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ABSTRACT 

 

In Eastern Canada, in a regional Carboniferous rift system (Maritimes Basin 

Tectonostratigraphic Zone), there are lacustrine basins containing petroliferous source 

rocks. Near the northern limits for this complex, strata of the Cape Rouge Formation at 

Conche, Newfoundland, are thought to represent a nearby onshore facies analog for rocks 

laying farther offshore in the St. Anthony Basin.  

Four facies assemblages of mixed sandstone, siltstone, dolostone and black 

mudstone represent distinct stages of an underfilled lake-basin developed within a half-

graben depocenter. The finest-grained facies assemblage, with TOC between 0.23-6.54 

wt.%, has organic matter dominated by Type 1 kerogen. Maturation analysis places strata 

within the oil-generation window (Ro=0.5-1.01%); however, Rock-Eval results indicate 

little remaining potential for generating hydrocarbons. Based on findings from Conche, 

the St. Anthony Basin may contain similar half-graben lake-basins with Carboniferous 

source rock potential. However, source quality and timing for oil generation remain key 

risks for hydrocarbon exploration offshore.  
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CHAPTER ONE: INTRODUCTION 

1.01 — Overview and Aims  

 In today’s world and likewise throughout the ancient rock record, lake systems 

show extreme diversity expressing variability in morphology, size, tectonic-setting, 

chemistry and physics (Kelts, 1988; Renaut and Gierlowski-Kordesch, 2010). Broadly 

viewed, the overall occurrence of modern lakes is controlled by climate and tectonic 

activity, resulting in a greatly contrasting variety of lake morphologies and depositional 

environments. Unlike the marine realm, where global phenomena link the atmosphere, 

hydrosphere and lithosphere, lake systems have relatively smaller volumes of water and 

local sediment supplies, resulting in a wide range of physical characteristics (Kelts, 1988; 

Bohacs, 2001). Compositionally, lake systems can include deposits of sedimentary strata 

that are calcareous, siliciclastic, volcaniclastic, carbonaceous and evaporitic. Moreover, 

lake waters can be organically barren to eutrophic dominated (Carroll and Bohacs, 1999; 

Renaut and Gierlowski-Kordesch, 2010). In terms of sequence stratigraphy, lake deposits 

often closely resemble marine stratigraphy with stratal sequences that range from 

submarine fans to deltaic (Renaut and Gierlowski-Kordesch, 2010).   

 Despite significant variability of lake environments within modern settings, lakes 

preserved in the rock record often contain a simplified sequence of reoccurring lithologic 

and stratigraphic stacking patterns. Lacustrine strata have been described and categorized 

by Bohacs and Carroll (2001) and Bohacs et al. (2000) as three end-member families of 
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lake basin types (Carroll and Bohacs, 2001), namely “overfilled,” “balance-filled”, and 

“underfilled” lake basins. The occurrence and depositional style of these three end-

member basin types are controlled primarily by climate (water and sediment supply) and 

accommodation space (driven by tectonics) (Carroll and Bohacs, 2001). These two 

drivers influence the distribution, character and occurrence of lake strata including 

hydrocarbon play elements (source, seal, and reservoir) (Bohacs et al., 2000). The 

predictable nature of lake-basin together with the principles of sequence-stratigraphy, is 

thus used as a tool in hydrocarbon exploration in lacustrine settings (Renaut and 

Gierlowski-Kordesch, 2010; Bohacs et al., 2000; Carroll and Bohacs, 2001).  

 Ancient lake deposits are important for many reasons. They contain the essential 

building blocks for conventional and unconventional hydrocarbon systems (including 

seal, source, and reservoir facies) and are also important sites for the deposition of 

uranium, oil shale, coal and other essential strategic materials for chemical and electrical 

applications (e.g., borates and lithium carbonates) (Bohacs et al., 2000; Prothero and 

Schwab, 2004). Furthermore, lake strata are commonly used for climate change studies 

and are also major reservoirs of biodiversity (Bohacs et al., 2000).  

Within the context and general direction for this study, petroleum companies and 

academics alike have long recognized the importance of lacustrine settings for the 

preservation of oil-prone strata (Powell, 1986; Kelts, 1988, Bohacs et al., 2000). At one 

point mined for their oil shales (e.g., Strathclyde group, Scotland), more recently, 

lacustrine deposits attract commercial interest after the discovery of highly prolific 

conventional and unconventional resource basins worldwide, including, the Eocene 
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Green River Formation, Uinta Basin, Utah (Bradley, 1964), Lower Cretaceous Lagoa 

Feia Formation, Campos Basin, Offshore Brazil (Bertani and Carozzi, 1985; Trindade et 

al., 1995), Barremian to Aptian Bucomazi Formation of West Africa (Powell, 1986; 

Lomando, 1996), and extensive intramontane basins throughout China (Zhai et al., 1984; 

Desheng et al., 1995; Katz and Xingcai, 1998).  

 In widespread locations across the proto-North Atlantic rift system (Figure 1.1), 

and in particular, the Upper Paleozoic Maritimes Basin of Atlantic Canada and in 

contiguous parts of Northwest Europe, lacustrine source rocks of early Carboniferous age 

have been explored and mined as hydrocarbon resources. These organic-rich rocks were 

apparently deposited in similar, paleogeographic, climatic and tectonic environments. In 

Eastern Canada, within the Maritimes Basin, proven and developed hydrocarbon systems 

are preserved in the subsurface of the Cumberland sub-basin at the Stoney Creek and 

McCully oil and gas fields respectively, with hydrocarbon systems sourced from the 

Lower Carboniferous Lacustrine Horton Group Albert Formation (Follows and Tyson, 

1998). Comparatively, in the Midland Valley of Scotland, Lower Carboniferous oil shales 

of the Lacustrine Strathclyde group (previously named the Lower and Upper Oil Shale 

Groups) were mined between 1851-1993 and distilled for crude oil and other oil products 

(Carruthers et al., 1912; Follows and Tyson, 1998). In recent years, oil shales that had 

been historically mined for oil distillation and conventional extraction have attracted 

interest as potential sources for hydrocarbons in contiguous offshore and onshore basins. 
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Figure 1.1 Paleogeographic reconstruction of the Proto-North Atlantic Rift system 

Paleogeographic reconstruction of the proto-North Atlantic rift system during the early 

Carboniferous showing the major fault trends in black lines along with the principle 

depositional environments and lithologies in bright colors. Proven source rock deposits 

are noted, including the Albert Formation of New Brunswick, Oil Shale Group of 

Scotland, and un-named facies of East Greenland (modified from Ziegler, 1988). 

Abbreviations: NB, New Brunswick; NS, Nova Scotia; LAB, Labrador; IR, Ireland; UK, 

United Kingdom; FB, Fundy Basin; SB, Sydney Basin; SA, St. Anthony Basin. 
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 This interest has led geoscientists to search for source rocks of similar age and 

composition across a proto-North Atlantic rift system (Figure 1.1) that includes the 

Maritimes Basin in Nova Scotia and New Brunswick (Utting et al., 1989),  

Newfoundland (Baird, 1950; 1957; 1966; Hyde, 1979; Knight, 1983; Hamblin et al., 

1995), and other contiguous basins in Greenland (Christiansen et al., 1990; Piasecki et al., 

1990), Ireland, and Scotland (Follows and Tyson, 1998) (Figure 1.1, Figure 1.2).  

 Onshore Newfoundland within the Maritimes Basin Tectonostratigraphic Zone 

(Lavoie et al., 2009), Lower Carboniferous fine-grained deposits occur within the 

Anguille Group (Horton Group equivalent), a terrestrial basin-fill deposit (Figure 1.2). 

The Anguille Group is found in basins that include the Bay St. George Basin (Snakes 

Bight Formation), the Deer Lake Basin (Forty-Five Brook and Saltwater Cove 

formations) (Hyde et al., 1988) and the White Bay Sub-Basin (Cape Rouge and Crouse 

Harbour formations) (Baird, 1957; 1966; Hamblin et al., 1995) (Figure 1.2).  

Extending off the northeastern coast of Newfoundland, Carboniferous strata of the 

Maritimes Basin are preserved within the St. Anthony Basin. This basin is extensive, 

comprising an area of ~67,000 km2 and reaching depths over 6.5 km beneath the seabed 

(Grant and McAlpine 1990; Hu and Dietrich, 2010) (Figure 1.3). This large offshore 

basin preserves a complex tectonic and depositional history; however, it is poorly 

characterized with limited wellbore and seismic data. Here, upper Carboniferous strata 

have been verified by two exploration wells, Verrazano L-77 and Hare Bay E-21 
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Figure 1.2 Geologic map of the Maritimes Basin of Atlantic Canada 

A map of the Maritimes Basin of Atlantic Canada with known oil shale deposits (red 

dots) (Modified from Hu and Dietrich, 2010; Gibling et al., 2008; Rust et al., 1987). The 

thesis study area is marked by a black rectangle. Basin abbreviations: M, Magdalen 

Basin; S, Sydney Basin; B, Bay St. George Basin; D, Deer Lake Basin; W, White Bay 

Sub-basin; A, St. Anthony Basin. Fault abbreviations: LBF, Lubec-Bellisle Fault; FRZ, 

Fundy Rift Zone; H-HF, Harvey-Hopewell Fault; HF, Hollow Fault; AF, Aspy Fault; C-

CF, Cobequid-Chedabucto Fault; LRF, Long Range Fault.  
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Figure 1.3 St. Anthony Basin regional cross-section  

Regional cross-section of the offshore St. Anthony Basin through Verrazano L-77 and 

Hare-Bay E-21exploration wells (cross-section modified from Dietrich et al., 2011 [based 

on data from Grant and McAlpine 1990 and McWhae et al., 1980]). Blue represents lower 

Carboniferous strata, yellow Upper Carboniferous strata and beige Mesozoic-Cenozoic 

Cover (Tertiary-Cretaceous). 
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(Figure 1.2, Figure 1.3). These holes were drilled in the late 1980s to test both Upper and 

Lower Carboniferous plays, respectively. However, Verrazano-L-77, drilled in the 

northwest of the basin, failed to reach its lower Carboniferous target due to mechanical 

failure. Seismic surveys (2D) shot between the two exploration wells display large-scale 

structures related to extensional tectonics and salt movement (Grant and McAlpine 1990; 

Hu and Dietrich, 2010).   

For onshore Newfoundland, some of the most promising Lower Carboniferous 

successions occur within the Cape Rouge and Crouse Harbour formations of the Anguille 

Group (Horton Group equivalent). These formations are exposed on two promontories 

and outlying islands of the White-Bay Sub-basin in the Conche region of northern 

Newfoundland (Figure 1.2, Figure 1.4). In this region, an estimated 1500 m of lacustrine 

strata are exposed in coastal outcrops. Here, oil seeps have been documented within 

mudstone successions (Baird, 1957; 1966; Hamblin et al., 1995). Preliminary analyses, 

on a limited number of samples (n=24), indicate Total Organic Carbon (TOC) values 

range up to 4.54% with thermal maturities in the oil window (Ro 1.27%) (Hamblin et al., 

1995). Most importantly, sediments of the Cape Rouge and Crouse Harbour formations in 

the Conche region represent the only onshore analogue to Lower Carboniferous source 

rocks off the eastern seaboard of the Northern Peninsula, including the offshore extension 

of the White-Bay Sub-basin and the greater St. Anthony Basin (Figure 1.2, Figure 1.6). 

Unlike their counterparts in the other Atlantic provinces and eastward in the Midland 

Valley of Scotland, no commercial reserves have been identified within the St. Anthony 

Basin or its onshore analogues. In Newfoundland, in part, this could simply be due to the 
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limited exploration activity; few boreholes have been drilled and with little seismic data 

acquired. The Conche region, where thick successions of lacustrine mudstone, sandstone, 

and siltstone are exposed, offers a unique onshore analogue for the offshore St. Anthony 

Basin. Currently, these successions are characterized by a limited number of analyses 

(Hamblin et al., 1995) in strata that display significant vertical and lateral facies 

variability.  

The primary aim of this thesis is to characterize the depositional setting (lake 

basin type) of Lower Carboniferous strata at Conche and to understand their source rock 

prospectivity (occurrence, distribution, quality and quantity). In measuring strata, a lake-

basin model will be created using the principles of sequence stratigraphy and the 

mechanics of lake sediment deposition. To decipher lake-style and fill-evolution, it is 

necessary to map varied suites of strata, and identify sedimentary structures and bedding 

patterns together with trace-fossil assemblages.  

With an understanding of lake-basin type and source rock prospectivity, 

sedimentary stacking patterns and source rock potential will be better understood for 

analog basins offshore in the White Bay Sub-basin and the adjacent St. Anthony Basin. 

1.02 — Study Area 

 The study area encompasses the Conche and Cape Rouge peninsulas, rocky 

headlands located within the White Bay Sub-basin of the greater Maritimes Basin and on 

the eastern seaboard of the Great Northern Peninsula (Figure 1.4). Also included are 
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adjacent islands to the east, namely Rouge Island, Red Island, Pigeon Island, and Groais 

Island (commonly known as Northern Grey Island) (Figure 1.4). 

1.03 — Scientific Objectives  

Research objectives include: 

• Review literature on stratigraphy and source rock models for lacustrine settings 

with attention to the variety of lake-basin models and the distribution and 

character of hydrocarbon play elements (refer to Chapter 1, p.32). 

• Review analogue lacustrine basins with proven source rocks (e.g., Albert 

Formation of New Brunswick, Canada) and compare prospective source rocks 

with those identified at Conche (refer to Chapter 1, p.18 & Chapter 5, p.147).  

• Conduct a geological survey of Cape Rouge Formation in the Conche region, 

including the Conche-Cape Rouge peninsulas and adjacent islands to the east 

(Rouge, Red, Pigeon, & Groais Island) (refer to Chapter 3, p.60). 

• Map stratigraphic sections of the Cape Rouge Formation around the study area to 

gain an understanding of the variety and distribution of strata, including both 

organic-rich and non-organic rich sections (refer to Chapter 3, p.84). 

• Identify areas where fine-grained strata and oil seeps are common and therein 

generate a large suite of mudstone samples for Total Organic Carbon (TOC), 

Rock-Eval Pyrolysis and petrographic analysis (refer to Chapter 4, p.99 & Figure 

3.1).  

• Define source rock quality and quantity of fine-grained facies at Conche using 

TOC, Rock-Eval Pyrolysis and petrographic analysis (refer to Chapter 5, p.139).  

• Determine a lake-basin type (underfilled, balanced filled or overfilled lake-basins) 
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from facies associations and stratal stacking patterns (refer to Chapter 5, p.138).    

• Use the Conche region study as a contribution towards better understanding the 

hydrocarbon potential and key risks for offshore Paleozoic successions in the St. 

Anthony Basin (refer to Chapter 5, p. 149). 

1.04 — Methods  

   Fluvial-lacustrine successions of the Cape Rouge Formation were mapped in the 

Conche area (Figure 1.4) in June and July 2012 (encompassing 25 days). Here, 

stratigraphic sections were measured and illustrated following a sequence-stratigraphic 

approach for lake-basin models (see Carroll and Bohacs, 1999; 2001; Bohacs et al. 2000). 

Stratigraphic sections (on accessible shorelines) showing vertical and lateral facies 

variability have photo illustrations and measurements for sedimentary structures and trace 

fossil assemblages. Where mudstone successions were found, fine-grained samples were 

collected. Later, in the lab, mudstones were analyzed for TOC (LECO), Rock-Eval 

Pyrolysis (Rock-Eval), and thermal maturity (Vitrinite Reflectance, Visual Kerogen and 

Thermal Alteration Index).  Larger mudstone samples were also collected for thin section 

preparation and later analysis with conventional petrography and electron-optical 

(backscattered electron imagery) techniques. See Chapter 2 for more a detailed 

methodology of laboratory techniques. 
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Figure 1.4 Geologic map of the Conche Study Area, Northern Newfoundland 

Map includes the Conche and Cape Rouge peninsulas, Rouge, Red, Pigeon, and Groais islands (modified from Baird, 1966 and 

Hamblin et al., 1995). 
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1.05 — Geological Setting, History & Stratigraphy of the Maritimes Basin of 

Atlantic Canada 

 The Carboniferous Period marks a period of significant change in Earth’s 

geological record during which dramatic environmental and tectonic changes occurred 

globally. Throughout the Carboniferous Period plant species evolved, widespread forests 

flourished, amphibians diversified, and reptiles appeared first on land (Encyclopedia 

Britannica, 2009).   

 During the Lower Paleozoic, from New England through Atlantic Canada and 

Eastern and Western Europe, a series of lacustrine, marginal marine and marine 

sediments were deposited in linear fault-bound basins. This rift system has been referred 

to as the Proto North Atlantic Rift-System by Ziegler (1988) (Figure 1.1) (Williams, 

1973; Ziegler, 1988; Smith et al., 1991; Gibling et al., 2008).  

 Lacustrine strata deposited during the early Carboniferous Period are preserved as 

remnants of this extensive rift system and extend eastward from the Horton Group of the 

Maritime Provinces to the Anguille Group of Northern Newfoundland through to the 

Strathclyde Group of the Midland Valley of Scotland and north into the enigmatic 

deposits of Eastern Greenland (Ziegler, 1988; Follows and Tyson, 1998; “Sedimentary 

Basins and Hydrocarbon Potential of Newfoundland and Labrador”, 2000; Dean et al., 

2011).  

 In the Atlantic region of Canada, from the Late Devonian to Late Triassic, a series 

of thick Lower Paleozoic basins, collectively identified as the Maritimes Basin, was 
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deposited during a period of active extensional tectonism (Williams, 1973; Smith et al., 

1991; Gibling et al., 2008). Encompassing an area of roughly 330,000 km2, the basin 

underlies the offshore areas of the Gulf of St. Lawrence, Cabot Strait, southwestern 

Grand Banks, and Northeastern Newfoundland, and onshore areas in Quebec, Nova 

Scotia, New Brunswick, Prince Edward Island, and Newfoundland (Figure 1.2) (Knight, 

1983; Gibling et al., 2008; Dietrich et al., 2011). The Maritimes Basin is a composite 

basin that contains a number of basins and sub-basins (Gibling et al., 2008). These 

include the Magdalen, Sydney, Deer Lake and St. Anthony basins and numerous local 

sub-basins, including the Moncton, Cumberland, Antigonish, Bay St. George and White 

Bay (Figure 1.2) (Dietrich et al., 2011). 

 Largely filled with fluviatile and lacustrine sediments with minor marine 

incursions, the Maritimes Basin has complex basin-fill relationships (Knight, 1983). 

Given its complexity, various stratigraphic nomenclatures exist for the basin (see Dietrich 

et al., 2011 for a complete list of publications, page 73). For the purpose of this thesis, a 

stratigraphic column for the Maritimes Basin of Eastern Canada and equivalents in the 

British Isles (Northern Ireland and Scotland) is presented below (Figure 1.5). The Eastern 

Canada stratigraphy includes the southern Maritimes Basin (Quebec, Nova Scotia, and 

Prince Edward Island) and the northern Maritimes Basin (Newfoundland, including the 

Deer Lake Basin and the Bay St. George sub-basins) (compiled from Detrich et al., 2011; 

Hamblin et al., 1995). Carboniferous strata within the Maritimes Basin unconformably 

over eroded Acadian terrain, and disconformably, conformably and rarely unconformably 

are overlain by the Windsor Group, or in the easternmost regions by younger Mesozoic-
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Cenozoic sediments of Atlantic Canada’s continental margin (Figure 1.2,  Figure 1.3, 

Figure 1.5) (Mossman, 1992; Dietrich et al., 2011).  

 Basins and sub-basins of the Maritimes basin record the final stages of the 

convergence of the supercontinent Pangea. Positioned in a near equatorial latitude and in 

the collisional zone between Laurasia and Gondwana, the basin preserves a record for the 

closure of the Rheic Ocean (Morel and Irving, 1978; Ziegler, 1988; Hamblin et al., 1995; 

Gibling et al., 2008). Regionally, the basins and sub-basins carry a complex history of 

subsidence and inversion, reactivation of major lineaments, emplacement of salt bodies, 

and erosion of overlying strata (Gibling et al., 2008). 

 The early history of the Maritimes basin, from Mid- to Late Devonian, is 

preserved in a highly fragmented record marking the end of the Acadian Orogeny and the 

development of local extensional basins (Gibling et al., 2008). Regional extension 

prevailed from the Late Devonian to Early Carboniferous (Mississippian Period) during 

which a series of linear fault-bound basins developed along a common E-W to NE-SW 

orientation.  The basins are generally thick and developed across terrane boundaries (e.g., 

Avalon/Meguma boundary) as a consequence of reactivation of Acadian thrusts during 

extension (Murphy and Rice, 1998; Gibling et al., 2008). Regionally, dark mudstones of 

the Horton Group and equivalents (Tournaisian age) were deposited in a number of half-

graben rifts during extensional phases (Hamblin et al., 1995).   

 In New Brunswick, the Horton Group consists of the Albert Formation 

(Lacustrine organic-carbon rich mudstones, siltstones and sandstones), unconformably 
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overlain by the non-marine Sussex Group (Dietrich et al., 2011). Together, these rocks 

are equivalent to the Anguille Group of Newfoundland. These Early Mississippian rocks 

record the initiation of sedimentation in the Maritimes Basin and collectively have a 

similar stratigraphic framework of: 

(1) basal fluvial/alluvial clastics, 

(2) fine-grained lacustrine sediments and minor restricted marine deposits and, 

(3) upper coarse-grained fluvial/alluvial/deltaic sediments (Hamblin and Rust, 

1989; Hamblin et al., 1995; Gibling et al., 2008; Dietrich et al., 2011). 

 In a conventional hydrocarbon play analysis, fine-grained lacustrine deposits have 

potential for generating hydrocarbons while the upper coarse-grained members are 

potential reservoir facies (Hamblin et al., 1995). Regionally, the Horton Group and 

equivalents are thought to be the main source rock interval for the entire Maritimes Basin 

(Gibling et al., 2008). 

1.05.01 Stratigraphy of the Anguille Group, Newfoundland  

 A thick succession of Anguille Group strata (Figure 1.5), found along a narrow 

(~26 km) elongate zone in Western/Northern Newfoundland, trends northeast along the 

Cabot Fault Zone from Cape Anguille to White Bay (Figure 1.2) (Belt, 1969). Onshore 

deposits are localized in the Bay St. George and Deer Lake basins, and on the smaller 

headland promontories and islands in the White Bay Sub-basin and offshore in the St. 

