iterations and adjustments to the model. To that end, the next steps have been followed:

94

- The initial offset has been removed by identifying the initial conditions in the simulation;

the FDM comes from a neutral state whereas, in the flight mission, the R/C comes from a

previous state that will induce changes in the performance observed in the following

seconds.

- The gains adjustment is given by scaling the inputs based on the aero surfaces.

- The communication delays between the controller and the actuator/servos have been

added with a shift to the FDM. This time discrepancy is foreseeable due to the

configuration of the electronic equipment on board. For this particular case, the model

showed a delay of 0.25s in roll and 0.5s in pitch.

- The responsiveness of the computer model has been tuned by adapting the aerodynamic

coefficients that relate the aileron or elevator deflection to the correspondent roll or pitch

performance.

The similarity between both models is quantified by the Pearson correlation coefficient, 𝑟, which

measures how well two vectors or sets of data are related. It ranges from +1 to -1, where a value

close to 0 indicates that there is no connection between the two variables and values around -1

and +1 indicate a negative and positive connection respectively. The correlation between two

vectors 𝑋 and 𝑌 of length 𝑛 is defined as:

𝑟(𝑋, 𝑌) =

1
𝑛

∑ 𝑋𝑖𝑌𝑖 − 𝜇𝑋𝜇𝑌
𝑛
𝑖

𝜎𝑋𝜎𝑌
 (4.1)

Where 𝜇𝑋 and 𝜇𝑌 are the means of the vectors 𝑋 and 𝑌 and 𝜎𝑋 and 𝜎𝑌 are the standard deviations

of the same vectors 𝑋 and 𝑌.

95

Table 4.4. Pearson correlation coefficients on results in Figure 4.21 and Figure 4.22

Angle Pearson correlation coefficient

Roll 0.61645

Pitch 0.49744

For this particular case, even though the Pearson correlation coefficient shows a fit between the

simulation model and the real model (Table 4.4), the match is around 50-60%. Real models and

especially, small fixed-wing aircraft are made from materials that might introduce random errors

into the system. In the EPP FPV aircraft, the carbon strip that connects the aero surface and the

servo (Figure 4.23) is flexible and as a consequence, it affects the way the deflection is

transmitted to the actuator.

Figure 4.23. Rudder horn and carbon strip in the EPP FPV (HobbyKing.com, n.d.)

The correlation coefficients showed in Table 4.4 are particular of the conducted flight mission

and the range of deflections used. This means that the computer model may not be a

representation of the real model under other (different) conditions.

96

Additionally, existing forces to the FDM (wind conditions) have not been modelled in the

simulation but are present during the flight mission. This will impact the performance of the EPP

FPV in the computer environment and this behaviour is noticed in the responses (Figure 4.21 and

Figure 4.22). When addressing this issue, the designer must be aware of the model limitations.

For example, the maximum wind speed for flying a light aircraft is 8-12mph whereas the mean

(min/max) wind speed in St. John’s, NL is 14mph (“St. John’s Historical Wind Speed,” n.d.).

4.1.3. Simulation of SAA Manoeuvres

The final stage of this procedure is to show the EPP FPV JSBSim model added in its final

application knowing the context of the simulation where the computer model is integrated. The

framework is defined by an SAA manoeuvre as a consequence of an encounter between the RPA

and a piloted aircraft. The following table offers the minimum stages of a vertical manoeuvre

consisting of the initial conditions, the avoidance and the recovery:

Table 4.5. Collision avoidance events for testing the EPP FPV in SAA (3D) manoeuvres

Event/ Task Throttle (%) Elevator (rad) Aileron (rad)

Initial state (0.0s) 70.0 0.0 -0.1

Avoidance manoeuvre

(1.5s)
0.0 0.2618 0.015

Recovery (h<200ft in 6s) 30.0 -0.17 -0.1

Assuming that the aircraft comes from the initial condition specified in the table, the manoeuvre

is performed by the throttle level and the aileron and elevator aero surfaces at the same time,

creating a change in the trajectory as shown in Figure 4.25. The deflections in both aero surfaces

were randomly selected but, when the elevator reaches its maximum value, the aircraft flies

down to 200ft in less than 5s.

97

Figure 4.24. EPP FPV avoidance manoeuvre. Pitch

angle

Figure 4.25. EPP FPV avoidance manœuvre.

Trajectory

The relevance of this application is easily noticed from the rate of descent of around 1,200fpm

provided by the EPP FPV. Transport Canada defines an abnormal rate of descent as more than

500fpm for an unpressurized flight with passengers on board (Transport Canada, 2010b) (not

recommended), meaning that, the EPP FPV RPA has a rate of decent 2.5 times greater and might

guarantee the avoidance in case of an NMAC scenario. This claim would need further analysis

that falls beyond the scope of this thesis.

4.3. Summary

When implementing FDMs in OSS platforms, the model certainty is always questioned. The

model must be approved and validated against similar and real models in order to frame its

limitations. In this chapter, a set of minimal requirements for developing and validating RPA

flight simulators has been presented based on the current advisories and the differences between

piloted and unpiloted flight simulators. From a general validation procedure, specific tests have

been adapted to match the simulation application. In its final version, the steps taken to develop

98

and validate the FDM for testing SAA strategies have shown to be a valuable tool for the

development of RPA fit-for-purpose FDMs.

The model reliability has been tested in each phase and adjusted for an improved performance

with the EPP FPV as the example. The JSBSim 6-DoF FDM has also been shown as a valuable

and functional method for simulating RPAs in any context and particularly in SAA where two

aircraft share the same environment. For more detailed information about the software and the

complementary user guide of this chapter, please refer to Appendix A.

The main limitations of this chapter are related to the RPA model and not the validation

procedure in particular. Even though the EPP FPV computer model and the real aircraft showed

a correlation coefficient of over 50%, its reliability is still questionable. The EPP FPV R/C

aircraft is sensitive to wind changes and its configuration is simple with low-quality materials.

Particular structural constructions (even in larger commercial aircraft) often add errors to the

aircraft performance. This means that the flight data collected from one mission corresponding to

one single real aircraft is not enough to prove the reliability of the computer model. The

functionality of the validation procedure has been shown using this particular case but the RPA

model remains to be improved. In that case, flight data from several missions should be collected

(see recommendations and limitations in Chapter 6).

99

Chapter 5

Giant Big Stik Computer Model Development

with Sense and Avoid Applications

A second Remotely Piloted Aircraft (RPA) computer model is developed by following the

intuitive methodology introduced in Chapter 4. The Giant Big Stik computer model is used as a

representative aircraft with the purpose of implementing it in scenarios with piloted aircraft for

the study of avoidance manoeuvres (Cereceda et al., 2019). In this particular case, the approach

focuses on reflecting the aircraft capabilities in one specific axis where the avoidance

performance will take place.

When two aircraft are in conflict and nearly invading their collision volume, the options are

minimal (Appendix C) and the aircraft is obliged to perform an extreme manoeuvre. The main

issue with an extreme manoeuvre is the ability of the aircraft to safely recover from a critical

state. The complex stability of the aircraft requires studies from its physical point of view that

can be simplified by defining the simulation context and its limitations.

100

This chapter, in its first part, includes the Giant Big Stik computer development. The procedure

followed to create the model is the methodology presented in Chapter 4. The code has not been

included in this case to avoid redundancies but it is found in Appendix D.

The Sense and Avoid (SAA) application is introduced in the second part of this chapter. It

consists of the integration of the Giant Big Stik as a representative RPA into a simulation with a

Cessna 172 to evaluate their interaction in a close encounter. This second part includes: (1) a

brief description of the simulation and context, (2) a methodology used for solving the SAA

problem, and (3) a discussion of the implications of close encounters between a Giant Big Stik

and a Cessna 172 aircraft.

This study does not discuss the conflict resolution in a collision scenario given the critical

circumstance of a collision. Initial discussion and results that originated in the application of this

chapter were presented during a Canadian conference (Cereceda, Rolland, & O’Young, 2018)

and is currently under a second revision for publication on their special issue. This particular

work focuses on encounters between two piloted aircraft and is out of the scope of this thesis.

5.1. Giant Big Stik Computer Model Development

The Giant Big Stik is the largest wooden aircraft belonging to the Stik family developed by Great

Planes (Great Planes, 2005a). It is mainly oriented to sports aerobatics with a nearly unlimited

flight envelope making it a perfect RPA for the study of extreme avoidance manoeuvres. The

thrust is provided by a 16x8in propeller and a 1.55cu-in Zenoah G26 Air Engine (Zenoah, 2007).

According to the methodology diagram expressed in Chapter 4 (Figure 4.3), the validation of the

Giant Big Stik can be broken down into the following items: (1) Modelling and development and

101

(2) Computer model validation. The first part focuses on defining the model requirements and

modelling whereas the second part focuses on the model validation. It is important to clearly

define the application context (SAA) and its basis are further explained in Appendix C.

5.1.1. Giant Big Stick Simulation Context (Phase 1)

The model developed in this section serves as a representative RPA for the study of avoidance

manoeuvres in close encounter scenarios with piloted aircraft. The simulated critical manoeuvres

will focus on a vertical-only diving performance and as a consequence, the computer model

development focuses mainly on the pitch axis.

The context of the task described in Phase 1 (as included in the diagram expressed in Figure 4.3)

can be broken down into the following items:

- Simulation objective: performance in a diving manoeuvre similar to a real flight.

Although the computer improvements of the model will focus on large signals in the

pitch axis, the computer test will cover all axes since it is important that no instabilities

are present and the performance is coherent.

- Model requirements: In Phase 3A, large signals in elevator, ailerons, and rudder are

simulated in a computer environment. The model performance is evaluated by inspection

and statistical analysis with a confidence level of 95% for the Pearson correlation

coefficient. In Phase 3B, the model is initially adjusted in roll ensuring that this axis does

not create any critical instability that might affect the pitch axis. In the second fine-tuning,

the computer model is further adjusted from the pitch axis perspective.

102

- Code evaluation, programming, and development of the Flight Dynamics Model

(FDM): similar to the EPP FPV case study, the JSBSim package is used in the model

development and the Giant Big Stik aircraft model performance is visualized in

FlightGear. The AeroSim toolkit in MATLAB/Simulink is used again as a reference

model for this second computer model development example.

Similar to the EPP FPV case, the wind is present during the flight tests and the real model is

expected to show differences with the computer model in Phase 3B.

5.1.2. Giant Big Stik Computer Modelling and Development (Phase 1)

The modelling in JSBSim starts with the identification of the parameters and aerodynamic

coefficients (Table 5.1 and Table 5.2). The parameters and other dimensional information were

obtained by manually measuring the aircraft and consulting the manufacturer’s information. The

aerodynamic parameters were initially calculated by Dr J. Stevenson (J. D. Stevenson, 2015), by

following the same approach as in Appendix B for the EPP FPV RPA. Later on, the coefficients

were modified according to the model development and validation methodology presented in

Chapter 4 (Figure 4.3). The visual model in FlightGear (Figure 5.1) was designed from scratch

by using SketchUp (“SketchUp,” 2019) and integrated into the simulation.

The aircraft configuration files, as well as the engine and propeller files, are included in

Appendix D, Sections D.2.2, D.3.2, and D.4.2, respectively.

The range of control surfaces is provided by the manufacturer and included in Table 5.3. Unlike

the EPP FPV case, the pilots in our team are confident about the capabilities of the Giant Big

Stik and the range of control deflections are kept as they were given by the manufacturer.

103

Figure 5.1. The Giant Big Stik aircraft in FlightGear

Table 5.1. Giant Big Stik Parameters

<metrics> <mass_balance>

Wing area (ft2) 10.538 Ixx (Slug*ft2) 0.3046

Wing span (ft) 6.709 Iyy (Slug*ft2) 0.4752

Wing incidence 2.00 Izz (Slug*ft2) 0.7036

Chrod (ft) 1.148 Ixy (Slug*ft2) 0

H tail area (ft2) 1.69 Ixz (Slug*ft2) 0.0951

H tail arm (ft) 2.36 Iyz (Slug*ft2) 0

V tail area (ft2) 1.05 Empty weight (lbs) 13

V tail arm (ft) 2.27 CG (in) [14.4881, 0, 0]

AERORP (in) [18.4961, 0, 2.5591]

Table 5.2. Giant Big Stik aerodynamic coefficients

Lift Coefficient
Drag

Coefficient

Side

Coefficient

Roll

Coefficient

Pitch

Coefficient

Yaw

Coefficient

 𝐶𝐷0 0.1 𝐶𝑚0 0.15

𝐶𝐿
𝛼

5.32
k

(𝐶𝐿)
0.087

𝐶𝑚

𝛼 -1.9

𝐶𝐿
𝛼̇ 1.7 𝐶𝑚

𝛼̇ -3.5

 𝐶𝑌
𝛽

 -0.83 𝐶𝑙
𝛽

 -0.034 𝐶𝑛
𝛽

 0.071

 𝐶𝑙
𝑝

 -0.41 𝐶𝑛
𝑝

 -0.0575

𝐶𝐿
𝑞

 3.9 𝐶𝑚
𝑞

 -6.813

 𝐶𝑙
𝑟 0.107 𝐶𝑛

𝑟 -0.12032

𝐶𝐿
𝛿 Elevator -5.6 𝐶𝐷

𝛿 0.0135 𝐶𝑌
𝛿 0.0 𝐶𝑙

𝛿 0.0 𝐶𝑚
𝛿 -1.458 𝐶𝑛

𝛿 0.0

Aileron 0.0 0.0302 -0.075 -0.2 0.0 0.0108

Rudder 0.0 0.0303 0.1914 -0.107 0.0 -0.062

104

Table 5.3. Control surface deflections range

Control surface
Manufacturer

𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥

Elevator -26° (-0.4643rad) 26° (0.4643rad)

Aileron -32.6° (-0.569rad) 32.6° (0.569rad)

Rudder -31.6° (-0.546rad) 31.6° (0.546rad)

5.1.3. Giant Big Stik Computer Model Validation (Phases 2 and 3)

In the first stage, the aircraft model configuration files expressed in JSBSim were integrated into

FlightGear allowing to test Phase 2 in the validation process. The recommended flying

procedures in the Giant Big Stik manual (Great Planes, 2005b) were imprecise but tested, and

other online reviews were followed and compared for this phase (RCGroups, 2018).

The pilots overall mentioned that the engine model in JSBSim needed to be tuned; this comment

will also be reflected in the following sections and it will be adjusted in the final stage.

5.1.3.1. Giant Big Stik Phase 3A: Computer Test

When comparing JSBSim with AeroSim, different scenarios for the commands were

independently tested and evaluated in order to reach conclusions and define JSBSim FDM

limitations for RPA applications.

The control inputs to the FDM are the primary flight control deflection angles associated with

the elevator, ailerons and rudder surfaces. Therefore, the simulations were divided into four

categories similar to the EPP FPV case study: static test, elevator test, aileron test and rudder test.

There is a special interest in carrying out open-loop tests where the aircraft characteristics and

105

performance are evaluated for simple primary control inputs, since it gives an excellent

opportunity to check the physical dynamic performance and its coherence.

Steady-state conditions take place when there are no variables that make the system change in

time; which is an unlikely situation in a real flight but it is a useful way to identify the dynamics

of the system. In this first test, the airspeed is compared in a steady-state situation for both

models with the aircraft in open-loop without any throttle command.

Given the common initial conditions of 300m and 20m/s, all simulations for the Giant Big Stik

case study last 30s.

Figure 5.2. Giant Big Stik static test. Steady-state airspeed3

From the results in Figure 5.2, and as expected due to the pilot’s comments, the JSBSim model

does not perform as fast as the AeroSim FDM; there is an offset error of 7% in True Airspeed

(TAS). Despite this value, the offset is constant during the simulation, meaning that the

dynamics are the same for both models in open-loop and a slight difference will be expected in

3The first seconds of the simulation are neglected since it shows the transient response from the initial conditions to

the steady state.

106

the transient response in the next simulations. This error is later eliminated by adding more

power in the engine configuration file.

In the remaining simulations in Phase 3A, the system, represented by the FDM, is assessed for

input combinations of the flight control surfaces with no feedback. The isolation of the inputs

one at a time assists with the design of a control system when developing an autopilot in future

studies.

The elevator is set at the maximum value (-0.4643rad, -20°) at 5s and goes back to zero at 20s in

the elevator test. Following the same flight control principles as the EPP FPV also included in

Section 2.3.5, a negative elevator produces an increment in the pitch angle.

Figure 5.3. Giant Big Stik elevator test. Pitch angle

Figure 5.4. Giant Big Stik elevator test. Airspeed

This direct effect in pitch angle due to changes in elevator deflection is noticeable in Figure 5.3;

the pitch angle shows the same shape in both cases but when a sudden change in the elevator

happens, the AeroSim system is up to 40% more responsive in pitch.

107

The coherence of the performance is also observed in Figure 5.4: with an increase in the angle of

attack, the aircraft slows down.

In a real mission, it is unlikely that the elevator command is set to its maximum value. When an

aircraft’s physical performance and stability are to be tested in the field, a small signal test is

usually done instead –e.g. -0.015rad, -1°, in elevator done in this study. Considering a regular

climb, a second elevator test of -0.10rad, -6°, is carried out.

Figure 5.5. Giant Big Stik elevator test for small

signal (-0.015rad, -1°). Pitch angle

Figure 5.6. Giant Big Stik elevator test for a medium

signal (-0.10rad, -6°). Pitch angle

It is noticeable once again that the AeroSim model is affected by the differences in engine power

for both low and medium elevator commands. Additionally, Figure 5.6 shows that for a medium

elevator signal, the JSBSim model attempts to come back to the initial state in a shorter time; the

difference between the maximum and minimum peaks of the response is slightly smaller.

Interestingly, there is an offset (Figure 5.5), created by the differences in engine power, that

remains even when the elevator is set back to zero. This means that in order to get the same

performance as the AeroSim model –reference FDM in this study-, the JSBSim model should be

adjusted either manually with a joystick, or in the control with an added gain.

108

The ailerons are set at the maximum value (-0.569rad, -32.6°), turning left at 5s and going back

to the initial situation at 6.5s in the aileron test.

Figure 5.7. Giant Big Stik aileron test. Roll angle

Figure 5.8. Giant Big Stik aileron test. Airspeed

As shown in the roll angle (Figure 5.7), when the ailerons are set to the maximum value from a

flat situation, AeroSim is again more responsive than JSBSim. In 1s, the AeroSim model has

turned 360°. whereas the JSBSim model turned 180°. Despite the difference, the JSBSim context

is more likely to take place in a real situation because of the physical configuration of the aircraft.

Considering how the airspeed develops during that timeframe (Figure 5.8) and regardless of the

turns, the aircraft model in both cases tends to come back to its initial value.

The rudder control is not commonly used in a regular flight due to its responsive nature, which

might destabilize the aircraft. Although the turns and changes in heading are usually commanded

by the ailerons instead, the validation procedure includes a rudder test where the rudder is set at

its maximum value (0.546rad, 31.6°) at 5s and goes back to zero 3s later, making the system turn

right. Following the same concept mentioned in the EPP FPV case where roll and pitch angles do

not give extra relevant information, in this test the yaw rate (r) and the sideslip angle (β) are

analyzed.

109

Figure 5.9. Giant Big Stik rudder test. Yaw rate

Figure 5.10. Giant Big Stik rudder test. Sideslip

angle (β)

Both models are considerably similar when there is a rudder deflection (Figure 5.9 and Figure

5.10). In contrast to the elevator and ailerons test, when there is a lateral disturbance both models

perform similarly.

5.1.3.2. Giant Big Stik Phase 3: Flight Test

The final stage of the Giant Big Stik computer model development uses test scenarios and

empirical validation by comparing model outputs with real measurements from a flight mission.

A Giant Big Stik was flown following the current regulations established by TC (Transport

Canada, 2018a) in the allowed areas surrounding St. John’s, NL, Canada, belonging to Class G

airspace. The mission included an R/C controller, a Ground Control Station (GCS), a Giant Big

Stik vehicle and an autopilot (Piccolo II (“Piccolo ll Autopilot,” n.d.)) onboard for recording the

control inputs and the performance parameters over time.

In the analysis, the tasks of taking off and landing were neglected. The rudder control command

was also removed from the study since it is was not used during flight and there is also a special

110

interest in the performance of the pitch axis. Likewise, the throttle during the mission was ~50%

at all times and therefore, considered constant in the validation process.

The full flight test was divided into sections where the relevant signals were identified as small,

medium and large signals. Two main sections were selected where the commands were either

large or medium. In the first section (Figure 5.11), the aileron deflection was kept at medium

signals while the elevator deflection was left at small signals. The main interest of starting with

this section, even though the focus is on the elevator and pitch performance, is because it is

important to ensure that no signals in the ailerons could create instabilities in the pitch axis.

However, the selected Section 2 (Figure 5.12) focuses on sudden changes in the elevator by

approximately 25°, which represent the same deflection that the aircraft might experience during

an extreme manoeuvre in a Near Mid-Air Collision (NMAC) scenario.

Figure 5.11. Aileron and elevator deflections in

Section 1

Figure 5.12. Aileron and elevator deflections in

Section 2

The study in both cases starts at 12.5s, allowing the computer model to stabilize. The first section

lasts 39.5s with a time range study of 27s, whereas the second section lasts 26.5s with a total

simulation time of 14s. The relevant analyzed variables are the roll and pitch angles, which are

directly related to their corresponding axis.

111

Figure 5.13. Section 1. Computer model vs. real

model. Roll angle

Figure 5.14. Section 1. Computer model vs. real

model. Pitch angle

Figure 5.15. Section 2. Computer model vs. real model. Pitch angle

The results shown in this section are the final outcome of the computer model after the complete

validation and development. Although the offsets, delays, and gains have been adjusted to match

the real flight data, differences are allowed in the system due to the uncontrollable external

forces (e.g. the wind and the inability of replicating the same real wind during the mission in a

computer simulation) and the different initial state where both systems (the real and the computer

model) have their starting point.

112

Although the similarities are observable, the final application of the model is the study of

Collision Avoidance (CA) manoeuvres in encounters with piloted aircraft. Therefore, it is

important that the fit is realistic and quantifiable. Following equation (4.1) for calculating the

Pearson correlation coefficient, and considering the data shown in Figure 5.13, Figure 5.14, and

Figure 5.15, the corresponding coefficients are:

Table 5.4. Pearson correlation coefficients on results in Figure 5.13, Figure 5.14 and Figure 5.15

Section Angle Pearson correlation coefficient

1 Roll 0.9304

1 Pitch 0.60664

2 Pitch 0.74044

The first section in Figure 5.13 indicates a match between both models in roll axis with a Pearson

correlation coefficient close to +1 (Table 5.4). When focusing on roll axis in the first section, it is

evident that changes in roll will not create instabilities in the pitch axis and the aircraft

performance in a simulated environment will be as close as possible to the real flight. The pitch

comparison results in Section 1 (Figure 5.14) show that the dynamics of both systems are similar

and the differences have been later adjusted in Section 2 (Figure 5.15). The Pearson correlation

coefficient in pitch angle has been improved from 0.6 in Section 1 to 0.74 in Section 2 (Table

5.4). In that context, both performances can be considered alike when sudden changes take place

in the elevator.

