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Abstract—This paper presents an economic model predictive
control approach for a linear microgrid model. The microgrid
in grid-connected mode represents a medium-sized company
building including storage systems, renewable energies and cou-
plings between the electrical and heat energy system. Economic
model predictive control together with Pareto optimization is
applied to find suitable compromises between two competing
objectives, i. e. monetary costs and thermal comfort. Using real-
world data from 2018 and 2019, the model is simulated with
auto-detection of the Pareto solution which is closest to the

Utopia point. The results show that the Pareto optimization can
either be used in real-time control of the microgrid, or to obtain
suitable weights from long term simulations. Both approaches
result in significant cost reductions.

I. INTRODUCTION

The decentralization of the electrical grid is a promising

approach to meet national goals on CO2 emissions reduction.

Single communities or companies, so-called microgrids, may

use on-site energy resources to reduce their dependency

on the grid’s stability and/or support it at the same time.

Furthermore, with energy prices increasing, they may reduce

their monetary costs. For example, electricity peak costs

in German industry pricing for the medium-sized company

building considered in this study raised from 76.00e/kW
peak in 2017 to 100.01e/kW in 2019. Thus, reducing peak

loads by an intelligent control of on-site energy resources

and storages can reduce costs significantly.

However, to reduce energy costs in a microgrid, e. g. by peak

shaving, usually compromises have to be made, e. g. limiting

the heating, ventilation and air conditioning (HVAC) system.

This decision would be taken by a human decision maker

(HDM) responsible for the microgrid’s energy management.

The HDM has to choose compromises between multiple

contradicting objectives in general - depending on the current

situation and possibly including (uncertain) forecasts for

renewable energy resources (RER), weather conditions and

energy costs (in case of participation in the energy intraday

market). Thus, two questions arise. First, how can an HDM

find an ’optimal’ control for the energy resources of a

building in general? Second, how is the compromise between

the contradicting objectives to be chosen?
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To address the first question, solutions vary from simpli-

fied modeling of a microgrid by linear ordinary differen-

tial/difference equations (ODEs), to complex simulation tools

resulting in a ’black-box’ control approach. To address the

second question, the concept of multi-objective optimization

(MOO) or Pareto optimization has to be introduced. With at

least two objectives, there usually is no single best solution.

Instead, there is an infinite set of solutions which are not

dominated by any other solution. Namely, considering two

objectives, there is no other solution which is better in

objective 1 without being worse in objective 2. The complete

set of these non-dominated solutions is called Pareto front.

However, so far literature of applications covering both

problems is sparse.

In [1], a microgrid is modeled with energy storage systems,

a controllable diesel generator and RER by linear ODEs.

Flexibility in the control decisions is imposed by distinguish-

ing critical and flexible loads while an optimization problem

in model predictive control (MPC) fashion is formulated.

However, a curtailed fulfillment of the flexible loads is only

penalized proportionally. Namely, in the cost function, the

unfulfilled power demand multiplied with a constant weight

factor is added. Consequences of the (un-)fulfillment of flex-

ible loads are not respected, neither on any physical quantity

nor on future (flexible) loads. Furthermore, no possibly better

trade-off by varying the weight factor is considered. In [2], a

hierarchical structure is used to model multiple subsystems

in more detail on the low-level. On the high-level, economic

model predictive control (EMPC) is applied to optimize the

total cooling and heating loads for every subsystem. They

consider a microgrid with multiple buildings, where each

building’s zone temperatures and thermal storages are used

as states and described by ODEs. While they present a

feasible approach by applying complex control algorithms

to decomposed, simplified models of the microgrid, they do

not consider any trade-offs in finding the best compromise

between monetary costs and user comfort. One of the studies

which respect the optimization of multiple objectives is [3].