Anthony Basin.  
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 In southwest Newfoundland in the Bay St. George Basin, the Anguille Group 

contains four formations. These include (from oldest to youngest); the fluvial Kennels 

Brook Formation; the lacustrine Snakes Bight Formation, the fluvial-deltaic Friars Cove 

Formation, and the fluvial-lacustrine-deltaic Spot Falls Formation (Figure 1.5) (Knight, 

1983). Further northeast along the Cabot Fault zone, the Deer Lake Basin is composed of 

non-marine sediments ranging from Tournaisian to Westphalian in age (Hyde et al., 

1988). The initial fill is divided by fault blocks on deeper structures in the basin. These 

prominent features include the Birchy Ridge Block and the Fisher Hills Block (Miller and 

Wright, 1984; Hyde et al., 1988). The Anguille Group in the Birchy Ridge Block is 

composed of three formations, from oldest to youngest, the Gold Cove Formation, the 

Saltwater Cove Formation, and the Cape Rouge Formation. The Fisher Hills Block 

contains four formations that include from oldest to youngest, the Blue Gulch Block 

Formation and the Forty-five Block Formations (together equivalent to the Gold Cove 

Formation), the Saltwater Cove Formation, and the Thirty-fifth Block Formation 

(equivalent to the Cape Rouge Formation) (Hyde et al., 1988) (composite stratigraphy 

illustrated in Figure 1.5). In the Conche area of the White Bay Sub-basin, Baird (1957; 

1966) divided the upper Anguille Group into two non-marine intervals, including the 

potentially age-equivalent Crouse Harbour Formation and the Cape Rouge Formation 

(Figure 1.5). 
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1.06 — Hydrocarbon Shows of Lower Carboniferous Age  

 Hydrocarbon shows occur in regionally age equivalent (Lower Carboniferous) 

lacustrine and marginal marine deposits within the Maritimes Basin of Eastern Canada, 

the Midland Valley of Scotland, and eastern Greenland.  

 In the Midland Valley of Scotland, the Calders Member of the Oil Shale Group is 

a historically rich oil shale deposit that developed along the Proto North Atlantic Rift 

system in predominantly lacustrine and locally marine settings (e.g., Dean et al. 2011). 

The oil shales, most notably the Pumperston and Dalmahoy oil shales (Asbian), were 

distilled for oil between 1851 and 1962 (Parnell, 1988; Follows and Tyson, 1998). Oil 

shale TOC values range from 10-12% and have Type II to Type I oil-prone kerogens 

(mean HI 400-800). There was an estimated total production of 75 million barrels of oil 

with a peak annual production of over two million barrels of oil. An estimated 65 million 

tonnes of recoverable oil are thought to remain in place (Follows and Tyson, 1998; Kerr, 

1994).  

  Active petroleum systems with Tournaisian source rocks (Horton Group and 

equivalents) occur in several areas across the Maritimes Basin (Christiansen et al., 1990; 

Piasecki et al., 1990; Follows and Tyson, 1998; Hyde et al., 1988; Desilva, 1999). 

Hydrocarbon shows include, most notably, the Stoney Creek and McCully oil and gas 

fields in New Brunswick, oil seeps in Nova Scotia, and oil and gas shows in diamond 

drill holes and wells in the Magdalen Basin, Bay St. George Basin, Deer Lake Sub-basin 
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and White Bay Sub-basin (Baird, 1957; 1966; Hamblin et al., 1995; Desilva, 1999) 

(Figure 1.2).  

  The Stoney Creek and McCully Fields, in the Moncton Sub-basin of New 

Brunswick (Figure 1.2), are the only commercially produced oil and gas fields onshore in 

the Maritimes Basin. Both fields are sourced from lacustrine organic-rich strata of the 

middle Frederick Brook Member (Greiner, 1962), Horton Group, and are interpreted to 

have been deposited in the deepest parts of stratified lakes (≤ 60m?) formed in tropical or 

sub-tropical environments (Greiner, 1962; 1974; Follows and Tyson, 1998). TOC values 

in the Frederick Brook Member range from 0.2-29.3% but mainly range from 3-14% 

(Smith et al., 1991; Follows and Tyson, 1998). HI values range from 350-850 indicating 

oil prone Type 1 kerogen (Follows and Tyson, 1998). Macerals are typically dominated 

by liptinite and lamalginite with minor amounts of telalginite contents (Follows and 

Tyson, 1998).  

  The Stoney Creek Field, discovered in 1909, commercially produced 29 Bcf of 

gas and 0.85 million barrels of 37°API oil between 1909-1991 (Hamblin et al., 1995; 

Desilva, 1999; Keighley, 2008).  Production has been difficult, and today an estimated 

90% of the reserves remain in place (Keighley, 2008). The McCully Field has an 

estimated 1 Tcf of gas in place and is currently producing gas that is exported to the 

Northeastern USA (Keighley, 2008). The richest sections of the Albert Formation yield 

as much as 93 litres/tonne (Macauley et al. 1984). 
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Figure 1.5 Stratal groups recognized within the Maritimes Basin of Eastern 

Canada and correlative units of the British Isles  

A simplified Early Paleozoic stratigraphic column for the Maritimes Basin of Eastern 

Canada and equivalent stratal groups of the British Isles (Northern Ireland and Scotland). 

Eastern Canada stratigraphy includes the southern Maritimes Basin (Quebec, Nova 

Scotia, and Prince Edward Island) and the northern Maritimes Basin (Newfoundland, 

including the Deer Lake Basin and the Bay St. George sub-basins) (compiled from 

Detrich et al., 2011; Hamblin et al., 1995). British Isles stratigraphy includes the Midland 

Valley of Scotland (compiled from Tyson and Follows, 1998 and Belt et al., 1967). 

Group, formation and facies names referred to in text, and source rock intervals indicated 

with red stars. Abbreviations: RB, Rocky Brook Formation; QB, Queensferry Beds; 

CR/CH Formation, Cape Rouge and Crouse Harbour formations; West., Westphalian. 
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 In Newfoundland, oil shows, associated with organic-rich facies of the Anguille 

Group (Horton Group equivalents), are exposed in regionally distinct formations in the 

Bay St. George, Deer Lake, and White Bay sub-basins (Figure 1.2). In the Bay St. 

George Basin, the Snakes Bight Formation contains dark shales with TOC values of 1.29-

1.85%. However, given high thermal maturation values (HI <4), they have limited 

hydrocarbon generating potential (Hyde, 1983; Sinclair, 1990). In the Conche area of the 

White Bay Sub-basin (Figure 1.4), prospective source rock deposits have been reported in 

the Cape Rouge and Crouse Harbour formations where several thousand meters of strata 

are exposed. Here, oil seeps have been documented with bituminous material (Baird, 

1957; 1966; Hamblin et al., 1995). In many instances bituminous material is now 

pyrobitumen (dead oil); however some live oil is seeping out of Crouse Harbour 

Formation dolostones at Pilier Bay (Hamblin et al., 1995) (Figure 1.4). Preliminary 

analysis of potential source rocks indicates a dominance of Type 1 kerogen in the oil 

window (1.0 to 1.2% vitrinite Ro) with TOC values between 1-4% (Hamblin et al., 

1995). 

1.07 — Offshore Data of the Lower Carboniferous, Maritimes Basin  

Only two exploration wells, Bradelle L-49 and Irishtown No.1, drilled in the 

Magdalen Basin in the Gulf of St. Lawrence (Figure 1.2), have successfully tested Lower 

Carboniferous offshore strata within any part of the Maritimes Basin of Atlantic Canada. 

To the east within the St. Anthony Basin, two old exploration wells (drilled in the 1980s) 

simply confirm the presence of any Carboniferous strata on the Newfoundland shelf. 

Neither of these wells tested hydrocarbons. 
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 St. Anthony Basin wells Verrazano L-77 and Hare Bay E-21 (Figure 1.2, Figure 

1.3) (Barss et al., 1979; McWhae et al., 1980; Hu and Dietrich, 2010; 2013) penetrated 

the northern and eastern limits of the St Anthony Basin. Verrazano L-77 was intended to 

test a Lower Carboniferous structural play that lacked Mesozoic-Cenozoic cover.  

However, due to drilling complications the well was abandoned early (Total Depth 

460mMD/446mSS) (Hu and Dietrich, 2010; Eastcan et al. 2013) (Figure 1.3). 

Biostratigraphy shows Verrazano L-77 hit late Viséan to early Namurian strata (Utting et 

al., 1976) that were once deeply buried; vitrinite reflectance values (Ro) are 1.4-1.7% 

(Hamblin et al., 1995). Farther east, the Hare Bay E-21 exploration well targeted an 

Upper Carboniferous play laying beneath thick Mesozoic-Cenozoic cover, and overlying 

salt diapirs (equivalent to Windsor/Codroy Group strata elsewhere) (Figure 1.3). Hare 

Bay successfully reached a TD of 4874mMD/4828mSS, recovering two cores from 

Upper Carboniferous strata (“Schedule of Wells Newfoundland and Labrador Offshore 

Area: BP et al. Hare Bay E-21,” 2007). For the deepest cored section, between 4516.50 

and 4525.50mMD (4487.4-4496.1mSS), sandstones yielded relatively high porosity 

values (up to 15%), likely related to secondary porosity development (Hu and Dietrich, 

2010). Given that neither well penetrated Lower Carboniferous strata, and with poor log 

quality in the Upper Carboniferous sections, little can be concluded regarding the source 

rock prospectivity of Paleozoic plays offshore Newfoundland.  

 In 1968 Tenneco Oil & Minerals Ltd. acquired a series of 2D seismic lines 

(completion date 04-Oct-1968) from the White Bay Sub-basin, the St. Anthony Basin and 

along the Labrador shelf (Domino, Harrison, Saglek areas). In the White Bay Sub-basin, 
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five seismic lines in the “Notre Dame block” (2D lines: ND-1A; ND-1C; ND-2A, ND-

3A, ND-3B) run roughly perpendicular to the coastline (Figure 1.6). Moreover, Tenneco 

Oil & Minerals Ltd. conducted an aeromagnetic survey in 1967 (Figure 1.7) (Plasse and 

Graves, 1985); however, the company has since sold their Canadian assets and their 

original East Coast data cannot be located. Microfiche copies of their 2D seismic lines 

are on file at the Canada-Newfoundland and Labrador Offshore Petroleum Board (C-

NLOPB), but the quality is extremely poor and there are no nearby wells to use to 

correlate the seismic data with the strata. 

1.08 — Previous Work in the Conche Area, Newfoundland 

 Alexander Murray, during his first year in Newfoundland, described the geology 

of the eastern seaboard of the Northern Peninsula, including descriptions of the 

Carboniferous strata in the Conche area (Murray and Howley, 1881; Murray and Howley, 

1918). In 1938, Johnson visited the area; his geological observations remain as 

unpublished files at the Mines Branch in St. John’s (Baird, 1957). Baird also visited 

Conche and released an unpublished report for the Geological Survey of Newfoundland 

(Baird, 1957). This was later followed by a published study in 1966. The published paper 

(Baird, 1966) describes the Lower Paleozoic bedrock geology of the Maiden Point 

Formation (previously referred to as the Canada Head Formation) (Ordovician), Groais 

Island Schists (Precambrian, potentially Cambro-Ordovician), and the Lower 

Carboniferous cover rocks. A geological map illustration includes major faults, folds, and 

the distribution of geological units on the Conche and Cape Rouge peninsulas and on 

several outlying islands. Baird formally defined two formations of Lower Carboniferous 
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Figure 1.6 Geologic map of Carboniferous rocks in sub-basins of the St. Anthony 

Basin and the Deer Lake Basin  

Distribution of Carboniferous rocks in sub-basins of the St. Anthony Basin and the Deer 

Lake Basin (modified from Keen and Williams, 1990). Offshore 2D seismic lines 

presented in dark blue. Abbreviations: W, White Bay Sub-basin; N, Notre Dame Sub-

Basin; B, Belle Island Sub-basin, Deer Lake Sub-basin.  
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Figure 1.7 2D Seismic and aeromagnetic surveys offshore Northeastern 

Newfoundland (Tenneco Oil) 

A) 2D seismic line coverage (1968) of the White Bay Sub-basin, the St. Anthony Basin 

and along the Labrador shelf. Red Square highlights the Conche study area. B) 

Aeromagnetic reconnaissance survey map (1967) of the St. Anthony Basin (after Plasse 

and Graves, 1985). Red Square highlights the Conche study area. 
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age that underlie portions of the Conche and Cape Rouge peninsulas, Rouge Island, the 

northwestern tip of Groais Island, and several smaller islands. These formations are the 

Crouse Harbour Formation (~275m thick), composed of poorly sorted conglomerate, 

sandstone and minor siltstone; and the Cape Rouge Formation (~1250m thick), composed 

of fine-grained sandstones, siltstones and mudstones (Baird, 1966).  

 Decades later, Hamblin et al. (1995) published a comprehensive paper describing 

the sedimentology, palynology, and source rock potential of the Conche area. Four 

sections were measured, three from the Crouse Harbour Formation (Latin Point, Pilier 

West and East) and one from the Cape Rouge Formation (Truite Point) (Figure 1.4). 

Twenty-four fine-grained samples were collected from these localities and analyzed for 

palynology and geochemistry. Results indicate deposition of potential source rock facies 

in an intermittently anoxic lacustrine environment (Hamblin et al., 1995). Spore studies, 

fluorescence and reflectance analyses indicate thermal maturity, specifically in the later 

stages of the oil window. Organic matter characteristics, biomarker features, and 

lithofacies characteristics show considerable similarities with Horton Group strata in the 

Maritime Provinces (Hamblin et al., 1995).  

 Recently, Dr. Elliott Burden and Dr. Joe MacQuacker of Memorial University 

revisited the area in 2010 and again in 2011 as a joint research project with Dr. Geoffrey 

Clayton of Trinity College Dublin. Samples collected during these field seasons were 

incorporated into two undergraduate theses from Memorial University. These included 

palynology and lithofacies variability studies by Froude (2012) and Hussey (2011), 

respectively. 
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1.08.01 Palynological and Paleobotanical Assemblages and Formation Ages   

 With several paleobotanical and palynological studies on record (Baird, 1966; 

Hamblin et al., 1995), and an unpublished undergraduate Honours Thesis by Froude 

(2012), the Cape Rouge and Crouse Harbour formations are considered Tournaisian in 

age. 

 Baird (1957; 1966) collected fossil plants from the Cape Rouge Formation west of 

Pyramid Point (Figure 1.4). Here, seed-fern remains were identified as Sphenopteris 

(Aneimites) strigosa Bell and Sphenopteridium macconochiei? Kidston from the Lower 

Carboniferous (Late Tournaisian or early Viséan).  Similar species have been 

documented in the Albert and Kennebecasis formations, New Brunswick and in the 

Cheverie Formation, Nova Scotia along with upper beds of the Anguille Formation, 

Newfoundland (Baird, 1966). Abundant spores were also collected from the Cape Rouge 

Formation (locality between Truite Point and Grande Point (Figure 1.4)), however, the 

majority of the spores were highly corroded. Among the identifiable spores, Barss (in 

Baird, 1966) classified them as equivalents to those discovered and reported in the 

Horton Group of Nova Scotia (that is Cheverie Formation type section and Ainslie – 

Strathlorne Formation of Cape Breton). Baird (1966) concluded that Carboniferous strata 

from the Conche area are age equivalent to the Upper Horton (Tournaisian) strata in 

Nova Scotia. 

 Hamblin et al. (1995) conducted a more extensive palynological study of both the 

Cape Rouge and Crouse Harbour formations. Miospore assemblages verify earlier reports 
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in Baird (1966) with a late Tournaisian age for both the Cape Rouge and Crouse Harbour 

formations. Reported taxa belong to the Spelaeotriletes cabotii Assemblage Subzone of 

the Vallatisporites vallatus Assemblage Zone (Hamblin et al., 1995). Based on the 

revised bio- and lithostratigraphic subdivisions of Belgium, this subzone is T11 age (or 

Tn3 age) (Hamblin et al., 1995). Hamblin et al. (1995) report miospore taxa assemblages 

containing Vallatisporites vallatus and Spelaeotriletes pretiosus var. pretiosus are 

indicative of deposition in a moderately humid climate. 

 Froude (2012) analyzed palynology samples from organic-rich sediments 

collected during the 2011 field season by Dr. Elliott Burden and Dr. Joe MacQuaker. 

Froude documented the fossil genera present, preservation, and thermal maturation 

indexes. However, given poor preservation, Froude’s conclusions regarding age and 

maturation were generally inconclusive as the majority of the spores were highly 

corroded. Despite generally poor spore preservation, Froude identified similar species to 

those documented by Hamblin et al. (1995).  

1.09 — Source Rock Fundamentals  

 For an active petroleum system to exist, a variety of fundamental elements and 

processes must come together for the accumulation of petroleum products. Elements and 

processes include source, reservoir, seal and overburden rock, together with the formation 

of traps and the generation-migration-accumulation of hydrocarbons (Magoon and Dow, 

1994). The most critical element rests with the presence of source rock and without it, all 

other elements and processes needed to generate a play become irrelevant (Rojas et al., 
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2013).  A source rock can be broadly defined as any rock that is capable of generating 

petroleum upon burial and heating, given that it contains an appropriate amount and type 

of organic matter (Tissot and Welte, 1984; Gluyas and Swarbrick, 2004). Typically, an 

average mudstone contains TOC values of around 0.8% while typical source rocks range 

between 1.5-15%.  

An effective source rock must (1) contain an appropriate quantity of organic 

matter (measured through TOC analysis), (2) organic matter must be of desired quality 

(measured through Visual Kerogen Analysis and/or Rock-Eval pyrolysis), and (3) 

organic matter must reach an appropriate level of thermal maturation through burial 

(measured through Ro, TAI, and Rock-Eval Pyrolysis) (Peters and Cassa 1984, 1994; 

Tissot and Welte, 1994).   

Organic-rich mudstones are often dark-colored rocks that are composed of silt- 

and clay-sized particles and enriched in organic material (Tourtelot, 1979; Laracy, 2012). 

Generally, they are argillaceous, however, carbonates can also be prospective source rock 

targets (Rojas et al., 2013).  Their makeup is variable, and can include a wide variety of 

components including quartz, clays, calcium carbonate, organic matter, chemical 

precipitants (e.g., carbonates/sulphides) and skeletal remains, all of which are commonly 

modified by diagenetic overprinting (MacQuaker and Bohacs, 2007; Laracy, 2012). The 

type of organic matter bound in these rocks is dependent on depositional environment 

(e.g., terrestrial, marine, lacustrine); however, the degree of organic matter enrichment is 

dependent on three factors. These include relative rates of production, destruction, and 

dilution of organic matter during deposition (Bohacs et al., 2005). For a rock to be 
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sufficiently enriched in organic matter, the production rates must surpass those of organic 

matter destruction (both in the oxic and sulfidic zones) and dilution (Bohacs et al., 2005), 

and is highly dependent upon rates of sediment accumulation (e.g., Aplin and Macquaker, 

2011). Bohacs et al., 2005 express organic-matter enrichment in a simple relation: 

Organic-matter enrichment = Production – (Destruction + Dilution) 

 Moreover, in order for these organically enriched rocks to produce hydrocarbons, 

the bound organic matter must be buried to a point where sufficient heat and pressure 

generate mature kerogen (Rojas et al., 2013). Kerogen is divided into four main end 

member “types” according to maceral composition (their original organic source 

material) and on the atomic ratios of hydrogen, carbon, and oxygen (Tyson, 1995; Gluyas 

and Swarbrick, 2009; Rojas et al., 2013). Macerals include liptinite (Type I), exinite 

(Type II), vitrinite (Type III), and inertinite (Type IV) (Gluyas and Swarbrick, 2009). In 

order to properly characterize source rocks, it is important to differentiate the various 

types of kerogen as the abundance of each will influence the type of petroleum product 

produced (oil, gas, or mixed), its hydrocarbon yield, and the timing of hydrocarbon 

generation and expulsion from a source rock (Tissot and Welte, 1984; Gluyas and 

Swarbrick, 2009; Rojas et al., 2013).  

1.09.01 Depositional Models for Organic-rich Mudstones  

  Conventional models for the deposition of organic-rich mudstones are dependent 

upon the establishment of oxygen-depleted (anoxic) sediments for the preservation of 

organic matter. In anoxic environments, conditions are established to deter benthic 
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scavengers and protect organic matter from oxidation (Rojas et al., 2013). Favorable 

conditions for organic-carbon enrichment occur in low energy environments where fine-

grained mineral particles are deposited slowly and light, low density organic matter 

accumulates faster than it is destroyed (Tourtelot, 1979; Rojas et al., 2013). Conventional 

models also share several other key commonalities. They state that fine-grained particles 

are delivered to the water bottom by suspension settling processes and mudstone 

variability is driven by the productivity of the overlying oxic environment versus detrital 

particle input. Generally, the point where conventional models differ is related to the 

mechanisms in which bottom water anoxia and water column stratification are generated 

(Tourtelot, 1979; Laracy, 2012). 

 In recent years, conventional depositional models for the production and 

preservation of organic matter have been closely re-examined. Studies (e.g., MacQuaker 

and Howell, 1999; Macquaker and Jones, 2002; MacQuaker and Adams, 2003; 

MacQuaker and Bohacs, 2007; Schieber et al., 2007; Schieber and Southard, 2009) 

demonstrate that persistent anoxia is not always required for the preservation or 

accumulation of organic-rich mudstones and that mudstones are in all likelihood 

deposited in higher energy environments than once perceived. Moreover, recent studies 

also indicate suspension settling processes are not the only dominant mud transport 

mechanism and mudstone variability reflects not only changes in productivity but also 

changes in detrital input (e.g., MacQuaker and Howell, 1999; Macquaker and Jones, 

2002; MacQuaker and Adams, 2003; MacQuaker and Bohacs, 2007; Schieber et al., 

2007; Schieber and Southard, 2009, Laracy, 2012). 
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1.09.02 Depositional Models for Organic-rich Mudstones in Lacustrine Settings 

In recent years, the breadth of research on both ancient and modern lake systems 

and their relation to source rock potential has increased significantly. Recent publications 

(e.g., Katz, 1990; Anadón et al. 1991; Carroll and Bohacs, 1999; 2001, Bohacs et al., 

2000; 2003) on basin-scale lacustrine environments integrate sedimentology, 

stratigraphy, biofacies, and inorganic and organic geochemistry. While research on 

modern and Quaternary deposits often focuses on sediment delivery and dispersal 

patterns together with organic production and preservation rates (Bohacs et al., 2000). 

Together, modern and ancient sediment studies have increased our understanding of 

controlling factors on the occurrence, distribution, and hydrocarbon generative potential 

of ancient lake deposits (Bohacs et al., 2000). 