The limitations of this model are related to the range of the commands on the real mission. Even

though the fit of the model has been shown during the computer test in Phase 3A, it is

recommended that in future studies, further real test include extreme manoeuvres in order to

strengthen the computer results.

113

5.2. Giant Big Stik Application: Vertical Collision

Avoidance

A dynamic model of the Cessna 172 is used as the representative intruder aircraft, whereas a

dynamic model of the Giant Big Stik RPA performs the avoidance manoeuvre. The Giant Big

Stik is selected over the EPP FPV aircraft because of its capabilities. Whereas the EPP FPV

(Chapter 4) is a robust aircraft whose performance is compared to a glider, its manoeuvrability is

more limited when compared to the Giant Big Stik, and does not serve as a strong representative

RPA for this context. The Cessna 172 aircraft represents a traditional general aviation aircraft

that is not equipped with a Traffic Collision Avoidance System (TCAS) or any other avoidance

system. The SAA aircraft capabilities depend on the pilot, which becomes dangerous when a

small RPA flies nearby and the pilot is unable to identify it.

The simulation uses the JSBSim FDM (Berndt & JSBSim Development Team, 2011; Cereceda,

Rolland, & O’Young, 2017) along with FlightGear (“FlightGear Flight Simulator,” 2019) as the

visualization software. The 6-DoF FDM of the Cessna 172 and its visual model have been

downloaded from the online JSBSim and FlightGear libraries, respectively (“JSBSim Flight

Dynamics Model - Code aircraft/c172x,” 2009). The FDM of the Giant Big Stik was validated in

the previous section (also published in (Cereceda et al., 2019)), and the visual model was created

using SketchUp (“SketchUp,” 2019) and later integrated into FlightGear.

In the initial tests to assess the encounter geometry and identify the conflict points, both aircraft

are not carrying any CA system and are assumed to be flying at the same altitude within their

114

flight envelope. In later studies, the Giant Big Stik carries an SAA system that is able to identify

a conflict point and conduct a vertical manoeuvre.

5.2.1. Encounter Geometry and Intruder’s Trajectory

The simulation takes place in the areas surrounding Fogo Island in Newfoundland and Labrador

(NL), Canada. The trajectory paths are based on a previous work designed for the development

of 4-D encounter geometries (Cereceda & Stevenson, 2014) and described in Appendix D. This

geometry (the Φ manoeuvre) consists of a dog bone path and an orbit path whose centre is

halfway between the returning waypoints of the dog bone’s straight segment. The angle of the

encounter depends on the radius of the orbit, but for this study the interest is in the frequency of

the encounters permitted by the Φ manoeuvre instead. Therefore, the orbit path is defined by a

single waypoint (the orbital centre) with a turning radius of around 450ft; smaller trajectories

would prevent an encounter from happening. The waypoints for both trajectories are expressed

in the following map (Figure 5.16) where the Cessna 172 performs a dog bone path and the Giant

Big Stik aircraft follows an orbit.

While the Cessna 172 remains in level flight and cruise speed for the entire test, the autopilot in

the RPA is set to orbit around the waypoint until the encounter takes place. The trajectories of

the Giant Big Stik and the Cessna in Figure 5.17 show two conflict points located around

halfway between the waypoints that mark out the straight path.

115

Figure 5.16. Φ encounter geometry and its waypoints

Figure 5.17. Φ manoeuvre: Giant Big Stik and Cessna’s trajectories with conflict points

When a conflict point is identified by the Giant Big Stik, the pitch control is disabled to allow the

performance of a diving avoidance manoeuvre. However, the roll control remains active for the

116

entire manoeuvre, since the vertical axis is only affected by the pitch and aircraft controls. The

aircraft dives by regulating the primary surface control commands and throttle to avoid the

intruder’s collision volume. Once the aircraft has completed the avoidance manoeuvre, it

resumes its task.

Although the avoidance is vertical, the altitude at which both aircraft are flying is not relevant as

long as both converge at the same altitude.

5.2.2. Collision Avoidance Conditions and Methodology for Solving the SAA

problem for RPAs

The minimum requirement for the detection is that there is enough time for the aircraft to

perform a manoeuvre and remain safe. The functional boundaries and thresholds defined in

Appendix C establish the risk of an airborne collision.

The purpose of the avoidance manoeuvre is to keep the intruder aircraft out of the collision

volume (identified as a conflict point in Figure 5.17). The collision volume is determined by a

cylinder of 200ft height and 500ft radius (Appendix C) whose centre is the CM of the ownship

aircraft. These values indicate that diving at least 100ft after an NMAC situation is identified will

prevent a collision. 100ft is quite close-fitting and is considered a theoretical reference for the

avoidance. In a real flight, it is recommended that the threshold be extended to around 200ft for

safety reasons.

In the recommendations introduced for defining the best practices for Beyond Visual Line-of-

Sight (BVLOS) operations (Appendix C), the manoeuvre time (τ) is the time to complete the

117

avoidance task, which must be minimized in a case of an NMAC. This means that τ represents

the minimal time to dive, which can be calculated from the maximum diving rate of the aircraft.

A vertical avoidance emulates the TCAS procedure, which is a common practice across

commercial aircraft (Appendix C – Figure C.1 and Figure C2). In later studies, the diving

manoeuvre could evolve into a more complex manoeuvre, including a roll with the aileron and

rudder deflections (Chapter 6). However, the first step is to calculate the maximum diving rate of

the representative RPA.

Focusing on the vertical axis, the proposed SAA solving method examines the aircraft’s

performance in terms of the altitude response. Due to the complexity of the aircraft model, it is

important to define the context in order to minimize the error and limit the scope.

Considering the framework provided by the simulation context described at the beginning of

Section 5.2, which is based on the CA concepts introduced in Appendix C, when a threat is

detected, it is expected that the pilot in command will conduct an avoidance manoeuvre (15s)4.

However, in case the pilot fails to perform a manoeuvre because either is not aware of the

presence of an intruder, or there is no human-in-the-loop, an avoidance procedure must take

control of the aircraft in order to avoid a collision. The full process is summarized in the

flowchart in Figure 5.18.

4 Recommended best practices in Canada (see Appendix C, Section C.1.1 and Figure C.5)

118

Figure 5.18. CA flowchart procedure5

Figure 5.19. CA Scenarios and solving procedure based on Figure 5.18

5 This structure only contemplates one detection at a time. In case of multiple detections, priority is given to the

detection that creates the most critical danger.

119

The participation of the human pilot in command during the flight mission determines the

sequence of actions during the CA procedure. In the first scenario (Figure 5.19 – top diagram),

the pilot reacts with an avoidance manoeuvre to the detected conflict within the 15s allowed by

the CA system. With the pilot taking control of the aircraft, the avoidance procedure is not

activated. In the second scenario (Figure 5.19 – bottom diagram), the pilot does not act on the

notification of a possible conflict because either there is no human-in-the-loop or the pilot is not

aware of the notification (communication failure or other). Under this circumstance, the CA

system executes an avoidance manoeuvre on time to avoid a collision without the authorization

from the pilot. When the avoidance has finished, the system issues a “clear of conflict”

notification.

The CA controlled procedure can be divided into two different stages: (1) the avoidance

manoeuvre and (2) the recovery performance. Whereas the avoidance manoeuvre is crucial for

the calculation of τ and will be discussed in further detail over the following subsections, the

recovery performance remains as future work. At this initial stage, the interest is in assessing

whether the RPA has the capability of avoiding the piloted aircraft. In later studies, the

performance can be improved for a smoother dive.

Assuming that the aircraft altitude response is to be controlled, the CA problem can be observed

from a control’s perspective. The flight-path is initially operated by the autopilot until the

intruder flies toward the collision volume. During the avoidance, the aircraft disconnects the

autopilot for pitch control and dives out of the NMAC by regulating the primary surface control

commands and throttle. Once the aircraft has dived 200ft and is out of a possible NMAC, the

task prior to the collision detection is resumed. The simulation and the study of avoidance

manoeuvres can be synthesized as follows:

120

a) Conditions prior to the encounter: the control of the aircraft is carried out by the autopilot

(Φ manoeuvre).

b) Avoidance manoeuvre: the vertical performance is executed by the avoidance system

controlling the elevator deflection and the throttle level.

c) Recovery: the aircraft is stabilized by operating the control commands: elevator and

throttle6.

d) End of the avoidance: the autopilot takes control of the aircraft.

Considering that the conditions prior to the encounter have been defined in the introductory

paragraph of Section 5.2, the aircraft’s capability of performing a diving manoeuvre is governed

by τ and will determine whether the RPA could effectively avoid a piloted aircraft.

5.2.3. Implications

Through this study, the value of τ is calculated from the combination of two variables that are

known to affect the vertical performance of an aircraft: the elevator deflection and the throttle

level. The dominating pitch-control surface is the elevator. With the elevator deflection

downwards, the tail is pulled up due to an increase of lift force in the tail. This creates a nose-

down pitching moment on the aircraft, decreasing the overall lift and the angle of attack (Section

2.3.5 and (Barnard & Philpott, 2010)). Initial tests conducted on general aircraft (Twin Otter)

showed that the throttle level does not greatly affect the performance compared to the elevator

deflection (Cereceda et al., 2018). This means that for some larger aircraft, the throttle level can

be removed as a factor from the estimation of τ. Additionally, from a practical standpoint, in a

6Out of the scope of this work

121

critical situation where the manoeuvre has to be completed in a few seconds, the throttle level is

not usually changed by the pilot when the elevator deflection is controlling the performance.

The Giant Big Stik is an overpowered RPA and the throttle level will have a significant impact

on the diving rate. For this particular aircraft, the larger the throttle level, the faster the aircraft

dives. This is caused by the power of its engine compared to the size, weight, and capabilities of

the Giant Big Stik.

Assuming that the throttle is at the maximum level (100%), a series of simulations have been

conducted (Table 5.5) to estimate the value of τ for a range on the elevator deflection between

4.5° (0.0787rad) and 26.6° (0.4643rad):

Table 5.5. Simulation runs for estimating τ

Elevator deflection Throttle level Tau

δe (rad) δT (%) τ (seconds)

0.1215

100

 2.1417

0.2072 2.0167

0.2929 1.975

0.3786 1.975

0.4643 1.9917

The following figure shows the correlation between the elevator deflection (δe) and τ with the

throttle level (δT) set at 100%. A spline interpolation has been used to calculate τ between the test

points.

122

Figure 5.20. Elevator deflection vs. τ

The minimum time to dive 100ft (τ) is estimated to be around 2s; there is a difference of less

than 0.5s between the maximum and minimum values, being trivial (Figure 5.20). While the

Giant Big Stik diving rate is around 3,000fpm, the recommended descent rate of an

unpressurized cabin like the Cessna 172 is no more than 500fpm (Transport Canada, 2010b). The

Cessna 172 is not TCAS equipped but, compared to a larger aircraft equipped with TCAS, the

Giant Big Stik doubles the diving rate of the issued Resolution Advisories (RAs) (see Appendix

C – Figure C.1 and Figure C.2) (Federal Aviation Administration. U.S. Department of

Transportation, 2011).

In a scenario with an encounter between a Cessna 172 and a Giant Big Stik where both are flying

at the same altitude and based on the estimated diving rates, the latter would successfully avoid a

123

collision (assuming the context in this section). However, in the case that the intruder’s pilot

identifies the RPA and also performs a diving manoeuvre, a further study is recommended.

Based on the 4 stages of the CA solving method described in Section 5.2.2, the avoidance

manoeuvre analysis only focuses on the second stage. The control structure and the conditions

for switching to the corresponding stage are the following (Table 5.6):

Table 5.6. CA stages for the avoidance study

CA stage
Control Elevator deflection

(δe)

Throttle level

(δT)
Switch condition

Roll axis Pitch axis

Initial

state

Closed-

loop

Closed-

loop
- - -

Avoidance
Closed-

loop
Open-loop

From 4.5° (0.0787rad)

to

26.6° (0.4643rad)

100
Intruder detected +

15s

Recovery7
Closed-

loop
TBD Full range TBD h < 200ft

End
Closed-

loop

Closed-

loop
- - -

a) Initial state: before any threat is detected, the aircraft flies under regular control following

an orbital path as defined by the Φ manoeuvre.

b) Avoidance: if an intruder is detected and the pilot in command (in case there is a human-

in-the-loop supervising the mission) has not taken any measures to avoid the collision

after 15s, the CA system initiates a diving manoeuvre by setting the elevator deflection to

a range between 4.5º and 26.6º in open-loop, while the roll remains under the control of

the autopilot to permit a vertical manoeuvre. According to the results in Figure 5.20, in

the case of an encounter between a Cessna and a Giant Big Stik, the latter successfully

avoids the piloted aircraft due to a larger diving rate.

7An improved performance with a recovery study remains as future work

124

c) Recovery7: represents the aircraft dynamic performance seconds after the aircraft has

been considered to have dived down 200ft from its initial location. This is a complex

study since the purpose of the full avoidance task is to not only take the aircraft out of

risk but to also do it safely. It is currently out of the scope of this work.

d) End: the task prior to the identification of the conflict point is resumed.

5.3. Summary

The Giant Big Stik computer model has been adjusted for more specific vertical avoidance

strategies and it is introduced as a representative RPA model with SAA applications. The

avoidance task is based on current regulations and recommendations (Appendix C) established

by international administrations and Transport Canada for avoiding NMAC. The main goal is to

develop a fit-for-purpose FDM for estimating achievable climb/descend rates for CA

manoeuvres.

This chapter has also introduced a CA methodology for solving NMAC scenarios between

piloted and RPA. It included a series of 4 steps including an avoidance manoeuvre and a

recovery performance. When conducting a complete CA design, it is important to first that the

RPA is capable of operating an avoidance manoeuvre.

Based on the advisories given by the TCAS in commercial aircraft, a vertical avoidance

manoeuvre has been suggested as a direct solution over complex trajectories. At the same time,

recommendations suggest a 2τ+15 directive to perform an avoidance, with τ being the time to

avoid a collision. In an NMAC, the objective is the intruder to remain out of the collision volume,

which is defined by a cylindrical volume of 500ft of radius and 200ft of height. This means that τ

125

is defined by the time to dive 100ft in case the two aircraft involved are flying at the same

altitude. However, diving 100ft is a tight solution and in a real mission, a dive of 200ft is

encouraged.

Additionally, calculating τ as the time to dive 100ft allowed for the estimation of the aircraft’s

diving rate, which permitted the completion of a sanity check prior to conducting further CA

studies. This avoidance study has been tested with a Cessna 172 as the representative piloted

aircraft and the Giant Big Stik as the RPA. For this specific case, the difference in the diving rate

between the Cessna and the Giant Big Stik is significant; with 500fpm and 3,000fpm

respectively. This suggests that the RPA is capable of avoiding a Cessna under this particular

example.

126

Chapter 6

Discussion, Recommendations, and

Conclusion

Starting with a discussion on Open-Source Software (OSS) from a graduate student perspective,

followed by a methodology for validating Remotely Piloted Aircraft (RPA) computer models,

and finishing with the design and validation of a representative RPA computer model in JSBSim

for testing Sense and Avoid (SAA) approaches, this research has covered several fields of

engineering with aerospace applications. The diverse contributions of this research are further

discussed in this chapter. Additionally, a list of possibilities for future work with recommended

improvements based on the findings of this research is presented, followed by the conclusions.

6.1. Impact and Contributions

The ultimate goal of this research observed from a wide perspective is to assess the integration of

Remotely Piloted Aircraft Systems (RPAS) into the airspace from the flight dynamics modelling

point of view. The integration is analyzed by evaluating the effect of encounters between piloted

and RPA where the RPA Flight Dynamics Model (FDM) is implemented.

127

For the representative RPA (Giant Big Stik), a computer FDM has been designed to fit the

simulated environment. The computer model was previously validated by a methodology that

was based on existing Verification and Validation (V&V) methods and adapted to RPAs. Due to

the proprietary nature of most aerospace simulators, the open-source platform JSBSim was used.

These collaborative frameworks have particular technical challenges, which have also been

discussed in detail.

The fields addressed throughout this document include: (1) aerospace engineering as the

application (CA with RPAS in particular), (2) software engineering, including Modelling and

Simulation (M&S), V&V, and OSS, and (3) academic culture. In the following Figure 6.1, each

contribution is expressed in its corresponding group and field.

Figure 6.1. Thesis contributions (updated from Figure 1.1)

128

6.1.1. Open-Source Software Contribution

The model and simulation developed in this thesis are based on OSS to avoid proprietary

software. However, the project faced many difficulties when using the selected OSS, JSBSim.

As an outcome, a discussion on the challenges of OSS in academia emerged, since most of the

barriers were not only specific to JSBSim.

Graduate students play a significant role in the OSS loop; they evolve from regular users to

contributors throughout their studies, which enriches the OSS community. They also offer an

important resource for its sustainability. However, graduate students software contributions are

often undervalued by the scientific community (e.g. code contributions are not taken into

consideration for promotion in academia). Technical, cultural and practical challenges sometimes

discourage graduate students from the continued use of OSS and contributing to their community.

This thesis has provided an overview of this problem and how graduate students fit in the OSS

environment. By following a series of good practices, the students can benefit from interacting

and networking with other students and researchers, while the OSS community can benefit from

their contribution to the software. The novelty of this discussion is that it focuses on the graduate

student experience. However, this is an institutional issue and everyone in academia (graduate

students, supervisors, faculty, administrators, and OSS community members) has been given a

series of practices to address this issue and create a better experience for graduate students. The

proposed practices would establish guidelines that will then have long-term benefits, if

implemented as regular practices.

Overall, the impact of this thesis can be summarized as the following contribution:

129

The powerful role of graduate students in the OSS loop: challenges and best practices for

a positive experience.

This discussion has been presented as a workshop at the ACM Canadian Celebration of Women

in Computing in November 2018, and during the Teaching and Learning Conference in May

2019 at Memorial University. A formalized and extended version of the work included in this

thesis, which analyzes the barriers faced by graduate students and provides a series of

recommendations for different representative groups in academia, is being prepared for

publication in the open-access Facets journal (Canadian Science Publishing, 2019). Additionally,

a blog post on this topic has been commissioned by Nature Careers (“Nature > careers,” n.d.) and

is currently under development. This research has been conducted in collaboration with Danielle

Quinn, from the Biology department in the Faculty of Science at Memorial University.

6.1.2. JSBSim Contribution

JSBSim is a widely used aerospace tool in academia, research, and industry. Since it is open-

source, it has also become popular among enthusiasts who run the software as a flight simulator.

Along with the code, there is a large online community that supports and keeps the software

active. In order to use JSBSim to its full potential, it is recommended that users review the

manual. However, it is expected that users will face difficulties understanding this manual, as it

is currently incomplete and several sections can be improved. On top of these issues, there is no

specific section for RPAs in the latest version.

With this work, two RPA computer models have been designed to meet the requirements of the

research. Based on the experience and the information in the general manual, a simplified

document of the JSBSim manual, focusing on the development of RPAs, was created:

C1

130

C2

C3

“Appendix A: A simplified manual of the JSBSim open-source FDM for fixed-wing RPA

applications”. This appendix is under revision to be included as a supplementary manual along

with the main package (Cereceda, 2019). An extract of this thesis was also presented at the IEEE

Newfoundland Electrical and Computer Engineering Conference (NECEC2017) in November

2017 (Cereceda et al., 2017).

The existing package does not include either RPA models or a manual that opens the software to

their use. The impact of this work, included in Chapter 4 and Appendix A, is observed in the

large community of online users who will benefit from: (1) a simplified document for the design

of RPAs and (2) the two new and validated RPA computer models. JSBSim users will be able to

download the manual and integrate the RPA models into their simulations.

Contributions to the JSBSim community:

A simplified version of the current JSBSim manual for RPAs including the minimum

requirements for the design of an RPA in JSBSim. The package and its application for

RPAs are introduced with a case study that aims to help and guide any modellers on the

RPA computer design task (Cereceda, 2019).

The EPP FPV and the Giant Big Stik computer models are accessible in the JSBSim

online library.

The code for both computer models is included in “Appendix D: Code and configuration files”.

6.1.3. Development and Validation of RPA Computer Models

The use of the JSBSim computer model raised concerns around its reliability. Based on existing

V&V methods, general aircraft validation categories, and regulatory advisories, a validation

131

C4

method in tutorial format for the development of RPA computer models was developed. The

initial purpose of this validation method was to present JSBSim as a trusted FDM for the

development of any fixed-wing computer models. The method was later generalized, and is now

used as a validation procedure for any RPA computer model.

Official existing advisories do not contemplate RPA validation methods for flight simulators.

This research started with an initial analysis of the differences between piloted and remotely

piloted flight simulators and listed a series of considerations for RPAS flight simulators. Based

on these conclusions and existing practices for general aircraft, a validation method was

developed. This method aims to initialize a framework for validating RPA computer models and,

eventually, become a standardized practice. The relevance of this thesis as included in Chapter 4

with its application in Chapter 5, is that the V&V is flexible, serves in any simulation context

regardless of the requirements, and it is ready for any developer to use.

Overall, the impact of this research in M&S and V&V for RPAS applications can be summarized

in the following contributions:

List of minimal requirements for RPAS flight simulators.

The presented validation methodology is flexible and addresses the lack of validation

standards for RPAs by using straightforward methods (e.g. inspection and correlation)

based on existing advisories for piloted aviation that could be improved to set up a

formal standard.

The initial approach to this issue, including the Giant Big Stik computer development in absence

of flight tests, is described in “Validation discussion of an Unmanned Aerial Vehicle (UAV)

using JSBSim Flight Dynamics Model compared to MATLAB/Simulink AeroSim Blockset”,

C5

132

which was presented during the IEEE Systems, Man and Cybernetics Conference 2016

(SMC2016) (Cereceda et al., 2016). The complete modelling procedure, including flight tests, is

published in the open-access MDPI Drones journal (Cereceda et al., 2019).

6.1.4. Collision Avoidance Application

The application of this thesis starts with the study of extreme manoeuvres in the circumstance of

an encounter between a piloted and an RPA. The encounter geometry simulated was a Φ

manoeuvre: an improved geometry that was presented at the Newfoundland Electrical and

Computer Engineering Conference 2014 (NECEC2014) in collaboration with Dr. Jonathan

Stevenson (Cereceda & Stevenson, 2014). The piloted aircraft is represented by a Cessna 172

while the Giant Big Stik is the representative RPA.