A building performance simulation tool is used to model the

thermal characteristics of a three-room building. Then, they

use genetic algorithms to optimize their decision variables,

i. e. hourly temperature setpoints, for two objectives, i. e.

monetary costs and thermal comfort. However, since the

genetic algorithms and model are used in a black-box fashion,

only sub-optimal solutions are obtained. Furthermore, the

optimization is run once a day - with a planning horizon
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of one day. Thus, the main idea of MPC, optimizing the

decision variables for Np steps, applying only the first step

and then repeating the optimization for Np steps, is violated.

Since the optimization time required is in the order of an hour,

the approach is not applicable in real-time control, especially

with a more complex microgrid. The authors of [4] consider

a typical microgrid consisting of a storage system, RERs,

a diesel generator and critical and controllable loads. Five

(partly) contradicting objectives are formulated, e. g. energy

costs and reliability of service. Then, these five objective

functions are summed with (equal) constant weights wi and

the resulting cost function is optimized over a time horizon

of one day. This procedure is described as MOO and multiple

Pareto fronts for two objectives each are shown, e. g. for Jj
and Jk. No weighted sum method is used to obtain the Pareto

fronts. Instead, for one point in time, all feasible solutions

to the optimization problem found are presented. Then, all

solutions for which Jj and Jk do not dominate each other

are considered to be part of the Pareto front. Furthermore,

no approach on how to use and derive a benefit from the

obtained Pareto fronts is presented.

For this study, we examine a medium-sized company building

in Offenbach, Germany, as our microgrid. Furthermore, we

used expert knowledge for this specific building to determine

its thermal capacity and heat transfer coefficient. Measure-

ment data for energy demand, photovoltaic (PV) energy

production and outside air temperature is available for 2018

and the first half of 2019. We model the building’s energy

management as a linear time-invariant system subject to

disturbances. Then, we formulate two contradicting objec-

tives, i. e. monetary costs Jmon and thermal comfort Jcomf ,

and determine control sequences for the HVAC system and

controllable energy resoruces in a MPC fashion. Furthermore,

in every time step, we calculate all possible compromises

between Jmon and Jcomf , i. e. the Pareto front. Then, the

most likely desired compromise is selected by detecting

the frontier’s knee point and either chosen automatically or

presented to the HDM as a suggestion.

The assessment of the simulation results is, however, not triv-

ial. Since this work’s focus is on the application of the Pareto

optimization, we need to compare ’optimal’ results with other

’optimal’ results. Thus, a combination of a P controller and

if-then-else rules is used as a realistic baseline solution to

which the different applications of EMPC are compared to.

The remainder of this paper is structured as follows. In

Section II, the problem formulation is given, i. e. the mi-

crogrid model and the EMPC scheme. In Section III, the

concept of Pareto optimization is explained together with

our selection of a solution. In Section IV, the simulation

results are presented and assessed. Finally, a conclusion and

an outlook are given in Section V.

Notation: Bold letters are sequences of the corresponding

variable, i. e. u = {u(0), u(1), . . .}. P denotes electrical, Q̇
denotes thermal powers.

II. PROBLEM FORMULATION

A. Microgrid Modeling

We model the energy flow and temperature of a medium-

sized company building as a linear time-discrete model with

two states and disturbances, i. e.

x(k + 1) = Ax(k) +Bu(k) + Sd(k). (1)

Thereby, x(k) ∈ X ∈ R
n is the state space vector, u ∈ U ⊆

R
m the input vector, d ∈ D ⊆ R

q the disturbance vector

and A, B and S the system, input and disturbance matrices

with appropriate sizes each. Furthermore, constraints on the

change of x apply, i. e. (x(k + 1)− x(k)) ∈ ΔX ⊆ R
n.

Particularities are a combined heat and power plant (CHP),

a stationary battery, and a PV plant as RER. The microgrid

operates in grid-connected mode.