Bohacs et al. (2000; 2003), along with works by Carroll and Bohacs (1999; 2001), 

have developed a model for predicting sedimentation patterns, hydrocarbon play 

elements (source, seal, reservoir), and hydrocarbon characteristics of lacustrine basins 

from the analysis of geological and geochemical indicators. Their predictive model is 

based on two factors that govern lake sediment deposition: (1) climate 

(precipitation/evaporation ratio), and (2) tectonics (Bohacs et al., 2000). The authors have 

noted a linked relationship of water+sediment supply with climate, and accommodation 

space with tectonism. They have used these relationships to derive a predictive model 

that groups together three end-member types of lake-basins. The end-member lake-basin 

types include: “overfilled” lake basins, “balance-filled” lake basins, and “underfilled” 

lake basins. These end-member lake-basin types are defined based on parasequence 
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models for stacking patterns, facies associations, sedimentary structures, geochemical 

indicators, biomarker assemblages, and organic maceral compositions (Bohacs et al., 

2000; 2003, Carroll and Bohacs, 1999; 2001). The three end-member lake basin types 

include: 

(1) Overfilled Lake Basins: Overfilled lake basins form when the rate of 

water+sediment is greater than the available accommodation. This typically 

occurs in systems where precipitation/evaporation (P/E) rates are high or 

where subsidence is low. Deposits in overfilled lake basins are commonly 

interbedded with fluvial deposits and coals. Water-level fluctuations in 

overfilled basins are minimal as water outflows are in equilibrium with 

inflows. This relatively constant water level records stratal sections that lack 

strong vertical lithological variation. Parasequences development is influenced 

mainly by fluvial channel avulsion and shoreline progradation. Overfilled lake 

basins are characterized by Type I-III kerogen (strongly influenced by 

terrestrial organic matter), and typically have low to moderate TOC values. 

Source rocks generate both oil and gas (Bohacs et al., 2000).  

(2) Balance-Filled Lake Basins: Balance-filled lake basins form when 

accommodation space is roughly in balance with sediment+water supply. In 

these lake-basins, water inflows do not match outflow rates and therefore, the 

water inflows can periodically fill accommodation space. Lake fluctuations 

are commonly influenced by climatic cycles that periodically expose lake 

margins to desiccation and fluvial erosion.  Basin fill thus records both 

progradation of clastics and vertical-aggradation related to desiccation. 

Balance-filled lakes typically have high rates of organic-carbon enrichment 

given favorable combinations of chemical stratification, water depth, primary 
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productivity, and burial rates (Bohacs et al., 2000). This results in the highest 

TOC enrichments of all three end-member types of lake basins, with 

predominantly Type I but also mixed Type I-III kerogen on sequence 

boundaries (Bohacs et al., 2000).  

(3) Underfilled Lake Basins: Underfilled lake basins are created when 

accommodation space is high compared to low supplies of water+sediment 

(Bohacs et al., 2000).  Given the large accommodation space and limited 

water+sediment, these lakes have closed drainage hydrology resulting in short 

lived lakes with shorelines that fluctuate greatly.  Desiccation is common in 

underfilled lake basins, as are thin parasequences. Common depositional 

environments in underfilled basins include mudflats, perennial saline lakes, 

saline playas, and deep perennial saline lakes. During periods of highstand, 

facies can include carbonates, evaporites, laminates, organic-rich mudrocks, 

stromatolites, and littoral bioherms. During periods of lowstand, facies can 

include evaporites, mudflat deposits, eolianites, paleosols, and strata 

dominated with desiccation features.  Productivity rates in underfilled lake 

basins is often high with source rocks dominated by Type I kerogen. 

However, source rocks are typically lean, given high rates of organic matter 

destruction due to frequent desiccation, erosion, and oxidation common to 

these lake environments (Bohacs et al., 2000; Renaut and Gierlowski-

Kordesch, 2010).  

As observed in the three-end member types of basins, tectonics and climate 

greatly influence sequence stratigraphic patterns (Carroll and Bohacs, 1999; Bohacs et 

al., 2000; Renaut and Gierlowski-Kordesch, 2010). Given the dynamic nature of climatic 

and tectonic variables over time, lake-basins often record a transition from one lake basin 
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type to another (underfilled, balance-filled, overfilled) through time (Bohacs et al., 2000). 

Changes in climate often influence lake deposits as cyclical patterns (e.g., represented in 

balance-filled lake basins as deepening and shallowing cycles). As 

precipitation/evaporation ratio increases over time, lake basins can evolve from 

underfilled to balance-filled lake basins. In contrast, as the precipitation/evaporation ratio 

decreases with time, lake basins dry up and evolve back to underfilled lake basins. 

Tectonic changes (e.g., activation of new basin-bounding faults) affect lake basins over 

longer time lines, resulting in varying subsidence rates often expressed as large scale 

changes in lake-basin type (Bohacs et al., 2000; Renaut and Gierlowski-Kordesch, 2010; 

Bohacs et al., 2000). 

1.09.03 Controls on Organic Enrichment and Hydrocarbon Type in Lacustrine 

Settings 

 The deposition and enrichment of organic-matter in lacustrine sediments can 

occur in both deep and shallow lakes. In shallow or swampy lake margins, thin coal 

seams and lignite deposits can be preserved in low oxygen settings generated from the 

accumulation of organic rich-peat, deposited from in situ macrophytes or vegetation. In 

contrast, in deeper water settings, carbonaceous shales or oil shales can be deposited from 

the accumulation of organic-rich oozes (Renaut and Gierlowski-Kordesch, 2010).  

 Organic matter bound in lacustrine sediments originates from both autogenic 

(microbial, bacterial or algal) and allogenic (stems, spores, pollen, leaves) organic 

material (Gierlowski-Kordesch, 2010) producing Type I to Type III kerogen types 
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(Powell, 1986). Organic matter from land plants can include herbaceous and woody plant 

material, whereas organic matter supplied from the water column may include 

cyanobacteria mats, phytoplankton, fish, microbial plates, rhizopod algae, submerged 

macrophytes and microphytes, charophytes, zooplankton, benthic organisms, and feces 

from larger grazing organisms (Kelts, 1988). The organic content concentration in 

lacustrine settings generally ranges from <1% to >20% (Powell, 1986). Cell membranes 

of autochthonous organic material are lipid rich and generally form oil-prone kerogens 

whereas allochthonous organic matter is more likely to generate gas-prone kerogens 

(Bohacs et al., 2000). 

 As in marine environments, the preservation and enhancement of organic matter 

in lacustrine environments is dependent on three factors. Organic matter enrichment 

requires an environment that has sufficient primary productivity, limited organic matter 

destruction (e.g., by microbial decay or post depositional factors), and organic matter 

must not be overly diluted by clastic or carbonaceous sedimentary input (Gierlowski-

Kordesch, 2010).  

 Moreover, the accumulation of organic-rich rocks can occur in lake environments 

that have well mixed oxygenated or stratified and anoxic water columns. In well-

oxygenated lakes, organic carbon enrichment can occur if primary productivity rates are 

greater than those of microbial decay and mineral dilution (Renaut and Gierlowski-

Kordesch, 2010); however, it is common for organic matter to be destroyed by microbial 

respiration (Cole, 1979; Bohacs et al., 2000). Moreover, the preservation potential for 

organic matter in lakes with a stratified water column can be high if anoxic waters are 
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generated, thereby deterring benthonic scavengers and bacterial respiration from 

destroying organic matter (Kelts, 1988; Bohacs et al., 2000; Renaut and Gierlowski-

Kordesch, 2010). 

The degree of organic carbon enrichment and the type of organic matter produced 

are strongly influenced by lake basin type. Overfilled lake basins have high 

concentrations of terrestrial plant material input and aquatic production (Bohacs et al., 

2000). Terrestrial organic matter typically exceeds aquatic production, thus, source rocks 

from these lake basins commonly generate more gas than other lake basin types (Bohacs 

et al., 2000). Moreover, organic enrichment in overfilled lake basins is commonly 

negatively affected by often constant clastic dilution by fluvial inputs. For preservation to 

be promoted, thermal stratification must occur in these lake basins (Bohacs et al., 2000).  

Balance filled lakes have the most source rock potential with lake conditions that 

favor organic carbon enrichment. Here, seasonal/intermittent fluvial inputs supply the 

lake environments with organic matter that is then concentrated in the lake by 

evaporation (Bohacs et al., 2000). Organic matter preservation is favored when chemical 

stratification is developed and dilution is minimized. Commonly in these lake 

environments fluvial input is restricted to transgressions and often traps sediments in the 

near-shore environment thereby reducing dilution and favoring organic enrichment in the 

lake-centers (Bohacs et al., 2000).  

In underfilled lake basins, primary productivity rates are often high and dilution 

by clastic input can be limited as sediments are often restricted to nearshore or lower lake 
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plain environments during highstands (Bohacs et al., 2000). Where underfilled lake 

basins struggle is with respect to the long-term preservation of organic matter, as 

underfilled lake basins experience frequent aerial exposures that can degrade organic 

matter (Bohacs et al., 2000). Both underfilled and balance filled lakes commonly have 

oil-prone source rocks from algal-bacterial material (Bohacs et al., 2000). A helpful table 

by Bohacs et al. 2000 summarizes the controls of organic matter development in all three 

lake basin types (Table 1).
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Table 1 Controls on organic-rich rock development in lake basins 

Table from Bohacs et al., 2000. 
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CHAPTER TWO: METHODS 

2.01 — General Methodology 

The data presented in this thesis are derived from outcrop samples collected from 

localities in the Conche study area, and include measured stratigraphic sections where 

geological and sequence-stratigraphic relationships are observed. In all of these localities, 

the Cape Rouge Formation is targeted for study and samples are collected, documented 

and photographed as stratigraphic sections are logged. 

Stratal sections of the Cape Rouge Formation are examined and measured to 

resolve stratigraphic stacking patterns, distribution of hydrocarbon play element (location 

of source prone intervals), lake-basin style and fill evolution. Four sections are logged 

from localities that include the Conche Peninsula (Fox Head and the western coast), Cape 

Rouge Peninsula (Pyramid Point) and Rouge Island (Figure 2.1). Moreover, general 

geologic observations and facies trends collected from cliff-face exposure, are used to 

underpin the regional distribution, variation, and occurrence of facies and oil seeps. 

These widespread observations, in congruence with data collected from rock samples, aid 

in the determination of lake-style, evolution, and source prospectivity.  

Mudstone samples collected from fine-grained facies assemblages throughout the 

study area (Figure 3.1, p.61) are analyzed by optical and electron microscopy together 

with a suite of geochemical source rock analyses. Geochemical analyses include a suite 
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of thermal maturation analyses (vitrinite reflectance (% Ro), visual kerogen, and Thermal 

Alteration Index (TAI)), Rock-Eval Pyrolysis and Total Organic Carbon (TOC).   

2.02 — Field Work Methods   

2.02.01 Field Accessibility, Location and Access   

The Conche Peninsula is located at the end of Highway NL-434 on the eastern 

seaboard of the Northern Peninsula, Newfoundland. A series of walking and ATV trails 

transect the Conche Peninsula and greatly aid access to the coastline and cliff faces 

(Figure 2.1). On this peninsula, up to one third of the coastline is not easily accessible. 

Steep cliff faces are studied from nearby lookouts (Glass Hole, Saunders Gulch, and 

Conche lookouts) or by boat (Figure 2.1). The eastern coastline (from Frauderesse Point 

to the Glass Hole Lookout) consists of near vertical ocean facing cliffs where 

stratigraphic sections cannot be studied in detail. Both the northern and western 

coastlines of the Conche Peninsula can be traversed entirely by foot, excluding several 

small sections where inland routes must be taken. 

To the north of the Conche Peninsula, the Cape Rouge Peninsula has no road 

access; it can be reached only by boat. Over half of that coastline is made up of steep 

cliffs with limited access. The southern shoreline (Truite Point area) has some narrow 

cobble beaches where some cliff face exposures can be accessed and measured. Other 

short sections are accessible on the western coast of the peninsula and where abandoned 

pastures expand to the edge of the bay. Pyramid Point, located at the northwestern tip of 

the Cape Rouge Peninsula, provides some of the best exposures of the Cape Rouge 



 

 

 

 

42

Formation on the peninsula. However, there are no cobble beaches for landing. 

Disembarking at the base of jagged cliffs is challenging and can only be done when the 

ocean is calm. Moreover, the entire Pilier Bay area has few accessible landing areas as 

cobble beaches are scarce and cliff faces steep (Figure 2.1).  

Islands to the east, including Rouge Island, Red Island and Groais Island, must be 

accessed with caution. Outcrops can be best accessed on the western coast of Rouge 

Island, the southern tip of Red Island, and the northwestern tip of Groais Island. Pigeon 

Island was not visited as sea conditions made landing unsafe (Figure 2.1). 

2.02.02 Field Work Techniques    

Strata of the Cape Rouge Formation are logged and described in a manner similar 

to procedures outlined in Stow (2006). Given the abundance of faults throughout the 

peninsulas and steep cliff faces rising from the sea, assembling long, continuous 

stratigraphic sections in the area is not possible. As an alternative strategy, shorter 

continuous sections (20-160 meters TVT) at accessible locations are measured, collected 

and photographed to provide a context for basin-fill type, and to understand the 

distribution of fine-grained facies and other hydrocarbon play elements in the area. Four 

stratigraphic successions presented in this thesis represent the varieties and assemblages 

of strata for the Cape Rouge Formation. Where fine-grained sections are exposed and 

accessible (Figure 2.1), suites of mudstone samples are collected in evenly distributed 

younging upwards successions (Figure 2.2). Later, in the lab, these rocks are subsampled  
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Figure 2.1 Geological map of the Conche and Cape Rouge peninsulas with 

accessible routes and shorelines  

Map modified from Baird (1966). Map features highway, roads, trails (dashed green), 

cliff face lookouts (dark purple squares), geological formations, and large-scale 

structures. Coastline exposures of the Cape Rouge Formation studied in this thesis are 

highlighted with red solid lines. The shoreline of the Cape Rouge Peninsula from Cape 

Fox to Latin Point is nearly completely accessible by foot with a few exceptions where 

inland routes must be taken. On the Cape Rouge Peninsula, the shoreline from Truite 

Point to the mouth of Birch Arm has limited accessibility from land and sea. A short area 

of coastline north of Grande Point is accessible as is a 400m shore west from Pyramid 

Point. There is easy access to the Crouse Harbour rocks in the isthmuses of the Cape 

Rouge and Conche peninsulas. Islands to the east including Red Island, Pigeon Island, 

and Groais Island are excluded from this map. 
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Figure 2.2 Outcrop photo of a fine-grained interval of the Cape Rouge Formation  

Yellow stars denoting sample locations. Exposure younging upwards (yellow arrow). 

 

for Rock-EVAL, TOC, and thermal maturation analysis. In addition, many of the samples 

collected for geochemistry are also prepared for thin sections analysis. 



 

 

 

 

45

2.03 — Petrographic Techniques & Nomenclature  

Lithofacies classification for fine-grained sedimentary rocks follows the 

nomenclature system of MacQuaker and Adams (2003). In this classification, mudstones 

are fine-grained sedimentary rocks with >50% of the material being 63µm or less in size 

(MacQuaker and Adams, 2003). Moreover, the authors provide a means of descriptive 

classification based on the presence of major rock constituents (that include grain origin, 

size and mineralogy) together with the fine-grained textural characteristics. In order to 

follow this descriptive classification scheme, optical and electron (backscattered electron 

imagery) microscopy analysis is completed to study textural characteristics and rock 

constituents (MacQuaker and Adams, 2003). For this study, thirty (30) fine-grained 

samples of varying grain-size and composition are analyzed by optical and scanning 

electron microscopy. Polished thin-sections cut to ~20µm x 24mm x 46mm and larger 

20µm x 51mm x 76mm dimensions by Wagner Petrographic in Utah, are scanned with an 

Epson 1250 flat-bed scanner, to record and document textural details at a 10-2 to 10-3m 

scale. Optical petrography is completed at Memorial University on a Nikon Eclipse E600 

polarized light microscope with a Nikon digital DXM1200F camera. Optical microscopy 

provides a platform for generating petrographic descriptions of mineral composition 

(both framework and matrix grains) and distribution, grain-size, fabric, textural 

information and sedimentary structures at a 10-3 to 10-4 m-scale.   

In addition to optical petrography descriptions, electron microscopy is completed 

on fine-grained samples using a Scanning Electron Microscope (SEM) offering 

Backscattered Electron (BSE) imagery. Electron microscopy is used to characterize 
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mineralogy and textural relationships at a 10-4 to a 10-5 m-scale. Before analysis, all thin 

sections are coated in carbon. For mineralogy and the study of textural relationships and 

grain boundaries, samples are analyzed using a FEI Mineral Liberation Analyzer (MLA) 

650 Field Emission Gun (FEG) and Scanning Electron Microscope (SEM) instrument. 

The MLA instrument is fitted with XFlash drift and Backscattered Electron (BSE) 

detectors and Energy Dispersive x-ray (EDS) Spectrometers. The MLA operates at an 

accelerating voltage of 25.00 kV with a 10µA beam current (spot size 5.31µm) at an 

approximate working distance of 15mm.  

2.04 — Organic-Matter Characterization  

 There are a variety of standard geochemical and petrographic methods used in 

hydrocarbon exploration to characterize sedimentary organic matter and determine the 

hydrocarbon-generating capacity of a sedimentary rock sample (Philip and Galvez-

Sinibladi, 1991; Peters and Cassa, 1994; Peters et al., 2005; Rojas et al., 2013). Common 

source rock analyses include: (1) organic geochemistry (e.g., TOC, Rock-Eval®, Gas 

Chromatography (GC), GC/mass spectrometry); (2) organic petrography (e.g., maceral 

identification, visual kerogen, vitrinite reflectance, thermal alteration index); and (3) 

palynology (spore, algae and phytoclast identification). Results from these analyses 

provide information on the quality, quantity, type and thermal maturity of sedimentary 

organic matter (Philip and Galvez-Sinibladi, 1991; Peters and Cassa, 1994; Peters et al., 

2005).  
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 Source potential is evaluated based on the quality and quantity of kerogen 

macerals trapped in sedimentary rocks. The quantity of organic matter is determined from 

measurements that establish the total organic carbon (TOC) expressed as a percentage of 

whole-rock weight (wt.%) (Table 2). Moreover, the quality of organic matter in 

sedimentary rocks can be determined from Rock-Eval® Pyrolysis parameters (estimates 

the amount of organic hydrogen and oxygen present and its thermal maturity), vitrinite 

reflectance and visual kerogen analysis (determines thermal maturity and organic matter 

types, respectively) (Table 3, Table 4, Table 5). Together these routine geochemical and 

petrographic techniques help resolve the type, amount, and thermal maturity of organic 

matter. From these analyses, the type of petroleum generated (if any) and the remaining 

generating potential may be determined (Peters et al., 2005b; Rojas et al., 2013).  

Table 2 Geochemical parameters describing the petroleum potential (quantity) of 

immature source rocks (from Peters and Cassa, 1994) 

Petroleum Potential 

Organic Matter 

TOC Rock-Eval Pyrolysis 

Weight % S1 S2 

Poor 0-0.5 0-0.5 0-2.5 

Fair 0.5-1 0.5-1 2.5-5 

Good 1-4 1.-2 5-10 

Very Good 2-4 2-4 10-20 

Excellent >4 >4 >20 
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Table 3 Geochemical parameters describing kerogen type (quality) and character of 

expelled products (from Peters and Cassa, 1994) 

Source Rock Quality TOC (Wt.%) Pyrolysis S2 

None 
<0.5 <2 

Poor 
0.5-1 2-3 

Fair 
1-2 3-5 

Good 
2-5 5-10 

Very Good 
>5 >10 

 

Product Type Kerogen Type Hydrogen Index 

Gas III 50-200 

Mixed Gas + Oil II/III 200-300 

Oil II 300-600 

Oil I >600 

 

 

Table 4 Geochemical parameters describing thermal maturation levels (from Peters 

and Cassa, 1994) 

Stage of Thermal 

Maturity 

Maturation 

Ro (%) Tmax (°C) TAI 

Immature 0.2-0.6 <435 1.5-2.6 

Early Mature 0.6-0.65 435-445 2.6-2.7 

Peak Mature 0.65-0.9 445-450 2.7-2.9 

Late Mature 0.9-1.35 450-470 2.9-3.3 

Postmature >1.35 >470 >3.3 
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For this study several industry standard methods and techniques are employed to refine 

the source potential (organic matter quality and quantity and thermal maturity) for fine-

grained rocks of the Cape Rouge Formation. These include: 

(1) LECO Total Organic Carbon (TOC),  

(2) Rock-Eval® Pyrolysis,  

(3) Vitrinite Reflectance (% Ro), 

(4) Visual Kerogen, and  

(5) Thermal Alteration Index (TAI).  

Eighty-nine (89) samples (28 samples from the Cape Rouge Peninsula, 52 

samples from the Conche Peninsula, and 9 samples from Rouge Island) are analyzed by 

LECO TOC and Rock-Eval Pyrolysis geochemical techniques. Moreover, 14 samples (5 

from the Cape Rouge Peninsula, 7 from the Conche Peninsula, and 2 from Rouge Island) 

are analyzed by optical petrography for %Ro, visual kerogen, and TAI.  Geochemical and 

optical petrography analysis is completed at Geomark Research, Ltd. source rock 

laboratory in Humble Texas. Ro, visual kerogen, and TAI analysis is completed by Dr. 

Bob Landis of Geomark Research laboratory. All analyses follow laboratory 

methodology and procedures published by Peters et al. (2005). 

2.04.01 Visual Kerogen  

 Visual kerogen analysis is completed on maceral populations from 14 samples 

from the study area (Figure 3.1). Macerals are defined as organic matter components in 

coal or sedimentary rocks that have distinct chemical and physical characteristics 

(Spackman, 1958; Peters and Cassa, 1994; Stasiuk et al., 2002; Hackley 2016). They are  
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 Table 5 Classification of organic matter in sedimentary rocks (From 

Stasiuk et al., 2002) 

 

grouped into four main groups based upon their source and composition. These include: 

1) liptinite, derived from algal material; 2) vitrinite, derived from woody tissue from 

vascular plants; 3) Inertinite, which includes macerals exposed to oxidation or 

combustion (Table 5); and 4) amorphous organic matter (bituminite), derived from 

bacterial or algal precursors (Peters and Cassa 1994, Hackley 2016). Maceral 

identification helps define environments of deposition and, potentially, hydrocarbon 

types. 
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2.04.02 Leco Total Organic Carbon (TOC)  

TOC measurements, corresponding to total organic carbon per gram of rock 

(measured in wt.%), are a standard means for determining organic richness (organic 

matter quantity) of a rock. TOC consists of three components: (1) carbon in extractable 

organic matter (EOM carbon), (2) convertible carbon, and (3) a residual carbon fraction 

(Jarvie, 1991) (Figure 2.3).  EOM generally forms a small part of a sample and is 

composed of carbon enclosed in hydrocarbons that have already formed from the thermal 

cracking of kerogen but are not yet expelled (Jarvie, 1991).  Convertible carbon is 

material remaining in kerogen and continuing to hold some hydrocarbon generating 

potential for a sediment sample (Jarvie, 1991). In contrast, residual carbon is a part of the 

kerogen that carries no remaining potential to generate hydrocarbons. This is mainly due 

to the chemical structure and composition (low hydrogen per unit of organic carbon) of 

this organic matter (Jarvie, 1991) (Figure 2.3).  