The Cessna 172 belongs to the category of general aviation aircraft and does not require to carry

a TCAS on board that would give it the ability to identify hazards in the surrounding areas over

1,000ft. This means that the avoidance capability of the Cessna 172 (and other general aviation

aircraft) relies on the pilot being able to visually detect a remotely piloted system. This problem

is one consequence of the integration of the RPAs into the airspace and is one of interest since

both the piloted and the remotely piloted system usually fly at low altitudes. Prior studies have

approached this problem with complex methods and calculations that add delays in real-time

performance.

Based on the TCAS principles of a vertical avoidance, a study evaluating the Giant Big Stik

diving performance has shown that, under the circumstance of a Near Mid-Air Collision

(NMAC), the RPA is around 2.5 times faster than the piloted aircraft. This means that the Giant

Big Stik can effectively avoid a collision with a Cessna 172 (or any aircraft limited to a diving

133

rate of 500fpm). However, this statement is limited to the Giant Big Stik aircraft since the diving

rate of any RPA depends on the corresponding aircraft capabilities. Therefore, no contribution is

claimed in the field of SAA and collision avoidance.

6.2. Future Research

With this research, advancement has been made with the initiation of a series of V&V phases for

the development of RPA computer models. Associated to that, the JSBSim open-source package

has shown to be a successful tool for the simulation of the interaction between piloted and RPA

and the design of new RPA FDM. Limited improvements have been made in the SAA

application and further studies are needed in order to settle formal claims.

The following recommendations provide a series of suggestions for future research and

development activities. The main research lines related to this work that are worth continuing are

the improvements in the validation procedure and the avoidance approach for RPAs.

6.2.1. Proposed Improvements to Open-Source Software in Academia

Although technical difficulties while working with OSS are expected in academia, these

difficulties should not add extra challenges for graduate students to conduct their research work.

Chapter 3 provided an overview of the most common barriers and the means to overcome them.

It is important to bring the recommended solutions in Section 3.2.5 into practice to instigate a

positive graduate student experience, and the following (improvements) are suggested:

1- Assess the needs of graduate students in-depth: The discussion on the challenges that

the graduate students experience with OSS during their programs was based on known

culture. This discussion could become a more formal study by assessing all graduate

134

students in an academic institution to see what disciplines are the most affected and what

barriers have the worst impact. This would help narrow down the problem in order to

look for more specific solutions.

2- Initiate a set of guidelines on how to register and cite code with the collaboration of

librarians: Many pieces of code are lost as students graduate since research repositories

mostly consist of documented content. It would be of interest to start conversations with

librarians to frame a system that could contain research code (recommendations for

administrators in Section 3.2.5).

3- Share good coding practices among coding instructors: Good practices in scientific

computing are assumed but rarely implemented. It is important that instructors are more

aware of their positive effect and share them with other peers and learners. A series of

workshops for instructors would help remind the importance of these practices.

6.2.2. Proposed RPAS Flight Simulator Requirements Improvements

This thesis has provided an initial analysis of the differences between piloted and RPA flight

simulators in order to list the minimal requirements for RPAS flight simulators. However, the

role of the pilot needs further discussion since it is a wide topic. In future projects, the study on

the human in RPAS flight simulators could be expanded to further evaluate and improve

flight simulators requirements.

6.2.3. Proposed Computer Model Validation Improvements

Chapter 4 presented a classic tool that it was later implemented for the development and

validation of RPA computer models in that same chapter and Chapter 5 with SAA applications.

Currently, the literature is not clear about what the standards are for the correct design of these

135

particular models. This thesis aimed to initiate a discussion on this problem and to provide a

framework to begin its definition. However, more effort should be made to expand this topic

further.

The following improvements are proposed to promote the RPA computer model validation:

1- Improve V&V phases: The methodology presented in Chapter 4 is based on classic

validation techniques and basic in its definition. It lacks the specifics and the existing

phases need a quantitative definition. Due to the lack of references for the development

of RPA models, the aerospace community is in need of guidelines that could serve as a

standard. This method was introduced here in its early development stages and it needs

the specifics for its formalization from an M&S and systems point of view. Although any

V&V methodology directly depends on the final application of the project and the model

conditions, an expected level of similarity in the observation/inspection should be defined.

2- Pilot’s Operating Handbook (POH) for RPAs: When trying to define the specifics of

phase 2, it was found that R/C aircraft manufacturers do not provide a similar document

to a POH for piloted aviation. The specifications and expected aircraft performance were

obtained from speaking with R/C pilots and from online forums. This information is

based on the experience of the human pilot and lacks the details; more specific reports

should be provided by the manufacturers.

3- Design other RPA models: The V&V methodology has been used to model two

representative aircraft that are similar in size but not in performance. This procedure

could be tested for smaller and bigger aircraft in order to validate its robustness.

4- One factor at a time limitations: In phase 3 of the computer model validation procedure,

each command input was isolated to compare the performance of the RPA models since

136

the influence of the aerosurface deflections to their correspondent axis is known from the

aircraft dynamics. This technique does not allow for evaluating the effect of other

deflections on a particular axis. For a finer tune of the model, a different observation

method should be carried out.

5- V&V for broader applications: The study of SAA manoeuvres and, CA in particular,

was the application of this research and the rationale behind the definition of the V&V

methodology. However, it could be expanded to other methods and applications in order

to test its viability and flexibility.

The technical difficulties associated with the RPA flight tests have limited the validation to a

particular control range, meaning that RPA computer models can only be fully certified after

extensive testing. Related to the computer model development but not with the introduced V&V

methodology in Chapter 4, the following recommendations are proposed to improve the RPA

computer models:

1- Improve the EPP FPV FDM reliability: The EPP FPV structure and fuselage are made

from flexible materials that add a random error in the transmission of the control

deflection to the aero surfaces. For this particular case, the validation procedure requires

more real data from the real system. A larger dataset from several missions would help to

identify and correct the additional error and improve the aircraft performance in the

simulation.

2- Improve the Giant Big Stik computer model performance in pitch: The flight data

used for validating the Giant Big Stik included changes in elevator deflection of around

25°. The flight mission was limited because of the risk associated with extreme

manoeuvres. However, an experienced pilot who is familiar with the aerobatic

137

performance of the Giant Big Stik could conduct a flight that included changes in the

elevator deflection from a steady flight. This dataset would help to fine-tune the Giant

Big Stik FDM and increase its correlation coefficient.

6.2.4. Proposed Improvements to CA in RPAs

With the same scenario and simulation environment, the RPA case in Chapter 5 showed that the

Giant Big Stik provides an effective avoidance manoeuvre in an encounter with a Cessna 172

(assuming the simulation context described here only). However, additional research remains to

be completed to support this finding and the next recommendations list the improvements on the

issue of CA in RPAs:

1- Recovery analysis study: The recovery has not been studied for the RPA case in Chapter

5 because there was greater interest in the implications of τ and the diving time.

Therefore, a further recovery study should be carried for a full study of the procedure.

2- Introduce the scenario where the pilot in the piloted aircraft also performs a diving

manoeuvre: The Giant Big Stik diving rate showed an excelling value compared to the

one given by the Cessna 172. It is difficult to indicate that the Giant Big Stik provides a

better avoidance manoeuvre since there are more encounter scenarios that have not been

examined. The current study could be improved by considering the event of the piloted

aircraft diving at the same time the threat is detected.

3- Evaluate the implications of the CA methodology with other representative RPAs:

In this document, the Giant Big Stik was selected as a reference RPA to represent its

performance compared to the Cessna 172. The results showed that the RPA provided a

faster manoeuvre for that particular case. However, it is worth assessing if this statement

138

could be extended to other RPA and piloted aircraft of similar characteristics to the Giant

Big Stik and the Cessna 172 respectively.

6.3. Conclusion

This research has presented a wide analysis of open-source simulations of RPAs with SAA

applications. Open-source flight simulators, such as JSBSim and FlightGear, have provided the

flexibility demanded by the analysis conducted. The downside of designing models on an

existing open-source platform is the learning curve that comes along with it and the difficulties

created on the contributor. These barriers have been analyzed from a graduate student

perspective and a series of practices to improve the graduate student experience have been

presented. The main objective of these recommendations is to provide a positive environment for

the student to develop their research work while contributing to OSS.

Particular challenges were faced with the JSBSim open-source FDM and a simplified manual for

the development of RPAs was created to answer the lack of documented guidelines. When

creating the aircraft models in JSBSim, it was found that there was a lack of standards and

official recommendations for the development of RPA computer models and their validation. In

a way to answer this added difficulty, an introductory V&V method was proposed and

successfully used for the development of two RPA models: the EPP FPV and the Giant Big Stik.

This simplified method presents an easy-to-follow procedure for any designer and open to any

modifications or adjustments depending on the requirements of the application. It aims to initiate

a discussion about the lack of standards on this topic and possibly become a guideline in the

139

future. However, the technical restrictions of testing extreme manoeuvres with RPAs on the field

have limited the applicability of this procedure to only the allowed test ranges.

For the study of avoidance manoeuvres as the application, this document presented a solution

based on the classic approach of the TCAS in commercial aviation: in case of a threat detection,

the aircraft is recommended to avoid the hazard vertically. By defining the minimum

requirements for a diving avoidance manoeuvre, the effect of the factors in τ is calculated

assuming that τ is only dependent on the aircraft’s own dynamics. When the τ evaluation was

conducted on the Giant Big Stik case (RPA representative), a significant difference was observed

when comparing it to the Cessna 172 (piloted aircraft representative) vertical performance: the

diving time (τ) in the Giant Big Stik RPA largely exceeds the piloted aircraft, which denotes that

the RPA provides a faster avoidance. However, this does not mean that the Giant Big Stik will

successfully avoid a possible encounter with a general aircraft since there are other possible

scenarios that depend on the reaction of the human pilot on the piloted aircraft.

The application has served as a “sanity check” for the study of the safe integration of RPAs into

the airspace and work remains to be completed to assess whether RPAs provide a safer

avoidance than piloted aircraft. Even so, the computer model developed to test SAA manoeuvres

using the proposed V&V is a fitting representation of the real model (for the design signal range).

6.4. List of publications

The following include a list of papers, peer-reviewed manuscripts, and reports related to this

thesis:

140

Journal publications

1. Oihane Cereceda and Danielle Quinn, A Graduate Student Perspective on Overcoming

Barriers to Interacting with Open-Source Software, accepted for publication on the

Facets open-access journal in November 2019.

2. Oihane Cereceda, Luc Rolland, and Siu O’Young, Giant Big Stik R/C UAV computer

model development in JSBSim for sense and avoid applications, published on the MDPI

Drones open-access journal in June 2019.

Conference publications

3. Oihane Cereceda, Collision Avoidance Methodology for Unmanned Aerial Vehicles and

the Giant Big Stik as a Case Study, presented at the 28th Newfoundland Electrical and

Computer Engineering Conference in November 2019 (St. John’s, Canada).

4. Oihane Cereceda, A Survey of Collision Avoidance Methods for Unmanned Aircraft

Systems, presented at the 27th Newfoundland Electrical and Computer Engineering

Conference in November 2018 (St. John’s, Canada).

5. Oihane Cereceda, Luc Rolland, and Siu O’Young, Vertical avoidance and recovery

analysis of a general aircraft in near mid-air collision scenarios using design and

analysis of computer experiments, presented at the 31st Canadian Conference on

Electrical and Computer Engineering in May 2018 (Québec City, Canada).

6. Oihane Cereceda, Luc Rolland, and Siu O’Young, JSBSim open source Flight Dynamics

Model for fixed-wing Unmanned Aerial Vehicle applications, presented at the 26th

Newfoundland Electrical and Computer Engineering Conference in November 2017 (St.

John’s, Canada).

141

7. Oihane Cereceda, Luc Rolland, and Siu O’Young, Validation discussion of an Unmanned

Aerial Vehicle (UAV) using JSBSim Flight Dynamics Model compared to

MATLAB/Simulink AeroSim Blockset, presented at the IEEE Systems, Man, and

Cybernetics Conference in October 2016 (Budapest, Hungary).

8. Jonathan D. Stevenson and Oihane Cereceda, A Simulated Environment for Testing 4D

Detect See and Avoid Scenarios for UAVs, presented at the 23rd Newfoundland Electrical

and Computer Engineering Conference in November 2014 (St. John’s, Canada).

Technical reports

9. Oihane Cereceda, Coefficients Calculation for the EPP FPV R/C Aircraft, technical

report, Memorial University of Newfoundland, May 2019.

10. Oihane Cereceda, A Simplified Manual of the JSBSim Open-Source Software FDM for

Fixed-Wing UAV Applications, technical report, Memorial University of Newfoundland,

May 2019.

142

References

Adaska, J. W., Obermeyer, K., & Schmidt, E. (2014). Robust probabilistic conflict prediction for

sense and avoid. 2014 American Control Conference, 1198–1203.

https://doi.org/10.1109/ACC.2014.6859435

Allerton, D. (2009). Principles of Flight Simulation.

https://doi.org/10.1017/CBO9781107415324.004

Alligier, R., Allignol, C., Barnier, N., Durand, N., & Wang, R. (2018). Detect and Avoid

Algorithm for UAS with 3D-Maneuvers. International Conference on Research in Air

Transportation 2018. Retrieved from www.icrat.org

ArduPilot documentation. (2017). Retrieved April 21, 2017, from

http://ardupilot.org/ardupilot/index.html

Artacho, B. (2018). Unmanned Aircraft System (UAS) Integration to Airspace and Collision Risk

Assessment (Memorial University of Newfoundland). Retrieved from

https://research.library.mun.ca/13082/1/thesis.pdf

Bacharakis, C. (2018). Cracking the Code — how Mozilla is helping university students

contribute to Open Source. Retrieved December 5, 2019, from https://medium.com/mozilla-

open-innovation/cracking-the-code-how-mozilla-is-helping-university-students-contribute-

to-open-source-25fa630d8c5c

Baker, C. A. B., Ramchurn, S., Teacy, W. T. L., & Jennings, N. R. (2016). Planning Search and

Rescue Missions for UAV Teams. Conference on Prestigious Applications of Intelligent

Systems at ECAI 2016, The Hague, NL, 31 Aug - 02 Sep 2016. IOS Press6pp, 1–6.

Balachandran, S., & Atkins, E. (2017). Markov Decision Process Framework for Flight Safety

143

Assessment and Management. Journal of Guidance, Control, and Dynamics, 40(4), 817–

830. https://doi.org/10.2514/1.G001743

Barnard, R. H., & Philpott, D. R. (2010). Aircraft flight. A description of the physical principles

of aircraft flight (4th ed.). Pearson Education.

Barnes, N. (2010, October 14). Publish your computer code: It is good enough. Nature, Vol. 467,

p. 753. https://doi.org/10.1038/467753a

Berndt, J. S., & JSBSim Development Team. (2011). JSBSim, An open source, platform-

independent, flight dynamics model in C++.

Bharati, S. P., Wu, Y., Sui, Y., Padgett, C., & Wang, G. (2018). Real-Time Obstacle Detection

and Tracking for Sense-and-Avoid Mechanism in UAVs. IEEE Transactions on Intelligent

Vehicles, 3(2), 185–197. https://doi.org/10.1109/tiv.2018.2804166

Boivin, C. (2017). A first in Canada: Drone collides with passenger plane above Quebec City

airport. Retrieved August 16, 2018, from CBC News website:

http://www.cbc.ca/news/canada/montreal/garneau-airport-drone-quebec-1.4355792

Bowlick, F. J., Goldberg, D. W., & Bednarz, S. W. (2017). Computer Science and Programming

Courses in Geography Departments in the United States. Professional Geographer, 69(1),

138–150. https://doi.org/10.1080/00330124.2016.1184984

Brooker, P., & Wo, Y. (2017). Introducing Unmanned Aircraft Systems into a High Reliability

ATC System. THE JOURNAL OF NAVIGATION, 66, 719–735.

https://doi.org/10.1017/S0373463313000337

Buchholz, J. J., Bauschat, J.-M., Hahn, K. U., & Pausder, H. J. (1996). ATTAS & ATTHeS In-

Flight Simulators. Recent Application Experiences and Future Programs. In Proceedings of

the NATO AGARD Symposium on flight simulation – Where are the challenges? (AGARD-

144

CP-577). Retrieved from http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA310479#page=36

Burning Glass Technologies. (2016). Beyond Point and Click the Expanding Demand for Coding

Skills. Retrieved from www.burning-glass.com

Canadian Aviation Regulations. (2018). Retrieved August 15, 2018, from http://laws-

lois.justice.gc.ca/eng/regulations/SOR-96-433/page-1.html#h-3

Canadian Science Publishing. (2019). FACETS.

Carey, M. A., & Papin, J. A. (2018). Ten simple rules for biologists learning to program. PLOS

Computational Biology, 14(1), e1005871. https://doi.org/10.1371/journal.pcbi.1005871

Caris, M., Stanko, S., Palm, S., Sommer, R., & Pohl, N. (2015). Synthetic aperture radar at

millimeter wavelength for UAV surveillance applications. 2015 IEEE 1st International

Forum on Research and Technologies for Society and Industry Leveraging a Better

Tomorrow (RTSI), 349–352. https://doi.org/10.1109/RTSI.2015.7325145

Cereceda, O. (2019). A Simplified Manual of the JSBSim Open-Source Software FDM for Fixed-

Wing UAV Applications. Retrieved from Faculty of Engineering and Applied Science,

Memorial University of Newfoundland website: https://research.library.mun.ca/13798/

Cereceda, O., Rolland, L., & O’Young, S. (2016). Validation discussion of an Unmanned Aerial

Vehicle (UAV) using JSBSim Flight Dynamics Model compared to MATLAB/Simulink

AeroSim Blockset. 2016 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), 3989–3994. https://doi.org/10.1109/SMC.2016.7844857

Cereceda, O., Rolland, L., & O’Young, S. (2017, November 15). JSBSim Open-Source Flight

Dynamics Model for Fixed-Wing Unmanned Aerial Vehicle Applications. Retrieved from

https://research.library.mun.ca/13801/

145

Cereceda, O., Rolland, L., & O’Young, S. (2018). Vertical avoidance and recovery analysis of a

general aircraft in near mid-air collision scenarios using design and analysis of computer

experiments. IEEE Canadian Conference on Electrical and Computer Engineering

(CCECE2018), 2–5.

Cereceda, O., Rolland, L., & O’Young, S. (2019). Giant Big Stik R/C UAV Computer Model

Development in JSBSim for Sense and Avoid Applications. Drones, 3(2), 48.

https://doi.org/10.3390/drones3020048

Cereceda, O., & Stevenson, J. D. (2014, November 3). A Simulated Environment for Testing 4D

Detect See and Avoid Scenarios for UAVs. Retrieved from

https://research.library.mun.ca/13799/

Chanel, C. P. C., Teichteil-Königsbuch, F., & Lesire, C. (2012). POMDP-based online target

detection and recognition for autonomous UAVs. Frontiers in Artificial Intelligence and

Applications, 242, 955–960. https://doi.org/10.3233/978-1-61499-098-7-955

Chen, R. T. N. (1989). A Survey of Nonuniform Inflow Models for Rotorcraft Flight Dynamics

and Control Applications. Retrieved from https://ntrs.nasa.gov/search.jsp?R=19900006622

Cook, S. P., Brooks, D., Cole, R., Hackenberg, D., & Raska, V. (2015). Defining Well Clear for

Unmanned Aircraft Systems. AIAA Infotech @ Aerospace. https://doi.org/10.2514/6.2015-

0481

Cooper, G. E., & Harper, R. P. (1969). The use of pilot training in the evaluation of aircraft

handling qualities. Retrieved from https://ntrs.nasa.gov/search.jsp?R=19690013177

Crichton, D. (2018). Open source sustainability. Retrieved September 12, 2018, from

TechCrunch website: https://techcrunch.com/2018/06/23/open-source-sustainability/

Desaraju, V., & Michael, N. (2014). Vision-based Landing Site Evaluation and Trajectory

146

Generation Toward Rooftop Landing. Rss. https://doi.org/10.15607/rss.2014.x.044

Diston, D. J. (2010). Computational modelling and simulation of aircraft and the environment.

Retrieved from

https://books.google.ca/books/about/Computational_Modelling_and_Simulation_o.html?id

=0v2hQwAACAAJ&redir_esc=y&hl=en

Dunn, C. (2018). Unauthorized drone forces wildfire-fighting aircraft away from B.C. blaze.

Retrieved August 16, 2018, from CBC News website:

https://www.cbc.ca/news/canada/british-columbia/unauthorized-drone-forces-wildfire-

fighting-aircraft-away-from-b-c-blaze-1.4759529

Durham, W. (2013). Aircraft Flight Dynamics and Control. Wiley.

Fang, S. X. (2014). UAV 4D Synchronization.

Fang, S. X. (2018). Risk-based Supervisory Guidance for Detect and Avoid involving Small

Unmanned Aircraft Systems (Memorial University of Newfoundland). Retrieved from

https://research.library.mun.ca/13204/1/thesis.pdf

Fasano, G., Accado, D., Moccia, A., & Moroney, D. (2016). Sense and Avoid for Unmanned

Aircraft Systems. IEEE Aerospace and Electronic Systems Magazine, (10).

https://doi.org/10.1117/12.720867

Federal Aviation Administration. U.S. Department of Transportation. (2011). Introduction to

TCAS II.

Federal Aviation Administration. (2013a). Integration of Civil Unmanned Aircraft Systems (UAS)

in the National Airspace System (NAS) Roadmap. 74.

Federal Aviation Administration. (2013b). Sense and Avoid (SAA) for Unmanned Aircraft

Systems (UAS). Second Caucus Workshop Report.

147

Federal Aviation Administration. (2019). Flight Simulation Training Device Qualification

Guidance – Advisory Circulars (AC). Retrieved August 28, 2018, from

https://www.faa.gov/about/initiatives/nsp/ac/

Finn, A., & Franklin, S. (2011). Acoustic sense & avoid for UAV’s. 2011 Seventh

International Conference on Intelligent Sensors, Sensor Networks and Information

Processing, 586–589. https://doi.org/10.1109/ISSNIP.2011.6146555

Flight Simulator : Plane Pilot - Microsoft. (2018). Retrieved December 9, 2018, from

https://www.microsoft.com/en-us/p/flight-simulator-plane-

pilot/9wzdncrd8s11?activetab=pivot:overviewtab

FlightGear Flight Simulator. (2019). Retrieved October 9, 2017, from http://www.flightgear.org/

Forsberg, K., & Mooz, H. (1991). The Relationship of System Engineering to the Project Cycle.

INCOSE International Symposium, 1(1), 57–65. https://doi.org/10.1002/j.2334-

5837.1991.tb01484.x

Galbraith, B. (2010). JSBSim Script Tutorial 1. Retrieved from

http://www.holycows.net/JSBSim_Script_Tutorial.pdf

Gardner, R. W., Genin, D., McDowell, R., Rouff, C., Saksena, A., & Schmidt, A. (2016).