For the electrical system, we consider a stationary battery and

its stored energy E as the first state. For the thermal system,

we consider the thermal capacity of the building as a storage

and use the building temperature ϑb as its state. Then, the

building’s energy system can be described by
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with the abbreviation µ = 1−e
−

Hair
Cth

Ts

Hair
. The parameters used

in A, B and S are explained in Table I. The inputs are the

electrical power Pgrid bought from or sold to the grid, the

electrical power Pchp from the CHP, the thermal heating

power Q̇rad from the gas heating and the thermal cooling

power Q̇cool from an air conditioning system. Note that the

CHP can only produce electrical power Pchp and thermal

power Q̇chp at the same time (see Table I).

Table I: Building model parameters for System (2).

Parameter Description Value

Ts Sample time (step width) in h 0.5

Cth Thermal capacity of the building in kWh
K

1792.06

Hair Heat transfer coefficient to outside air in kW
K

341.94

εc Energy efficiency ratio cooling machine 2.5

cCHP Current constant CHP, Pchp = cCHP · Q̇chp 0.667

As disturbances, we consider all impacts on our system

which cannot be controlled. Thus, the renewable energy Pren

from the PV system is treated as a disturbance, too. Other

disturbances are the power demand Pdem which must be met

(e. g. consumption from offices), the outside air temperature



ϑair, and any other thermal powers Q̇other acting on the

building (e. g. heat losses to the ground).

B. Economic Model Predictive Control

Due to its lower restrictions on the cost function, EMPC

turned out to be a suitable extension of regular MPC for its

application on microgrid control. Namely, for a model as in

(1), in every time step the optimization problem

argmin
u

Np−1
X

k=0

ℓ(x(k), u(k)) + Vf (x(Np)), (3)

is solved. Thereby, Np is the length of the prediction horizon,

Vf (x(N)) is the final cost term and ℓ(x, u) is the stage cost.

In contrast to regular MPC, ℓ(x, u) does not need to be in

quadratic form. This complicates conclusions on stability and

requires (strict) dissipativity for most approaches. However,

proving stability for systems with disturbances such as (1)

using EMPC is still an open problem [5]. Thus, we limit sta-

bility considerations here to the remark that the autonomous

system x(k+1) = Ax(k) with A from (2) is Lyapunov stable.

Thus, together with the assumption that all disturbances are

known, the EMPC controller is expected not to destabilize

(2), which is encouraged by simulation results.

In general, MPC is suited as a control method for microgrids

for two reasons: 1) it respects future predictions of the

model, inputs and especially disturbances, which is important

considering the energy management system’s dependence on

exogenous influences such as power demand, air temperature

and renewable energy productions; 2) various constraints on

both control and state variables can be handled [1].

C. Cost Function Formulation

To use EMPC to control the microgrid model of the building,

the formulation of the optimization problem in a MPC

manner is necessary. For this, the discrete linear model from

(2) is used with a sampling time Ts = 0.5 h and a prediction

horizon of 24 h, i. e. Np = 48 steps. Furthermore, the stage

costs consist of two competing objectives,

ℓ̃(x(k), u(k)) = ℓmon(x(k), u(k)) + ℓcomf(x(k), u(k)), (4)

i. e. monetary and comfort costs. The monetary costs consist

of four parts,

ℓmon = ℓmon,grid + ℓmon,peak + ℓmon,chp + ℓmon,heat, (5)

which describe the actually arising monetary costs. The first

part are the costs (or profits) for electricity bought from (or

sold to) the grid,

ℓmon,grid(k) =


cgrid,buy(k) · P
+
grid(k) . . . (6)

+ cgrid,sell(k) · P
−

grid(k)
�

· Ts.

Remark that in this study, German industry pricing is applied,

i. e. cgrid,buy = 0.13 e

kWh
and cgrid,sell = 0.07 e

kWh
are

constant. Since buying and selling has to be distinguished

in the costs, Pgrid is split into P+
grid and P−

grid, depend-

ing on whether it is positive or negative, respectively, i. e.

Pgrid(k) = P+
grid(k) + P−

grid(k) for any k.