In this study, TOC is measured with the Leco combustion method and analyzed 

on a LECO C230 instrument. Larger samples are crushed and divided into 1g test 

samples. In order to remove inorganic carbon (e.g., carbonates), pulverized samples are 

dissolved in hydrochloric acid (HCL) for a minimum of 2 hours. When the dissolution of 

carbonates is complete (samples do not effervesce when agitated), samples are rinsed and 

washed through a filtration apparatus to remove the acid. The samples are then placed in 

the LECO crucible and dried in a low temperature oven (110°C) for a minimum of 2 

hours. After drying, samples are weighed to obtain % carbonate based on weight loss.  
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 To determine TOC, the LECO C230 instrument is first calibrated to a standard 

that has a known carbon concentration. This is completed by combustion of known 

standards by heating to 1200°C in the presence of oxygen. Combustion products include 

carbon monoxide and carbon dioxide. The combustion of unknown samples is then 

completed and the response is compared to that of the calibrated standard, thereby 

generating a known TOC value (Jarvie, 1991).  

 For quality checks, standards are routinely analyzed with the unknowns. 

Moreover, random and selected reruns are completed to verify data. The acceptable 

standard deviation for a TOC measure is 3% variation from an established value.  

2.04.03 Rock-Eval Pyrolysis   

 Rock-Eval pyrolysis is a method that provides data on the quality, type, and 

thermal maturity of organic matter and the petroleum potential of a rock sample (Philip 

and Galvez-Sinibaldi, 1991). It is used to determine source quality by estimating ratios 

for organic hydrogen and oxygen released during heating and volatilization of a rock in a 

laboratory environment (for a complete guideline for evaluating rock samples using 

Rock-Eval pyrolysis refer to Peters (1986) and Rojas et al. (2013)). 

 Pyrolysis refers to a controlled heating program of organic matter bound in whole 

rock samples, that, in the absence of oxygen, yields hydrocarbons and CO2 (Peters, 

1986). Upon completion of a pyrolysis analysis, the recorded output, known as a Rock-

Eval pyrogram, consists of three peaks (referred to as S1, S2, S3) and a temperature 

maximum (Tmax) measurement (Figure 2.4). The first peak (S1) represents the  
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Figure 2.3 A graphical depiction of TOC in a sedimentary sample  

TOC is made up of three constituents including extractable organic matter (EOM), 

convertible carbon (remaining potential to generate hydrocarbons), and the residual 

carbon (no remaining potential to generate hydrocarbons) (after Jarvie, 1995). 

 

 amount of hydrocarbons thermally distilled from a rock at a pyrolysis temperature of 

approximately 300°C (Philip and Galvez-Sinibaldi, 1991; Peters et al., 2005). The S1 

peak is commonly known as the “free oil content” and reported as mg Hydrocarbon 

(HC)/g rock (Rojas et al., 2013). This peak represents the quantity of hydrocarbon 

volatized out of the rock without cracking the kerogen (Espitalie et al. 1977, 1987). The 

second peak (S2) shows the remaining hydrocarbon generating potential of a sample (as 

mg HC/g rock), and represents the quantity of hydrocarbon released following the 
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cracking of kerogen (Espitalie et al. 1977, 1987, Philip and Galvez-Sinibaldi, 1991; Rojas 

et al., 2013).  A Tmax measurement is generated at the temperature for peak kerogen 

conversion. The final peak (S3) represents the quantity of organic CO2 released at 

temperatures up to 390°C, and is measured in mg CO2/g rock (Figure 2.4). The S1, S2, S3 

and Tmax measurements are used to characterize source rocks and decipher the basic 

chemistry and maturity of organic matter in sedimentary rocks (Philip and Galvez-

Sinibaldi, 1991; Rojas et al., 2013).  

 In this study, Rock-Eval pyrolysis is completed with a Rock-Eval II instrument at 

Geomark Research Ltd. source rock laboratory. Before analysis, whole rock samples are 

weighed to approximately 100 milligrams, washed, and ground (60 mesh) to a powder. 

The Rock-Eval II instrument is calibrated with a known rock standard. The standard 

values are determined from a calibration curve for pure hydrocarbons of varying 

concentrations. The rock standard is analyzed as an unknown every 10 samples, therein 

providing a quality control and check upon instrument calibration. If standard results do 

not meet specifications, the preceding data are rejected, the instrument is recalibrated, 

and samples are re-analyzed. Acceptable standard deviations for an analysis are:  Tmax: 

± 2°C; S1: 10% variation from established value; S2: 10% variation from established 

value; and S3: 20% variation from established value. The data are checked selectively and 

randomly on 10% of the samples. 
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Figure 2.4 Schematic pyrograms depicting the evolution of organic compounds 

from a rock sample during a Rock-Eval pyrolysis heating program  

A) Notable pyrogram measurements (after Peters, 1986) show the S1, S2 and S3 peaks 

and Tmax generated during Rock-Eval pyrolysis. Tmax intersects the oven temperature 

where S2 peak is at a maximum. B) An example pyrogram from this thesis analyzed with 

a Rock-Eval II instrument with a flame ionization detector (FID). The blue line 

represents signal from the FID detector and the red line represents the oven temperature. 

Time (mins) increases from left to right. 
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2.05 — Thermal Maturation Analysis  

Fourteen (14) samples are analyzed for vitrinite reflectance (% Ro), visual 

kerogen, and TAI, following the standard analytical procedures described by Peters el al. 

(2005). Results are used to assess the thermal maturity of rock samples and to verify 

Rock-Eval maturity estimates.   

2.05.01 Measured Vitrinite Reflectance  

 Vitrinite Reflectance (% Ro) is an industry standard optical tool for characterizing 

organic matter and is used as a reliable indicator of organic maturation of sedimentary 

rocks (Senftle and Landis, 1991; Peters et al., 2005). This analysis is widely considered 

the most robust tool for determining thermal maturation (Hackley et al., 2015) and is 

critical to understanding source rock potential. 

Vitrinite, a common maceral in kerogen, is derived from terrestrial plants (post 

Silurian in age) and can be divided into telinite (retains plant structure) and collinite 

(unstructured).  As a rock sample containing vitrinite becomes thermally mature (exposed 

to increasing heat), the vitrinite macerals become aromatized and reflective, with 

increasing reflectivity corresponding with an increase of heat. This reflective nature is 

caused by changes in the composition of the kerogen which typically consists of 

abundant carbon-ring structures. When the carbon rings in vitrinite are aromatized they 

develop a more planar character than carbon rings that have not been heated, and therein 

reflective in nature. The end point for aromatization is the development of graphite, 

wherein all carbon is aligned (Peters et al., 2005). Vitrinite Ro (%) values correspond to 
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various stages of petroleum generation maturation; these include: immature: Ro (%) = 

0.20-0.60; early mature: Ro (%) = 0.60-0.65%; peak maturity: 0.68-0.90%; late mature: 

0.90-1.35%; postmature: Ro (%) = >1.35%.  

Fourteen samples are analyzed for Ro following laboratory guidelines outlined by 

Peters et al. (2005). From a rock sample, kerogen macerals are isolated from matrix 

material, embedded in epoxy, and polished with fine alumina grit. A petrographic 

microscope equipped with a photometer measures the incident white light reflected from 

the vitrinite phytoclasts in the kerogen samples. Ro (%) represents a mean value from a 

varying number of indigenous (autochthonous or first cycle) phytoclasts for each sample. 

Allochthonous (recycled) and contaminated (suppressed) vitrinite are also measured but 

not included in the mean Ro (%) value. The number of measured particles range from 5-

51 phytoclasts per sample. Ro results for all phytoclasts are displayed as histograms of Ro 

versus frequency (Figure 2.5) (Peters et al., 2005). For each histogram, as shown in 

Figure 2.5, phytoclasts are subdivided according to the number of autochthonous (first 

cycle), allochthonous (recycled) and suppressed vitrinite (lower Ro) grains.  

2.05.02 Calculated Vitrinite Reflectance (Ro Calculated)   

Rock-Eval pyrolysis can be used to estimate thermal maturity of a rock sample 

using Tmax measurements and the Production Index (PI) (Peters et al., 2005). The 

Production Index (PI) is calculated from the ratio of S2 to the sum of S1+ S2 (PI= S1/ (S1+ 

S2) and is used to determine the evolution of organic matter (extent of petroleum 

generation) (Philip and Galvez-Sinibaldi, 1991; Rojas et al., 2013). Tmax and PI are often  
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Figure 2.5 Example of a vitrinite reflectance (%) vs frequency graph histogram for a 

kerogen isolated from sample (Ln12021-H). 

Kerogen is divided into suppressed (blue), autochthonous (green) and allochthonous (red). 

 

used as thermal maturity indicators, but also depend on the organic matter present, along 

with other factors. Thermal maturity estimated by Rock-Eval pyrolysis should therefore 

also be accompanied by other geochemical measurements, including vitrinite reflectance, 

biomarker parameters, and/or TAI (Peters et al., 2005). Rock-Eval Tmax can be converted 

to vitrinite reflectance (Ro) using a simple linear equation:   

Ro (Calculated) = [(0.0180 x Tmax) – 7.16] 

This formula, derived by Jarvie et al. (2001), generates good results for Type II 

and Type III kerogens with less consistent results for Type I kerogens (Peters et al., 

2005). It is not recommended to use this formula on very low (Tmax<420ºC) or high 

(Tmax>500 ºC) maturity samples or when S2 is less than 0.50 mg HC/g rock (Peters et al. 

2005). This method for calculating Ro from Tmax should not be used for predicting 

maturities on individual samples, but rather should be used as estimates on large sample 
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populations (Peters et al. 2005). Given the inconsistencies with using this method for 

samples with Type I kerogen, calculated vitrinite reflectance is accompanied by other 

quantitative geochemical techniques (measured vitrinite reflectance and thermal 

alteration index) and is used only as a rough estimate for thermal maturities on the total 

sample population.  

2.7.2 Thermal Alteration Index (TAI) 

Thermal Alteration Index (TAI) is a numerical scale based on the colour changes 

that palynomorphs experience with increasing burial (Peters et al., 2005). This method is 

functional, given that with increasing maturity, palynomorphs change colour from yellow 

to brown to black (Peters et al., 2005). For hydrocarbon exploration, the most important 

colour changes are those that occur between a TAI of 2.4-3.1 during the peak of oil 

generation. Furthermore, the visual examination of the TAI aids in the discrimination of 

reworked organic matter, enabling the proper estimation of the thermal maturity of a 

given sample (Peters et al., 2005).  

Fourteen (14) samples were measured for TAI following procedures outlined by 

Peters et al., (2005). TAI analysis is performed using a split-stage comparison 

microscope where samples are viewed simultaneously with standards (Peters et al., 

2005). The TAI scale for this study ranges from 0 (very pale yellow) to 4 (black) and is 

correlated with vitrinite reflectance. TAI measurements are accurate up to 0.1 units 

(Peters et al., 2005). 
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CHAPTER THREE: STRATIGRAPHIC RESULTS 

3.01 — Introduction 

 Chapter three presents geological results from fieldwork observations and 

laboratory studies of the Cape Rouge and Crouse Harbour formations. Below, four-

stratigraphic sections representative of the formation are introduced as measured 

reference strata. 

Following the development of a stratigraphic framework, sections from localities 

on the Conche and Cape Rouge peninsulas and offshore at Rouge Island ( Figure 3.1) are 

used to define lithofacies assemblages for the Cape Rouge Formation. 

3.02 — Sedimentary Geology of the Conche Region  

An estimated 1500 m of Lower Carboniferous strata is exposed in the Conche 

area and includes approximately 1200 m of the Cape Rouge Formation and 

approximately 300 m of the Crouse Harbour Formation (Baird 1957; 1966, Hamblin et 

al., 1995).  

3.02.01 Strata of the Crouse Harbour Formation 

The Crouse Harbour Formation is a coarse-grained facies association dominated 

by conglomerate and coarse-grained sandstone with lesser amounts of siltstone and 

carbonaceous mudstone, dolostone and fresh-water limestone. This formation is exposed 

on the isthmuses of the Cape Rouge and Conche peninsulas together with island  
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 Figure 3.1 Geology of the Conche area with stratigraphic section localities and 

mudstone sample locations 

Measured stratigraphic sections are annotated with pink stars. Mudstone sample 

locations (annotated in pink and yellow stars) are places where analyses include TOC, 

and Rock-Eval pyrolysis. Samples also analyzed for vitrinite reflectance, TAI, and visual 

kerogen represented by bolded text (map modified from Baird, 1966).  
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exposures on Red Island, Pigeon Island, and on the northwestern point of Groais Island. 

On Groais Island, exposures of the Crouse Harbour Formation are faulted against older 

schists of Precambrian age (Figure 1.4). On the Conche and Cape Rouge peninsulas, 

sedimentary rocks of the Crouse Harbour Formation are faulted against Ordovician 

schists of the Maiden Point Formation. Age relationships between the Crouse Harbour 

and Cape Rouge formations are ambiguous as there are no visible contacts onshore. 

On the isthmuses of the Cape Rouge and Conche peninsulas, the Crouse Harbour 

Formation is dominated by boulder conglomerates and very-coarse grained sandstones, 

with inter-fingered mudstone deposits. Boulder conglomerates are poorly sorted to 

moderately sorted sub-angular to sub-rounded matrix and cobble supported, with 

sandstone and volcanic clasts. Conglomeratic clasts match local bedrock exposures of the 

Ordovician Maiden Point Formation. Very-coarse grained sandstones are normally 

graded with conglomerate lag deposits.   

Offshore on Groais Island, the Crouse Harbour Formation is likewise dominated 

by boulder conglomerates, coarse to medium grained sandstone and with minor 

freshwater limestone horizons. Conglomerates here are poorly to moderately sorted, 

matrix supported and with sub-angular to sub-rounded chlorite-schist, quartz, and gneiss 

clasts that match bedrock exposures of the Grey-Island Schist Formation. Sandstones are 

feldspathic and coarse-grained and dominated by trough-cross stratification. Fresh water 

limestones lie on the western point of Groais Island. On Red Island, conglomerates share 

the same character as those found on Groais Island, and carry clast imbrication that is 
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unique to this locality. Sandstones here are coarse to very coarse grained, normally 

graded, and with cross-bedding, ripple stratification and erosive bed bases. 

3.02.02 Strata of the Cape Rouge Formation 

The Cape Rouge Formation is exposed as coastal outcrops on the Conche and 

Cape Rouge peninsulas and on Rouge Island. Coastal outcrops often provide extensive 

continuous sections and occasional three-dimensional exposures ( Figure 3.1)  

The Cape Rouge Formation has approximately 1200m of section exposed along 

the coastlines of the Conche and Cape Rouge peninsulas, together with similar rocks 

found on Rouge Island (located 6 km offshore).  Here, the Cape Rouge Formation strata 

range from steep (Figure 3.2) to shallow dipping strata that also offer occasional three 

dimensional exposures (e.g., Pyramid Pt.). This formation is composed of very-fine to 

medium grained sandstone, siltstone, carbonaceous and zeolite rich mudstone and 

dolostone stacked as thin-to thick bedded units.  

Strata of the Cape Rouge Formation on the Conche Peninsula are gently deformed 

into a 4.3km long, N-S trending open syncline with a north-trending plunge. This fold is 

crosscut by a major 3.5km NE-SW trending fault running from Latin Point to Frauderesse 

Point, and tipping-out offshore at an unknown distance. Numerous smaller faults with 

axes loosely aligned in a NE-SW direction also transect the Conche Peninsula. On the 

Cape Rouge Peninsula, another 4km long arching fault transects this peninsula trending 

from northeast Crouse to Pilier Bay. A series of smaller faults trending NE-SW and NW- 
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Figure 3.2 Photographs of coastal cliff face exposures in the Cape Rouge 

Formation on the Cape Rouge Peninsula 

Steeply dipping coastal exposures of the Cape Rouge Formation. A) A typical section 

of cliff face exposure from the southern coast of the Cape Rouge Peninsula, ~260m 

TST (thickness measured from annotated yellow points). B) & C) Zoomed in images 

of the cliff face exposures along the southern coastline of the Cape Rouge Peninsula. 

B) 7m thick, fine grained, thinly bedded mudstone interval recessed into the cliff face. 

C) Steeply dipping slabs of desiccated fine-grained sediments, circled person for scale. 
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SE crosscut strata on the north-east tip of the peninsula. Moreover, a small scale 

SSW trending syncline is present on the southwest coast of the peninsula near the “Point 

Dos de Cheval” ( Figure 3.1). 

3.03 — Facies Assemblages of the Cape Rouge Formation  

Facies assemblages of the Cape Rouge Formation are characterized by similarities in 

stacking pattern, lithology, grain-size and sedimentary structures. Four facies 

assemblages are identified and described: 

• Cape Rouge Facies Assemblage 1 (CR-A1): Fine to medium grained well-sorted grey 

trough cross-bedded, current rippled and planar laminated normally graded sandstone 

assemblage.                                                                                                                                                                    

• Cape Rouge Facies Assemblage 2 (CR-A2): Highly desiccated, interbedded grayish-

red very-fine to fine-grained sandstone, siltstone and dolostone assemblage. 

• Cape Rouge Facies Assemblage 3 (CR-A3): Interbedded very fine-grained olive-grey 

sandstone, siltstone and dolostone assemblage. 

• Cape Rouge Facies Assemblage 4 (CR-A4): Dark-grey to black laminated mudstone, 

and dolostone assemblage. 

3.03.01 Cape Rouge Facies Assemblage 1 (CR-A1) 

CR-A1 facies assemblage contains thick and thin normally graded beds 

dominated by successions of grey, fine to medium grained well-sorted, trough cross-

bedded, current-rippled and planar laminated sandstone. This facies assemblage reaches a 

maximum  
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Figure 3.3 Outcrop photographs of Facies CR-A1 of the Cape Rouge Formation 

A) Cliff face exposure of facies CR-A1 conformably overlying facies CR-A4. B) Cliff 

face exposure of facies CR-A1 with erosional base. C) Thick bedded medium grained 

planar laminated sandstone bed overlying current rippled sst. bed. D) Current rippled 

med.-grained sandstone (arrow indicates direction of sediment dispersal to the NE). E) 

Sandstone bed base with large scale branch imprints (20 cm diameter branches). F) 

Sandstone bedding plane with abundant terrestrial plant debris. 



 

 

 

 

67

thickness of 7m (True Stratigraphic Thickness - TST), with an average thickness of 4m 

TST. Sandstones are medium to light grey in colour on fresh surfaces (N6-N7 colour on 

the Munsell colour chart) (Figure 3.3).  

Sedimentary structures include planar lamination, trough cross-lamination, and 

cross-lamination. Sandstones occasionally have concave-up erosional bases (2.5m) but 

also have sharp bed boundaries (Figure 3.3, b). 

Bioturbation was not identified within this facies association. Several large 

accumulations of woody debris occur along some bedding planes. This debris is typically 

small and contains large broken woody branches  (Figure 3.3, e & f).   

3.03.02 Cape Rouge Facies Assemblage 2 (CR-A2) 

 Facies assemblage CR-A2 is a highly desiccated facies composed of a chaotic 

mixed succession of very-fine to fine-grained grayish-red sandstone, siltstone, and dark-

brown/grey carbonaceous mudstone and dolostone. Rocks of this facies assemblage 

represent a prominent feature on the Conche and Cape Rouge peninsulas and have an 

average thickness of 10m TST (with a range from 4m to 17m TST).  

 Within this facies complex, interleaved sandstone and mudstone bedding is 

common with mosaic patterns of muddy and silty sediment fracturing (herein thought to 

be desiccation cracks). Moreover, these sequences are commonly interbedded with 

oncoidal to massive dolostone beds.  Collectively, these deposits suggest a dominantly 

aggradational fill pattern (Figure 3.4, Figure 3.5, Figure 3.6). 
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 Above and below desiccated strata, there are commonly massive thinly bedded 

brownish-gray siltstone beds (5-15cm thick) interleaved with medium to thickly bedded 

(15-40cm) very-fine grained to fine-grained current rippled to massive/homogenous 

grayish red sandstone beds (Figure 3.4 b, Figure 3.5 a), wavy-parallel fissile very-fine 

grained sandstone beds, and thinly-bedded (1-10cm) continuous to discontinuous 

(massive to rippled) dolostone beds (Figure 3.5 a, Figure 3.5 b) composed of silt to sand 

size particles of dolomite. Some exposures of this facies assemblage lack siltstone with 

current ripples and massive sandstone beds and are instead dominated by wavy-parallel, 

fissile, very-fine grained sandstone beds interlayered with discontinuous dolostone beds 

(Figure 3.5 b). Siltstone and sandstone beds weather to a grayish red (10R 4/2) and have a 

brownish grey (5yr 4/1) fresh surface colour.  

 Fine to very-fine grained sandstone beds contain abundant wave and current 

ripple-lamination (Figure 3.4 a & b). Across this area, 58 paleo-current trends from 

current lineation and ripple crests show sediment dispersal towards the NE to ENE. 

Several standing wave-form deposits are also observed within this facies association 

(Figure 3.4 e) and together indicate multiple channel incisions with concentric fill 

geometries (Figure 3.5 c & d). Channel-fill thicknesses in this facies range from 0.5m-

0.75m and apparently indicate small, shallow high energy channels with widths of 8-10m 

(W/T 13-16).  
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Figure 3.4 Outcrop photographs of Facies CR-A2 of the Cape Rouge Formation 

A) Symmetrical ripples in very-fine grained sandstone bed with cross-cutting 

oxidized syneresis cracks (SC). Wave-ripple axis trending NW-SE, representing a bi-

directional ENE-WSW flow. Hammer for scale. B) Climbing current rippled very-

fine grained sandstone bed (15cm thick). Pencil for scale. C) & D) Platform of 

spherical dolomite masses in very fine-grained reddish-brown sandstone beds. D) 

spherical dolomite mass with septarian cracks. E) Standing wave in sandstone bed. 

2m Jacobs staff for scale. 
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Figure 3.5 Common sedimentary stacking patterns and structures of Facies 

Assemblage CR-A2 of the Cape Rouge Formation 

A) & B) Cliff face exposures showing the dominant stacking patterns of this facies 

assemblage, including siltstone (Silt), very-fine grained sandstone (VFSS) and dolomite 

(Dol) beds. A) Interlayered wavy to very-fine grained sandstone beds (VFSS) with 

massive siltstone beds (10-15cm thick) and thin, discontinuous to continuous dolomite 

beds (light beige colored beds). 2m Jacobs staff for scale. B) Wavy-fissile silty-sandy 

beds with interlayered thin (2-3cm) discontinuous dolomite beds. C) & D) Scour surfaces 

of channel incisions in brownish-red fine-grained sandstones. 
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Figure 3.6 Desiccation cracks and dolomite relationships of Facies CR-A2 

Desiccation cracks are very common within Facies Assemblage CR-A2 and vary from cracks which lack dolomite (A) through 

to mud-cracked horizons completely obliterated by dolomite (F).  A) Polygonal desiccation cracks lacking dolomite. B) 

Pentagonal to square shaped desiccation cracks. Crack vacancies (~3cm) filled with dolomite. C) Incomplete and radiating 

desiccation cracks infilled with dolomite; spherical dolomite masses appear to be forming at desiccation crack boundaries. 