Probabilistic model checking of the next-generation airborne collision avoidance system.

2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 1–10.

https://doi.org/10.1109/DASC.2016.7777963

Gazebo. (2014). Retrieved April 28, 2017, from http://gazebosim.org/

Geiger, R. S., Varoquaux, N., Mazel-Cabasse, C., & Holdgraf, C. (2018). The Types, Roles, and

Practices of Documentation in Data Analytics Open Source Software Libraries: A

Collaborative Ethnography of Documentation Work. Computer Supported Cooperative

148

Work: CSCW: An International Journal, 27(3–6), 767–802. https://doi.org/10.1007/s10606-

018-9333-1

Gnuplot. (n.d.). Retrieved September 20, 2018, from http://www.gnuplot.info/

Goldberg, B. E., Everhart, K., Stevens, R., Babbitt III, N., Clemens, P., & Stout, L. (1994).

System Engineering “ Toolbox ” for Design-Oriented Engineers. NASA Reference

Publication 1358, (December).

Gong, M., De Marco, A., & Berndt, J. S. (n.d.). JSBSim Commander. Retrieved December 6,

2017, from http://jsbsimcommander.sourceforge.net/

Government of Canada. (2019). Canadian Aviation Regulations SOR/96-433. Retrieved from

https://laws-lois.justice.gc.ca/eng/regulations/SOR-96-433/FullText.html#s-900.01

Great Planes. (2005a). Giant Big Stik ARF. Retrieved from

https://www.greatplanes.com/airplanes/gpma1224.php

Great Planes. (2005b). Giant Big Stik ARF Instruction Manual. Retrieved from

http://manuals.hobbico.com/gpm/gpma1224-manual.pdf

Great Planes. (2005c). Giant Big Stik ARF Instruction Manual. (217), 13–15.

Griffith, J., Kochenderfer, M., & Kuchar, J. (2008). Electro-Optical System Analysis for Sense

and Avoid. AIAA Guidance, Navigation and Control Conference and Exhibit.

https://doi.org/10.2514/6.2008-7253

Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV Communication

Networks. IEEE Communications Surveys & Tutorials, 18(2), 1123–1152.

https://doi.org/10.1109/COMST.2015.2495297

Heppe, S. B. (2015). Problem of UAV Communications. In Handbook of Unmanned Aerial

Vehicles (pp. 715–748). https://doi.org/10.1007/978-90-481-9707-1_30

149

HobbyKing.com. (n.d.). EPP-FPV Instructions. Retrieved April 21, 2017, from

https://hobbyking.com/media/file/163971972X102667X57.pdf

Institution of Electrical Engineers., R., Drolet, G., & Bray, J. R. (2017). IEE proceedings. Radar,

sonar, and navigation. In IET Radar, Sonar & Navigation (Vol. 11). Retrieved from

http://digital-library.theiet.org/content/journals/10.1049/iet-rsn.2016.0520

Jackson, E. B. (1995). Manual for a Workstation-based Generic Flight Simulation Program

(LaRCsim) Version 1 . 4. Nasa Technical Memorandum 110164.

Journal of Open Research Software. (2018). https://doi.org/10.5334/jors.223

JSBSim - FlightGear wiki. (2018). Retrieved April 21, 2017, from

http://wiki.flightgear.org/JSBSim

JSBSim Development Team. (2001). JSBSim Flight Dynamics Model download. Retrieved

September 20, 2018, from https://sourceforge.net/projects/jsbsim/

JSBSim Development Team. (2005a). Aeromatic for the JSBSim Open Source Flight Dynamics

Model. Retrieved April 21, 2017, from http://jsbsim.sourceforge.net/aeromatic2.html

JSBSim Development Team. (2005b). JSBSim Open Source Flight Dynamics Model. Retrieved

October 9, 2017, from http://jsbsim.sourceforge.net/

JSBSim Development Team. (2017). JSBSim Flight Dynamics Model: JSBSim. Retrieved

October 9, 2017, from http://jsbsim.sourceforge.net/JSBSim/

JSBSim Development Team. (2018). JSBSim Flight Dynamics Model - Browse Files at

SourceForge.net. Retrieved June 10, 2019, from https://github.com/JSBSim-Team/jsbsim

JSBSim Flight Dynamics Model - Code aircraft/c172x. (2009). Retrieved September 18, 2018,

from https://sourceforge.net/p/jsbsim/code/ci/master/tree/aircraft/c172x/

JSBSim Flight Dynamics Model - Code aircraft/DHC6. (n.d.). Retrieved September 18, 2018,

150

from https://sourceforge.net/p/jsbsim/code/ci/master/tree/aircraft/DHC6/

JSBSim Flight Dynamics Model - Code aircraft/minisgs. (2016). Retrieved December 17, 2018,

from https://sourceforge.net/p/jsbsim/code/ci/master/tree/aircraft/minisgs/

Ke, Y., Wang, K., & Chen, B. M. (2018). Design and Implementation of a Hybrid UAV with

Model-Based Flight Capabilities. IEEE/ASME Transactions on Mechatronics, 23(3), 1114–

1125. https://doi.org/10.1109/TMECH.2018.2820222

Kesteloo, H. (2018). Suspected drone collision with Cessna 172 causes $4,000 in damage.

Retrieved August 16, 2018, from DroneDJ website: https://dronedj.com/2018/02/23/drone-

collision-with-cessna-172/

Kochenderfer, M. J., & Chryssanthacopoulos, J. P. (2013). Collision Avoidance Using Partially

Controlled Markov Decision Processes. Agents and Artificial Intelligence. ICAART 2011.

Communications in Computer and Information Science. Retrieved from

https://link.springer.com/content/pdf/10.1007%2F978-3-642-29966-7_6.pdf

Kochenderfer, M. J., Holland, J. E., & Chryssanthacopoulos, J. P. (2012). Next-Generation

Airborne Collision Avoidance System. Retrieved from

http://www.dtic.mil/docs/citations/AD1014875

Kozuba, J. (2011). Impact of human factor on likelihood of aircraft accident. Archives of

Transport System Telematics, Vol. 4, iss. 2, 29–36. Retrieved from

http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BSL7-0054-0014

Lakhan, S. E., & Jhunjhunwala, K. (2008). Open Source Software in Education. EDUCAUSE

Quarterly Magazine, 31(2), 32–40. Retrieved from

http://www.educause.edu/EDUCAUSE+Quarterly/EDUCAUSEQuarterlyMagazineVolum/

OpenSourceSoftwareinEducation/162873

151

Law, A. M. (2014). Simulation modeling and analysis. Retrieved from

https://books.google.ca/books?id=5clDnAEACAAJ&source=gbs_book_other_versions

List, M., Ebert, P., & Albrecht, F. (2017). Ten Simple Rules for Developing Usable Software in

Computational Biology. PLOS Computational Biology, 13(1), e1005265.

https://doi.org/10.1371/journal.pcbi.1005265

Liu, M., Egan, G. K., & Santoso, F. (2015). Modeling, Autopilot Design, and Field Tuning of a

UAV with Minimum Control Surfaces. IEEE Transactions on Control Systems Technology,

23(6), 2353–2360. https://doi.org/10.1109/TCST.2015.2398316

Londner, E. H., & Moss, R. J. (2017). A Bayesian Network Model of Pilot Response to TCAS

Resolution Advisories. In Europe Air Traffic Management Research and Development

Seminar. Retrieved from

http://www.atmseminarus.org/seminarContent/seminar12/papers/12th_ATM_RD_Seminar_

paper_46.pdf

M.V. Cook. (2007). Flight Dynamics Principle (2nd ed.).

Marston, M., Operations, N. A., & Baca, G. (2015). ACAS-Xu / Initial Self-Separation Flight

Tests Flight Test Report. Retrieved from https://ntrs.nasa.gov/search.jsp?R=20150008347

Mccallie, D., Butts, J., & Mills, R. (2011). Security analysis of the ADS-B implementation in the

next generation air transportation system. International Journal of Critical Infrastructure

Protection, 4, 78–87. https://doi.org/10.1016/j.ijcip.2011.06.001

Mcfadyen, A., & Mejias, L. (2016, January 1). A survey of autonomous vision-based See and

Avoid for Unmanned Aircraft Systems. Progress in Aerospace Sciences, Vol. 80, pp. 1–17.

https://doi.org/10.1016/j.paerosci.2015.10.002

McGovern, S. M. (2007). Categories for classification of aircraft flight model validation.

152

AIAA/IEEE Digital Avionics Systems Conference.

https://doi.org/10.1109/DASC.2007.4391961

Melnyk, R., Schrage, D., Volovoi, V., & Jimenez, H. (2014). Sense and avoid requirements for

unmanned aircraft systems using a target level of safety approach. Risk Analysis, 34(10),

1894–1906. https://doi.org/10.1111/risa.12200

Minitab. (2019). Retrieved April 21, 2017, from http://www.minitab.com/en-us/

Mueller, E. R., Isaacson, D. R., & Stevens, D. (2016). Air Traffic Controller Acceptability of

Unmanned Aircraft System Detect-and-Avoid Thresholds. Retrieved from

http://www.sti.nasa.gov

Mueller, M., Smith, N., & Ghanem, B. (2016). A benchmark and simulator for UAV tracking.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 9905 LNCS, 445–461.

https://doi.org/10.1007/978-3-319-46448-0_27

Murray-Smith, D. J. (2012). Modelling and simulation of integrated systems in engineering :

issues of methodology, quality, testing and application. Retrieved from

https://books.google.ca/books?id=OX9wAgAAQBAJ&lpg=PP1&pg=PP1&redir_esc=y#v=

onepage&q&f=false

Nangia, U., & Katz, D. S. (2017). Track 1 Paper: Surveying the US National Postdoctoral

Association Regarding Software Use and Training in Research. Copyright Nangia and Katz.

https://doi.org/10.6084/m9.figshare.5328442

Narkawicz, A., Muñoz, C. A., & Dutle, A. (2016). Coordination Logic for Repulsive Resolution

Maneuvers. 16th AIAA Aviation Technology, Integration, and Operations Conference.

https://doi.org/10.2514/6.2016-3156

153

National Museum of the US Air ForceTM. (2015). Kettering Aerial Torpedo “Bug.” Retrieved

August 12, 2019, from https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-

Sheets/Display/Article/198095/kettering-aerial-torpedo-bug/

Nature > careers. (n.d.). Retrieved March 12, 2019, from Nature website:

https://www.nature.com/careers

Newcome, L. R. (2005). Unmanned aviation : a brief history of unmanned aerial vehicles.

Retrieved from

https://books.google.ca/books/about/Unmanned_Aviation.html?id=EnqjAwAAQBAJ&redir

_esc=y

Nikolai, B. (1999). Open Source Software Development as a Special Type of Academic

Research (Critique of Vulgar Raymondism). First Monday, 4(10).

OpenEaagles. (n.d.). Retrieved October 19, 2017, from

http://www.openeaagles.org/wiki/doku.php?id=start

Ott, J. T. (2015). Well Clear: General Aviation and Commercial Pilot’s Perception of Unmanned

Aerial Vehicles in the National Airspace System. Human Factors and Ergonomics Society

59th Annual Meeting. https://doi.org/10.1177/1541931215591013

Pajares, G. (2015). Overview and Current Status of Remote Sensing Applications Based on

Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing,

81(4), 281–330. https://doi.org/10.14358/PERS.81.4.281

Pandey, R. K., & Tiwari, V. (2011). Reliability Issues in Open Source Software. 34(1), 34–38.

https://doi.org/10.5120/4065-5849

Perkel, J. (2016). Democratic databases: Science on GitHub. Nature, 538(7623), 127–128.

https://doi.org/10.1038/538127a

154

Piccolo ll Autopilot. (n.d.). Retrieved September 13, 2018, from Cloud Cap Technology website:

http://www.cloudcaptech.com/products/detail/piccolo-ii

Prabhu, P., Zhang, Y., Ghosh, S., August, D. I., Huang, J., Beard, S., … Walker, D. (2011). A

survey of the practice of computational science. State of the Practice Reports on - SC ’11, 1.

https://doi.org/10.1145/2063348.2063374

Ramasamy, S., & Sabatini, R. (2015). A unified approach to cooperative and non-cooperative

Sense-and-Avoid. 2015 International Conference on Unmanned Aircraft Systems, ICUAS

2015. https://doi.org/10.1109/ICUAS.2015.7152360

Ramasamy, S., Sabatini, R., Gardi, A., & Liu, J. (2016). LIDAR obstacle warning and avoidance

system for unmanned aerial vehicle sense-and-avoid. Aerospace Science and Technology,

55, 344–358. https://doi.org/10.1016/J.AST.2016.05.020

Ray Young, & Brenton, S. (2016). Establishing baseline requirements for a UAS ground-based

sense and avoid system. 2016 Integrated Communications Navigation and Surveillance

(ICNS), 8D4-1-8D4-10. https://doi.org/10.1109/ICNSURV.2016.7486385

Raymond, E. S. (2001). The cathedral and the bazaar : musings on Linux and open source by an

accidental revolutionary. Retrieved from

https://books.google.ca/books/about/The_Cathedral_the_Bazaar.html?id=F6qgFtLwpJgC&r

edir_esc=y

RCGroups. (2017). Remote Control, Radio Control Planes, Drones, Cars and Boats. Retrieved

April 23, 2017, from https://www.rcgroups.com/forums/index.php

RCGroups. (2018). Great Planes Giant Big Stik XL 55-61cc Gas/EP ARF - RCGroups Review -

RC Groups. Retrieved April 19, 2018, from

https://www.rcgroups.com/forums/showthread.php?3000589-Great-Planes-Giant-Big-Stik-

155

XL-55-61cc-Gas-EP-ARF-RCGroups-Review

Rhodes, D. (2017). Ground based sense and avoid key piece of the BLOS puzzle. 2017

Integrated Communications, Navigation and Surveillance Conference (ICNS), 1–15.

https://doi.org/10.1109/ICNSURV.2017.8012050

Roads and Bridges: History and Background of Digital Infrastructure. (n.d.). Retrieved from

https://www.fordfoundation.org/media/2976/roads-and-bridges-the-unseen-labor-behind-

our-digital-infrastructure.pdf

Rodriguez-Fernandez, V., Menendez, H. D., & Camacho, D. (2015). Design and development of

a lightweight multi-UAV simulator. Proceedings - 2015 IEEE 2nd International

Conference on Cybernetics, CYBCONF 2015, 255–260.

https://doi.org/10.1109/CYBConf.2015.7175942

ROS. (2008). Retrieved April 28, 2017, from http://www.ros.org/

Sahawneh, L. R., Mackie, J., Spencer, J., Beard, R. W., & Warnick, K. F. (2015). Airborne

Radar-Based Collision Detection and Risk Estimation for Small Unmanned Aircraft

Systems. Journal of Aerospace Information Systems, 12(12), 756–766.

https://doi.org/10.2514/1.I010284

Salas, E., Maurino, D., & Curtis, M. (2010). Human Factors in Aviation. In Human Factors in

Aviation (Second edi). https://doi.org/10.1016/B978-0-12-374518-7.00001-8

Selig, M. S., Deters, R., & Dimock, G. (2002). Aircraft Dynamic Models for Use with

FlightGear. Retrieved April 28, 2017, from http://m-selig.ae.illinois.edu/apasim/Aircraft-

uiuc.html

Shaheen E. Lakhan, K. J. (2008). Open-Source Software in Education. Retrieved from

https://er.educause.edu/articles/2008/5/open-source-software-in-education

156

Shevell, R. S. (1989). Fundamentals of flight. Retrieved from

https://books.google.ca/books?id=9MOQQgAACAAJ&dq=Fundamentals+of+flight&hl=en

&sa=X&ved=0ahUKEwjH3sDJtrbTAhVE_IMKHZ2FAdEQ6AEIKTAB

SimplePlanes. (2019). SGS-126 N5702S Mini Glider. Retrieved December 17, 2018, from

https://www.simpleplanes.com/a/kpSAvF/SGS-126-N5702S-Mini-Glider

SketchUp. (2019). Retrieved April 19, 2018, from https://www.sketchup.com/

Smith, A. M., Katz, D. S., & Niemeyer, K. E. (2016). Software citation principles. PeerJ

Computer Science, 2, e86. https://doi.org/10.7717/peerj-cs.86

Smith, A. M., Niemeyer, K. E., Katz, D. S., Barba, L. A., Githinji, G., Gymrek, M., …

Vanderplas, J. T. (2018). Journal of Open Source Software (JOSS): design and first-year

review. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.147

Smith, R. (2001). Open Dynamics Engine. Retrieved April 28, 2017, from http://www.ode.org/

SoftwareX. (2019). Retrieved September 12, 2018, from SoftwareX website:

https://www.journals.elsevier.com/softwarex

St. John’s Historical Wind Speed. (n.d.). Retrieved December 17, 2018, from

https://stjohns.weatherstats.ca/metrics/wind_speed.html

Starmetro Staff. (2018). WestJet flight has close call with drone while en route to Edmonton

airport Tuesday. Retrieved August 16, 2018, from The Star website:

https://www.thestar.com/edmonton/2018/08/01/westjet-flight-has-close-call-with-drone-

while-en-route-to-edmonton-airport-tuesday.html

Stegagno, P., Basile, M., Bulthoff, H. H., & Franchi, A. (2014). A semi-autonomous UAV

platform for indoor remote operation with visual and haptic feedback. 2014 IEEE

International Conference on Robotics and Automation (ICRA), 3862–3869.

157

https://doi.org/10.1109/ICRA.2014.6907419

Stevens, B. L., Lewis, F. L., & Johnson, E. N. (1992). Aircraft control and simulation. Retrieved

from

https://books.google.ca/books?id=XIabCgAAQBAJ&printsec=frontcover&dq=Aircraft+co

ntrol+and+simulation&hl=en&sa=X&ved=0ahUKEwjg-

_mntrbTAhVC2oMKHY6bCBoQ6AEIJDAA#v=onepage&q=Aircraft control and

simulation&f=false

Stevenson, J. D. (2013). Small UAV 4D Simulation in MATLAB/Simulink and FlightGear. User

Description Document.

Stevenson, J. D. (2015). Assessment of the equivalent level of safety requirements for small

unmanned aerial vehicles. Memorial University of Newfoundland.

Stevenson, Jonathan D. (2015). Assessment of the Equivalent Level of Safety Requirements for

Small Unmanned Aerial Vehicles (Memorial University of Newfoundland). Retrieved from

https://research.library.mun.ca/8517/1/thesis.pdf

Strohmeier, M., Schafer, M., Lenders, V., & Martinovic, I. (2014). Realities and challenges of

nextgen air traffic management: the case of ADS-B. IEEE Communications Magazine,

52(5), 111–118. https://doi.org/10.1109/MCOM.2014.6815901

Taking flight. (2017). Retrieved December 9, 2018, from The Economist website:

https://www.economist.com/technology-quarterly/2017-06-08/civilian-drones

Temizer, S., Kochenderfer, M. J., Kaelbling, L. P., Lozano-Pérez, T., & Kuchar, J. K. (2010).

Collision Avoidance for Unmanned Aircraft using Markov Decision Processes *. Retrieved

from https://people.csail.mit.edu/lpk/papers/aiaa10.pdf

Textron Aviation. (n.d.). Cessna Skyhawk.

158

The Journal of Open Source Software. (2018). Retrieved September 12, 2018, from Journal of

Open Source Software website: http://joss.theoj.org

The Open Source Definition. (2007). Retrieved September 12, 2018, from Open Source Initiative

website: https://opensource.org/osd

Transport Canada. (1998). Aeroplane and Rotorcraft Simulator Manual. Retrieved from

https://www.tc.gc.ca/Publications/en/tp9685/pdf/hr/tp9685e.pdf

Transport Canada. (2010a). National Simulator Evaluation Program. Retrieved August 28, 2018,

from https://www.tc.gc.ca/eng/civilaviation/opssvs/nationalops-airline-simulator-menu-

850.htm

Transport Canada. (2010b). Single Crew Aeroplane Standard Operating Procedures - Definitions.

Retrieved from https://www.tc.gc.ca/eng/civilaviation/standards/commerce-manuals-

singlecrewsop-menu-1321.htm

Transport Canada. (2018a). Drone Safety. Retrieved April 21, 2018, from

https://www.tc.gc.ca/eng/civilaviation/drone-safety.html

Transport Canada. (2018b). Flying for fun? Rules for recreational drone users. Retrieved from

https://www.tc.gc.ca/en/services/aviation/documents/rules-recreational-drones.pdf

Transport Canada. (2019a). Civil Aviation Daily Occurrence Report System. Retrieved August

15, 2018, from http://wwwapps.tc.gc.ca/Saf-Sec-Sur/2/CADORS-

SCREAQ/m.aspx?lang=eng

Transport Canada. (2019b). Drone safety. Retrieved July 15, 2019, from

https://www.tc.gc.ca/en/services/aviation/drone-safety/proposed-rules-drones-canada.html

Transport Canada. (2019c). Find your category of drone operation. Retrieved July 30, 2019, from

https://www.tc.gc.ca/en/services/aviation/drone-safety/find-category-drone-operation.html

159

Transportation Safety Board of Canada. (2017). Statistical Summary: Aviation Occurrences 2017.

Retrieved September 4, 2018, from http://www.bst-tsb.gc.ca/eng/stats/aviation/2017/ssea-

ssao-2017.asp

Universita degli Studi di Napoli Federico II. (n.d.). ADAG | Aircraft Design &

AeroFlightDynamics Group. Retrieved October 10, 2017, from

http://www.adag.unina.it/english/index.html

Unmanned Dynamics. (2006). AeroSim Aeronautical simulation blockset version 1.2. Retrieved

from http://www.u-dynamics.com/aerosim/aerosim_ug.pdf

Unmanned Systems Canada. (2017). Small Remotely Piloted Aircraft System (RPAS) Best

Practices for BVLOS Operations. 1–74.

van de Schoot, R., Yerkes, M. A., Mouw, J. M., & Sonneveld, H. (2013). What Took Them So

Long? Explaining PhD Delays among Doctoral Candidates. PLoS ONE, 8(7), e68839.

https://doi.org/10.1371/journal.pone.0068839

Vanhanen, J., Lehtinen, T. O. A., & Lassenius, C. (2012). Teaching real-world software

engineering through a capstone project course with industrial customers. 2012 First

International Workshop on Software Engineering Education Based on Real-World

Experiences (EduRex), 29–32. https://doi.org/10.1109/EduRex.2012.6225702

Villa, T., Salimi, F., Morton, K., Morawska, L., & Gonzalez, F. (2016). Development and

Validation of a UAV Based System for Air Pollution Measurements. Sensors, 16(12), 2202.

https://doi.org/10.3390/s16122202

Vogeltanz, T. (2015). A Survey of Free Software for the Design, Analysis, Modelling, and

Simulation of an Unmanned Aerial Vehicle. Archives of Computational Methods in

Engineering. https://doi.org/10.1007/s11831-015-9147-y

160

Vogeltanz, T., & Jašek, R. (2015). JSBSim library for flight dynamics modelling of a mini-UAV.