The second part in (5) describes the peak costs. Namely, at

the end of the year, the maximum power peak drawn from

the grid is punished with a high peak cost factor cgrid,peak
(87.38 e

kW
for 2018 and 100.01 e

kW
for 2019). These peak

costs are given by

ℓmon,peak(k) =

cgrid,peak ·max (0, Pgrid(k)− Pgrid,peak(k)) , (7)

where Pgrid,peak(k) is the maximum peak until time step k.

The third part in (5) describes the costs from using the CHP,

ℓmon,chp(k) = 0.0435
e

kWh
· Ts · Pchp(k). (8)

The last part in (5) describes the costs from the gas heating,

which are expensive in comparison to the CHP, i. e.

ℓmon,heat(k) = 0.0464
e

kWh
· Ts · Q̇rad(k). (9)

Note that both Eqs. (6) and (7) are discontinuous in Pgrid,

which can lead to problems in solving the optimization

problem. However, it is possible to reformulate the cost

function into a continuous linear programming problem by

an epigraph reformulation [6], which requires additional

decision variables and constraints.

Our second objective in (4) comprises the comfort costs,

which describe the quadratic deviation of the building tem-

perature from a desired setpoint of ϑset = 21°C,

ℓcomf(k) = (ϑb(k)− ϑset)
2
. (10)

Since the monetary costs (5) can have a significantly higher

order of magnitude than the comfort costs (10), they need to

be weighted in (4). Thus, the actual stage costs used are

ℓ(x(k), u(k)) =

wmon · ℓmon(x(k), u(k)) + wcomf · ℓcomf(x(k), u(k)). (11)

Omitting the final cost term in (3) and using the stage costs

from (11), for t = 0 the optimization problem can then be

formulated as

u = argmin
u

Np−1
X

k=0

ℓ(x(k), u(k)) (12a)

s. t. (2), (12b)

u(k) ∈ U, x(k) ∈ X, (12c)

(x(k + 1)− x(k)) ∈ ΔX ∈ R
n ∀k. (12d)

However, it is not clear how wmon and wcomf should be

chosen. Thus, Pareto optimization is used.



III. PARETO OPTIMIZATION

As the problem formulation (12) shows, (E)MPC is a single-

objective optimization technique. To consider multiple objec-

tives, the sum of all objectives with different weights can be

used as a single cost function, as is done in (11). However,

two problems arise. First, the weights wi need to be chosen,

thereby respecting both possibly different importance and

orders of magnitude of the competing objectives. Second,

fixed weights may not be optimal in terms of adaptability

to different circumstances of the underlying problem, e. g.

due to time-varying energy costs. Thus, we consider the mi-

crogrid control as a MOO problem; both monetary costs and

temperature deviation should be minimized. Unfortunately,

solving MOO problems is complex, since not a single optimal

solution exists. Instead, for no objectives, a hyperplane in

R
no describes the infinite ’optimal’ solutions.

A. Pareto Front Construction

This hyperplane is called the Pareto front. All points on the

Pareto front are Pareto optimal; i. e. every point refers to

a solution which is not dominated by any other solution.

Formally, a solution y dominates another solution z, i. e.

y ≻ z, if yi ≤ zi ∀ components i and yj < zj for at least one

component j. In other words, for a solution y on the Pareto

front, there cannot be any other solution z which would be

better in one objective without being worse in at least one

other objective.

Knowing the Pareto front for an MOO problem is valuable.

In our use case, an HDM gets the overview of all possible

solutions and can choose from them. However, calculating

the Pareto front is in general a hard problem. While dif-

ferent approaches exist, two of them are the most popular.