Spherical dolomite masses dominate in underlying bed (see white arrow). D) Chaotic dolomitic bed (likely a former desiccation 

cracked horizon), hexagon shapes barely visible. E) Completely dolomitized bed with apparent desiccation crack boundaries 

(see white arrow). F) Completed dolomitized bed.  Hammers for scale (0.28m). 
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 A dominant feature of this facies association is large-scale, regular to irregular, 

polygonal, desiccation cracks (25-40cm wide) that are somewhat variable in general 

characteristics (Figure 3.6). Individually, the cracks (each 1-5cm wide) are dominantly 

infilled with light coloured, very pale orange (10YR 8/2) to a grayish orange (10YR 7/4), 

ferroan dolostone (Figure 3.6 b & c). Desiccation cracks can be perfectly pentagonal or 

hexagonal in shape to nearly incomplete, radiating and chaotic (Figure 3.6). Moreover, 

some desiccated horizons can be found to be nearly completely enclosed within chaotic, 

mounded dolostone beds (Figure 3.6 d-f). Large spherical-shaped dolostone masses (8-

15cm diameter) can be found in association with these desiccated horizons (Figure 3.6 c) 

but are not necessarily restricted to these intervals. Dolomite spherical masses are also 

found in wavy-fissile very-fine grained sandstone beds (Figure 3.4 c & d).  

 Bioturbation within these intervals includes horizontal burrows of Planolities 

(Figure 3.7 a) and sinuous traces of Cochlichnus anguineus (Figure 3.7 b). Resting traces 

of Lockeia sp. are found along some bedding planes together with molds of potential 

crustacean nests (Figure 3.7 c & d). Moreover, microbial patches occur throughout this 

facies association on sandstone and dolostone bed surfaces as irregular wrinkled patches 

(Figure 3.8 d & f). Carbonized plant fragments and large branches are also identified 

within this facies association, together with several well preserved fossil stems of 

Lepidodendropsis. Potential domal stromatolites are also observed along several bedding 

planes, and often associated with desiccation intervals (Figure 3.9). In one basal surface 

of a single wave ripple, the bed is littered with star-shaped imprints, thought to represent 

the casting of a Calamites leaf whorl (Figure 3.8 e).  
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Figure 3.7 Trace fossils of Facies Assemblage CR-A2 

A) Burrows traces of Planolites along bedding planes of very-fine grained sst. B) 

Sinuous burrows of Cochlichnus anguineus. C) Lockeia (resting traces of pelecypods) or 

potential molds of crustacean nests. D) Molds of potential crustacean nests on-top of 

very-fine grained reddish sst. bed. Rounded “holes” could be mud-rip up casts from a 

gutter cast. E) Potential leaf imprint of Calamites plant on basal surface of a fine-grained 

wave-ripple sandstone bed. 
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Figure 3.8 Trace fossils of Facies Assemblage CR-A2  

A), B), & C) Sandstone bedding plane with potential amphibian footprints. Sharply 

pointed digits possibly suggesting that the producer was clawed (see other examples 

presented by Kneighley and Pickerill, 1998). All tracks found on same sandstone bed, 

interlayered between rippled surfaces and desiccation cracked intervals. D) & E) Very-

fine grained sandstone basal bed surface with ridge and furrow.  Potential arthropod track 

on fine-grained sandstone bed. Surface littered with impressions. F) An irregularly 

wrinkled microbial patch. 
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Figure 3.9 Photo of domal stromatolite (mechanical pencil for scale). 

 

Potential tetrapod, amphibian footprints are observed along the southwestern coastline of 

the Conche Peninsula (UTM Coordinates: 21 U 577615 5635677). Two sets of irregular 

impressions ~6cm long lay on the top of wave-rippled sandstone beds (Figure 3.8 a, b, & 

c). These potential “digits” are pointed.  However, the number of digits is unclear, and 

possibly more than four. Inasmuch as careful observations are collected, at this time, no 

convincing trackways are present.    

3.03.03 Cape Rouge Facies Assemblage 3 (CR-A3)  

Facies assemblage CR-A3 is composed of gray to olive gray siltstone, very fine-

grained sandstone and minor amounts of silty mudstone and silty dolostone (Figure 3.10, 
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Figure 3.11). Average unit thickness ranges between 10-15m TST. Siltstone and very-

fine grained sandstone beds ranging in thickness between 15-50 cm, are normally graded 

to massive, and, occasionally interbedded with thin, finer grained silty-mudstones (Figure 

3.10 b). Siltstones weather to a light olive gray (5YR 6/1) to olive gray (5Y 4/1) colour 

with medium dark gray (N4) to a medium gray (N5) fresh surface colour. Sandstones 

weather to an olive gray (5Y 4/1) or pale brown (5YR 5/2) to moderate brown (5YR 3/4) 

colour and have a medium gray (N5) fresh surface colour (Figure 3.10).  

This facies is typified by massive, contorted and convoluted stratification (Figure 

3.11 a-c) together with cross and parallel lamination (Figure 3.11 e & f). Convoluted beds 

are common in siltstone and sandstone beds and generally grade from massive strata to 

contorted strata at bed tops (Figure 3.11 c).  

Ferroan dolomite beds, although rare, occur as thin (3-7 cm thick) silty beds 

dispersed throughout the facies, weathering to a dark yellowish orange (10YR 6/6) to 

moderate yellowish brown (10YR 5/4) colour with a dark gray (N3) to medium gray (N5) 

fresh surface colour. Ferroan dolomite beds are typically silty in nature with planar or 

cross-lamination and plant debris on some bedding planes. No other evidence for 

organisms or bioturbation is otherwise seen in this facies. In context, facies CR-A3 is 

nearly always found above facies CR-A4 and below facies CR-A2 (Figure 3.10 a & c). 
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Figure 3.10 Sedimentary stacking patterns of Facies Assemblage CR-A3 

Sedimentary stacking patterns of facies assemblage CR-A3. A) Gently dipping (~11 

degrees) siltstone cliff face exposure of facies CR-A3 with a sharp overlying contact 

with facies CR-A2. B) Cliff face exposure of facies CR-A3 with a sharp underlying 

contact with facies CR-A4. Succession is composed of massive siltstone beds, ranging 

in thickness from 5-30cm, interbedded with thin mudstone horizons (recessed into cliff 

face). 2m Jacobs staff for scale (circled). C)&D) Interbedded siltstone and very-fine grain 

sandstone beds (average 15cm thick). C) Gradational contact between facies CR-A3 and 

underlying facies CR-A4. 
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Figure 3.11 Sedimentary structures of Facies Assemblage CR-A3 

A) & B) Convolute lamination in very-fine grained sst. C) Convolute lamination in 

siltstone overlying massive siltstone bed, copper staining on surface exposure. D) 

Massive siltstone beds with fractures perpendicular to bedding planes infilled with 

pyrobitumen (dead oil). Surface stained with iron. E) Cross lamination in very-fine 

grained sandstone and siltstone beds. F) Planar laminated very-fine grained sandstone 

overlain by trough cross lamination.   
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3.03.04 Cape Rouge Facies Assemblage 4 (CR-A4) 

 Facies assemblage CR-A4 is composed of dark-grey to black laminated 

carbonaceous and zeolite-rich mudstones, interbedded with ferroan dolostone. Together, 

this unit typically ranges in thickness from 4 to 8 m TST. This facies assemblage is 

characterized by alternating fining-upwards to coarsening-upwards stacking patterns and 

is commonly found overlying coarser-grained strata of facies assemblages CR-A2 and 

CR-A3 (Figure 3.12 a).  

 Mudstones are black (N1) to dark grey (N2) in colour and weather to a medium 

gray (N5) to a dark gray (N3) colour. In general, fresh surfaces are one to two tones 

darker (on Munsell colour chart) than their weathered surfaces. Mudstones are even, 

parallel to wavy laminated and have a fissile character. Some beds have higher 

concentrations of carbonate (fe-dolomite) and zeolite (analcime) cements resulting in a 

less fissile character together with greater bed thickness (1-4cm) (Figure 3.12) (refer to 

Chapter 4 or detailed mineralogy of these mudstones). 

 Dolostone beds are silt-rich to clay-rich and occur interbedded with mudstones as 

continuous laminated thin to very-thin beds (Figure 3.12 c) or as lenses (Figure 3.12 d). 

Dolostone beds are typically 0.5-7cm thick (with an average bed thickness of 2cm) and 

are either found interbedded within thick mudstones (up to 40cm apart) or closely 

interbedded with thin (0.5-2cm) mudstones (Figure 3.12 c & d; Figure 3.13). 
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Figure 3.12 Sedimentary stacking patterns of Facies Assemblage CR-A4 

A) Cliff face exposure of facies CR-A4 with an underlying gradational contact with CR-

A2. Mudstones at base are interbedded with 15-20cm very-fine grained sandstone beds 

grading into pure mudstone-dolomite facies CR-A4. B) Folded mudstone and dolostone 

strata (see dashed yellow line for folded bedding plane). Section is ~6.5 m thick. C) 

Interbedded thin (1-3cm) dolostone (light colored) with dark coloured calcareous 

mudstones. D) Dark (N1) organic-rich (2% TOC) mudstone interbedded with planar 

laminated to lensoid dolostone beds (0.5-5cm thick). 
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Figure 3.13 Sedimentary stacking patterns and structures of Facies  

Assemblage CR-A4 

A) & B) Thinly interbedded succession of planar laminated mudstone and dolostone 

(0.5cm beds). B) Thinly bedded kinked dolostone beds (0.5cm). C) Contorted succession 

of interbedded planar laminated dolostone and mudstone. D) Highly contorted laminated 

mudstone and dolostone beds. E) Stacking succession of dolostone and mudstone beds 

displaying small thrusts on dolostone beds. F) Planar laminated 1-2.5cm thick dolostone 

beds in low TOC mudstone (N4). 
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Figure 3.14 Hydrocarbon shows and pyrobitumen occurrences of Facies 

 Assemblage CR-A4 

A) & B) Fractured dolomite bed with bituminous hydrocarbon along fractured surface. 

C), D) & E) Pyrobitumen (dead oil) lenses.  
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 Dolostone beds are dominantly planar laminated (sub parallel to parallel) (Figure 

3.13 f) and commonly show signs of soft-sediment deformation with folding and shearing 

along and across bedding planes (Figure 3.13 b, c, & d). Silty dolostones, near the top of 

this facies assemblage, can retain some evidence for cross-lamination. Dolostones are 

pale orange (10YR 8/2) to a grayish orange (10YR 7/4) colour on weathered surfaces and 

dark grey (N2) to black (N1) on fresh surfaces.  

Bituminous hydrocarbon seeps are common along dolostone cleavage planes 

(Figure 3.14 a & b) on the Cape Rouge and Conche peninsulas. Seeps are particularly 

obvious when outside air temperatures are high (> ~18deg C). Furthermore, pyrobitumen 

(dead oil) or biodegraded oil residue is found as lenticular nodules along bedding planes 

(Figure 3.14 c & d) and along cleavage planes (Figure 3.14 e).  

Small plant fragments occur along some bedding planes (Figure 3.15 a, b & c). 

Very minor bioturbation (Planolities) is found in mudstone beds near the top of this unit. 

Several gastropod molds (Figure 3.15 d) are located at Pyramid Point on the Cape Rouge 

Peninsula. Moreover, spores are a common feature in these beds, though taxonomic 

identification is challenging (Froude, 2012).  High levels of degradation and corrosion 

obscure or remove important taxonomic features (see Froude, 2012).  



 

 

 

 

84

 

Figure 3.15 Terrestrial plant imprints and trace fossils of Facies Assemblage CR-A4 

A) & B) Plant fragments along mudstone bedding planes. C) Small-scale (1-6mm) plant 

imprints on bedding plane. D) Potential gastropod cast. 

 

3.04 — Stratal Stacking Patterns of the Cape Rouge Formation 

 Facies assemblages exhibit both coarsening upwards and aggradational stratal 

sequences, and on average, have a repetitive and predictive nature. Four reference 

sections of the Cape Rouge Formation (Figure 3.16) are presented below (Table 6).  
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Table 6 Stratigraphic section locations (refer to Figure 3.16 for section locations) 

Stratigraphic Section  Locality Figure 

1: Pyramid Point Cape Rouge Peninsula Figure 3.17 

2: Martinique Point Conche Peninsula Figure 3.19 

3: Cape Fox Conche Peninsula Figure 3.21 

4: Western Coastline Rouge Island Figure 3.23 

 

3.04.01 Stratigraphic Section 1: Pyramid Point, Cape Rouge Peninsula 

Stratigraphic section 1 from Pyramid Point on the Cape Rouge Peninsula (Figure 

3.16) contains 160 m (TST) of accessible strata that include 82 m of continuous section 

(Figure 3.17). This section is characterized by thick intervals of fine-grained sediment of 

which a significant portion are sand-starved. This part of the succession is organized into 

coarsening-upwards and aggradational stratal stacking patterns. Bituminous hydrocarbon 

and pyrobitumen shows are common at this locality. 

Strata at Pyramid Point are dominated by the fine-grained facies of CR-A4 and CR-

A3. Within the context of this study, this section carries the thickest succession of 

mudstones/dolostone facies assemblage CR-A4 (Figure 3.17, Figure 3.18).  
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Figure 3.16 Stratigraphic section locations (modified from Baird, 1966) 
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Figure 3.17 Measured stratigraphic section #1 at Pyramid Point, Cape-Rouge 

Peninsula 

Refer to Figure 3.16 for map location. Samples are marked by arrows. TOC values in 

red. Numbers (e.g., N2, N3) represent rock colours of fresh surfaces (colours based on 

the genuine Munsell colour chips).  
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Figure 3.18 Outcrop photos of fine-grained facies (Facies Assemblage CR-A4) of 

measured stratigraphic section #1 at Pyramid Point, Cape Rouge Peninsula 

 

Photographs taken between the 114-154m interval of measured stratigraphic section #1 

(Figure 3.17). A) Cliff face exposure of facies CR-A4 from measured section 1 (refer to 

Figure 3.17 for picture location). B) Cliff face exposure of mudstone interval, facies CR-

2, with TOC sample locations marked with letters. Beds increasing in thickness in a 

younging upwards direction. Meter stick for scale. 
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An offsetting fault cuts the section (at the 82 m marker; Figure 3.17) into upper and 

lower parts, and with abundant pyrobitumen along the fault gouge. The lower part (that is 

between 0-80m) has two complete coarsening upwards successions of stacked very-fine 

to fine-grained graded sandstone of facies assemblage CR-A3. Occasionally, desiccation 

cracks occur near the tops of these intervals and where a sharp boundary defines the base 

of the next fine-grained cycle.  Pyrobitumen and bituminous hydrocarbon are common 

along mudstone and dolostone bedding and cleavage planes (Figure 3.14).  

The upper part of this section (between 80-160m) is completely sand starved, and 

composed primarily of silty carbonaceous mudstone and dolostone with darker units of 

fissile mudstone (up to ~10m thick). Two complete mudstone and dolostone successions, 

separated with gradational boundaries, are present here. No desiccation cracks are found 

in the upper section. Bituminous hydrocarbons, minor plant fragments and gastropod 

casts occur in the upper and lower mudstone succession (Figure 3.15). 

3.04.02 Stratigraphic Section 2: Martinique Point, Conche Peninsula 

Stratigraphic section 2 from Martinique Point holds 82 m (TST) of strata that includes 

53 m of continuous section from the Cape Rouge Formation (Figure 3.19). Seven meters 

of section at the 53m marker are obscured by beach talus. All four facies assemblages are 

present at this locality (including CR-A1, CR-A2, CR-A3 and CR-A4) occurring in 

repeating coarsening upwards successions. Three complete coarsening upwards 

sequences are present within this measured section where bounding surfaces are marked 

by sharp and gradational changes to muddier strata.  
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This sequence is exemplified by silt/sand-prone and dolomitic beds, coarsening 

upwards into facies containing abundant desiccation cracks, spherical ferroan dolomite 

masses, and bituminous hydrocarbon shows (Figure 3.19). 

The most distinctive features of this measured section are the abundant desiccation 

cracks, with cracks infilled with dolomite, together with spherical dolomite masses.  

Fine-grained facies assemblages (CR-A4) occur as thin (2.5m) to thick (~9m) 

successions interbedded with thin ferroan dolomite beds that tend to commonly occur 

near the base and top of the unit (Figure 3.20). Oil seeps were observed within both of the 

fine-grained successions (~16m and 45m markers). 

3.04.03 Stratigraphic Section 3: Cape Fox, Conche Peninsula 

Stratigraphic section 3 from Cape Fox contains 35 m TST of strata from the Cape 

Rouge Formation (Figure 3.21).Three facies assemblages at this locality (CR-A2, CR-A3, 

CR-A4) represent a complete coarsening upwards succession from 2m to 31m above the 

base.  

This succession is characterized by a basal 3 m interval of very-fine grained gray 

sandstone (facies CR-A2) marked by a gradational contact (at the 3m marker) with an 

overlying 6.5m thick finer-grained laminated mudstone/dolostone (facies CR-A4).  
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Figure 3.19 Measured stratigraphic section #2 at Martinique Point, Conche 

Peninsula  

Refer to Figure 3.16 for map location. LECO TOC values in red. Numbers (e.g., N2, N3) 

in white present rock colours of fresh surfaces.  
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Figure 3.20 Outcrop photos of fine-grained facies (CR-A4) of measured section #2 

at Martinique Point, Conche Peninsula  

Photographs taken between the 14-24m interval of measured stratigraphic section #2 

(Figure 3.19). A) Outcrop photograph of facies CR-A2, between 14-24m. Stars represent 

sample locations for TOC and thin sections. Yellow star represents sample LN12014, 

with samples LN12014-A through LN12014-J above. A 2m Jacobs staff is circled for 

scale. Enlargement photograph of region is highlighted in the red dashed square. B) 

Enlarged photo of the Facies CR-2 succession (G in plot A) with TOC samples B-E, 2m 

Jacobs staff for scale. 
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Here, fine-grained strata of CR-A4 are dominated by thin, convoluted beds of 

dolostone and fissile dark mudstone (Figure 3.22). Minor bituminous hydrocarbon and 

pyrobitumen shows are present. The laminated mudstone/dolostone interval (facies 

assemblage CR-A4) is overlain by facies assemblage CR-A3, consisting of interbedded 

olive-grey siltstones and dolostones (~7m TST). Overlying facies assemblage CR-A3 is a 

particularly thick (17m TST) succession of facies assemblage CR-A2, containing 

desiccated, grayish red sandstone. Several sandstone beds are medium-grained with 

current ripple stratification while finer-grained members have abundant desiccation 

cracked horizons containing spherical ferroan dolomite masses (Figure 3.22). A sharp 

boundary, at the 31m interval, represents a transition back to a finer-grained mudstone 

facies assemblage (CR-A4).   

3.04.04 Stratigraphic Section 4: West Coast, Rouge Island 

Stratigraphic section 4 from the western coastline of Rouge Island is 28 m TST of 

section that includes 21 m of continuous section from the Cape Rouge Formation. Three 

meters of section is partially obscured with soil cover.  Facies assemblages include CR-

A1, CR-A3 and CR-A4 (Figure 3.23). This section closely resembles the stacking 

patterns, facies assemblages and unit thickness of stratigraphic section 2 at Martinique 

Point (Figure 3.19) between the 68-82m interval. At Rouge Island there is a distinct 

flooding surface, at the 11m marker, where fine-grained facies CR-A4 sharply overlies 

coarser grained strata of facies CR-A3. Fine-grained assemblages of facies CR-A4 form a 

7m thick succession with interbedded thin ferroan dolomite beds commonly seen near the 

base and top of the unit. Minor amounts of pyrobitumen occur alone bedding planes. 
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Figure 3.21 Measured stratigraphic section #3 at Cape Fox, Conche Peninsula 

Refer to Figure 3.16 for map location. Sample locations for TOC and thin section 

samples are marked by arrows, TOC values are in red. Numbers (e.g., N2, N3) in white 

present rock colours of fresh surfaces.  
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Figure 3.22 Outcrop photos of fine-grained facies (CR-A4) of measured section #3 

at Cape Fox, Conche Peninsula 

Photographs taken between the 0-10m interval of measured stratigraphic section  #3 

(Figure 3.21). (A) Base of Cape Fox Stratigraphic section representing Facies CR-A4, 

with ~30cm very fine-grained sandstone beds interbedded with mudstone horizons at the 

2m marker, the succession grades into a sand-starved interval with mudstone-dolomite 

interbeds. 2m Jacobs staff for scale. (B) TOC sample locations within the 2-7m interval 

of Facies CR-A4. Mudstone and dolomite beds folded at base (C) Contorted dolomite 

with dark mudstone, hammer for scale. 



 

 

 

 

98

 

Figure 3.23 Measured stratigraphic section #4 at Rouge Island 

Refer to Figure 3.16 for map location. Sample locations for TOC and thin sections are 

marked by arrows with TOC values (%) in red. Numbers (e.g., N2, N3) in white present 

rock colours of fresh surfaces.  
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CHAPTER FOUR: SOURCE ROCK RESULTS 

4.01 — Introduction 

 This chapter focuses on the organic-prone intervals of Facies Assemblage CR-A4 

which are the key determinants of source rock prospectivity in this area. A varied suite of 

analysis is used to define source quality, quantity, and distribution. Analyses include 

optical and electron microscopy, geochemical (LECO Total Organic Carbon (TOC) and 

Rock-Eval pyrolysis) and thermal maturity analysis (% Ro, visual kerogen, and TAI). 

Both optical and electron microscopy analysis are used to compile mineral, textural and 

organic characteristics at a millimeter to micrometer scale. Moreover, geochemical and 

thermal maturation analysis are used to provide context for source quality and quantity.  

4.02 — Optical and electron microscopy of mudstone Facies CR-A4 

 Fine-grained facies of facies assemblage CR-A4, considered the key part of this 

source rock study, are dominated by carbonaceous and zeolite rich mudstones and 

dolostones and display heterogeneity at the millimeter to micrometer scale with 

characteristics that are otherwise undetectable at the hand-sample scale. These fine-

grained facies can be variable with respect to mineral composition, cement, sedimentary 

structures, and bioturbation content.  