International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-

2014). https://doi.org/10.1063/1.4912770

Wang, Z., Lin, X., Xiang, X., Blasch, E., Pham, K., Chen, G., … Wang, G. (2016, May 17). An

airborne low SWaP-C UAS sense and avoid system (K. D. Pham & G. Chen, Eds.).

https://doi.org/10.1117/12.2227221

Wheeler, D. A. (2015, January). Why Open Source Software / Free Software (OSS/FS, FLOSS,

or FOSS)? Look at the Numbers! (Vol. 12, pp. 61–78). Vol. 12, pp. 61–78.

https://doi.org/10.1046/j.1365-2575.2002.00118.x

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good

Enough Practices in Scientific Computing. PLoS Computational Biology, 13, 1–20.

https://doi.org/10.1371/journal.pcbi.1005510

Wong, D. R., Ou, Q., Sinclair, M., Li, Y. J., Chen, X. Q., & Marburg, A. (2008). Unmanned

Aerial Vehicle flight model validation using on-board sensing and instrumentation. 15th

International Conference on Mechatronics and Machine Vision in Practice, M2VIP’08.

https://doi.org/10.1109/MMVIP.2008.4749516

X-Plane 11 Flight Simulator. (2018). Retrieved December 9, 2018, from https://www.x-

plane.com/

YASim - FlightGear. (2018). Retrieved April 21, 2017, from http://wiki.flightgear.org/YASim

Young, R. (2018). UAS ground-based detect and avoid capability. 2018 Integrated

Communications, Navigation, Surveillance Conference (ICNS), 2B2-1-2B2-14.

https://doi.org/10.1109/ICNSURV.2018.8384837

Yu, X., & Zhang, Y. (2015). Sense and avoid technologies with applications to unmanned

161

aircraft systems: Review and prospects. Progress in Aerospace Sciences, 74, 152–166.

https://doi.org/10.1016/j.paerosci.2015.01.001

Yun, C., Li, X., & Zheng, Z. (2013). Design of UAV Simulator Based on Man-in-Loop

Simulation Platform. International Journal of Science, Environment and Technology, 2(3).

Zekry, A., Nabil Mobarez, E., Ouda, A. N., & Zekry, A. A. (2016). Mathematical Representation,

Modeling and Linearization for Fixed Wing UAV. Article in International Journal of

Computer Applications, 147(2), 975–8887. https://doi.org/10.5120/ijca2016910999

Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial

vehicles: opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.

https://doi.org/10.1109/MCOM.2016.7470933

Zenoah. (2007). Engine manual G26 Air G26/G231 Marine G26/G231 Heli G38 G62 GT80

Twin G45. Retrieved from https://www.horizonhobby.com/pdf/ZEN_Manual_ New-03-02-

2007.pdf

Zhang, Y., & Mcgovern, S. (2009). Mathematical Models for Human Pilot Maneuvers in

Aircraft Flight Simulation. ASME 2009 International Mechanical Engineering Congress

and Exposition. Retrieved from

https://ntl.bts.gov/lib/33000/33700/33763/Mathematical_Models_for_Human_Pilot_Maneu

vers.pdf

162

 Appendix A

A Simplified Manual of the JSBSim Open-

source FDM for Fixed-wing RPA Applications

Simulation packages provide a valuable framework or environment to study the interaction

between aircraft, including Remotely Piloted Aircraft (RPAs), and the existing air traffic in Near

Mid-Air Collision (NMAC) scenarios. The described simulation package is based on the open-

source JSBSim Flight Dynamics Model (FDM), which has been validated and tested in RPA

computer models for 4D encounters and avoidance manoeuvres. The objective of this appendix

is to provide a simplified version of the current package, including the minimum requirements

for the design of an RPA in JSBSim, and to guide any modellers on the RPA computer design

task. Introductory concepts and the dynamics behind this package were introduced in Chapter 2

and will not be restated here.

This appendix is an adapted version of a previous work presented at the IEEE Newfoundland

Electrical and Computer Engineering Conference (NECEC2017) in November 2017 under the

title “JSBSim open-source Flight Dynamics Model for fixed-wing Unmanned Aerial

Applications” (Cereceda et al., 2017). It is also a variant of a document that is being prepared for

submission to the JSBSim online community as part of the contributions C4 and C5 listed in

Chapter 6. This appendix begins with a brief introduction of JSBSim structure and simulation

modes. The source code classes are introduced in Section A.2 followed by the set instructions for

163

the additional feature of the multiplayer mode used in 4D encounters. The appendix concludes

with an RPA example case study.

A.1. High-Level Simulation Structure

JSBSim (Berndt & JSBSim Development Team, 2011) is an FDM package that consists of a

series of classes integrated together to simulate an aircraft and its environment. The package is

stable and ready to use from the command/shell window. The basic version also includes a large

aircraft library and simple demos. The most remarkable work done on JSBSim are the motion

base simulator at the University of Naples, Italy (Universita degli Studi di Napoli Federico II,

n.d.) and the human pilot math model with JSBSim as the 6-DoF simulation core, developed by

the U.S. Department of Transportation (Zhang & Mcgovern, 2009).

However, JSBSim does not contain any visual environments or models associated with it and

additional software –FlightGear (“FlightGear Flight Simulator,” 2019)– is required if the

performance needs to be observed.

JSBSim can be downloaded online (JSBSim Development Team, 2001) and more information

can be found on its website (JSBSim Development Team, 2005b). Although the developers

claim that it can be integrated into MATLAB/Simulink, the system is still in development and

needs significant improvement.

A.1.1. Standalone Mode: Scripting

The standalone simulation mode of JSBSim only requires the source code, the set of engines, and

aircraft. The package is in constant development with periodic releases; the source code is

considered stable whereas new aircraft and other systems are uploaded to the repository after

164

they are verified. If the user needs to compile and build the program, they should follow the

instructions in the manual (Berndt & JSBSim Development Team, 2011).

A JSBSim standalone simulation structure can be summarized by the following blocks (Figure

A.1):

Figure A.1. JSBSim standalone mode structure

- The JSBSim source code (B1) is formed by the full 6-DoF FDM, including the

dynamics of the system and all the models that exchange properties with the aircraft or

computer models, such as wind and atmosphere.

- The script file (B2) is expressed in .xml format and describes the tasks to be performed

by the computer model.

- The initialization file (B3) includes the information related to the initial state of the

aircraft. It can be called either from B1 or B2.

165

- The aircraft configuration file (B4) contains all the parameters for a specific aircraft.

The main file includes the metrics, mass and aerodynamics, among others. The

propulsion system formed by the engine (B4.1) and thrust (B4.2) files are called from

B4. Extra files (B4.3) can also be added depending on the final purpose of the simulation.

Examples include an autopilot, guidance system, or more specific information about

elements such as sensors or a control system.

- The type of output (B5) is defined at the end of the aircraft configuration file (B4) and

generated by the source code. The output can be generated through a series of datalogs or,

become a visual performance using complementary software such as Flight Gear or

OpenEaagles (“OpenEaagles,” n.d.).

- An additional datalog (B6) with specific parameters or a set of parameters to a particular

package can be added as well. This feature has not yet been tested.

Therefore, the minimum and most basic configuration consists of the source code (B1) with the

aircraft configuration file, including the propulsion system (B4, B4.1, B4.2), the script files

defining the task (B2), the initialization file (B3), and the output generation files or interface

(B5). The corresponding blocks are highlighted in light blue in Figure A.1. The remaining blocks

are complementary depending on the task to be completed. A straightforward simulation can be

run with the Debug command shown in Figure A.2, indicating the minimum files and

configuration/execution simulation parameters.

If run in batch mode, the complete simulation is executed in a line code (Figure A.3). That batch

file should include the basic and minimum command lines for the simulation as described below

in the code box. This example eliminates files generated from previous simulations, runs the

166

JSBSim package by indicating the correspondent script, moves the output file and plots the

results in Gnuplot (“Gnuplot,” n.d.).

Figure A.2. JSBSim program command line and options

Figure A.3. JSBSim program command line in batch mode

167

A.1.1.1. Script Definition

The simulation task is defined in the script alongside the aircraft and its initial state. Events

activate when a condition (declared within JSBSim) is met and a series of actions are activated.

Each event is triggered once unless the condition associated with it is declared "continuous" or

"persistent", making it constantly evaluated during the simulation.

In the example framed below extracted from a script demo, the Cessna 172 aircraft is tested for

the autopilot hold and cruise performance. The aircraft and its initial state is declared with <use

aircraft=" " initialize=" "/> and the simulation conditions are defined with <run

start=" " end=" " dt=" ">. The event extracted from the script shows that a series of

autopilot properties get updated 5 seconds after the simulation starts. With the </notify>

function, the Euler angles and the altitude are displayed on the command window when the event

is triggered.

rem Remove the old results file

del /Q aircraft\DHC6\test\TestDHC6_Out.csv

del /Q aircraft\DHC6\test\JSBoutDHC6.csv

rem Run the test

Debug\JSBSim --script=aircraft\DHC6\test\DHC6-test.xml

rem Copy the csv file to another location and change its name

copy JSBoutDHC6.csv aircraft\DHC6\test\

ren aircraft\DHC6\test\JSBoutDHC6.csv TestDHC6_Out.csv

rem Generate gnuplot to the screen

gnuplot aircraft\DHC6\test\PlotOrbitDHC6.p

168

A.1.1.2. Visualization in FlightGear

By default, the standalone mode does not allow for visualization. With an extra line of code in

the aircraft configuration file, the model can share its output with FlightGear, enabling the visual

performance. For a successful exchange of properties, the same input/output information must be

configured in FlightGear, since JSBSim runs as an external model.

Assume that following line of code is declared in the JSBSim in the aircraft configuration file:

Then, the FDM in FlightGear must be selected as external and the input property in FlightGear

must be:

 <output name ="localhost" type="FLIGHTGEAR" port="5500" protocol="UDP" rate="10"> </output>

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl"

href="http://jsbsim.sourceforge.net/JSBSimScript.xsl"?>

<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://jsbsim.sf.net/JSBSimScript.xsd"

 name="C172 cruise at 4K, 100% power">

 <description>This run is for testing the C172 altitude hold autopilot and cruise

performance</description>

 <use aircraft="c172x" initialize="reset01"/>

 <run start="0.0" end="50" dt="0.0083333">

 <property value="0"> simulation/run_id </property>

 <event name="Hold heading and altitude">

 <condition>simulation/sim-time-sec ge 5</condition>

 <set name="ap/heading_setpoint" value="200"/>

 <set name="ap/heading_hold" value="1"/>

 <set name="ap/altitude_setpoint" value="4000.0"/>

 <set name="ap/altitude_hold" value="1"/>

 <notify>

 <property> attitude/psi-rad </property>

 <property> attitude/theta-rad </property>

 <property> attitude/phi-rad </property>

 <property> position/h-agl-ft </property>

 </notify>

 </event>

 </run>

</runscript>

169

Figure A.4. FlightGear interface. Advanced options. Input/output properties

The visualization of the performance will start as soon as the simulation launches. It should be

noted that the visualization will depend on the JSBSim delta-time unless otherwise indicated.

A.1.2. Integration in FlightGear

The second way to run an aircraft designed in JSBSim is by integrating it directly into FlightGear

(“JSBSim - FlightGear wiki,” 2018). The main difference between this mode and the mode

explained in Section A.1.1.2. is that in this case, only the aircraft configuration and its related

files are needed since FlightGear holds the simulation. This is extremely useful when the aircraft

is flown manually with a controller, whereas it becomes impractical when choosing a pre-defined

task.

For a better understanding, the Figure A.5 shows a simplified structure of FlightGear formed by

aircraft (expressed in JSBSim FDM), Air Traffic Control (ATC), airport, scenery and other

models:

170

Figure A.5. FlightGear block structure

Copy the required files in the source folder, including the aircraft information, into FlightGear to

run the simulation. If everything has been done correctly, the selected aircraft will be listed as

available. Before launching the simulation, ensure that the flight model option “jbs” is selected in

Advanced Options (Figure A.6). The model will start on the ground or in the air and can be

initiated and controlled by a flight controller, a joystick, or with the computer keyboard.

Figure A.6. FlightGear interface. Advanced options. Flight Model

171

Note that in this mode there is no need to add any shared properties in the aircraft configuration

file, since FlightGear will be generating the output straight from the simulation.

A.2. Classes, Class Hierarchy and Model Class

The JSBSim complete package includes all the source codes for a basic simulation; however, the

user can create new systems depending on the required task. These systems might include

autopilot, Guidance, Navigation and Control (GNC) and specific onboard instruments. JSBSim is

designed to be modified depending on the vehicle and the user's needs. C++ represents an

excellent programming language to cover all the requirements in JSBSim; it provides the

required management tool for extracting, calculating and propagating data between classes as

part of its object-oriented programming.

The JSBSim source code structure works like any other computer model in C++. The location

and dynamics of the aircraft are given by the mathematical expressions in Chapter 2 (Section

2.3). The package models the metrics, the computation of the forces and moments, and the

propagation/output of the dynamics, among others. Likewise, JSBSim also needs basic

mathematical elements such as functions, tables, and quaternions to handle mathematical

transformations.

The code is distributed in classes depending on their function. The collection of described high-

level classes could be classified in:

- The executive class FGFDMExec initializes and runs the package from the application

calling JSBSim. The simulation starts and finishes according to the script that includes

172

the simulation details. When FGFDMExec class is initialized, it creates model objects

that define the aircraft according to the aircraft configuration file defined by the user.

- The model class FGModel represents the real physical classes and elements in the

aircraft. The model classes are executed in order including FGAerodynamics, FGAircraft,

FGAtmosphere, etc.

- The math classes (FGColumnVector3, FGQuaternion, FGTable, etc.) contain the

mathematical operations needed to solve equations, transformations, and other relations

in JSBSim.

- I/O and initialization classes (FGInputSocket, FGOutputTextFile, etc.) handle inputs

and outputs to the system.

- The basic classes (FGJSBBase and FGState) provide common capabilities to all the

classes such as message handling.

Focusing on the RPA computer model design, only the Model classes differ from the general

aviation aircraft case; the remaining classes are necessary, and include the operators and

simulation characteristics required for the correct implementation of JSBSim. The model classes

inherited from FGModel are listed below, including a brief description and special conditions (if

applicable) for the RPA case:

- The input class (FGInput)8 manages the inputs to the model with <input> elements in

the aircraft configuration file. When the software reads <input>, a communication

between classes is open and an appropriate action taken.

- The atmosphere class (FGAtmosphere)8 models the 1976 standard atmosphere including

winds, turbulence and giving the values of pressure, density and temperature, depending

8This class is required in all types of aircraft and fixed-wing RPAs.

173

on the location of the aircraft. Beware that the RPA case will only consider low altitude

(under 1000ft) 9 and therefore, the model may be simplified to consider only the

troposphere conditions. However, the author recommends keeping this model as it is for

possible future uses.

- The FCS class (FGFCS)8 manages a collection of flight control classes defined by the

aircraft components (surface control elements, throttle, autopilot). In a simple RPA

simulation, the primary controls for the model are the surface command elements of the

aircraft which include the ailerons, elevator, and rudder.

- The propulsion class (FGPropulsion)8 manages from 0 to n number of engines

(FGEngine). JSBSim includes different kinds of propulsion systems depending on the

engines used to generate thrust. They include a piston engine model (FGPiston 

FGEngine), a jet turbine engine model (FGTurbine  FGEngine), a turboprop engine

model (FGTurboProp  FGEngine), a rocket engine model (FGRocket  FGEngine)

and an electric engine model (FGElectric  FGEngine). However, only the piston and

electric models are considered in the case of RPAs. The thrust generation (FGThruster 

FGForce) presents the same scenario where among the options found in JSBSim –direct,

nozzle (FGNozzle  FGThruster), propeller (FGPropeller  FGThruster) and rotor

(FGRotor  FGThruster)– only the propeller is used in the fixed-wing RPA case. The

propulsion system, including the engine and the origin of the thrust generation, are called

from the aircraft configuration file.

- The mass balance class (FGMassBalance)8 calculates the moments of inertia, Center of

Gravity (CG), and mass over time. At initialization, the <mass_balance> section in the

9This value might differ with the upcoming Transport Canada (TC) regulations to be implemented in 2019.

174

aircraft configuration file is read and for each sample time, the CG and mass are updated.

This class is relevant in the RPA case when the aircraft is carrying a piston engine since

the fuel consumption will highly update those values.

- The aerodynamics class (FGAerodynamics)8 is a collection of manager classes with

individual force and moment definitions. When <aerodynamics> is called in the

aircraft configuration file, this class handles the corresponding aerodynamic calculations

obtaining the forces and moments calculated for each of the axes.

- The inertial class (FGInertial)8 initializes the radius and reference acceleration values.

- The ground reactions class (FGGroundReactions) models the ground reactions defined in

the aircraft configuration file as <ground_reactions>. The two types of contacts are

BOGEY, which is directly related to the landing gear and its contacts, and STRUCTURE,

which is used to locate any aircraft contact type that is not part of the landing gear

(wingtips, nose and tail). JSBSim models the landing gear set as a spring/damper model

with <spring_coeff> and <damping_coeff>. It also models retractable landing gear

for contacts but it is not applicable to most RPAs as their landing gear is non-retractable.

- The aircraft class (FGAircraft)8 gathers all systems together; it initializes the aircraft

model loading its properties with <metrics>, and obtains the contribution of each of the

systems in the generation of forces and moments.

- The propagate class (FGPropagate)8 models the Equations of Motion (EOM), giving the

state of the vehicle from the forces and moments generated during flight.

- The auxiliary class (FGAuxiliary) models pilot sensed accelerations and other auxiliary

parameters used for acceleration calculations in inertial space. This class is only required

in case the RPA carries motion-based sensors onboard.

175

- The output class (FGOutput)8 handles the simulation output. The desired output is

defined in the aircraft configuration file. The classes generated include: CSV (datalog in

csv), SOCKET (data sent to a socket output defined by an IP address), FLIGHTGEAR

(socket to FlightGear) and TABULAR (columnar data).

Figure A.7 expresses the JSBSim FGModel in operation; when JSBSim is initialized,

FGFDMExec is executed generating all the models' objects that will be uploaded with the

information contained in the aircraft configuration file. This allows the assembly of the 6-DoF

aircraft computer model.

Figure A.7. FGFDMExec and JSBSim Initialization process (Berndt & JSBSim Development Team, 2011)

For a full collection of JSBSim classes, see reference (JSBSim Development Team, 2017).

176

A.3. Additional Features: Multiplayer Mode

An additional feature in FlightGear allows for the visualization of several independent models in

one simulation by communicating with each other. The setup is similar to the FlightGear

visualization in the JSBSim standalone mode (Section A.1.1.2) except that the properties shared

between one and another must be opposite.

For the multiplayer mode setup instructions (extracted from (Stevenson, 2013)), assume that one

model is called “aircraft 1” (A1) and another “aircraft 2” (A2). For this mode, the IP of both

computers is required to enable the communication; use the ipconfig command to retrieve that

information.

In A1 follow these steps:

1- Launch FlightGear selecting the aircraft and the airport.

2- Select AI Models and Random Objects.

3- Select Multiplayer mode:

- Callsign: GS_TEST1

- Hostname: IP of A1

- In: 5510

- Out: 5520

4- Select Advanced options.

5- Flight model. Select the most appropriate model depending on the run mode (jsb, external,

etc.).

6- Input/Output: Include the following variables:

177

--native-fdm=socket, in, 10, localhost, 5500, udp (external FDM – JSBSim output)

--native-ctrls=socket, out, 5, localhost, 5501, udp

--native-fdm=socket, out, 5, IP of C2, 5504, udp (communication to A2)

7- Return and Run.

In A2, do the following:

1- Launch FlightGear, selecting the appropriate aircraft and the same airport as in A1.

2- Select AI Models and Random Objects.

3- In Multiplayer mode:

- Callsign: GS_TEST2

- Hostname: IP of A1

- In: 5520

- Out: 5510

4- Select Advanced Options.

5- Flight model: jsb, external, etc.

6- Input/Output: Add the following:

--native-fdm=socket, in, 10, localhost, 5502, udp (external FDM – JSBSim output)

--native-ctrls=socket, out, 5, localhost, 5503, udp

7- Return and Run.

Both aircraft should be displayed on the screen of A1 from the perspective of A1 (Figure A.8).

This particular Multiplayer mode allows one computer (A1) to be the host of the online

simulation, while A2 only simulates the performance of the second aircraft.

178

Figure A.8. Multiplayer mode in FlightGear with a Cessna 172 as seen from the cockpit of another aircraft

A.4. Case Study: Giant Big Stik Fixed-wing RPA

The Giant Big Stik R/C RPA (Figure A.9) (Great Planes, 2005c) is an aerobatic sport-scale

aircraft belonging to the “Stik” series, manufactured by GreatPlanes (Great Planes, 2005a). It is

powered by a fuel engine (Zenoah 26A) and flies like a full-size aeroplane. This model aeroplane

has been widely used in the Remote Aerial Vehicles for Environment-monitoring (RAVEN)

group at Memorial University of Newfoundland for many years. Its aerobatic characteristics are

the most significant highlight of this model.

179

Figure A.9. Giant Big Stik on the field before tests

A.4.1. Giant Big Stik Aircraft Modelling

Based on the package structure described in Figure A.1, the minimum set of blocks are created as

part of the aircraft modelling:

- B3-initialization file: the simulation is held near Clarenville, Newfoundland, Canada with

a certain initial RPA airspeed and no wind.

- B4-aircraft configuration file. It includes all the coefficients and parameters specific to

the Giant Big Stik RPA, which are introduced in Tables 5.1 and 5.2 in Section 5.1.2 –

Chapter 5. For this example, two cases are considered: an output file and a visualization

while the simulation is running.

<initialize name="reset03">

 <vc unit="KTS"> 38.87689112646 </vc>

 <longitude unit="DEG"> -53.91752033 </longitude>

 <latitude unit="DEG"> 48.2778129 </latitude>

 <phi unit="DEG"> 0.0 </phi> <!-- Roll -->

 <theta unit="DEG"> 0.0 </theta> <!-- Pitch -->

 <psi unit="DEG"> 0.0 </psi> <!-- Yaw -->

 <altitude unit="FT"> 984.252 </altitude>

 <hwind> 0.0 </hwind>

</initialize>

180

A.4.2. Giant Big Stik in Standalone Mode

As an example of the use of JSBSim with RPA applications, a simple task is defined where the

model turns left using the ailerons at maximum deflection in open-loop. In this example, which

has been used in previous work (Cereceda et al., 2016) for validation purposes, the aileron is set

to its maximum value in 5 seconds and returns back to 0.0 in 6.5 seconds.