First, evolutionary algorithms such as NSGA-II are used

frequently [7]. However, the representation of MPC in form

of evolutionary algorithms is difficult. More important, they

are generally slow. To apply (E)MPC in real time, solving

the underlying optimization problem in every time step must

be fast enough. Thus, we use the second popular approach

instead; the weighted-sum (WS) method. WS is directly

transferable to the formulation of EMPC. Namely, we vary

the weights in (11) s. t.

wmon, wcomf ∈ [0, 1] and wmon + wcomf = 1. (13)

Then, every combination of wmon and wcomf leads to a

different point on the Pareto front. Since no = 2, our Pareto

front is a curve in 2D space as shown in Figure 1.

Concluding, the biggest advantages of WS are its simpler

implementation (there is no representation of the problem in

a genetic form needed), its good convergence and thus its

lower computational costs. In contrast, there are two major

obstacles.

First, capturing non-convex parts of the Pareto front is not

possible with WS. However, since (12) is a convex problem,

this does not affect us. Second, finding evenly distributed
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Figure 1: Examplary Pareto front with auto-detected and chosen
knee point.

solutions on the front using WS is difficult. Namely, using

equidistant steps respecting (13) in general does not lead

to equidistant points on the Pareto front, but can lead to

substantial parts being skipped. However, to choose a solution

from the Pareto front, i. e. a compromise, an HDM would

want to consider its complete course. Since the Pareto front

cannot be obtained in an algebraic form, it shall be at least

sampled in a desired resolution. Thereby, distances between

solutions on the Pareto front are calculated in a normalized

space, i. e. the distance from the Utopia point to the extreme

points of every dimension is considered to be 1. The Utopia

point is defined by (lmon,min, lcomf,min) and thus no possible

solution, but lies below the Pareto front (see Figure 1).

To calculate samples on the Pareto front efficiently, we adapt

a recently published approach, the adaptive weight deter-

mination scheme (AWDS) [8]. AWDS works by geometric

interpretation of the weighted-sum method. Having found no

solutions on the Pareto front, they can be used to determine

new weights wi for which the optimization problem should be

solved again. The solutions of the optimization problem with

wi leads to a point of the Pareto front which is approximately

in the middle between the first two points. Then, for every

new combination between the solutions new weights can be

determined which lead again to a solution approximately in

the middle between the parent solutions. For details on the

AWDS, the reader is referred to [8].

B. Choosing Solutions from the Pareto Front

Once the Pareto front is constructed, a solution has to be

chosen. Since every point of it is an ’optimal’ solution, there

is no clear way to determine a best one. Thus, the aim is

usually to choose a point from which a small improvement

in one objection would lead to a bigger deterioration in the

other objective, i. e. a so-called knee point. However, there

are various definitions of knee points [9]. Most common, for

no = 2, it is considered to be the point with the highest

curvature. However, for simplicity and lower computational



costs, we choose a different approach. We define the closest

to Utopia point (CUP) to be our knee point. Thereby, we

calculate the Euclidean distance in the normalized space as

explained before.

In a real-world application, the Pareto front and the auto-

detected knee point would be presented to an HDM. Then,

he could decide whether to choose the CUP or a different

solution. However, to assess the application of Pareto opti-

mization in the long term, we used the auto-detection of the

CUP as described above for the simulations in Section IV.

IV. CASE STUDIES

The derived EMPC approach is applied with and without

Pareto front calculations to the medium-sized company build-

ing’s model from Section II-A. However, since in both cases

the results are ’optimal’ regarding their problem formulation,

we developed a deterministic controller combining if-else-

then rules and a discrete P controller as a baseline solution

to assess whether the application of EMPC is beneficial or

not.

First, the baseline solution’s controller is explained. Second,

simulations for 2018 are carried out. Thereby, we compare

the baseline solution to the EMPC algorithm with both

auto-detection of CUP and fixed weights. The weights are

determined a posteriori from the CUPs. Third, the first half of

2019 is simulated. Again, we compare the baseline solution

to the EMPC algorithm with and without fixed weights.

However, this time the mean weights obtained from the

2018 simulation are used to assess how well the determined

weights perform in a new environment setting.