The following figures, comprised of optical and backscattered electron optical 

images, highlight distinguishing mineralogical and textural features common to this 

facies assemblage (Figure 4.1 through Figure 4.6).  Although samples are heterogeneous 
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at a millimeter to micrometer scale, these mudstones share a number of broad 

overarching textural and compositional similarities. Mudstones are pervasively cemented 

by ferroan dolomite and analcime, with minor concentrations of late-stage calcite cement 

(occurring as dog-tooth calcite in fractures). Moreover, albite, illite, anorthite, pyrite 

(dominated by framboids), and pyrrhotite are also present in minor and varying 

concentrations, in addition to accessory minerals. Accessory minerals include quartz, 

apatite, titanite and monazite.  Mudstones are commonly thinly laminated, often 

alternating between pellet mottled rich and dolomite rich or pyrrhotite bearing beds. 

Elsewhere, depending upon locality, other mudstones can also contain thin laminae of 

phosphatized algae mats.  

At the millimeter scale, samples of mudstones and dolostones from the Conche 

and Cape Rouge peninsulas have abundant traces of pyrobitumen, and live oil observed 

to have migrated along vertical fracture planes, pooled in small microstructural traps 

(Figure 4.1) and locked between bedding planes (Figure 4.2). 

Trace fossils are extremely rare within this facies assemblage. Vertical burrows, 

0.5-1mm wide/3-3.5mm long, lined or filled with framboidal pyrite, are infrequently seen 

at Pyramid Point on the Cape Rouge Peninsula (Figure 4.3 A, E & F).  
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Figure 4.1 Optical micrographs of hydrocarbon occurrences in mudstone and 

dolostone facies, Facies Assemblage CR-A4 

A) Pellet mottled mudstone with abundant live oil occupying fractures together with 

pooled accumulations of pyrobitumen. B) & C) Fractured dolostone interbedded with 

fine-grained mudstone. Live oil is found to have migrated along fractures, leaking into 

fine-grained mudstone layers. 
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Figure 4.2 Fine-grained mudstone character from the middle & lower intervals of 

Facies Assemblage CR-A4 

Thin section scan (A), optical image (B), and backscattered electron optical (C, D) 

micrographs of fine-grained mudstone from the Cape Rouge Peninsula. A) & B) Thinly 

interbedded mudstone (even-non parallel to even parallel beds) of pellet mottled, 

analcime-dolomite-cemented beds (Unit 1), pyrrhotite bearing xeolite-cemented beds 

(Unit 2) and irregular pyrobitumen lenses (PyB). A) Mudstone crosscut by fracture 

infilled with calcite and with pyrobitumen. C) Unit 1, composed of fibrous illite (Il), 

analcime (Anl) and ferrous dolomite (Fe-Dol) cements, and angular titanite grains. D) 

Unit 2, composed of analcime cement, anorthite, fibrous pyrrhotite (Po), and illite grains.  
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Figure 4.3 Fine-grained mudstone character from the middle & lower intervals of 

Facies Assemblage CR-A4  

Thin section scan (A), optical image (B) and backscattered electron optical (C, D, E, F) 

micrographs of fine-grained mudstone from the Cape Rouge Peninsula. A) & B) Even-

non parallel to even parallel mudstone laminae. B) Silt/clay rich peloid lamina inter-

laminated with clay rich lamina and silt enriched lamina with scoured bases. C) Ferroan 

dolomite and albite rich interval with illite and minor pyrrhotite (Po), together with 

fracture porosity. D) Pyrrhotite (Po) enriched interval. E) & F) Planolites burrow 

completely infilled with pyrite framboids (8um avg. diameter). 
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Figure 4.4 Fine-grained mudstone characteristics from middle and lower intervals 

of Facies Assemblage CR-A4.  

Thin section scan (A), optical image (B) and backscattered electron optical (C, D, E, F) 

micrographs of fine-grained mudstone from the Cape Rouge Peninsula. An intensively 

dolomitized and analcime cemented interbedded mudstone composed of pellet mottled 

(B) and fibrous-pyrrhotite rich beds (C-D).  
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Figure 4.5 Fine-grained mudstone character from the upper intervals of Facies 

Assemblage CR-A4. 

Thin section scan (A), optical (B) and backscattered electron optical (C & D) micrographs 

of fine-grained mudstone from the Conche Peninsula. An intensively dolomitized medium-

grained mudstone interbedded with fine-grained laminated phosphatized algae mats. A) 

Interbedded fine-grained laminated phosphate-rich (dominantly apatite) beds (dark brown-

black in color) with eroded beds (red arrow) with thicker, medium-grained dolomitized beds. 

B) mm-scale wavy-parallel bedding relationships. Phosphatized beds typically have detrital 

quartz clasts throughout (Qtz). Dolomitized beds are fine to medium-grained. C) Fine-

grained phosphatized algae mat composed dominantly of apatite (Ap) with minor amounts 

of albite (Ab), illite (Il), pyrite (Py) framboids, and detrital quartz grains. Minor 

microporosity (P) is present. D) Intensively dolomitized med.-grained mudstone bed 

composed of fe-rich dolomite (Fe-Dol) with minor concentrations of analcime (Anl), pyrite 

framboids, and calcite veins (Ca).  
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Figure 4.6 Fine-grained mudstone character from the upper intervals of Facies 

Assemblage CR-A4. 

Thin section scan (A), optical image (B)/(C), and backscattered electron optical (D)/(E) 

micrographs of fine-grained mudstone from the Conche Peninsula. This sample 

represents a thinly interbedded carbonaceous and xeolite cemented mudstone with pellet 

mottled, pyrite-pyrobitumen bearing horizons.  
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4.02.01 Fine-Grained Facies Character 

 Mudstone samples from Facies Association CR-A4 are thinly laminated, and 

often consisting of pellet mottled and pyrrhotite bearing xeolite-cemented laminae 

(Figure 4.2, Figure 4.3, Figure 4.4). Laminae rich in pellets are commonly dominated by 

analcime (~50-60%) and ferroan dolomite (~40%) (Figure 4.2 B & C) cements with 

minor concentrations of framboidal pyrite, illite, anorthite, and quartz. Pyrrhotite bearing 

xeolite-cemented laminae are dominated by analcime cement (~50-60%) and they contain 

much less ferroan dolomite (<10%), carry concentrations of fibrous pyrrhotite (~15%) 

(Figure 4.2 D, Figure 4.4 C & D), and host an unknown iron-bearing mineral (FeMgO2 – 

10%) (Figure 4.4 E & F), among other minor accessory minerals. Laminae are commonly 

even-parallel/even-non parallel to wavy parallel. 

 Thin (0.15-.250mm), discontinuous, wavy lenses of pyrobitumen lay in some  

bedding planes (Figure 4.2 A & B). Infrequent vertical fractures (.500-.750mm wide) are 

lined with dog-tooth calcite and migrated pyrobitumen (Figure 4.2 A).  

Mudstone characteristics change slightly at the top of these stratal successions. As 

in those found deeper in a sequence, the mudstones at the top are dominated by analcime 

and ferroan dolomite cements (Figure 4.5, Figure 4.6) and frequently contain pellet 

mottled laminae (~100µm thick) with silt and clay peloids (Figure 4.6 B). However, these 

mudstones differ in that they frequently host thin (~0.05-0.250mm) fine-grained 

phosphatized algal mats.  
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Phosphatized algae mats in these laminae are dominantly clay sized (<0.5µm) 

apatite cement (~80%) (Figure 4.5 C) with minor amounts of framboidal pyrite (4-8µm) 

(~5%) (Figure 4.5 C) and silt sized (10-30µm) sub-angular to sub-rounded detrital quartz 

(Figure 4.5 C) and other accessory minerals.  

Organic matter includes woody material (Figure 4.6 D) together with plant spores 

and pyrobitumen. Similar to mudstones deeper in the sequences, these have late stage 

calcite cementation (Figure 4.5 D) and are thinly laminated. Laminations are often wavy-

parallel with sharp and gradation bases (Figure 4.5 A, B; Figure 4.6 A). Often, there are 

pure ferroan dolostone laminae (1-1.25mm thick) showing signs of soft-sediment 

deformation (Figure 4.6 A).   

4.03 — Total Organic Carbon (TOC) 

 Eighty-nine (89) samples from the Cape Rouge Peninsula, the Conche Peninsula, 

and Rouge Island are analyzed for TOC (for raw data, refer to Appendix 1). Sample 

localities on the Conche Peninsula include Chest Head, Martinique Point, Cape Fox, 

Point Dos Cheval, and two locations WSW of Point Dos Cheval. For the Cape Rouge 

Peninsula, localities include Goguelin Point, Truite Point, two localities NE and SW of 

Grande Point, and Pyramid Point. Moreover, and farther away, a suite of samples is from 

the north-western coast of Rouge Island.  

 TOC results for all samples show a unimodal, positive-skew distribution, with a 

single high outlier at 6.54% and a range between 0.23-6.54% (Table 7). Excluding this 

high outlier, the data have a range of 2.09% (Min of 0.23% and Max of 2.32%), a mode 
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of 1.30%, a median of 0.82%, and a mean of 0.94% (Figure 4.7 [row 1, column 1], Figure 

4.8 A).  

Table 7 Total Organic Carbon (TOC) results by area 

 

 On the Cape Rouge Peninsula, the 28 mudstone samples analyzed for TOC 

include Pyramid Point (n=16), Truite Point area (n=7), east Truite Point area (n=2), 

Goguelin Point (n=1), and the North Grande Point area (n=3) (Appendix 1 [column 8]).  

All the samples from Pyramid Point are from Stratigraphic Section 1 (8-20m and 140-

150m). Here, TOC results are unimodal, with a positive skew distribution and a single 

point outlier at 6.54% (Figure 4.7 [row 2, column 1]).  Excluding the high outlier, the 

data have a range of 2.09% (Min of 0.23% and Max of 2.32%), mode of 1.30%, median 

of 1.16%, and a mean of 1.27% (Figure 4.7 [row 2, column 1], Figure 4.8 A).  

 On the Conche Peninsula, 52 mudstone analyses are from Chest Head (n=4), 

Martinique Point (n=33), Cape Fox (n=9), Northern Coast (WSW of Point Dos Cheval) 

(n=5), and Point Dos Cheval (n=1) (for raw data, refer to Appendix 1). Samples from 

Martinique Point come from the 18-22m interval of Stratigraphic Section 2 and samples 

from Cape Fox are in the 3-6m interval of Stratigraphic Section 3. TOC results have a 

near symmetric (slight positive skewness) unimodal distribution with a range of 1.57% 
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(Min of 0.29% and Max of 1.86%), a mode of 0.93%, a median of 0.81%, and a mean of 

0.88% (Figure 4.7 [row 3, column 1], Figure 4.8 A). 

For Rouge Island, where 9 mudstone samples are analyzed from the 11-16m 

interval of Stratigraphic Section 4, the TOC values have a unimodal distribution with a 

range of 0.96% (Min of 0.60% and Max of 1.56%), a median of 0.82%, and a mean of 

0.86% (Figure 4.7 [row 4, column 1], Figure 4.8 A). 

4.04 — Rock-Eval Pyrolysis  

 Samples are also analyzed by Rock-Eval Pyrolysis (n=89) (for raw data, refer to 

Appendix 1 [columns highlighted in green] and appendix 2 [pyrograms]). Rock-Eval 

pyrolysis results include S1 (mg HC/g), S2 (mg HC/g), S3 (mg CO2/g), Tmax (temperature 

at S2 peak maximum), and derived results that include calculated Ro (%), Hydrogen Index 

(HI), Oxygen Index (OI), Production Index (PI), normalized oil content (S1/TOC), and 

S2/S3 ratios.  

 S1 results are low, with a range between 0.04-1.05 mg HC/g whole rock, but with 

two higher outliers of 2.91 and 4.88 mg HC/g in rock from Conche Peninsula.  

 For all samples, the S1 median is 0.21 with a mean of 0.31mg HC/g rock. Samples 

from the Cape Rouge Peninsula tend to have a slightly lower median value of 0.15 and a 

mean of 0.16 mg HC/g rock. From Conche Peninsula, samples have a slightly higher 

median of 0.23 and a mean of 0.39 mg HC/g rock. Moreover, the small sample set of 

Rouge Island material has a median of 0.26 and a mean of 0.34 mg HC/g rock.   

 S2 values range between 0.02-13.77 mg HC/g of rock with a high outlier of 34.74 

mg HC/g in one sample from the Cape Rouge Peninsula (Figure 4.8 B). Samples  
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Figure 4.7 Total Organic Carbon (TOC) and Hydrogen Index (HI) distributions 

Total Organic Carbon (TOC) (wt. %, represented by green histograms) and Hydrogen 

Index (mg HC/ g C, represented by purple histograms) data distributions for fine-grained 

samples of the Conche study area (n=89). Data distributions are divided into sample 

localities that include the Cape Rouge Peninsula (n=28), the Conche Peninsula (n=52), 

and Rouge Island (n=9). 
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Figure 4.8 Source potential graphs from Rock-Eval pyrolysis and thermal maturity data analyzed in the Conche study area 

Data encompass samples from the Cape Rouge Peninsula (no. 1-27, highlighted green), the Conche Peninsula (no. 28-79, highlighted yellow), 

and Rouge Island (no. 80-88), highlighted green). Refer to Appendix 1, column “No.”, for raw data. Graph A) Total Organic Carbon (wt.%) vs. 

sample numbers. Based on TOC values, the graph divides samples into poor (0-1% TOC), fair (1-2% TOC), good (2-4% TOC), and excellent 

(>4% TOC) source rock quality. Graph B) Oil Potential (S2) vs. sample numbers. Based on S2 (mg HC/g), the graph divides samples into None 

(<2), Poor (2-3), Fair (3-5), Good (5-10), and Excellent (>10) oil potential. Graph C) Hydrogen Index (HI) vs. sample numbers. Graph divides 

samples into hydrocarbon types based on HI values: Gas (<200), Mixed (200-300), and Oil Type II (>300). 
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 with high S2 values correspond to samples collected from the Cape Rouge Peninsula.  

Here, S2 values are between 0.02-13.77, and include a very high outlier with 34.74 mg 

HC/g whole rock. Samples from the Conche Peninsula have a lower data range for S2, 

between 0.02-4.78 mg HC/g rock. S2 values from offshore Rouge Island are lower again, 

between 0.32-2.29 mg HC/g rock (Figure 4.8 B). Hydrogen Index (HI) ((S2x100)/TOC) 

results range from 6.64 to 594 mg HC/g TOC (raw data located in appendix 1 [column 

16], Figure 4.7 [column 2, row 1], Figure 4.8 C), with a mean of 158.39 and a median of 

128.4 mg HC/g TOC. Results have a positive skew with a bimodal distribution (with a 

minor peak at >400 mg HC/g TOC) (Figure 4.7 [column 2, row 1]). The primary mode 

has a local mean of 139, and a median of 119, while the second (higher) mode has a mean 

of 499 and a median of 506 mg HC/g TOC. The higher mode is attributed to data from 

the Cape Rouge Peninsula and one sample from the Conche Peninsula.  HI indices from 

the Cape Rouge Peninsula have a mean of 204 and a median of 166 mg HC/g TOC while 

HI indices from the Conche Peninsula have a mean of 145 and a median of 125 mg HC/g 

TOC. Moreover, HI indices from Rouge Island have lower averages with a mean of 95 

and a median of 90 mg HC/g TOC (Figure 4.7 [column 2]). The Production Index (PI) 

(S1/( S1+S2)) ranges from 0.01 to 0.71 (Figure 4.9 B). 

4.05 — Organic Petrography & Thermal Maturity 

 Thermal maturity distribution is inferred from Ro and TAI data from 14 samples 

(Table 8). Moreover, Thermal maturity is also estimated by Tmax and Calculated Ro 

parameters from Rock-Eval pyrolysis for 89 samples (Figure 4.9 C, raw data included in 

appendix 1). 
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 Vitrinite results are presented in histogram format by locality (including 

allochthonous, autochthonous, and suppressed grains) in Figure 4.10, Figure 4.11 and 

Figure 4.12. Mean Ro (%) data, together with the number of vitrinite grains (including 

divisions based on sample populations of autochthonous, allochthonous, and suppressed 

vitrinite), laboratory notes, and kerogen type are presented in Table 8. For all samples 

(n=14), the mean Ro (for autochthonous vitrinite phytoclasts) ranges between 0.5-1.01% 

(or 0.55-1.12% when including allochthonous macerals). A subset of samples from the 

Conche and Cape Rouge peninsulas have mean Ro from 0.5-0.8% and 0.6-1.01%, 

respectively (Figure 4.10, Figure 4.11), and 2 samples from Rouge Island are Ro 0.73 and 

0.75% (Figure 4.12).  

 In addition to measured Ro, Rock-Eval Pyrolysis data also provide an estimate for 

thermal maturity for a broader distribution of samples. Pyrolysis Tmax values range 

between 430-457˚C (Figure 4.9 C). With Tmax pyrolysis measurements, a calculated Ro is 

derived [(0.0180 x Tmax) – 7.16] and used as an estimate of thermal maturity for all 

samples (n=68) (excluding samples with low S2 shoulders). All calculated Ro data range 

from 0.58–1.07%. Regional calculated Ro values from the Cape Rouge Peninsula and 

Conche Peninsula range from 0.58-1.05% and 0.69-1.07%, respectively. Offshore, the  

calculated Ro values from Rouge Island range from 0.83-1.07% (Figure 4.9 C, refer to red 

diamonds). 

 Fourteen samples were also analyzed for TAI with results ranging between 2 to 3- 

on the Cape Rouge and Conche peninsulas and between 2+ to 3- on Rouge Island 
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Figure 4.9 Hydrocarbon and thermal maturity indicator graphs from all Rock-Eval pyrolysis and thermal maturity data 

Data encompass samples collected in the Cape Rouge Peninsula (highlighted green), the Conche Peninsula (highlighted yellow), and Rouge Island 

(highlighted green). Graph A) Production Index (PI= S1/ S1+S2) vs. sample number. Samples subdivided, based on PI into immature, oil 

generation, and gas generation windows. Graph B) Maturity Indicators, including measured Ro (yellow diamonds), calculated Ro (red diamonds) 

and Tmax (green diamonds) vs. sample number. Samples subdivided, based on % Ro, into immature, oil generation, and gas generation windows.  
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(Table 8).  Fluorescence analyses show yellow to orange colour for algae, liptinite, and 

AOM2 particles with one red fluorescing algae maceral (Table 8).  

4.06 — Visual Kerogen  

Visual kerogen is analyzed optically (% volume by sample) for 14 samples (Table 

9). Two samples contained uncertain kerogen macerals and are therefore excluded from 

further discussion (samples Ln12051-G & E12209). Visual kerogen analysis includes 

differentiation of terrestrial, lacustrine, and marine organic matter.  

 Terrestrial visual kerogen includes autochthonous vitrinite (Vit1), allochthonous 

vitrinite [exotic, (Vit2)], inertinite (oxidized or forest fire derived lingo-cellulose 

components), exinite (plant spore, cuticles and resins) together with amorphous lipid and 

humic components derived from terrestrial organic matter (AOM3). Moreover, 

lacustrine/marine organic matter includes alginate (both lamellar algae and algal clustered 

cells), algodetrinite (detrital algal remnants), and bacterial degradation of algal remnants 

(including AOM1: Telalginite degradation and AOM2: lamalginite degradation).  

 The 12 samples analyzed for visual kerogen are dominated by lamalginite 

degraded kerogen [(AOM2) ≤75%] and alginate/algodetrinite kerogen (≤35%) (Figure 

4.13). All samples contain lesser amounts of amorphous lipid and humid components 

[(Aom3) ≤23%], with the exception of the Rouge Island sample Ln12051-G3 that 

contains no AOM3 kerogen macerals. 
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Figure 4.10 Vitrinite reflectance histograms from the Conche Peninsula 

Autochthonous (green), suppressed (blue) and allochthonous grains (red). The dashed 

line at 0.5% Ro represents the beginning of the oil generation window and the dashed 

line at 1.4% Ro represents the ending of the oil generation window.   
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Figure 4.11 Vitrinite reflectance histograms from the Cape Rouge Peninsula 

Autochthonous (green), suppressed (blue) and allochthonous grains (red). The dashed 

line at 0.5% Ro represents the beginning of the oil generation window and the dashed 

line at 1.4% Ro represents the ending of the oil generation window.  
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Figure 4.12 Vitrinite reflectance histograms from Rouge Island 

Autochthonous (green), suppressed (blue) and allochthonous grains (red). The dashed 

line at 0.5% Ro represents the beginning of the oil generation window and the dashed 

line at 1.4% Ro represents the ending of the oil generation window.   
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Table 8 Vitrinite Reflectance (% Ro) and Thermal Alteration Index (TAI) results of the Cape Rouge Formation Facies 

Association CR-A4 
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Table 9 Visual kerogen results of the Cape Rouge Formation Facies Association CR-A4 
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 There is a higher concentration of AOM3 kerogen macerals in Conche Peninsula 

samples (≤23%) than in Cape Rouge Peninsula samples (≤6%). Moreover, all samples 

contain inertinite (≤15%), allochthonous vitrinite [(Vit2) ≤ 15%), autochthonous vitrinite 

[(vit1) ≤10%)] and solid bitumen (≤10%) kerogen macerals. Exinite (≤10%) is identified 

in both Cape Rouge and Conche Peninsula samples, but not in the Rouge Island sample 

(Ln12051-G3) (Figure 4.13).  
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Figure 4.13 Visual kerogen distribution by area for the Cape Rouge Formation  

Visual kerogen distribution by sample and locality, graph A) Cape Rouge Peninsula (n=5); B) Conche Peninsula (n=6); and C) Rouge 

Island (n=1). Refer to graph legend for sample lists and locations. Refer to Figure 3.1 for sample locations.  
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CHAPTER FIVE: DISCUSSION 

5.01 — Introduction, Paleogeography & Paleoclimate 

Lower Carboniferous rocks of the Cape Rouge and Crouse Harbour formations 

are interpreted to have been deposited in a non-marine fluvio-lacustrine depositional 

environment. These formations are thought to have been deposited as early fill in a half-

graben depocenter formed along a long, narrow lineament (Hamblin et al., 1995; 

Hamblin and Rust, 1989). Other similar basin fill assemblages in roughly age-equivalent 

successions (e.g., Horton Group) are common across the Maritimes Basin (e.g., Bell, 

1960; Hamblin and Rust, 1989; Hamblin and Gibling 1996; Calder 1998), where strata 

generally range in thickness from 600-1600m (Bell, 1960, Martel and Gibling, 1996), and 

up to a maximum of 3000m in western Cape Breton, Nova Scotia (Hamblin and Rust, 

1989, Calder, 1998). Regionally, these basin fill assemblages are remarkably similar to 

one another, with sequences that include marginal conglomerates (e.g., Murphy et al., 

1994, Calder 1998) overlain by alluvial strata that are intertongued with finer-grained 

lacustrine sequences (Hamblin and Rust, 1989; Martel and Gibling 1996; Calder, 1998).  