<fdm_config name="GBS_3" version="2.0" release="ALPHA"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://jsbsim.sourceforge.net/JSBSim.xsd">

 <fileheader>

 <author> Oihane Cereceda </author>

 <filecreationdate> 2015-11-11 </filecreationdate>

 <version> v4 </version>

 <description> Giant Big Stik JSBSim model

 v1: Files and values created from Aeromatic v0.82

 v2: Files modified according to more specific data

 v3: Validate model using scripts and plotting data </description>

 v4: Output to FlightGear to visualize the performance

 </fileheader>

 <metrics>

 <mass_balance>

 <ground_reactions>

 <propulsion>

 <flight_control name="FCS: unnamed">

 <aerodynamics>

 <output name ="localhost" type="FLIGHTGEAR" port="5500" protocol="UDP" rate="10">

</output>

 <output name="GBS_3Out.csv" type="CSV" rate="100">

</fdm_config>

181

Figure A.10. RPA roll and pitch angles

The simulation starts with the RPA in the air, meaning that it needs a few seconds to reach a

stable situation before any command is sent to the model. This is also reflected when, in the case

of real flight, the R/C model switches from manual to remotely piloted mode. The simulation test

shown here expresses a special case where the ailerons are shifted to their maximum value in

order to evaluate the dynamics of the system when performing an extreme manoeuvre. Figure

A.10 (plots generated using Gnuplot from JSBSim datalog output) shows how the roll angle is

affected by changes in the aileron deflection; the aircraft quickly spins around and stabilizes as

soon as the ailerons are back to 0.0.

 <use aircraft="GBS" initialize="reset03"/>

 <run start="0" end="35" dt="0.01">

 <event name="Set engine throttle">

 <event name="Set aileron max. Turn left">

 <condition> simulation/sim-time-sec ge 5.0 </condition>

 <set name="fcs/aileron-cmd-norm" action="FG_STEP" value="-0.569" tc="1"/>

 <notify/>

 </event>

 <event name="Set aileron to zero">

 <condition> simulation/sim-time-sec ge 6.5 </condition>

 <set name="fcs/aileron-cmd-norm" action="FG_STEP" value="0.0" tc="1"/>

 <notify/>

 </event>

 </run>

182

The coherence of the system is noticeable. When the aircraft rolls, the lift vertical component is

no longer balanced and the weight creates a loss in altitude and pitch angle. The response is

presented in Figure A.11 where FlightGear has been used to visualize the performance of the

aircraft during the simulation.

Figure A.11. Giant Big Stik in FlightGear v2.0.0 performing an aerobatic manoeuvre in JSBSim standalone mode

A.4.3. Giant Big Stik Integrated into FlightGear

This JSBSim feature allows the user to manually fly the model using the FlightGear interface.

Following the setup described in Section A.1.2, and using the Futaba Interlink Elite Controller to

fly the computer model, the simulation views are the following:

183

(a) Chase view of a turning manoeuvre

(b) Straight flight over the runway, chase view

(c) Fly-by view simulating what an R/C pilot would see

from the ground

(d) Cockpit view during flight

Figure A.12. Giant Big Stik manual flight in FlightGear v2.0.0

184

Appendix B

Coefficients calculation for the EPP FPV R/C

Prior to the creation of the aircraft configuration files of the EPP FPV in JSBSim, the aircraft’s

metrics and certain parameters have to be calculated. These define the response and performance

of the computer model that must be representative of the real model.

This appendix includes the calculations carried out to obtain the mass moment of inertia matrix

and the initial aerodynamic coefficients that will serve as a base for the validation procedure in

Chapter 4.

B.1 Inertia Coefficients

The moment of inertia is a rotational inertial measurement or the tendency of a body to resist the

changes on its rotational movement. Although the moment of inertia must be constant for a rigid

body, it is always around a particular axis and can hold different values for other axes. The

moment of inertia also depends on the mass distribution with respect to the rotational axis. The

moment of inertia of a continuously distributed mass is:

𝐼 = ∫ 𝑟2𝑑𝑚 (B.1)

Where dm is the differential mass of the body and r2 is the minimum distance to the rotational

axis. Assuming that the even distribution of the mass is unknown, the mass can be substituted by

the density times the volume. Then, the inertia based on the volume is calculated by:

185

𝐼 = ∫ 𝑟2𝜌𝑑𝑉 (B.2)

Where ρ is the volumetric density expressed by mass/volume and dV is the differential volume.

If the body is composed of a series of geometric elements, the moment of inertia is calculated by

(1) splitting each of those elements, (2) calculating their moment of inertia, and (3) adjusting the

moment of inertia by knowing the distance between the element’s Centre of Mass (CM) and the

system’s CM. The EPP FPV aircraft is formed approximately by the following series of

geometries in the corresponding projection plane:

Figure B.1. Top view of the RPA Figure B.2. Side view of the RPA

Table B.1. List of simple geometries in the EPP FPV

Element # Fuselage/aerosurface name

1 Wings rectangle

2 Fuselage rectangle

3 Tube of the fuselage rectangle

4 Elevator stabilizer rectangle

5 Vertical fin rectangle

186

Additionally, the Steiner’s Theorem (commonly known as the Parallel Axis Theorem)

establishes that the moment of inertia, with respect to any axis parallel to an axis that crosses the

CM, is equal to the moment of inertia of the axis that crosses the CM plus the product of the

mass by the square of the distance between both axes:

𝐼𝑎𝑥𝑖𝑠 = 𝐼𝑎𝑥𝑖𝑠
(𝐶𝑀)

+ 𝑀ℎ2 (B.3)

Where Iaxis is the moment of inertia of the parallel axis, Iaxis
(CM) is the moment of inertia of the

axis that crosses the CM and is parallel to the first one, M is the mass, and h is the distance

between both axes.

B.1.1. Moment of Inertia around X Axis (IX)

Due to the aircraft symmetry along the X axis, each CM of the geometric figures belongs to that

X axis (Figure B.1). This means that the moments of inertia of each of the geometries around

their CM are the same moments on the X axis. Therefore, the moment of inertia around the X

axis is the sum of the moments of inertia generated by all the elements in the aircraft:

Table B.2. Moment of inertia around X axis

Element # Fuselage/aerosurface name IX
(CM) (kg m2)

1 Wings rectangle 0.048811653

2 Fuselage rectangle 0.000667668

3 Tube of the fuselage rectangle 7.16102E-06

4 Elevator stabilizer rectangle 0.000854486

5 Vertical fin rectangle 1.38669E-07

 IXX = ∑ IX
(CM) = 0.050341107

B.1.2. Moment of Inertia around Y Axis (IY)

The RPA is not symmetric around the Y axis and, therefore, the moment of inertia is calculated

by following the parallel axis theorem in two steps: (1) calculating the moment of inertia around

187

the Y axis of the corresponding element and (2) applying the theorem of the parallel axes

(equation B.3).

Based on the geometry of the aircraft in Figure B.2, the moments of inertia around their own CM

and the adjusted moment of inertia around the aircraft CM are:

 Table B.3. Moment of inertia around Y axis

Element # Fuselage/aerosurface name IY
(CM) (kg m2) IY

 (kg m2)

1 Wings rectangle 0.0007292 0.000883194

2 Fuselage rectangle 0.0080239 0.009035895

3 Tube of the fuselage rectangle 0.0059711 0.00700636

4 Elevator stabilizer rectangle 5.148E-05 7.02006E-05

5 Vertical fin rectangle 1.123E-05 1.71092E-05

 IYY = ∑ IY = 0.017012758

B.1.3. Moment of Inertia around Z Axis (IZ)

The aircraft view for the calculation of the moment of inertia around the Z axis is the projection

on the YZ plane. The measurements needed for the calculation of IZ can be extracted from the

projections in Figure B.1 and Figure B.2. Since the aircraft is not symmetric in the Z axis, the

Steiner’s Theorem is required (equation B.3). Similarly, as calculated for IYY, IZZ is obtained in

two steps: (1) calculate IZ
(CM) for each of the elements in the aircraft and (2) adjust IZ for each

element by using the parallel axis theorem:

Table B.4. Moment of inertia around Z axis

Element # Fuselage/aerosurface name IZ
(CM) (kg m2) IZ

 (kg m2)

1 Wings rectangle 0.049540815 0.050101808

2 Fuselage rectangle 0.008691551 0.023759408

3 Tube of the fuselage rectangle 0.005971099 0.029063534

4 Elevator stabilizer rectangle 0.000905967 0.021889738

5 Vertical fin rectangle 1.13709E-05 0.004589648

 IZZ = ∑ IZ = 0.129404136

188

B.1.4. Product Moment of Inertia

By definition, the product-moment of inertia of a system, with respect to two planes, is the sum

of the products of all the masses of the system times the distance to each of the planes. Assuming

that the product moment of inertia is between the axis X and Y, then IXY (or IYX) is:

𝐼𝑋𝑌 = 𝐼𝑌𝑋 = ∑ 𝑚𝑖 𝑥𝑖 𝑦𝑖

𝑛

𝑖=1

 (B.4)

Where mi is the mass of each element in the system and xi and yi are the distance to the planes X

and Y respectively.

Similarly, IXZ = IZX and IYZ = IZY are:

𝐼𝑋𝑍 = 𝐼𝑍𝑋 = ∑ 𝑚𝑖 𝑥𝑖 𝑧𝑖

𝑛

𝑖=1

 (B.5)

𝐼𝑌𝑍 = 𝐼𝑍𝑌 = ∑ 𝑚𝑖 𝑦𝑖 𝑧𝑖

𝑛

𝑖=1

(B.6)

Based on equation B.4, IXY is 0 since the aircraft is symmetric in that plane and the aircraft has

its opposite on the other side of the axis, making the total sum equal to 0. The aircraft is also

symmetric in the YZ plane and, therefore, IYZ = IZY = 0.

However, there is no symmetry on the XZ plane as it is observed from Figure B.2. The product

of inertia for this case is calculated by using equation B.5, and knowing the distance between

each of the CMs and the corresponding X and Z axes:

189

Table B.5. Product moment of inertia in XZ

Element # Fuselage/aerosurface name IXZ
 (kg m2)

1 Wings rectangle -0.000321188

2 Fuselage rectangle 0.003813103

3 Tube of the fuselage rectangle 0.004833909

4 Elevator stabilizer rectangle 0.000622633

5 Vertical fin rectangle 0.000162956

 IXZ = ∑ IXZ = 0.009111413

Finally, the matrix moment of inertia is built with all the moments of inertia around their own

axis in the diagonal and the products of inertia in the off-diagonal elements:

[
𝐼𝑋𝑋 𝐼𝑋𝑌 𝐼𝑋𝑍

𝐼𝑌𝑋 𝐼𝑌𝑌 𝐼𝑌𝑍

𝐼𝑍𝑋 𝐼𝑍𝑌 𝐼𝑍𝑍

] = [
0.0503411 0 0.00911141

0 0.017012758 0
0.00911141 0 0.12940414

] (B.7)

B.2 Aerodynamic coefficients

Contrary to the moments of inertia, which were calculated from physical elements on the aircraft,

the aerodynamic coefficients require wind tunnel experiments or similar. A common practice is

to use the aerodynamic coefficients from known aircraft that have similar structure and response.

The mini SGS-126 (Figure B.3) is a glider similar in shape to the EPP FPV. The aerodynamic

responses of both are similar and, therefore, the aerodynamic coefficients of the mini SGS-126

were used as a basis for the calculation of the EPP FPV parameters.

190

Figure B.3. Mini SGS-126 Glider (SimplePlanes, 2019)

The original aerodynamic coefficients from the mini SGS-126 are (“JSBSim Flight Dynamics

Model - Code aircraft/minisgs,” 2016):

Table B.6. Mini SGS-126 drag force aerodynamic coefficients

DRAG

𝐶𝐷0 Drag at zero lift 0.007

𝐶𝐷
𝛼 Drag due to α

α -0.0175 0.0 … 1.3963 1.5708

𝐶𝐷
𝛼 0.01 0.015 … 1.5 1.46

𝐶𝐷
𝛿𝑒

 Drag due to elevator deflection
Elevator -1.0 0.0 1.0

𝐶𝐷
𝛿𝑒

 0.114 0.0 0.114

Table B.7. Mini SGS-126 side force aerodynamic coefficients

SIDE

𝐶𝑌
𝛽

 Side force due to β -0.2850

𝐶𝑌
𝛿𝑎

 Side force due to aileron deflection -0.0456

𝐶𝑌
𝛿𝑟

 Side force due to rudder deflection 0.1880

Table B.8. Mini SGS-126 lift force aerodynamic coefficients

LIFT

𝐶𝐿
𝛼 Drag due to α

α -0.1571 -0.1369 … 1.369 1.5708

𝐶𝐷
𝛼 0.0 0.06 … 0.26 0.03

𝐶𝐿
𝛿𝑒

 Drag due to elevator deflection -0.3420

191

Table B.9. Mini SGS-126 roll moment aerodynamic coefficients

ROLL

𝐶𝑙
𝛽

 Roll moment due to β -0.0513

𝐶𝑙
𝑝

 Roll moment due to roll rate -0.4700

𝐶𝑙
𝑟 Roll moment due to yaw rate 0.1500

𝐶𝑙
𝛿𝑎

 Roll moment due to aileron deflection 0.2500

𝐶𝑙
𝛿𝑟

 Roll moment due to rudder deflection 0.0046

Table B.10. Mini SGS-126 pitch moment aerodynamic coefficients

PITCH

𝐶𝑚0 Pitch moment at zero lift 0.0

𝐶𝑚
𝛼 Pitch moment due to α -0.5730

𝐶𝑚
𝑞

 Pitch moment due to pitch rate -9.0000

𝐶𝑚
𝛼̇ Pitch moment due to α rate -5.2000

𝐶𝑚
𝛿𝑒

 Pitch moment due to elevator deflection -1.2610

Table B.11. Mini SGS-126 yaw moment aerodynamic coefficients

YAW

𝐶𝑛
𝛽

 Yaw moment due to β 0.0170

𝐶𝑛
𝑝

 Yaw moment due to roll rate -0.1800

𝐶𝑛
𝑟 Yaw moment due to yaw rate -0.0250

𝐶𝑛
𝛿𝑎

 Yaw moment due to aileron deflection 0.0115

𝐶𝑛
𝛿𝑟

 Yaw moment due to rudder deflection -0.0370

Based on the validation procedure presented in Chapter 3 and the adjustments carried out in

Chapter 4, the following coefficients have been modified in order to match the real aircraft

performance:

Coefficient Mini SGS-126 EPP FPV

𝐶𝑌
𝛽

 -0.2850 -0.83

𝐶𝑙
𝛽

 -0.0513 -0.0313

𝐶𝑙
𝛿𝑟

 0.0046 -0.0046

𝐶𝑚0 0.0 0.102

𝐶𝑚
𝛼 -0.5730 -1.573

192

Appendix C

Extended Sense and Avoid Basis and Existing

Work

Threat detection and avoidance manoeuvres are complex fields of study. With the recent

integration of RPAS into the airspace (Federal Aviation Administration, 2013a), collision

avoidance methods have become a growing topic in engineering. Commercial aeroplanes and big

aircraft carry instrumentation on board, such as the Traffic Collision Avoidance System (TCAS)

(Federal Aviation Administration. U.S. Department of Transportation, 2011) (

Figure C.1 and Figure C.2), which is able to monitor in real-time the existence of threats and

provide the most appropriate avoidance for a particular case. However, this device is inhibited at

any altitude below 1,000ft to prevent dangerous advisories at low altitude. According to (Federal

Aviation Administration. U.S. Department of Transportation, 2011), General Aviation (GA)

aircraft are not required to carry TCAS on board. In the absence of TCAS and transponders that

provide a pilot-initiated collision avoidance system, other methods are required.

This appendix wants to give a deeper overview of the general Sense and Avoid (SAA) concept

introduced and summarized in Chapter 2.

193

194

Figure C.1. How TCAS Works (1/2) (Kochenderfer, Holland, & Chryssanthacopoulos, 2012)

Figure C.2. How TCAS Works (2/2) (Kochenderfer et al., 2012)

195

C.1. SAA: Definitions and General Concepts

The concept of sense and avoid is described as the capability of the aircraft to detect a hazard,

track the intruder, estimate a possible collision, and avoid.

The fundamental objective of SAA methods is to provide the RPA pilot with equivalent “first-

person view” capabilities to a piloted aircraft. In a wider perspective, the safe integration of

RPAs into the airspace is not the only current application of SAA methods. Some examples can

be found in the literature where SAA concepts are applied to landing approaches (Desaraju &

Michael, 2014), target detection and recognition (Chanel, Teichteil-Königsbuch, & Lesire, 2012),

and search and rescue with multiple RPAs (Baker, Ramchurn, Teacy, & Jennings, 2016).

A more detailed SAA structure (Figure C.3) can be found in the literature (Fasano et al., 2016)

where the authors make a distinction between the conflict detection to identify the nature of an

intrusion and the avoidance manoeuvre. As a general concept, SAA covers all the systems and

sources of information involved to mitigate the lack of the capability for the first-person view of

the RPAS.

196

Figure C.3. Taxonomy of SAA systems (Fasano et al., 2016)

The focus of this work is on the action of avoidance. Therefore, a brief description of the other

components is included in Sections C.1.2. in order to provide an overall context of the full SAA

task.

C.1.1. SAA Requirements

In pursuance of simulating and testing avoidance manoeuvres, a near-collision situation needs to

be replicated and subsequently, different scenarios must be defined depending on the risk level.

The functional boundaries expressed in Figure C.4 indicate the risk to a collision. The two main

components are Self-Separation (SS) and Collision Avoidance (CA). The SS function aims to

reduce the probability of a collision by ensuring that the aircraft remains well-clear. Therefore,

the initial goal of the avoidance system is to start a procedure that ends before the Collision

Avoidance Threshold (CAT). When the SS is lost by trespassing the Well-Clear Violation (WCV)

197

boundary and no action has been taken, the CA component engages immediate manoeuvres in a

short period of time before an NMAC situation.

Figure C.4. Thresholds (Federal Aviation Administration, 2013b). SST: Self-separation threshold. WCV: Well-

clear violation. CAT: Collision avoidance threshold. NMAC: Near mid-air collision

According to the current recommendations in Canada (Unmanned Systems Canada, 2017), the

collision volume is defined by a cylindrical volume with a horizontal radius of 500ft and height

of 200ft. The manoeuvre time (τ) is the time required by the aircraft to complete the task of

avoiding the collision volume and the conflict point is the time to a predicted collision.

Considering the human factor involved in the procedure that includes a 15s delay (Figure C.5),

the minimum warning time for the pilot is then, 2τ+1510; τ is doubled in order to increase the

safety margin. The avoidance system should execute an avoidance manoeuvre 2τ seconds before

the conflict point. Depending on the manoeuvre time, the aircraft capabilities, and the

environment, the manoeuvre task varies.

10 Recommended best practices in Canada (Unmanned Systems Canada, 2017).

198

Figure C.5. Aircraft recognition and reaction time (Unmanned Systems Canada, 2017)

C.1.2. Sensing and Conflict Detection

In the first stage of the SAA task, the aircraft identifies conflicting traffic. Extensive work has

been done on sensors for environment surveillance and threat detection over the years (Pajares,

2015; Yu & Zhang, 2015). This thesis focuses on CA and for that reason, there is no interest in

broadly studying these sensors. However, in order to provide some context to the CA problem,

the most significant devices are summarized in Table C.1.

Overall, sensoring can be classified as cooperative (e.g. transponders) or non-cooperative

depending on if the system is able to interrogate and share information with other aircraft in the

airspace. Cooperative sensors aim to emulate the pilot capabilities of detection and identification

but to date, no system has been an accurate and real representation of a pilot.

The non-cooperative sensors include active (e.g. RADAR) or passive sensors (e.g. cameras).

Whereas active sensors are attractive but heavy and expensive, passive sensors are lighter and

more effective for object detection.

199

Table C.1. Most significant sensing technology for SAA

Sensor Highlights Limitations

ADS-B (Strohmeier, Schafer,

Lenders, & Martinovic, 2014)
 Broadcast the aircraft

location based on GPS

information

 Cooperative sensing

solution

 Only useful if other

aircraft are using the

same system

RADAR

(Caris, Stanko, Palm, Sommer, &

Pohl, 2015; Institution of

Electrical Engineers., Drolet, &

Bray, 2017)

 Best sensing solution

for airborne

surveillance

 All-weather and all-

time

 Large size

 False objects might be

detected if the pulse

frequency is not

correctly calculated

LIDAR (Ramasamy, Sabatini,

Gardi, & Liu, 2016)
 Similar concept as

RADARs but smaller

size

 Effective when used

with other sensors as a

secondary device

 Slow scanning process

 Only feasible for short-

range if used as a

primary sensor

Acoustic sensors (Finn &

Franklin, 2011)
 Low cost

 Auxiliary sensor

 Rough obstacle position

detection

 Large disturbances

EO/IR cameras (Griffith,

Kochenderfer, & Kuchar, 2008)
 Low cost

 Accurate detection

 Used as a primary

sensor

 Low-cost solutions are

limited to day-time

detection

 Blur effect due to

aircraft motion

Ground-based sensors

(Young, 2018)
 Accurate range and

bearing information

 Absolute location and

velocity of the

intruding aircraft

 Not RF link dependent

 No additional SWaP

onboard

 Limited to a fixed area

200

C.2. CA Methods

Autonomous avoidance techniques remain a great research topic. Depending on factors such as

sensor detection range and aircraft capabilities, the avoidance techniques ranges; distinct

methods should be implemented in order to keep the system safe at all times.

With advances in technology, the current air traffic system is undergoing a revision and

modernization. The current airspace is overloaded and the Air Traffic Management (ATM)

system that was defined in the 70s does not support it. The NextGen project aims to provide a

new ATM system able to accommodate all new smaller classes of vehicles, such as RPAs in the

airspace and provide a collision avoidance system for all aircraft (Kochenderfer et al., 2012;

Mccallie, Butts, & Mills, 2011). The work included in this document only considers the current

airspace structure but the author is aware that a new system may replace the topics and methods

discussed here.

C.2.1. CA for GA

TCAS is the standard collision avoidance system in commercial aircraft (

Figure C.1 and Figure C.2). However, GA is usually not equipped with this system since TCAS

II is not mandatory for aircraft with less than 30 seats and below 33,000 lbs (Federal Aviation

Administration. U.S. Department of Transportation, 2011). As an example, the Twin Otter and

the Cessna 172 aircraft, which are the representative GA aircraft included in this thesis have 21

seats-5,900lbs and 4 seats-1,700lbs respectively. These aircraft usually fly under Visual Flight

Rules (VFR) as opposed to Instrument Flight Rules (IFR) where the aircraft operation is mainly

carried out by instruments reference.