For all simulations, real world measurement data from the

company building is used for the disturbances. That is, the

electricity consumption Pdem has been measured directly,

the power generation Pren from PV has been proportionally

scaled from solar radiation measurements and the outside

air temperature ϑair is used from a weather station. As

heat disturbances Q̇other, only heat losses to the ground

are considered, which can be assumed to be approximately

constant, Q̇other ≈ −12.9kW. In any case, we assume to

have no prediction errors, i. e. the real disturbances are used

as predictions within the prediction horizon.

A. Baseline Solution

The baseline solution is supposed to be a realistic approach

which might be used in a company building nowadays.

However, we note that the actual control of a building is most

likely even less sophisticated. We use (2) to derive the ODE

for the building’s temperature in dependence of the overall

heating power Q̇tot = Q̇chp + Q̇rad + Q̇cool,

ϑb(k + 1) = − e
−Hair
Cth ·ϑb(k) +

1− e
−

Hair
Cth

Ts

Hair

· Q̇tot(k). (14)

We choose a simple proportional controller to determine the

input Q̇tot by

Q̇tot(k) = kP · (ϑb(k)− ϑset), (15)

where kP is chosen such that the only eigenvalue of (14) is

at the origin, i. e. we use dead-beat control.

Then, Q̇tot is split into Q̇chp, Q̇rad and Q̇cool as follows.

If Q̇tot >= 0, then the CHP is used as much as possible,

since it cheaply produces both heating and electrical power.

Only if Q̇chp is running at its maximum, the gas radiator

Q̇rad is used. If Q̇tot < 0, the building must be cooled, thus

Q̇cool = Q̇tot.

Furthermore, it must be determined whether the stationary

battery should be charged, discharged or neither. Since it shall

be used for peak-shaving, the following strategy is applied.

The battery is only discharged if a new peak is arising. If so,

it is discharged only as much as necessary to avoid a new

peak. Otherwise, it is charged as much as possible without

culminating in a new peak. Of course, both charging and

discharging constraints are respected, too.

With Q̇chp, Q̇rad, Q̇cool and x(k + 1) determined, the corre-

sponding Pgrid is given by

Pgrid(k) = −

�

Pdem(k) + Pren(k) + cCHP · Q̇chp(k) . . .

+
Q̇cool(k)

εc
+

x(k + 1)− x(k)

Ts

�

. (16)

B. 2018 Results

As the first case study, we simulate the building’s model

with data from 2018. With a time step of 0.5 h, this results

in 17,520 steps. For all simulations, we used the MATLAB

toolbox YALMIP [10] together with the CPLEX demo ver-

sion, which limits the optimization problem to a maximum

of each 1000 decision variables and constraints. With the

reformulations mentioned earlier, a prediction horizon of

24 h
∧

= 48 steps results in 291 decision variables and 915

constraints, i. e. the demo version is sufficient. On a regular

desktop PC with an Intel i5, the simulation for one year with

calculation of the Pareto fronts takes about 15 h.

The knee point detection for 2018 is presented in Figure 2. It

shows the chosen (normalized) weight wmon. The means of

the chosen weights for the entire year are wmon = 26.47%,

wcomf = 73.53%. The very low weights with wmon < 1%
appear in situations where new peak costs would be possible.

Then, ℓmon has a much higher order of magnitude and thus

the CUP in the normalized space belongs to a very small

wmon. Possible new peak costs arise in scenarios with high

demand Pdem and a high air temperature ϑair, where the

electricity consumption of the air conditioning Q̇cool drives

Pgrid to the peak limit. This setting is also shown in the

exemplary Pareto front in Figure 1.

The high weights with wmon > 45% at k ≈ 2700 appear

in the rare situation where the very low ϑair drives the gas
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Figure 2: 2018 weight decisions for Pareto simulation with auto
knee-detection.

heating Q̇rad into its constraint. Then, a higher temperature

deviation and higher comfort costs ℓcomf are unavoidable.