Farther east, similar basins are found in Britain and apparently along this same 

intracontinental rift system (Tyson and Follows; 1998, Leeder, 1987 & 1988; Calder, 

1998). Together, this widespread deposition is indicative of trans-tensional faulting and 

deposition of terrestrial dominated facies across central and eastern Euramerica (Hamblin 

& Rust, 1989, Calder 1998). From lithology and setting, these deposits are thought to be 

hosts for active petroleum systems and are of interest for hydrocarbon exploration. 
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 The Cape Rouge and Crouse Harbour formations at Conche are deposits of the 

Tournaisian Stage, verified by palynomorph analyses in Baird (1957, 1966), Hamblin et 

al. (1995) and Froude (2012). Hamblin (1995) and Froude (2012) assigned spore 

assemblages from the Crouse Harbour and Cape Rouge formations to the Spelaeotriletes 

cabotii Assemblage Subzone (TII) of the Vallatisporites vallatus Assemblage Zone of the 

late Tournaisian (Froude 2012, Hamblin 1995). During this time, paleogeographic 

reconstructions by Blakey (2016) place the Conche area  ~5-10° south of the 

Carboniferous paleo-equator, while nearby, the St. Anthony Basin offshore sits slightly 

farther north (Figure 5.1). Blakey’s reconstructions show a slow steady northward 

displacement of the Maritimes Basin from the Late Devonian (Figure 5.1) and with active 

tectonism and rifting during deposition of the Cape Rouge and Crouse Harbour 

formations in the Tournaisian. The Conche area was completely land locked during the 

Devonian with significant tectonic activity occurring during the late-Devonian to early 

Mississippian as rifting attempted to open up a restricted Carboniferous sea east of the 

study area (Figure 5.1 A & B). This active rifting initiated the development of the Cape 

Rouge and Crouse Harbour formations during the Lower Carboniferous along with other 

lacustrine deposits across this proto-Atlantic rift system (e.g., Albert Formation, 

Strathlorne/Ainslie formations, Lower Oil shale group). The widespread distribution and 

proven source rock occurrences highlight the importance of syndepositional tectonism for 

development and preservation of Carboniferous terrestrial source rocks in rift basins 

(Follows and Tyson, 1998). 
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Figure 5.1 Paleogeographic reconstruction maps of the Late Devonian to Early 

Pennsylvanian  

The province of Newfoundland is highlighted in red with the Conche study area 

annotated by a yellow star and the Maritimes Basin by a dashed black line. Other 

provinces (NS, NB & PEI), Greenland, and the UK are outlined in black. The Paleo 

equator is represented by the black line. Maps modified after Blakey (2016). 
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Rapid transtensional subsidence provided accommodation space and preservation 

potential for sediments entering these basins, while warm, arid to humid, paleoclimates 

promoted primary productivity. Although sediments of the Cape Rouge and Crouse 

Harbour formations indicate terrestrial deposition with no marine influence, proximity to 

a restricted ocean may have affected climate trends in the region (Figure 5.1 A & B). 

Following deposition of the Cape Rouge and Crouse Harbour formations, rifting 

continued through the Early Mississippian and began to open up marine pathways close 

to, if not also within, the study area (Figure 5.1 B). Although no marine strata are 

preserved at Conche, marine sediments exist further offshore in the St. Anthony Basin 

and likely within the White Bay Sub-basin. During the later stages of the Carboniferous 

Period (Figure 5.1 C & D), the Conche study area was again completely landlocked. 

It is likely that given low latitudes, the Cape Rouge and Crouse Harbour 

formations were deposited in a region of relatively high temperatures. Hamblin et al. 

(1995) interpreted the Cape Rouge Formation to be from a humid environment containing 

the “climatically sensitive” Vallatisporites vallatus spore zone. However, others (e.g., 

van der Zwan, 1991; Calder 1990) indicate the Vallatisporites vallatus spore zone is 

commonly developed in arid environments. Similarly, the slightly older, but roughly age 

equivalent Albert Formation, located slightly to the south during the Tournaisian (Figure 

5.1) is interpreted by Utting (1987) to have been deposited in a warm sub-tropical dry 

belt (Calder, 1990). The palynology of terrestrial and lacustrine organisms may be a bit 

ambiguous.  Albert Formation has Botryococcus sp. (a taxon also observed in the Cape 

Rouge Formation at Conche, Hamblin et al., 1995; Froude, 2012), a lacustrine algal 
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cluster interpreted to be associated with warm, nutrient rich environments that favour 

algal blooms (Utting, 1987).  

 At Conche, the abundance of mudcracks and the cyclical nature of stratal stacking 

patterns indicate extensive intervals of sub-aerial exposure and weather patterns that 

indicate evaporation. In addition to desiccation features, drainage features (presented 

below) are thought to represent some cyclical wet (humid) intervals – perhaps seasons. 

Based on these findings, in addition to regional trends of analog basins, together with 

palynological and paleogeographic reports by others (e.g., Van der Zwan, 1981; Utting, 

1987; Tyson and Follows, 1998; Calder, 1998; Hamblin et al., 1995; Froude 2012; 

Blakey, 2016), the Cape Rouge and Crouse Harbour formations are considered deposits 

formed in a semi-arid paleo-climate with seasonal humidity fluctuations. 

5.03 — Crouse Harbour Formation Depositional Environment   

The Crouse Harbour Formation is a non-marine facies assemblage dominated by 

coarse-grained clastics. Sediments are interpreted to be sourced from a footwall alluvial 

fan and a hanging wall braid plain, laying interfingered with the finer-grained axial and 

distal Cape Rouge Formation rocks (Figure 5.2) (Hamblin et al., 1995).  

Footwall sourced alluvial fan deposits are exposed on the isthmuses of the Cape 

Rouge and Conche peninsulas. They differ in some bedding features and provenance 

from other equivalent beds preserved on islands laying farther offshore. 
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Figure 5.2 Depositional environment for the Cape Rouge and Crouse Harbour 

Formations 

Environment of deposition schematic for the Crouse Harbour and Cape Rouge Formation 

deposited in the Conche Study area, from eastern margin to western margin ~20km 

(modified after a similar example in Leeder and Gawthorpe, 1987) 

Crouse Harbour rocks on Red, and Pigeon islands, and on the NW margin of 

Groais Island (Figure 1.4) are interpreted to have been deposited on the hanging wall of a 

half-graben depocenter while those to the west, located on the isthmuses of the Cape 

Rouge and Conche peninsulas, are interpreted as footwall scarp deposits (Figure 5.2). On 

the isthmuses of the Cape Rouge and Conche peninsulas, the Crouse Harbour Formation 

is dominated by poorly to moderately sorted sub-angular to sub-rounded matrix to cobble 

supported boulder conglomerates together with coarse to very coarse-grained sandstones, 

infrequently interbedded with thin mudstone deposits. This predominantly coarse-grained 
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facies and sedimentary architecture suggest deposition as braided stream gravel or 

perhaps an alluvial fan. Conglomeratic clasts are locally derived from nearby mildly 

metamorphosed Ordovician sandstones (informally referred to as the Maiden Point 

Formation) laying high in the adjacent hills. Here, the Crouse Harbour Formation also 

contains coarse-grained sandstone with conglomeratic lags that may have formed as bar-

top channels. Mudstones present within this facies assemblage likely represent axial 

lacustrine deposits (equivalent to the Cape Rouge Formation) that inter-finger with their 

coarser grained equivalents (Figure 5.2). Given the presence of locally derived detrital 

material and the abundance of chaotic boulder conglomerates, it seems clear that this 

formation was deposited a short distance from its basement source and on or near the 

fault-margin for a half-graben depocenter.  This style of deposition is apparently typical 

for equivalent Horton Group strata found elsewhere in the Maritimes Basin (Baird, 1966; 

Hamblin et al., 1995, Calder, 1998).  

In contrast to the footwall deposits, Crouse Harbour strata identified from the 

offshore islands (Red, Pigeon, and NW Groais Island) differ from their apparently coeval 

deposits exposed on the isthmuses of the Cape Rouge and Conche peninsulas. The 

Crouse Harbour Formation, examined from these island exposures, is thought to be 

laying upon the hangingwall block near the eastern margin of what may be a half-graben 

depocenter (Figure 5.2). Here, rocks consist primarily of coarse-grained clastics 

representing fluvial braid plain depositional environments (Figure 5.2). On Groais Island, 

Crouse Harbour Formation consists of medium to coarse-grained trough-cross bedded 

feldspathic sandstone with scoured bases and with poorly sorted, chaotic matrix 
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supported boulder conglomerates of angular-to sub angular clasts. Some thin beds of 

freshwater limestone are exposed on Groais Island. Conglomerates of the Crouse Harbour 

Formation contain quartz, schists, gneisses and feldspathic sandstone clasts derived from 

the exposures of the adjacent Pre-Cambrian Grey-Island Schist. The coarse-grained 

character of this facies assemblage and the dominance of chaotic conglomerates with 

clasts derived from exposures of nearby rock indicate deposition in a high-energy 

environment laying adjacent to the source. Moreover, the abundance of trough-cross 

bedded sandstone beds with rip up lags and scour bases are interpreted to be deposits of a 

fluvial braid plain environment. This environment of deposition interpretation is similar 

to those made by Hamblin et al. (1995) despite visiting different outcrop locations. 

5.04 — Cape Rouge Formation Depositional Environment 

 Lithofacies assemblages of the Cape Rouge Formation are finer grained than 

those of the Crouse Harbour Formation and are interpreted to represent lacustrine 

deposits (Figure 5.2).  

 Palynomorph analyses in Baird (1957, 1966), Hamblin et al. (1995) and later by 

Froude (2012), reported Botryococcus algae in Cape Rouge Formation samples, therein 

indicating productivity in a terrestrial, fresh to brackish water environment (Hamblin et 

al., 1995; Froude 2012). Likewise, in roughly coeval formations elsewhere in the 

Maritimes Basin, Botryococcus algae are found in source rock deposits of the Frederick 

Brook Member oil shales of the Albert Formation of New Brunswick (Chowdury et al., 

1991; Utting 1987, Utting and Hamblin, 1991, Hamblin et al., 1995) and the 
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Strathlorne/Ainslie formations of Nova Scotia (Hamblin et al., 1995). These formations 

all apparently share broadly similar lacustrine environments and styles for sedimentation 

in this paleogeographic setting in the Early Carboniferous.  

At Conche, the Cape Rouge Formation contains a variety of lithofacies with 

varying sedimentary structures, dominated by features suggesting lacustrine deposition. 

Strata are generally dominated by mud-cracked horizons infilled with ferrous dolomite, 

and nodular dolomite horizons. Sandstone and siltstone beds carry current, wave and 

planar laminations and rarely, some minor bioturbation. Dark coloured mudstones are 

pervasively cemented by ferrous dolomite and analcime and carry pyrite and pyrrhotite. 

Stromatolites are present along some bedding planes together with microbial mats. 

Together, the presence of zeolites, dolomite, pyrite, stromatolites, with sedimentary 

structures indicative of evaporation, points to a depositional environment with lake 

waters that had elevated alkalinity and salinity.  

5.04.01 Lake Style and Facies Assemblages  

 Four lithofacies assemblages of the Cape Rouge Formation are viewed as 

distinctive stages of lacustrine basin-fill, representing varying stages of water flow and 

sediment dispersal. Settings range from aerially exposed mud-flats and other paralic 

deposits onshore, through density underflows, to open-lacustrine laminated mudstones 

offshore. Together these facies associations are interpreted as belonging to relatively 

shallow axial and also underfilled lake. The four lithofacies associations and their 

interpreted succession are presented below.  
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5.04.02 Cape Rouge Assemblage 1 (CR-A1): River-Delta Stream Mouth Bars 

 The Cape Rouge Facies Assemblage 1 (CR-A1) is a fine to medium-grained 

sandstone facies assemblage interpreted as deposits of subaqueous bars formed by 

unidirectional currents at the terminal ends of distributary channels. These bars are 

thought to form under open hydrologic conditions (wet phase) as rivers flowed into a 

lacustrine delta environment (Bohacs et al. 2000). This deltaic environment is likely a 

conduit of sediment into the lake system. 

5.04.03 Cape Rouge Assemblage 2 (CR-A2): Lake Margin (Plain) Facies 

 The Cape Rouge Facies Assemblage 2 (CR-A2), the most distinctive facies 

assemblage of the Cape Rouge Formation, is characterized by an aggradational stacking 

pattern of interbedded grayish-red sandstone, siltstone, dolostone and carbonaceous 

mudstone. Sedimentary structures and other diagenetic features point to periods of 

lowstand (hydrologically closed) in a lacustrine environment. The sedimentary structures 

of this facies assemblage are typical of environments exposed to sub-aerial conditions 

related to episodic drying (similar examples have been presented by Bohacs et al. 2000). 

Such structures include desiccation cracks, microbial mats, occasional stromatolites, and 

ripple cross-lamination. The abundance of desiccation cracks over extensive areas and the 

repetitive aggradational architecture of carbonaceous-rich facies is indicative of 

deposition in a marginal mud-flat lacustrine environment with fluctuating water depths 

(see Belt, 1967).   



 

 

 

 

134

Mudcracks are often infilled with ferrous-dolomite and associated with “globby” 

dolomite masses. The dolomite is most likely an early diagenetic precipitate from the 

breakdown of organic carbon, by methanogenic organisms, during breaks in sediment 

accumulation. These breaks in sediment accumulation were likely important to diffuse 

sufficient solutes to the precipitation sites. The mudcracks may have acted as migration 

pathways for fluids (carrying solutes such as Mg and Ca). 

 Domal stromatolites, closely associated with mud-cracked strata, are interpreted 

to have grown in shallow ephemeral calcium enriched waters during those short times 

when a closed basin developed.    

 Some fluvial erosion in this facies assemblage (Figure 3.5 C & D) is interpreted 

as climatically-driven lake level fluctuations along the margins of the lake. These events 

are often observed near the top of units and are interpreted to represent re-activation of 

streams after a closed lake basin phase ended.  

 In analog basins, similar facies assemblages have been observed in roughly age-

equivalent and often conjugate Carboniferous rift valleys (as noted by Belt et al, 1967). 

Here, these lithologies have been historically called “Cementstone” facies and are seen in 

the Albert Formation of New Brunswick and the Spear Point and Snakes Bight 

formations of Newfoundland (Gesner, 1847; Belt et al., 1967, Hamblin et al., 1995). To 

the east in the British Isles, similar lithological assemblages have been reported in 

Northern Ireland and the Midland Valley of Scotland (Freshney, 1961).  

 Trace fossils in these rocks are limited to horizontal and resting traces. Ichnofauna 

include firmground traces of the Mermia ichnofacies, an assemblage that includes 

horizontal grazing and feeding traces from invertebrates, common to subaqueous 
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conditions in freshwater environments, and potential tetrapod trackways. Other traces 

include Planolites and Cochlichnus anuineus (Figure 3.7 A& B). Cochlichnus anuineus 

is also found in the Albert Formation of New Brunswick (Pickerill, 1992). The spatially 

isolated imprints of Calamites, found on the Cape Rouge Peninsula, are similar to those 

identified in the Blue Beach Formation, Horton Group, of Nova Scotia. Together, this 

low diversity trace fossil assemblage may be indicative of a stressed environment, typical 

to a facies assemblage alternating between sub-aerial exposure, desiccation, and 

saline/alkaline-rich waters.   

 Two sets of irregular markings, found on the Conche Peninsula, are thought to be 

potential candidates for tetrapod amphibian footprints. If these markings are indeed a true 

representation of amphibian life, these, along with other trackways found in the Blue 

Beach and Hurd Creek members of the Horton Bluff Formation in Nova Scotia, represent 

some of the oldest reported known vertebrate footprints (Martel and Gibling 1994; Hunt 

et al., 2004; Gibling et al., 2008). In Nova Scotia, tetrapod trackways are preserved in 

lacustrine/marginal marine strata Blue Beach and Hurd Creek members (Martel and 

Gibling 1994; Hunt et al., 2004).  

5.04.04 Cape Rouge Facies Assemblage 3 (CR-A3): Lake Floor Density Underflow 

Facies 

 The Cape Rouge Assemblage 3 (CR-A3) is interpreted as lake-floor density 

underflows (turbidites) with an aggradation fill stacking pattern, composed dominantly of 

siltstone and fine-grained sandstone with minor mudstone.  
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 Sedimentary architecture and structures are dominated by massive, contorted and, 

convoluted stratification together with trough-cross lamination.  Convoluted beds are 

common in siltstone and sandstone beds, and generally grade from massive strata to 

contorted strata at bed tops. This facies assemblage is interpreted as a deposit originating 

in a high energy hypopycnal flow and likely represents one aspect of the physical 

expression for a highstand lake (see other examples in Renaut and Gierlowski-Kordesch, 

2010). 

5.04.05 The Cape Rouge Assemblage 4 (CR-A4): Offshore Facies  

The Cape Rouge Assemblage 4 (CR-A4) is dominated by laminated mudstone 

and represents the finest grain facies assemblage of the Cape Rouge Formation, and the 

strata carrying the most source-potential. In appearance, it is basically a dark 

carbonaceous and zeolite-rich mudstone and ferroan dolostone that is rarely burrowed.  

 Strata of facies assemblage CR-A4 are interpreted to have been deposited in an 

offshore environment with both shallow banks and moderately deep basins. Whether 

large or small, shallow or deep, facies CR-A4 lake bottoms can show large changes in 

fluid flow and chemistry affecting both the process of sedimentation and the mineralogy 

of the material delivered to that part of a lake. Consequently, and in general, distal 

offshore sediment of facies CR-A4 are, to a large extent, identified by significant 

suspension fallout onto both oxic and anoxic lake beds.  

 The often fine-grain size of the inorganic matter (clay and silt size grains) and the 

thinly laminated character of the mudstone imply deposition largely dominated by 

suspension fall out. However, some lamina sets can be rippled (with silt or clay size 
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particles) or have beds rich in detrital material (e.g., quartz or pyrrhotite) and are 

therefore interpreted to be deposited by higher-energy loads. Moreover, pyrrhotite, found 

in thin lamina and often found as platy star-like shapes (Figure 4.4 C & D), is a mineral 

that occurs as a characteristic feature in this facies assemblage. It is thought to be a 

detrital component from metamorphic rocks of the Maiden Point or Grey-Island Schist. 

Radial, star-like morphologies are considered to be a function of this mineral’s weakly 

magnetic character. Rapid transport from source to sink likely assisted with mineral 

preservation in an otherwise hostile geochemical setting. Similar occurrences of 

pyrrhotite have also been observed in the Paleogene Green River Formation (Horng and 

Roberts, 2005). 

 Mudstones are very rarely burrowed. This points to unfavourable conditions for a 

lake bed biome. This may include an anoxic water column (potentially representing 

development below a stratified water column with anoxic bottom water condition), by the 

presence of particularly soft soupy organic strata (Burden pers com.), or high recurrence 

frequencies of bed emplacement leading limiting deep faunal colonization. Miospore 

degradation by pyrite, reported by Froude (2012), is further evidence in support of an 

anoxic setting. Framboidal pyrite occurs within this facies assemblage which could 

suggest saline conditions as they can be generated by the reduction of sulphate in saline 

water by anaerobic bacteria (e.g., Postma, 1982; Cohen et al., 1984; Brown and Cohen, 

1995).   

 Mudstones of this facies assemblage are well cemented with ferroan dolomite 

(due to microbial degradation of organic carbon in the methanogenic zone) and analcime, 

and with very minor cements from the illite/smectite clay mineral suite. Analcime is a 



 

 

 

 

138

common authigenic silicate often associated with saline-alkaline lake environments (Hay, 

1977, 1978; Sheppard, 1973; Remy, 1989). This mineral assemblage (high concentration 

of analcime, with low concentration of illite/smectite) suggests that detrital clays were 

altered to analcime as the breakdown of clays provides a source of silica and Al for the 

formation of analcime rich brines. Similar deposits and occurrences have been noted in 

the lacustrine deposits of the Green River Formation by Remy (1989).  

5.05 — Lake Basin Type 

 Stratigraphic sections examined in this thesis are interpreted to represent a 

lacustrine sedimentary setting that fluctuated between a wet and expansive lake and a dry 

and arid plain. Regional faulting in and adjacent to this ancient lake is part of a regional 

transtensional fault system and interpreted to be part of a rift system of grabens and half-

grabens. The four major lithofacies associations represent environments that vary 

according to sediment and water supply and accommodation space. These facies 

associations represent distinct depositional settings that shift from evaporitic and 

mudcracked lowstand deposits to highstand hypopycnal density flows related to 

rejuvenation of muddy and sandy river floods (see other examples in Renaut and 

Gierlowski-Kordesch, 2010). 

 Together, the combination of strata stacking patterns, sedimentary structures, 

lithofacies and trace fossil assemblages indicate an underfilled depositional environment 

(as characterized by Bohacs et al., 2000). In this type of setting and sedimentary 

succession, the subsidence rate exceeds the sediment fill rate (sediment + water) (Bohacs 
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et al., 2000; Deocampo and Jones, 2014), and results in a largely closed hydrologic 

system. 

 Facies associations are indicative of varying stages of lake development from 

periods of high-stand (e.g., river delta and density underflows) to low-stand (lake-plain 

facies; subaerial exposures). Many cycles begin and end with complete desiccation, 

which indicates they record the entire base-level range of the lake (Figure 5.3). Shoaling 

cycles, are expressed as sequences where Facies CR-A4 (mudstone) is overlain by C4-A3 

(turbidites) in turn overlain by lake plain facies of CR-A2 (plain). Facies CR-A1 is rarer, 

representing expression of the activation of fluvial incisions, and can be found overlying 

facies assemblage Cr-A3 and CR-A4.  

 Similar to the Cape Rouge Formation, the roughly age equivalent Horton Group 

(preserved to the west in the Maritime Provinces), has thick successions of lacustrine 

facies. Moreover, like the Cape Rouge Formation, lacustrine facies of the Horton Group 

have been interpreted to have been deposited along the same extensional belt in similar 

underfilled lake-basins where strata are dominated by coarsening upward cycles (Martel 

& Gibling, 1991; Calder, 1990).  

5.06 — Source Rock Potential   

Espitalié et al., (1977, 1986, 1987) and Peters and Cassa, (1984, 1994) provide a 

fundamental framework for classifying “effective” source rocks from Rock-Eval 

Pyrolysis and organic richness analysis (TOC). This is the framework used here to 

determine source rock effectiveness of the Cape Rouge Formation (in Facies Assemblage 
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CR-A4).  