201

The issues around GA not carrying any avoidance systems onboard are reflected in the number

of air accidents over the last year (Figure C.6). Although these occurrences were lower than the

average for the previous 10 years, there is still a significant difference between commercial

aircraft and GA.

Figure C.6. Air ocurrences in 2017. Accidents involving Canadian-registered aircraft, by operation type, 2017

(Transportation Safety Board of Canada, 2017)

A simpler version of the current TCAS, TCAS I, was intended to be used in GA to issue Traffic

Advisories (TAs) to pilots. Although some aircraft and helicopters carry a TCAS system onboard,

most GA do not because it is not mandatory or standardized.

Based on the existing TCAS II concept, an alternative is to implement the system in GA.

However, the Resolution Advisories (RAs) suggested actions were outside the aircraft limits,

since GA flights fall into a different category. Therefore, the full TCAS SAA system would need

202

to be modified and replaced according to the aircraft requirements, which is not an effective

procedure.

As a second approach, a modified system was tested with descend/climb coordination with

successful results (Narkawicz, Muñoz, & Dutle, 2016). This system was based on the Vertical

Resolution Advisory Complement (VRAC) TCAS II responsive coordination. However, the

system always issued a descend/climb manoeuvre when an encounter happened, regardless of the

nature of the threat. The coordination of the advisories between different systems introduces

another challenge. This must be adjusted by designing compatible devices since different

surveillance systems might lower the reliability of the entire avoidance system. This problem can

be mitigated by using an algorithm that evaluates the error with an added cost to the system.

More refined approaches have tried to estimate the future location of the other aircraft by

optimization. Those are based on probabilistic models from a Markov Decision Process (MDP)

(Balachandran & Atkins, 2017; Gardner et al., 2016; Kochenderfer & Chryssanthacopoulos,

2013) whose intent is to model the encounter to increase the reliability of the CA algorithm.

The pilot response is another issue that CA in GA must account for, since the pilot is currently

the system component that makes the final decision to perform a particular manoeuvre.

Implementing a new avoidance system means a process of familiarization that might lead to

more risk situations and incompatibilities during the early stages of its integration. The human

factor issue is a large research topic that is outside the scope of this thesis. Those interested in the

subject can consult the literature in references (Kozuba, 2011; Salas, Maurino, & Curtis, 2010).

Primarily, the CA topic in GA remains a strong ongoing research topic that investigates the

problems of human factors, coordination with the current TCAS II and CA methods.

203

C.2.2. CA for RPAs

With the recent integration of RPAS into the airspace, the SAA in RPAS has become a topic of

interest. RPAS technology is rapidly developing, but the lack of a human pilot onboard

introduces challenges when it comes to providing the RPAS with the same safety level as a

piloted aircraft. The first intuitive approach, similar to the GA case, is to examine TCAS

alternatives for RPAS (Brooker & Wo, 2017). The current ATM structure does not manage small

aircraft and the TCAS avoidance system would require severe improvements (e.g. ACAS-Xu

project (Marston, Operations, & Baca, 2015)); a process that would be costly and lengthy.

Taking into account the variety of sensors and RPAS classes, the detection time is generally

limited by the sensor efficiency. This means that designing a specific avoidance procedure for

each of the different sensors or aircraft classes is unreasonable; standards and general methods

must be designed and discussed. For example, risk assessment studies for CA have shown strong

results by focusing on RADAR data (Artacho, 2018; Fang, 2018).

In order to eliminate the sensor issue, CA methods can assume that an object has already been

detected. Therefore, the remaining tasks are: first, the decision that selects the best manoeuvre to

perform and second, the control actions in response to that situation (Figure C.7).

204

Figure C.7. SAA encounter timeline (Federal Aviation Administration, 2013b)

Since RPAS share the airspace with piloted aircraft, certain CA methods try to model the pilot’s

behaviour as a way to estimate the piloted aircraft’s performance and select the best manoeuvre

(Londner & Moss, 2017; Zhang & Mcgovern, 2009). The MDP and Monte-Carlo methods are

the most common approaches for modelling the pilot’s performance (Adaska, Obermeyer, &

Schmidt, 2014; Sahawneh, Mackie, Spencer, Beard, & Warnick, 2015; Temizer, Kochenderfer,

Kaelbling, Lozano-Pérez, & Kuchar, 2010). Although it is important that the RPAS understands

human behaviour in order to choose the most appropriate solution, the reliability of these

methodologies is questioned since it is nearly impossible to reproduce and predict a human's

behaviour using statistical models.

In order to eliminate this issue, some approaches follow the TCAS convention of permitting a

vertical-only manoeuvre (Marston et al., 2015). However, vertical avoidance is not always the

fastest and most effective measure to lead the aircraft out of a collision. In response, some

205

approaches have designed 3D manoeuvres that require complex calculations (Alligier, Allignol,

Barnier, Durand, & Wang, 2018).

There are two main ways to give the aircraft the capability of avoidance: (1) pilot-in-the-loop

control and (2) automatic control. Remote avoidance systems are limited to VLOS missions,

where the pilot has full control of the aircraft performance (Stegagno, Basile, Bulthoff, &

Franchi, 2014). BVLOS operations have more autonomy to follow a manoeuvring procedure

with the human supervising; though the mission scope widens, the system has to rely on the

sensors.

Aircraft automated capabilities are given either by Ground-Based Sense and Avoid (GBSAA) or

by Airborne-Based Sense and Avoid (ABSAA). GBSAA systems are exposed to communication

delays or misses between the GS and the vehicle. This limitation makes GBSAA procedures

unreliable for CA, since the time to a collision is reduced to a few seconds. Per contra, ABSAA

systems permit the integration of a wider range of sensors onboard, eliminating the

communication problem and allowing BVLOS avoidance. This structure gives the RPAS the

required autonomy to identify the hazard, make a decision on the avoidance and perform a

manoeuvre. This means that the entire task relies on sensors that could be noisy and might not

reflect the changes in aircraft dynamics correctly. Whereas most of the research around this topic

has focused on GBSAA methods because it eliminates the Size, Weight and Power (SWaP)

problem in small fixed-wing aircraft (Ray Young & Brenton, 2016; Rhodes, 2017), fully

ABSAA approaches remain an active research topic, since the approach depends on the sensor

that determines the detection range and, therefore, the avoidance operation (Wang et al., 2016).

206

Another issue associated with SAA in RPAS, but not related to the aircraft performance, is the

minimum level of safety that the SAA task must provide (Stevenson, 2015). Other research has

tried to answer this challenge by defining a general framework for all RPAS classes in the

airspace (Melnyk, Schrage, Volovoi, & Jimenez, 2014).

Whereas CA only permits a few seconds to execute a fast manoeuvre, most of the work found in

the literature focuses on the SS task, since it allows more time to perform an avoidance (Cook,

Brooks, Cole, Hackenberg, & Raska, 2015; E. R. Mueller, Isaacson, & Stevens, 2016; Ott, 2015).

The CA approach in this document examines the aircraft capabilities to dive at its maximum rate

in order to avoid a collision without the limitations of the sensoring systems, communication

delays with the GCS, and complex manoeuvres.

Overall, the minimum requirements for a CA manoeuvre are:

1- Time to a collision, which is determined by the boundaries and thresholds expressed in

Figure C.4; the closer to an NMAC the faster the manoeuvre must be.

2- Vehicle capabilities, which vary from gliders to GA and RPAs.

3- Environmental conditions.

207

Appendix D

Encounter Geometries

It is intuitive to think that the geometry of the encounter will delimit the time to a collision. In

fact, the encounter geometry directly affects the detection range of the sensing system. Since the

sensing part of Sense and Avoid (SAA) is outside of the scope of this thesis, this appendix only

focuses on the encounter geometry used in Chapter 5 and the reason behind it.

The Phi (Φ) manoeuvre was the encounter geometry used by the Remote Aerial Vehicles for

ENvironment-monitoring (RAVEN) group at Memorial University until 2014 for the

development of 4D simulation environments. Its original purpose was to provide a platform for

the study of SAA coordinated techniques between Remotely Piloted Aircraft (RPA).

The initial geometry was called opposing circuits and as its name indicates, the procedure was

defined by two rectangular paths that shared similar sections. In this architecture, the two paths

had the same waypoints but the two aircraft flew in opposite directions (Figure D.1– red and

blue). In a later version, the second aircraft was set to fly the same rectangular geometry but only

sharing two waypoints out of the 4 that defined the rectangle (Figure D.1– green). Although

encounters were possible, this geometry presented added difficulties to coordinate both aircraft.

An improved geometry focused on the synchronization of the aircraft by communicating the GS

of both systems and modifying the flight path depending on an estimated reference point (Figure

D.2). The goal was to minimize the distance error (d1-d2) by adjusting the flight plan as the

208

aircraft are approached the encounter point. This alternative was dismissed since it was highly

dependent on the flight conditions and the aircraft airspeed.

Figure D.1. 4D Opposing circuits. Ideal case (Cereceda & Stevenson, 2014)

Figure D.2. Waypoint adjustments to synchronize the time of arrival (Fang, 2014)

The proposed manoeuvre solves the main challenges presented by the above-mentioned

geometries (Cereceda & Stevenson, 2014). The Phi (Φ) manoeuvre offers simplicity and the

possibility of allowing more frequent encounters. This flight path evolved from the original idea

as defined by opposing circuits (Figure D.1) to only 1 waypoint (B) for the first aircraft (Figure

D.3- red path) and 2 (A and C) for the second (Figure D.3 – blue path). With an aircraft flying

around a waypoint halfway between the returning waypoints of the other path, the

synchronization problem is eliminated and the frequency of an encounter increases. This

geometry also offers the study of the angle of the encounter by changing the radius of the orbital

path in the first aircraft (out of the scope of this thesis).

209

Figure D.3. The Phi (Φ) manoeuvre (Cereceda & Stevenson, 2014)

210

Appendix E

Code and Configuration Files

D.1. General Aircraft Configuration Files

D.1.1. Cessna 172 Configuration File

Available online on the JSBSim SourceForge website (“JSBSim Flight Dynamics Model - Code

aircraft/c172x,” 2009).

D.1.2. Twin Otter Configuration File

Available online on the JSBSim SourceForge website (“JSBSim Flight Dynamics Model - Code

aircraft/DHC6,” n.d.).

D.2. RPA Configuration Files

D.2.1. EPP FPV Aircraft Configuration File

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl"

href="http://jsbsim.sourceforge.net/JSBSim.xsl"?>

<fdm_config name="EPP FPV" version="2.0" release="ALPHA"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://jsbsim.sourceforge.net/JSBSim.xsd">

 <fileheader>

 <author> Oihane Cereceda </author>

 <filecreationdate> 01-20-2016 </filecreationdate>

 <version> v4 </version>

 <description>

 EPP-FPV JSBSim model

211

 v1: Files and values added from data

 v2: Add some data from the generated values in Aeromatic

 v3: Redimension of the CG

 v4: Adjustments from flight data

 </description>

 </fileheader>

 <metrics>

 <wingarea unit="FT2"> 4.24 </wingarea>

 <wingspan unit="FT"> 5.90551 </wingspan>

 <wing_incidence> 3.00 </wing_incidence>

 <chord unit="FT"> 0.7217848 </chord>

 <htailarea unit="FT2"> 0.7 </htailarea>

 <htailarm unit="FT"> 2.723097 </htailarm>

 <vtailarea unit="FT2"> 0.23 </vtailarea>

 <vtailarm unit="FT"> 2.559055 </vtailarm>

 <location name="AERORP" unit="IN">

 <x> 13.9764 </x>

 <y> 0 </y>

 <z> 3.937 </z>

 </location>

 </metrics>

 <mass_balance>

 <ixx unit="SLUG*FT2"> 0.05034 </ixx>

 <iyy unit="SLUG*FT2"> 0.01701 </iyy>

 <izz unit="SLUG*FT2"> 0.12940 </izz>

 <ixy unit="SLUG*FT2"> -0 </ixy>

 <ixz unit="SLUG*FT2"> 0.00911 </ixz>

 <iyz unit="SLUG*FT2"> -0 </iyz>

 <emptywt unit="LBS"> 4.4 </emptywt>

 <location name="CG" unit="IN">

 <x> 16.54 </x>

 <y> 0.00 </y>

 <z> 0.0 </z>

 </location>

 </mass_balance>

 <ground_reactions>11

 <contact type="STRUCTURE" name="LEFT_WING">

 <location unit="IN">

 <x> 11.81 </x>

 <y> -35.43 </y>

 <z> 0.0 </z>

 </location>

 <static_friction> 1.00 </static_friction>

 <dynamic_friction> 1.00 </dynamic_friction>

 <spring_coeff unit="LBS/FT"> 14.99 </spring_coeff>

 <damping_coeff unit="LBS/FT/SEC"> 14.99 </damping_coeff>

 </contact>

11 Note that the <ground_reactions> section in the JSBSim aircraft configuration file should not be left blank regardless of the

absence of a landing gear system such as in the glider case. The contact type STRUCTURE should include all contacts of the

airframe with the ground such as wings and tail.

212

 <contact type="STRUCTURE" name="RIGHT_WING">

 <location unit="IN">

 <x> 11.81 </x>

 <y> 35.43 </y>

 <z> 0.0 </z>

 </location>

 <static_friction> 1.00 </static_friction>

 <dynamic_friction> 1.00 </dynamic_friction>

 <spring_coeff unit="LBS/FT"> 14.99 </spring_coeff>

 <damping_coeff unit="LBS/FT/SEC"> 14.99 </damping_coeff>

 </contact>

 <contact type="STRUCTURE" name="TAIL">

 <location unit="IN">

 <x> 51.97 </x>

 <y> 0.0 </y>

 <z> -3.94 </z>

 </location>

 <static_friction> 1.00 </static_friction>

 <dynamic_friction> 1.00 </dynamic_friction>

 <spring_coeff unit="LBS/FT"> 14.99 </spring_coeff>

 <damping_coeff unit="LBS/FT/SEC"> 14.99 </damping_coeff>

 </contact>

 </ground_reactions>

 <propulsion>

 <engine file="engEPPFPV">

 <location unit="IN">

 <x> 20.47244 </x>

 <y> 0.0 </y>

 <z> 0.0 </z>

 </location>

 <orient unit="DEG">

 <roll> 0.0 </roll>

 <pitch> 0 </pitch>

 <yaw> 0 </yaw>

 </orient>

 <feed>0</feed>

 <thruster file="propEPPFPV">

 <location unit="IN">

 <x> 20.47244 </x>

 <y> 0.0 </y>

 <z> 0.0 </z>

 </location>

 <orient unit="DEG">

 <roll> 0.0 </roll>

 <pitch> 0.0 </pitch>

 <yaw> 0.0 </yaw>

 </orient>

 </thruster>

 </engine>

 </propulsion>

 <!-- <autopilot file="EPPFPVap"/> -->

213

 <!-- <system file="autothrottle"/> -->

 <flight_control name="EPPFPV">

 <channel name="Pitch">

 <summer name="Pitch Trim Sum">

 <input>fcs/elevator-cmd-norm</input>

 <input>fcs/pitch-trim-cmd-norm</input>

 <clipto>

 <min>-1</min>

 <max>1</max>

 </clipto>

 </summer>

 <aerosurface_scale name="Elevator Control">

 <input>fcs/pitch-trim-sum</input>

 <range>

 <min>-1</min>

 <max>1</max>

 </range>

 <output>fcs/elevator-pos-rad</output>

 </aerosurface_scale>

 </channel>

 <channel name="Roll">

 <summer name="Roll Trim Sum">

 <input>fcs/aileron-cmd-norm</input>

 <input>fcs/roll-trim-cmd-norm</input>

 <clipto>

 <min>-1</min>

 <max>1</max>

 </clipto>

 </summer>

 <aerosurface_scale name="Aileron Control">

 <input>fcs/aileron-cmd-norm</input>

 <range>

 <min>-1</min>

 <max>1</max>

 </range>

 <output>fcs/left-aileron-pos-rad</output>

 </aerosurface_scale>

 </channel>

 <channel name="Yaw">

 <summer name="Yaw Trim Sum">

 <input>fcs/rudder-cmd-norm</input>

 <input>fcs/yaw-trim-cmd-norm</input>

 <clipto>

 <min>-1</min>

 <max>1</max>

 </clipto>

 </summer>

 <aerosurface_scale name="Rudder Control">

 <input>fcs/rudder-cmd-norm</input>

214

 <range>

 <min>-1</min>

 <max>1</max>

 </range>

 <output>fcs/rudder-pos-rad</output>

 </aerosurface_scale>

 </channel>

 </flight_control>

 <aerodynamics>

 <axis name="DRAG">

 <function name="aero/coefficient/CDo">

 <description>Drag_at_zero_lift</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <value>0.0007</value>

 </product>

 </function>

 <function name="aero/coefficient/CDwbh">

 <description>Drag_due_to_alpha</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <table>

 <independentVar lookup="row">aero/alpha-rad</independentVar>

 <tableData>

 -0.0175 0.0100

 0.0000 0.0150

 0.0175 0.0200

 0.0349 0.0250

 0.0524 0.0300

 0.0698 0.0350

 0.0873 0.0400

 0.1745 0.1000

 0.2618 0.2300

 0.3491 0.3700

 0.4363 0.5000

 0.5236 0.6000

 0.6109 0.7600

 0.6981 0.8500

 0.7854 0.9600

 0.8727 1.0600

 0.9599 1.1400

 1.0472 1.2200

 1.2217 1.3800

 1.3963 1.5000

 1.5708 1.4600

 </tableData>

 </table>

 </product>

 </function>

 <function name="aero/coefficient/CDDe">

215

 <description>Drag_due_to_Elevator_Deflection</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <table>

 <independentVar>fcs/elevator-pos-rad</independentVar>

 <tableData>

 -1.0000 0.1140

 0.0000 0.0000

 1.0000 0.1140

 </tableData>

 </table>

 </product>

 </function>

 </axis>

 <axis name="SIDE">

 <function name="aero/coefficient/CYb">

 <description>Side_force_due_to_beta</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>aero/beta-rad</property>

 <value>-0.2850</value>

 </product>

 </function>

 <function name="aero/coefficient/CYda">

 <description>Side_force_due_to_aileron</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>fcs/left-aileron-pos-rad</property>

 <value>-0.0456</value>

 </product>

 </function>

 <function name="aero/coefficient/CYdr">

 <description>Side_force_due_to_rudder</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>fcs/rudder-pos-rad</property>

 <value>0.1880</value>

 </product>

 </function>

 </axis>

 <axis name="LIFT">

 <function name="aero/coefficient/CLwbh">

 <description>Lift_due_to_alpha</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <table>

 <independentVar>aero/alpha-rad</independentVar>

 <tableData>

216

 -0.1571 0.0000

 -0.1369 0.0600

 -0.1222 0.1200

 -0.0900 0.1900

 -0.0524 0.2600

 -0.0349 0.3300

 -0.0175 0.4300

 0.0000 0.4800

 0.0175 0.5600

 0.0349 0.6400

 0.0524 0.7100

 0.0698 0.7800

 0.0873 0.8200

 0.1047 0.9200

 0.1222 0.9900

 0.1369 1.0600

 0.1571 1.1000

 0.1745 1.1600

 0.1920 1.2200

 0.2094 1.2500

 0.2269 1.2600

 0.2444 1.2500

 0.2618 1.2400

 0.2793 1.2100

 0.2967 1.1600

 0.3142 1.1400

 0.3316 1.1400

 0.3491 1.0900

 0.4363 0.9800

 0.5236 0.8800

 0.6109 0.8300

 0.6981 0.8400

 0.7854 0.8200

 0.8727 0.7900

 0.9599 0.7400

 1.0472 0.6600

 1.2217 0.4700

 1.3963 0.2600

 1.5708 0.0300

 </tableData>

 </table>

 </product>

 </function>

 <function name="aero/coefficient/CLDe">

 <description>Lift_due_to_Elevator_Deflection</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>fcs/elevator-pos-rad</property>

 <value>0.3420</value>

 </product>

 </function>

 </axis>

 <axis name="ROLL">

 <function name="aero/coefficient/Clo">

217

 <description>Roll_moment_due_to_vertical_tail_incidence</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <value>-0.0000</value>

 </product>

 </function>

 <function name="aero/coefficient/Clb">

 <description>Roll_moment_due_to_beta</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/beta-rad</property>

 <value>-0.0513</value>

 </product>

 </function>

 <function name="aero/coefficient/Clp">

<description>Roll_moment_due_to_roll_rate_(roll_damping)</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/bi2vel</property>

 <property>velocities/p-aero-rad_sec</property>

 <value>-0.4700</value>

 </product>

 </function>

 <function name="aero/coefficient/Clr">

 <description>Roll_moment_due_to_yaw_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/bi2vel</property>

 <property>velocities/r-aero-rad_sec</property>

 <value>0.1500</value>

 </product>

 </function>

 <function name="aero/coefficient/Clda">

 <description>Roll_moment_due_to_aileron</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>fcs/left-aileron-pos-rad</property>

 <value>0.2500</value>

 </product>

 </function>

 <function name="aero/coefficient/Cldr">

218

 <description>Roll_moment_due_to_rudder</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>fcs/rudder-pos-rad</property>

 <value>0.0046</value>

 </product>

 </function>

 </axis>

 <axis name="PITCH">

 <function name="aero/coefficient/Cmalpha">

 <description>Pitch_moment_due_to_alpha</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/cbarw-ft</property>

 <property>aero/alpha-rad</property>

 <value>-0.5730</value>

 </product>

 </function>

 <function name="aero/coefficient/Cmq">

 <description>Pitch_moment_due_to_pitch_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/cbarw-ft</property>

 <property>aero/ci2vel</property>

 <property>velocities/q-aero-rad_sec</property>

 <value>-9.0000</value>

 </product>

 </function>

 <function name="aero/coefficient/Cmadot">

 <description>Pitch_moment_due_to_alpha_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/cbarw-ft</property>

 <property>aero/ci2vel</property>

 <property>aero/alphadot-rad_sec</property>

 <value>-5.2000</value>

 </product>

 </function>

 <function name="aero/coefficient/Cmo">

 <description>Pitching_moment_at_zero_alpha</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/cbarw-ft</property>

 <value>0.0000</value>

 </product>

 </function>

219

 <function name="aero/coefficient/Cmde">

 <description>Pitch_moment_due_to_elevator_deflection</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/cbarw-ft</property>

 <property>fcs/elevator-pos-rad</property>

 <value>-1.2610</value>

 </product>

 </function>

 </axis>

 <axis name="YAW">

 <function name="aero/coefficient/Cnb">

 <description>Yaw_moment_due_to_beta</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/beta-rad</property>

 <value>0.0170</value>

 </product>

 </function>

 <function name="aero/coefficient/Cnp">

 <description>Yaw_moment_due_to_roll_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/bi2vel</property>

 <property>velocities/p-aero-rad_sec</property>

 <value>-0.1800</value>

 </product>

 </function>

 <function name="aero/coefficient/Cnr">

 <description>Yaw_moment_due_to_yaw_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/bi2vel</property>

 <property>velocities/r-aero-rad_sec</property>

 <value>-0.0250</value>

 </product>

 </function>

 <function name="aero/coefficient/Cnda">

 <description>Yaw_moment_due_to_aileron</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>fcs/left-aileron-pos-rad</property>

 <value>0.0115</value>

 </product>

220

 </function>

 <function name="aero/coefficient/Cndr">

 <description>Yaw_moment_due_to_rudder</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>fcs/rudder-pos-rad</property>

 <value>-0.0370</value>

 </product>

 </function>

 </axis>

 </aerodynamics>

 <output name ="localhost" type="FLIGHTGEAR" port="5500" protocol="UDP"

rate="10"> </output>

 <output name="EPPFPV_Out.csv" type="CSV" rate="100">

 <simulation> ON </simulation>

 <atmosphere> OFF </atmosphere>

 <massprops> OFF </massprops>

 <aerosurfaces> OFF </aerosurfaces>

 <rates> ON </rates>

 <velocities> ON </velocities>

 <forces> OFF </forces>

 <moments> OFF </moments>

 <position> ON </position>

 <coefficients> OFF </coefficients>

 <ground_reactions> OFF </ground_reactions>

 <fcs> ON </fcs>

 <propulsion> OFF </propulsion>

 </output>

</fdm_config>

D.2.2. Giant Big Stik Aircraft Configuration File

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl"

href="http://jsbsim.sourceforge.net/JSBSim.xsl"?>

<fdm_config name="GBS_4" version="2.0" release="ALPHA"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://jsbsim.sourceforge.net/JSBSim.xsd">

 <fileheader>

 <author> Oihane Cereceda </author>

 <filecreationdate> 2015-11-11 </filecreationdate>

 <version> v4 </version>

 <description> Giant Big Stik JSBSim model

 v1: Files and values created from Aeromatic v0.82

 v2: Files modified according to more specific data

221

 v3: Validate model using scripts and plotting data

 v4: Output to FlightGear to visualize the performance </description>

 </fileheader>

 <metrics>

 <wingarea unit="FT2"> 10.538 </wingarea>

 <wingspan unit="FT"> 6.709 </wingspan>

 <wing_incidence> 2.00 </wing_incidence>

 <chord unit="FT"> 1.148 </chord>

 <htailarea unit="FT2"> 1.69 </htailarea>

 <htailarm unit="FT"> 2.36 </htailarm>

 <vtailarea unit="FT2"> 1.05 </vtailarea>

 <vtailarm unit="FT"> 2.27 </vtailarm>

 <location name="AERORP" unit="FT">

 <x> -1.541 </x>

 <y> 0 </y>

 <z> 0.213 </z>

 </location>

 <location name="EYEPOINT" unit="IN">

 <x> 7.09 </x>

 <y> 0.0 </y>

 <z> 45.00 </z>

 </location>

 <location name="VRP" unit="IN">

 <x> 0.0 </x>

 <y> 0.0 </y>

 <z> 0.0 </z>

 </location>

 </metrics>

 <mass_balance>

 <ixx unit="SLUG*FT2"> 0.305 </ixx>

 <iyy unit="SLUG*FT2"> 0.476 </iyy>

 <izz unit="SLUG*FT2"> 0.704 </izz>

 <ixy unit="SLUG*FT2"> 0 </ixy>

 <ixz unit="SLUG*FT2"> 0.095 </ixz>

 <iyz unit="SLUG*FT2"> 0 </iyz>

 <emptywt unit="LBS"> 14.771 </emptywt>

 <location name="CG" unit="FT">

 <x> -1.207 </x>

 <y> 0.0 </y>

 <z> 0.0 </z>

 </location>

 </mass_balance>

 <ground_reactions>

 <contact type="BOGEY" name="LEFT_MAIN">

 <location unit="FT">

 <x> -0.82 </x>

 <y> -0.853 </y>

 <z> 1.058 </z>

 </location>

 <static_friction> 0.8 </static_friction>

 <dynamic_friction> 0.9 </dynamic_friction>

 <rolling_friction> 0.02 </rolling_friction>

 <spring_coeff unit="LBS/FT"> 14.99 </spring_coeff>

222

 <damping_coeff unit="LBS/FT/SEC"> 7.50 </damping_coeff>

 <max_steer unit="DEG"> 0.0 </max_steer>

 <brake_group> NONE </brake_group>

 <retractable>0</retractable>

 </contact>

 <contact type="BOGEY" name="RIGHT_MAIN">

 <location unit="FT">

 <x> -0.25 </x>

 <y> 0.26 </y>

 <z> 1.058 </z>

 </location>

 <static_friction> 0.8 </static_friction>

 <dynamic_friction> 0.9 </dynamic_friction>

 <rolling_friction> 0.02 </rolling_friction>

 <spring_coeff unit="LBS/FT"> 14.99 </spring_coeff>

 <damping_coeff unit="LBS/FT/SEC"> 7.50 </damping_coeff>

 <max_steer unit="DEG"> 0.0 </max_steer>

 <brake_group> NONE </brake_group>

 <retractable>0</retractable>

 </contact>

 <contact type="BOGEY" name="NOSE">

 <location unit="FT">

 <x> -4.4 </x>

 <y> 0 </y>

 <z> 0.42 </z>

 </location>

 <static_friction> 0.8 </static_friction>

 <dynamic_friction> 0.9 </dynamic_friction>

 <rolling_friction> 0.02 </rolling_friction>

 <spring_coeff unit="LBS/FT"> 4.50 </spring_coeff>

 <damping_coeff unit="LBS/FT/SEC"> 7.50 </damping_coeff>

 <max_steer unit="DEG"> 10 </max_steer>

 <brake_group> NONE </brake_group>

 <retractable>0</retractable>

 </contact>

 <contact type="STRUCTURE" name="LEFT_WING">

 <location unit="FT">

 <x> -1.541 </x>

 <y> -3.355 </y>

 <z> -0.213 </z>

 </location>

 <static_friction> 1.00 </static_friction>

 <dynamic_friction> 1.00 </dynamic_friction>

 <spring_coeff unit="LBS/FT"> 14.99 </spring_coeff>

 <damping_coeff unit="LBS/FT/SEC"> 14.99 </damping_coeff>

 </contact>

 <contact type="STRUCTURE" name="RIGHT_WING">

 <location unit="FT">

 <x> -1.541 </x>

 <y> 3.355 </y>

 <z> -0.213 </z>

 </location>

 <static_friction> 1.00 </static_friction>

223

 <dynamic_friction> 1.00 </dynamic_friction>

 <spring_coeff unit="LBS/FT"> 14.99 </spring_coeff>

 <damping_coeff unit="LBS/FT/SEC"> 14.99 </damping_coeff>

 </contact>

 </ground_reactions>

 <propulsion>

 <engine file="Zenoah_G-26A">

 <location unit="IN">

 <x> -2.5984 </x>

 <y> -0.2244 </y>

 <z> -0.2244 </z>

 </location>

 <orient unit="DEG">

 <roll> 0.0 </roll>

 <pitch> 0 </pitch>

 <yaw> 0 </yaw>

 </orient>

 <feed>0</feed>

 <thruster file="propGBS_3">

 <location unit="IN">

 <x> -5.4724 </x>

 <y> -0.4724 </y>

 <z> -0.4724 </z>

 </location>

 <orient unit="DEG">

 <roll> 0.0 </roll>

 <pitch> 0.0 </pitch>

 <yaw> 0.0 </yaw>

 </orient>

 <sense> 1 </sense>

 </thruster>

 </engine>

 <tank type="FUEL">

 <!-- Tank number 0 -->

 <location unit="IN">

 <x> 4.7244 </x>

 <y> 0 </y>

 <z> 0 </z>

 </location>

 <capacity unit="LBS"> 1.1 </capacity>

 <contents unit="LBS"> 0.55 </contents>

 </tank>

 </propulsion>

<system file="GNCUtilities_GBS"/>

<autopilot file="GBSap"/>

 <flight_control name="FCS: unnamed">

 <channel name="Pitch">

 <summer name="fcs/pitch-trim-sum">

 <input>ap/elevator_cmd</input>

 <input>fcs/elevator-cmd-norm</input>

 <input>fcs/pitch-trim-cmd-norm</input>

224

 <clipto>

 <min>-1</min>

 <max>1</max>

 </clipto>

 </summer>

 <aerosurface_scale name="Elevator Control">

 <input>fcs/pitch-trim-sum</input>

 <gain>1.0</gain>

 <range>

 <min> -0.4643 </min>

 <max> 0.4643 </max>

 </range>

 <output>fcs/elevator-pos-rad</output>

 </aerosurface_scale>

 <aerosurface_scale name="elevator normalization">

 <input>fcs/elevator-pos-rad</input>

 <domain>

 <min> -1 </min>

 <max> 1 </max>

 </domain>

 <range>

 <min> -1 </min>

 <max> 1 </max>

 </range>

 <output>fcs/elevator-pos-norm</output>

 </aerosurface_scale>

 </channel>

 <channel name="Roll">

 <summer name="Roll Trim Sum">

 <input>ap/aileron_cmd</input>

 <input>fcs/aileron-cmd-norm</input>

 <input>fcs/roll-trim-cmd-norm</input>

 <clipto>

 <min> -1 </min>

 <max> 1 </max>

 </clipto>

 </summer>

 <aerosurface_scale name="Left Aileron Control">

 <input>fcs/roll-trim-sum</input>

 <gain>1.0</gain>

 <range>

 <min> -0.569 </min>

 <max> 0.569 </max>

 </range>

 <output>fcs/left-aileron-pos-rad</output>

 </aerosurface_scale>

 <aerosurface_scale name="left aileron normalization">

 <input>fcs/left-aileron-pos-rad</input>

 <domain>

 <min> -1 </min>

225

 <max> 1 </max>

 </domain>

 <range>

 <min> -1 </min>

 <max> 1 </max>

 </range>

 <output>fcs/left-aileron-pos-norm</output>

 </aerosurface_scale>

 <aerosurface_scale name="Right Aileron Control">

 <input>-fcs/roll-trim-sum</input>

 <gain>1.0</gain>

 <range>

 <min> -0.569 </min>

 <max> 0.569 </max>

 </range>

 <output>fcs/right-aileron-pos-rad</output>

 </aerosurface_scale>

 <aerosurface_scale name="right aileron normalization">

 <input>fcs/right-aileron-pos-rad</input>

 <domain>

 <min> -1 </min>

 <max> 1 </max>

 </domain>

 <range>

 <min> -1 </min>

 <max> 1 </max>

 </range>

 <output>fcs/right-aileron-pos-norm</output>

 </aerosurface_scale>

 </channel>

 <channel name="Yaw">

 <summer name="Rudder Command Sum">

 <input>fcs/rudder-cmd-norm</input>

 <input>fcs/yaw-trim-cmd-norm</input>

 <clipto>

 <min> -1 </min>

 <max> 1 </max>

 </clipto>

 </summer>

 <aerosurface_scale name="Rudder Control">

 <input>fcs/rudder-command-sum</input>

 <gain>1.0</gain>

 <range>

 <min> -1 </min>

 <max> 1 </max>

 </range>

 <output>fcs/rudder-pos-rad</output>

 </aerosurface_scale>

 <aerosurface_scale name="rudder normalization">

 <input>fcs/rudder-pos-rad</input>

226

 <domain>

 <min> -1 </min>

 <max> 1 </max>

 </domain>

 <range>

 <min> -1 </min>

 <max> 1 </max>

 </range>

 <output>fcs/rudder-pos-norm</output>

 </aerosurface_scale>

 </channel>

 <channel name="Landing Gear">

 </channel>

 </flight_control>

 <aerodynamics>

 <axis name="LIFT">

 <function name="aero/coefficient/CLwbh">

 <description>Lift_due_to_alpha</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>aero/alpha-rad</property>

 <value>5.32</value>

 </product>

 </function>

 <function name="aero/coefficient/CLadot">

 <description>Lift_due_to_alpha_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>aero/alphadot-rad_sec</property>

 <property>aero/ci2vel</property>

 <value>1.7</value>

 </product>

 </function>

 <function name="aero/coefficient/CLq">

 <description>Lift_due_to_pitch_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>velocities/q-aero-rad_sec</property>

 <property>aero/ci2vel</property>

 <value>3.9</value>

 </product>

 </function>

 <function name="aero/coefficient/CLDe">

 <description>Lift_due_to_Elevator_Deflection</description>

 <product>

227

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>fcs/elevator-pos-rad</property>

 <value>-5.0</value>

 </product>

 </function>

 </axis>

 <axis name="DRAG">

 <function name="aero/coefficient/CDo">

 <description>Drag_at_zero_lift</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <value>0.1</value>

 </product>

 </function>

 <function name="aero/force/Drag_induced">

 <description>Induced drag</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>aero/cl-squared</property>

 <value>0.0877</value>

 </product>

 </function>

 <function name="aero/coefficient/CDDe">

 <description>Drag_due_to_Elevator_Deflection</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>fcs/elevator-pos-rad</property>

 <value>0.0135</value>

 </product>

 </function>

 <function name="aero/coefficient/CDDa">

 <description>Drag_due_to_Aileron_Deflection</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>fcs/left-aileron-pos-rad</property>

 <value>0.0302</value>

 </product>

 </function>

 <function name="aero/coefficient/CDDa">

 <description>Drag_due_to_Rudder_Deflection</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>fcs/rudder-pos-rad</property>

 <value>0.0303</value>

 </product>

228

 </function>

 </axis>

 <axis name="SIDE">

 <function name="aero/coefficient/CYb">

 <description>Side_force_due_to_beta</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>aero/beta-rad</property>

 <value>-0.83</value>

 </product>

 </function>

 <function name="aero/coefficient/CYda">

 <description>Side_force_due_to_aileron</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>fcs/left-aileron-pos-rad</property>

 <value>-0.075</value>

 </product>

 </function>

 <function name="aero/coefficient/CYdr">

 <description>Side_force_due_to_rudder</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>fcs/rudder-pos-rad</property>

 <value>0.1914</value>

 </product>

 </function>

 </axis>

 <axis name="ROLL">

 <function name="aero/coefficient/Clb">

 <description>Roll_moment_due_to_beta</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/beta-rad</property>

 <value>-0.074</value>

 </product>

 </function>

 <function name="aero/coefficient/Clp">

<description>Roll_moment_due_to_roll_rate_(roll_damping)</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

229

 <property>aero/bi2vel</property>

 <property>velocities/p-aero-rad_sec</property>

 <value>-0.41</value>

 </product>

 </function>

 <function name="aero/coefficient/Clr">

 <description>Roll_moment_due_to_yaw_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/bi2vel</property>

 <property>velocities/r-aero-rad_sec</property>

 <value>0.107</value>

 </product>

 </function>

 <function name="aero/coefficient/ClDa">

 <description>Roll_moment_due_to_aileron</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>fcs/left-aileron-pos-rad</property>

 <value>0.2</value>

 </product>

 </function>

 <function name="aero/coefficient/Cldr">

 <description>Roll_moment_due_to_rudder</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>fcs/rudder-pos-rad</property>

 <value>-0.107</value>

 </product>

 </function>

 </axis>

 <axis name="PITCH">

 <function name="aero/coefficient/Cmo">

 <description>Pitching_moment_at_zero_alpha</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/cbarw-ft</property>

 <value>0.15</value>

 </product>

 </function>

 <function name="aero/coefficient/Cmalpha">

 <description>Pitch_moment_due_to_alpha</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

230

 <property>metrics/cbarw-ft</property>

 <property>aero/alpha-rad</property>

 <value>-1.8</value>

 </product>

 </function>

 <function name="aero/coefficient/Cmde">

<description>Pitch_moment_due_to_elevator_deflection</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/cbarw-ft</property>

 <property>fcs/elevator-pos-rad</property>

 <value>-0.458</value>

 </product>

 </function>

 <function name="aero/coefficient/Cmq">

 <description>Pitch_moment_due_to_pitch_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/cbarw-ft</property>

 <property>aero/ci2vel</property>

 <property>velocities/q-aero-rad_sec</property>

 <value>-6.813</value>

 </product>

 </function>

 <function name="aero/coefficient/Cmadot">

 <description>Pitch_moment_due_to_alpha_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/cbarw-ft</property>

 <property>aero/ci2vel</property>

 <property>aero/alphadot-rad_sec</property>

 <value>-3.5</value>

 </product>

 </function>

 </axis>

 <axis name="YAW">

 <function name="aero/coefficient/Cnb">

 <description>Yaw_moment_due_to_beta</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/beta-rad</property>

 <value>0.071</value>

 </product>

 </function>

 <function name="aero/coefficient/Cnr">

231

 <description>Yaw_moment_due_to_yaw_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/bi2vel</property>

 <property>velocities/r-aero-rad_sec</property>

 <value>-0.12032</value>

 </product>

 </function>

 <function name="aero/coefficient/Cndr">

 <description>Yaw_moment_due_to_rudder</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>fcs/rudder-pos-rad</property>

 <value>-0.062</value>

 </product>

 </function>

 <function name="aero/coefficient/Cnda">

 <description>Yaw_moment_due_to_aileron. Adverse_Yaw</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>fcs/left-aileron-pos-rad</property>

 <value>0.0108</value>

 </product>

 </function>

 <function name="aero/coefficient/Cnp">

 <description>Yaw_moment_due_to_roll_rate</description>

 <product>

 <property>aero/qbar-psf</property>

 <property>metrics/Sw-sqft</property>

 <property>metrics/bw-ft</property>

 <property>aero/bi2vel</property>

 <property>velocities/p-aero-rad_sec</property>

 <value>-0.0575</value>

 </product>

 </function>

 </axis>

 </aerodynamics>

 <output name ="localhost" type="FLIGHTGEAR" port="5500" protocol="UDP"

rate="10"> </output>

 <output name="GBS_4Out.csv" type="CSV" rate="100">

 <simulation> OFF </simulation>

 <atmosphere> ON </atmosphere>

 <massprops> OFF </massprops>

 <aerosurfaces> ON </aerosurfaces>

232

 <rates> ON </rates>

 <velocities> ON </velocities>

 <forces> OFF </forces>

 <moments> OFF </moments>

 <position> ON </position>

 <coefficients> OFF </coefficients>

 <ground_reactions> OFF </ground_reactions>

 <fcs> ON </fcs>

 <propulsion> ON </propulsion>

 <property> fcs/throttle-cmd-norm </property>

 <property>ap/aileron_cmd </property>

 <property> fcs/wing-leveler-ap-on-off </property>

 <property> fcs/roll-ap-error-pid </property>

 <property> fcs/roll-ap-autoswitch </property>

 <property>fcs/roll-command-selector</property>

 <property> position/lat-geod-deg </property>

 </output>

</fdm_config>

D.3. RPA Engine Files

D.3.1. EPP FPV Engine File

<?xml version="1.0"?>

<electric_engine name="engEPPFPV">

 <power unit="WATTS"> 370.0 </power>

</electric_engine>

D.3.2. GiantBig Stik Engine File

<?xml version="1.0"?>

<piston_engine name="Zenoah 26A">

 <minmp unit="INHG"> 6.0 </minmp>

 <maxmp unit="INHG"> 28.5 </maxmp>

 <displacement unit="IN3"> 1.55 </displacement>

 <maxhp> 2.96 </maxhp>

 <cycles> 4.0 </cycles>

 <idlerpm> 700.0 </idlerpm>

 <maxrpm> 2800.0 </maxrpm>

 <maxthrottle> 1.0 </maxthrottle>

 <minthrottle> 0.1 </minthrottle>

233

</piston_engine>

D.4. RPA Propeller Files

D.4.1. EPP FPV Propeller File

<?xml version="1.0"?>

<propeller name="propEPPFPV">

 <ixx> 0.001 </ixx>

 <diameter unit="IN"> 10.0 </diameter>

 <numblades> 2 </numblades>

 <gearratio> 0.93 </gearratio>

 <p_factor> 0.79 </p_factor>

 <table name="C_THRUST" type="internal">

 <tableData>

 0.0 0.0123

 0.1 0.0118

 0.2 0.0112

 0.3 0.0103

 0.4 0.0093

 0.5 0.0082

 0.6 0.0066

 0.7 0.0050

 0.8 0.0027

 1.0 -0.0009

 1.2 -0.0048

 1.4 -0.0087

 </tableData>

 </table>

 <table name="C_POWER" type="internal">

 <tableData>

 0.0 0.0082

 0.1 0.0082

 0.2 0.0080

 0.3 0.0078

 0.4 0.0074

 0.5 0.0068

 0.6 0.0062

 0.7 0.0052

 0.8 0.0043

 1.0 0.0015

 1.2 -0.0024

 1.4 -0.0073

 1.6 -0.0124

 </tableData>

 </table>

234

 <table name="CT_MACH" type="internal">

 <tableData>

 0.85 1.0

 1.05 0.8

 </tableData>2.4

 </table>

 <table name="CP_MACH" type="internal">

 <tableData>

 0.85 1.0

 1.05 1.8

 2.00 1.4

 </tableData>

 </table>

</propeller>

D.4.2. GiantBig Stik Propeller File

<?xml version="1.0"?>

<propeller name="Fixed-Pitch 16-inch Two-Blade Propeller">

 <ixx> 0.001 </ixx>

 <diameter unit="IN"> 16.0 </diameter>

 <numblades> 2 </numblades>

 <gearratio> 0.62 </gearratio>

 <p_factor> 1.26 </p_factor>

 <table name="C_THRUST" type="internal">

 <tableData>

 0.0 0.0156

 0.1 0.0149

 0.2 0.0143

 0.3 0.0132

 0.4 0.0118

 0.5 0.0104

 0.6 0.0084

 0.7 0.0064

 0.8 0.0035

 1.0 -0.0012

 1.2 -0.0061

 1.4 -0.0110

 </tableData>

 </table>

 <table name="C_POWER" type="internal">

 <tableData>

 0.0 0.0105

 0.1 0.0105

 0.2 0.0102

 0.3 0.0100

 0.4 0.0094

 0.5 0.0086

235

 0.6 0.0079

 0.7 0.0066

 0.8 0.0054

 1.0 0.0019

 1.2 -0.0031

 1.4 -0.0093

 1.6 -0.0158

 </tableData>

 </table>

 <table name="CT_MACH" type="internal">

 <tableData>

 0.85 1.0

 1.05 0.8

 </tableData>2.4

 </table>

 <table name="CP_MACH" type="internal">

 <tableData>

 0.85 1.0

 1.05 1.8

 2.00 1.4

 </tableData>

 </table>

</propeller>