5.06.01 Thermal Maturity 

 Vitrinite samples from the Cape Rouge Formation range from late immature to 

late mature (0.5-1.12% Ro). Vitrinite phytoclast samples from all localities contain a 

combination of autochthonous (first cycle), allochthonous (recycled) and suppressed 

(contaminated) phytoclasts. The autochthonous vitrinite phytoclasts range from the late 

immature to the late mature (Ro=0.5-1.01%) therein falling in the oil generation window 

(Table 4). The widespread, and consistent, Ro results indicate similar burial history across 

the study area.  

 Allochthonous (recycled) vitrinite phytoclasts have higher thermal maturities and 

are considered to be reworked.  If allochthonous vitrinite grains are included in the 

average, thermal maturities increase but remain in the oil generation window (between 

late immature to late mature).  
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Figure 5.3 Simplified underfilled lake model (modified from Bohacs et al., 2000) 

 

 Thermal Alteration Index results support Ro maturation findings, with ranges in 

the mature zone (2 to 3- on the Conche and Cape Rouge peninsulas and 2+ to 3- on 

Rouge Island). Furthermore, the Pyrolysis temperature of the Rock-Eval S2 peak (known 

as Tmax) is often used as an estimate for thermal maturity for samples of similar lithology 

(Hackley, 2016). Tmax for all samples analyzed (n=89) range between 430 to 457˚C 

(mean of 445.50 and median of 447.50), with calculated Ro range between 0.58-1.07 

(very similar to actual measured Ro results), supporting thermal maturation in the oil 

generation window (Table 4). 
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5.06.02 Visual Kerogen   

 Kerogen macerals from the Cape Rouge Formation (Facies Assemblage CR-A4) 

are dominated by Type I macerals with lesser concentrations of Type II, III and Type IV 

kerogen along with solid bitumen. The concentration of kerogen macerals indicates that 

fresh water algae dominated productivity and organic enrichment followed by spores, 

pollen, woody tissue and reworked/oxidized material. Moreover, bitumen migrated 

through this system post deposition.  

 These findings support the biostratigraphic palynomorph analysis by Baird (1957, 

1966), Hamblin et al. (1995) and later by Froude (2012), who reported upon the abundance 

of the alga (Botryococcus) with lesser amounts of Type II (bright orange to black spores 

and exinite) and Type III macerals (brown to black wood, cuticles, tracheid phytoclasts and 

other membranous tissue) (Froude 2012).   

5.06.03 Source Quality and Quantity 

Total Organic Carbon (TOC) concentrations for this study area (and namely from 

the Conche Peninsula, Cape Rouge Peninsula and Rouge Island) show a TOC range from 

0.23-6.54%. Given the source rock classification scheme of Peters and Cassa (1994) 

(Table 2), these concentrations represent a spread from poor to excellent petroleum 

potential with average potential rated as fair. When analyzed by locality, samples from 

the Cape Rouge Peninsula have slightly higher TOC concentrations and are rated as good 

petroleum potential while those from the Conche Peninsula and Rouge Island have poor 

petroleum potential.  
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 For all samples analyzed for TOC, 31 samples (out of 89) contain >1% TOC, a 

value considered by some as representing the minimum acceptable TOC for a clastic 

source rock (Peters and Cassa, 1994). Others, and notably some former research scientists 

with the GSC, believe 1.5% is a more realistic cut-off for a productive source rock 

(Burden pers com).  This cuts the number of possible source rocks to 10 samples (out of 

89).  

When TOC concentrations are interrogated by specific stratigraphic sections, 

several localities have higher-organic concentrations than their regional counterparts. On 

the Conche Peninsula, and near Martinique Point, 8 of 12 mudstones contain more than 

1% TOC. This 9 m black mudstone interval has TOC values ranging from 0.48-1.86% 

with a median of 1.08% (1.12% mean). In addition, and within this sequence, oil seeps 

are pervasive along cleavage planes. This indicates the presence of an active source-

prone interval expelling hydrocarbons. This may be hydrocarbon seeps from migrated oil 

or locally derived as in-situ leakage from fractured organic-rich source rocks.  

The Cape Rouge Peninsula has the highest TOC average (median of 1.16% and a 

mean of 1.30%) and with 54% (15/28) of the samples with TOCs > 1%. The Pyramid 

Point site hosts the highest TOC value collected for this study (6.54%) and represents a 

source rock with excellent petroleum generating potential. As with the Martinique Point 

mudstones, rocks at Pyramid Point are exceptionally dark in colour, with oil seeps along 

several bedding planes. Similar observations of oil seeps by Baird (1966) indicate the 

Pilier Bay area of the Cape Rouge Peninsula continues to leak small quantities of 

hydrocarbons. Inasmuch as these sections preserve some of the highest TOC values in 
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this area, their sedimentology indicates mud deposition in what may be a deeper part of 

this ancient lake and likely in a slightly more reducing environment, favourable for 

preserving organic matter.  

Given that TOC is a good basic indicator of the quantity of organic matter in a 

rock, these results in fact represent both the “live” and “dead” carbon (kerogen and 

bitumen). As a consequence, TOC is not a clear indicator of the overall petroleum 

potential of a rock (Peters and Cassa, 1994). It should be noted that although TOCs for 

the Cape Rouge Formation are currently low, they were likely higher during its immature 

stage of burial. To find that number, a pre-burial TOC reconstruction would be necessary 

to understand original organic concentrations before any hydrocarbons are generated and 

lost. This is outside the scope of this study.   

Rock-Eval Pyrolysis is another standard tool for assessing both the quantity and 

quality of organic matter bound in sedimentary rocks. The S1 and S2 pyrogram peaks 

generated from pyrolysis (measured in mgHC/g rock) represent the existing petroleum 

content and the remaining petroleum generating potential of kerogen bound in a 

sedimentary rock sample (Peters, 1986; Hunt, 1996). Given Peters and Cassa (1994) 

source rock metric ranking methodology (Table 2, Table 3), Rock-Eval pyrolysis results 

from this study show poor S1 and S2 values. The relatively low S2 values indicate the 

strata from the Conche Study area have, on average, little remaining potential to generate 

hydrocarbons. When analyzed by locality, mudstone samples from the Cape Rouge 

Peninsula have slightly better remaining generation potential than those on the Conche 

Peninsula and Rouge Island, with fair S2 values (median of 2.17 and mean of 3.86 
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mgHC/g rock).  

Often, petroleum potential (S1+S2) versus TOC plots are used to estimate the 

hydrocarbon producing capacity (Figure 5.4). Samples from within the zone for “good, 

hydrocarbon generative potential”, are all very dark, thinly laminated strata, of the 

deepest, most distal part of this ancient lake.  

 Plotting pyrolysis H1 (S2/TOC X100) with Tmax (Figure 5.5) confirms that 

samples from Conche have Type I-III kerogens and they fall in the oil generation window 

(as validated by TAI and Ro results together with visual kerogen analysis). 

5.07 — Controls on Organic-carbon Enrichment  

 To a large degree, lake basin type greatly influences organic carbon enrichment. 

Organic carbon enrichment is promoted when destruction and dilution rates are 

minimized, and primary production maximized (Bohacs et. al., 2000). At Conche, Lower 

Carboniferous strata were deposited in a half-graben rift, where rapid subsidence 

associated with extensional tectonism provided accommodation space and an opportunity 

for the development of an axial lake system. Strata of this axial lake are interpreted as 

deposits from a warm tropical setting alternating between arid and humid cycles and with 

water that may be enriched in dissolved minerals or biologically productive and full of 

organic matter. The dilution rates for organic material are tied to alternating clastic input 

under high- and low-stand conditions together with early diagenesis.  Large, deep lakes 

tend to have a larger load of organic matter than smaller, shallow lakes. Shallow lakes 

tend to hold desiccated, cracked and oxidized strata with little preserved organic matter.  
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Figure 5.4 Pyrolysis S2 versus total organic carbon (TOC) plot 

Generative capacity of rocks in the Conche study area (broken out into locality, 

including the Cape Rouge Peninsula, Conche Peninsula, and Rouge Island. 

 

Figure 5.5 Tmax and HI Plot 

Graph shows the relations of kerogen types and maturation stages with petroleum 

generation potential. 
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At Conche, the overall frequency of desiccation is thought to have oxidized and 

destroyed a large part of the organic matter entering the lake, leaving an abundance of 

lean-source rocks. Moreover, organic carbon was also hindered by methanogenic 

organisms during the formation of dolomite. The most organically enriched facies, 

thought to lie farther offshore in slightly deeper basins (e.g., at Pyramid Point), show less 

evidence for desiccation and perhaps some periods of complete anoxia (limiting benthic 

scavengers and bacterial respiration) therein preserving slightly higher concentrations of 

organic carbon. 

5.08 — Comparison with the Albert Formation 

 The classic and well described source rocks of the Albert Formation, Horton 

Group, are the source rocks for two producing hydrocarbon fields in New Brunswick 

(Stoney Creek and McCully fields). The organic-rich rocks sourcing these fields are 

estimated to account for only a small percentage of this otherwise heterogeneous 

formation (~4%) (Greiner, 1962). The Albert Formation and the Cape Rouge Formation 

share some key similarities that may help define the prospectivity of the enigmatic St. 

Anthony Basin. Strata from both formations represent early fill of the Maritimes Basin 

(Hacquebard, 1972; Smith et al., 1991). Both formations are found in similar tectonic 

environments (half-graben rifts) along a shared rift system. Furthermore, both formations 

were deposited along similar near-equatorial paleolatitudes that likely had similar 

climates. The Albert Formation varies in thickness, reaching a maximum of 1500m 

(Smith et al., 1991), a similar thickness to that of the Cape Rouge Formation.   
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 In the most organic-rich facies of the Albert Formation (referred to as the 

Frederick Brook Member), TOC values range from 0.2-29.3%, but mainly range from 3-

14% (Smith et al., 1991; Follows and Tyson, 1998); prospective Cape Rouge Formation 

rocks range between 0.23-6.54%.  

The organic-rich Frederick Brook Member is further divided into 3 distinctive 

organic rock types, simply named A, B & C (Macauley and Ball, 1982; Smith, 1985; 

Smith et al., 1991). Type C with less than 7 wt.% TOC is the leanest with respect to 

organic carbon-enrichment (Smith et al., 1991).  

On mineralogy, the inorganic compositions of Types A & B oil shales are mainly 

illite, carbonates (calcite and dolomite, potentially ankerite), quartz and feldspar with 

minor amounts of other silicates (including analcime). In contrast, the lean Type C rocks 

contain higher concentrations of analcime and dolomite (Macauley and Ball, 1982; 

Smith, 1985; Smith et al., 1991) – a fact that makes them very similar to the fine-grained 

facies assemblage at Conche (CR-A4).  

In many respects, the relatively lean Type C rocks/facies of the Frederick Brook 

Member are closely matched with the fine-grained facies at Conche, where laminated 

mudstones are also dominated by ferroan-dolomite and analcime cements with very 

minor concentrations of illite and other clay minerals. For Type C mudstones, Macauley 

et al. (1985), Mossman et al. (1987), and Smith et al. (1991) propose that analcime is a 

byproduct of the alteration of clays in sodium-rich alkaline waters, and therein a likely 

possibility for lake water composition for the Cape Rouge Formation.  
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The most organic-rich rocks (types A & B) of the Frederick Brook Member are 

interpreted as deposits from a “deep” offshore lacustrine sub-environment, whereas the 

leaner oil shales (type C) are thought to be deposits from a “shallow” offshore sub-

environment with more turbulence (higher-energy setting) and therein more frequently 

developed oxidizing conditions. In New Brunswick, these organic-rich facies have been 

interpreted as rocks concentrated in a narrow structural zone (~10km), close to an active 

tectonic margin, where the lake was stratified and deep (>60m) (Greiner, 1962; 1974; 

Follows and Tyson, 1998). At Conche, the depositional center is perhaps as much as 

20km wide, with most of the basin located offshore. It therefore remains a possibility that 

higher quality source rocks, akin to the Type A and B rocks from the Frederick Brook 

Member, are preserved offshore, in deeper basins of this expansive lake system.  

5.09 — Implications for Offshore Exploration 

 Carboniferous plays for the St. Anthony Basin have poorly defined hydrocarbon 

prospectivity. This is in large part a result of limited scientific study. Without appropriate 

offshore data, the successions at Conche are the closest analog for this offshore 

Carboniferous rift basin. In addition to the strata at Conche, the widespread occurrence of 

other analogous source rocks in regionally contiguous basins (Magdalen and Midland 

Valley) offers some hope for additional source rock being discovered in the St. Anthony 

Basin.  

 Based upon these findings from Conche, other Carboniferous strata of the nearby 

White Bay sub-basin and farther offshore in the St. Anthony Basin remain prospective; 
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however, source quality and timing for hydrocarbon generation in relation to the 

development of traps, seal, and reservoir are the largest risks for hydrocarbon 

exploration. Given maturation results from Conche, it is entirely possible that any 

equivalent Lower Carboniferous strata found offshore are likely also mature to over 

mature.    

 Secondary risks for offshore exploration include trap and seal elements in 

conjunction with source quality and generation timing. Sealing elements may include 

marine shales from the overlying Mesozoic-Cenozoic cover. However, these younger 

cover rocks are only found over part of this offshore basin. In those places, and beneath 

Mesozoic-Cenozoic cover strata, upper Carboniferous salt deposits and diapirs might 

provide complicated structural traps for hydrocarbons. Moreover, reservoir presence and 

quality may be among the least risky elements, given the occurrence of reservoir strata in 

two offshore wells - Verrazano L-77 and Hare Bay E-21 (Hu and Dietrich, 2010). From 

the Verrazano L-77 well, late Mississippian (Mabou Group equivalent) sandstones with 

porosities up to 25% and permeabilities up to 100mD are reported. The authors also 

report reservoir quality in the Hare Bay E-21 well with porosities up to 15% at 

considerable depths (4500-5000m) (Hu and Dietrich, 2010). Although these are 

promising results, these numbers cannot significantly de-risk such a vast basin.  

 Thus, it remains a possibility that if similar half-graben lake systems exist farther 

offshore and if they preserve deeper water lake basins with enriched source rocks (similar 

to the Albert Formation), the basic elements for a Carboniferous petroleum system may 
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yet be found.  Without modern seismic data and additional boreholes, little more can be 

deduced regarding Carboniferous hydrocarbon prospectivity of the St. Anthony Basin. 
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CHAPTER SIX: CONCLUSION 

 This thesis sets out to characterize depositional setting and source rock 

prospectivity (occurrence, distribution, quality and quantity) of lower Carboniferous 

(Tournaisian) strata of the Conche area of Newfoundland’s Northern Peninsula. 

Analogous and roughly age equivalent rocks from farther west in the Maritimes Basin 

and east in the British Isles are from similar tectonic regimes and depositional 

environments, and they are known to have proven source rocks and active hydrocarbon 

systems. Study of the Conche strata offers insight into onshore petroleum prospects and 

offshore into strata of the St. Anthony Basin, an otherwise enigmatic place where few 

boreholes have been drilled and where relatively limited seismic records have been 

acquired.  

Before this study, the thick clastic successions at Conche received limited 

attention. An earlier study by Hamblin et al., (1995) showed significant vertical and 

lateral facies variability and some fine-grained facies with source potential.  

 For this work, and to better understand the distribution of fine-grained facies and 

to determine a lake-basin type, stratal sections were measured and fine-grained samples 

gathered (n=89) across the Conche area, including both the Cape Rouge and Conche 

peninsulas, and nearby offshore islands. Analyses, using industry standard source rock 

techniques (LECO TOC, Rock-Eval Pyrolysis & a range of thermal maturation analyses) 

have contributed to the development of a better understanding of the source rock 

potential for the Crouse and Cape Rouge formations. 
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 Terrestrial, primarily lacustrine strata of the Crouse Harbour and Cape Rouge 

formations, are interpreted to represent the initial phase of deposition within a half-

graben rift-segment where accommodation space was generated through transtension and 

subsidence. Terrestrial sediments are in large part sourced from hanging wall and scarp 

exposures of the older Maiden Point and Grey Island Schist formations. Regionally, 

many similarities (e.g., lithology and fill patterns) exist between the Crouse Harbour and 

Cape Rouge formations and roughly age equivalent Horton Group rocks from New 

Brunswick and Nova Scotia. These are also places where oil and gas deposits have been 

exploited from lacustrine source rocks. Demonstrating widespread distribution of proven 

source rocks in Carboniferous terrestrial successions in half-graben rift basins in the 

Maritimes Basin and eastward into the British Isles, highlights the importance of 

syndepositional tectonics for development and preservation of regionally distinctive 

petroleum systems.  

 The Crouse Harbour Formation is interpreted to be footwall scarp and to contain 

hanging-wall fluvial-lacustrine deposits that interfinger with the axial finer-grained 

lacustrine Cape Rouge Formation. On the footwall margin, the Crouse Harbour 

Formation is thought to be an alluvial fan, gravel-bed river deposit, sourced from 

proximal metamorphosed basement rock. In contrast, on the eastern margin of the 

depocenter, the Crouse Harbour Formation is interpreted as fluvial-deltaic, sourced from 

the Grey-Island Schist.  

 Deposited contemporaneously with, and axial to the Crouse Harbour Formation, 

lacustrine strata of Cape Rouge Formation are dominated by finer-grained facies 
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assemblages, interpreted to be deposits in a underfilled lake basin. Here, stratal stacking 

patterns of mixed progradation and aggradation developed under alternating wet and dry 

conditions.  

 Four distinctive facies assemblages in Cape Rouge Formation strata show 

distinctive stages of lacustrine basin-fill linked to variability in water, sediment supply 

and organic productivity. These deposits range from paralic and aerially exposed mud-

flats onshore, through hypopycnal density underflows and deeper water laminated 

mudstones offshore. Assembled together, these facies represent deposition in a relatively 

shallow underfilled lake basin where accommodation rates exceed sedimentary fill rates 

(sediment + water) over the period of a fill sequence. This overall pattern for 

sedimentation and lake environment indicates a largely closed hydrologic system.  

 From regional paleogeographic reconstructions (e.g., Blakey, 2016), the Conche 

area was situated ~5-10° south of the Carboniferous paleo-equator, and therefore in a 

place where sediment deposits accumulate under a relatively hot equatorial climate. 

Moreover, the widespread occurrence of desiccation structures and the cyclical nature of 

stratal stacking patterns, including high-stand deposits (fluvial input and hypopycnal 

flows), is indicative of a setting with significant cyclical wet and dry climatic cycles. 

Mineral assemblages within the fine-grained mudstones support the interpretation of an 

alkaline lake that was perhaps also moderately saline, common in evaporative settings. 

 Kerogen macerals from the Cape Rouge Formation are dominated by Type I algal 

material with lesser concentrations of terrestrial Type II, III and Type IV particles and 
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followed by solid bitumen. The concentration of kerogen macerals indicates that fresh-

water algae contributed to the primary productivity and was followed by terrestrial 

material from a vegetated landscape and lastly, reworked/oxidized organic material. 

Moreover, bitumen formed and migrated through this system long after it was deposited. 

These findings are supported by Baird (1957, 1966), Hamblin et al., (1995) and later by 

Froude (2012) who reported an abundance of the algal species Botryococcus sp. and with 

lesser amounts of Type II (bright orange to black spores and exinite) and Type III 

macerals (brown to black wood, cuticles, tracheid phytoclasts and other membranous 

tissue) (Froude 2012).   

 A comprehensive maturation analysis, including Ro, TAI, and Rock-Eval 

Pyrolysis places rocks of the Cape Rouge Formation within the oil generation window. 

• Autochthonous (first cycle) vitrinite phytoclasts range from the late immature to 

the late mature (Ro=0.5-1.01%) 

• Thermal Alteration Index results supports Ro maturation findings, with ranges in 

the mature zone (2 to 3-) 

• Tmax ranges for all samples analyzed (n=89) by Rock-Eval range between 430 to 

457˚C (mean of 445.50 and median of 447.50), with a calculated Ro laying between 

0.58-1.07.  

 Total Organic Carbon analysis and Rock Eval pyrolysis, used to characterize 

source rock quality and quantity, show fine-grained strata with source potential are 

limited to facies association CR-A4. Within this facies association, TOC concentrations 

range from 0.23-6.54%, representing a poor to excellent petroleum potential with a fair 
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average potential. When analyzed by sample locality, mudstone samples from the Cape 

Rouge Peninsula have slightly higher TOC concentrations (average good petroleum 

potential) while those from the Conche Peninsula and Rouge Island have somewhat lower 

petroleum potential. Given that thermal maturities for these mudstones are all within the 

oil generation window, it is likely that these relatively low TOC concentrations were 

higher during their immature stage of development. Rock Eval Pyrolysis shows poor S1 

and S2 values indicating that mudstones from Conche have little remaining potential to 

generate hydrocarbons. 

 The fine-grained facies at Conche share similarities with the lean source rocks of 

the Albert Formation (Type C) facies in the Moncton Sub-basin. Albert Formation Type 

C rocks are thought to come from deposits formed in an offshore setting in shallow to 

moderately deep water where significant evaporation has altered lake waters, 

encouraging analcime and dolomite enrichment. Thus, the depositional setting for fine-

grained organic rocks at Conche is likely similar to that reported for the lean source rocks 

of the Albert Formation. Given common patterns for lean and rich source rocks it remains 

possible that higher quality organic rich strata are located offshore where deeper water 

lacustrine settings might have formed. 

 For offshore exploration, the prospect for significant Carboniferous source rocks 

remains hopeful. However, timing for hydrocarbon generation and seal remain significant 

risks.  
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6.01 — Areas for future research 

The recommended areas for future research include: 

o Complete an examination of existing 2D seismic data from the offshore 

regions of the White Bay and St. Anthony basins to assess potential 

trapping mechanisms and their relative ages in relation to Carboniferous 

strata. If new seismic data become available, it is recommended that 

geophysical analysis be completed for source rock detection using 

acoustic impedance analysis, as described by Løseth et al. (2011). 

o Review validity of maturation results from drill cuttings from Verrazano 

L-77 by Utting et al. (1976). Currently the reference work is classified as 

“confidential” and is held by the INRS in Quebec, an access for 

information request would have to be completed to acquire the analysis. 

Moreover, if the Verrazon-L77 drill cuttings can be located, it is 

recommended that the cuttings be re-examined for maturation (Ro and 

TAI) to confirm results by Utting et al. (1976). 

o Study the timing of generation by creating a maturation diagenesis graph 

for Carboniferous sediments within the St. Anthony Basin. This may help 

define a working hydrocarbon system within the St. Anthony Basin. To 

achieve this point, it is important to define a critical point for generation to 

understand when potential source rocks entered the oil window in relation 

to the availability of reservoir, trap and seal elements.  

o Reconstruct original TOC concentrations for the Cape Rouge Formation. 
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Appendix 1 Cape Rouge Formation Geochemical Results (Rock-Eval, %Ro, TAI) (Page 1/3) 
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APPENDIX 2: ROCK-EVAL PYROLYSIS PYROGRAMS 

 


























































































































































































