Thus, the CUP, which is more or less in the ’middle’ of

the Pareto front, belongs to a higher wmon.

Next, the EMPC has been simulated with fixed weights,

i. e. without determining the Pareto fronts. We chose three

settings,

• equal weights wmon = wcomf = 0.5,

• the average weights for the entire year, i. e. wmon =
0.2647, wcomf = 0.7353, and

• the average weights for every month, see Table II.

The results are shown in Figure 3. Thereby, an initial peak

of 250 kW has been used. However, the value for the initial

peak turned out to be not significant. Note that the costs for

the initial peak (21,830e) are neglected in the following.

Table II: Monthly average weights for 2018.

wmon wcomf wmon wcomf

January 0.3119 0.6881 July 0.2074 0.7926
February 0.4048 0.5952 August 0.2412 0.7588
March 0.3142 0.6858 September 0.2707 0.7293
April 0.1777 0.8223 October 0.1899 0.8101
May 0.2466 0.7534 November 0.2608 0.7392
June 0.2550 0.7450 December 0.3071 0.6929

The baseline solution performs the best in terms of average

temperature deviation with 0.11 °C, since dead-beat-control

is applied as long as the constraints are not active. Thus, the

temperature mainly differs from the given setpoint of 21°C
due to the uncompensated disturbances. However, it performs

worst in terms of monetary costs. Since the air conditioning

is used regardless of possible new peak costs, the maximum

peak rises to 650.25 kW, resulting in unnecessary high peak

costs with monetary costs of ≈ 362,000e. In comparison, the

EMPC with equal weights leads to a significant cost reduction

of 36,764e. As for all EMPC settings, the maximum peak is

reduced to 384.46 kW, which turned out to be unavoidable

due to the maximum demand Pdem = −630.55 kW in

January. However, since no weighting is applied, the average

temperature deviation is uncomfortable high with 0.51 °C.

The auto CUP selection seems to find a better trade-off. The

monetary savings compared to the baseline solution are a

bit lower with 29,136e. However, the average temperature

deviation is reduced to acceptable 0.2296 °C. Using the mean

weights from the entire year instead leads to similar results

with a slightly higher focus on cost reduction, i. e. saving

32,806e with an average temperature deviation of 0.2430 °C.

However, using different weights for every month leads to

a higher focus on reducing the temperature deviation in

comparison to the CUP solutions, i. e. saving only 28,139e
with an average temperature deviation of 0.2052 °C.

Concluding, taking mean values for the weights obtained

from the Pareto solutions performed similar well as the use

of CUPs in every time step, while reducing the time windows

for average means did not yield significant benefits. However,

using average weights could be done only a posteriori. Thus,

we need to validate whether means from former simulations

still work well for new and unseen disturbances.

C. 2019 Results

The same settings as before have been simulated with dis-

turbance data from the first half of 2019. Namely, the fixed

weights are the ones obtained from the 2018 Pareto simula-

tion. Figure 4 shows the results. Again, the baseline solution

has the lowest average temperature deviation but the highest

peak costs. The EMPC with equal weights behaves the same,

too. It has the lowest monetary costs with 167,420e, but

a very high temperature deviation of 0.54 °C. Using the

CUPs of the Pareto fronts consequently leads to a better

trade-off with monetary costs of 170,180e and an average

temperature deviation of 0.2047 °C. The year mean weights

from 2018 slightly shift the focus, resulting in lower costs of

169,670e and an average temperature deviation of 0.2094 °C.

Surprisingly, the monthly means lead to a marginal decrease

in costs of 180e (≈ 0.1%) in comparison to the CUP

solutions while having a lower temperature deviation of

0.1783 °C at the same time. Future research has to show

whether this is a random artifact or a pattern. Concluding, the

weights derived from Pareto solutions with the 2018 dataset

perform well on the dataset from 2019.

V. CONCLUSION

In this paper, we presented an approach to use EMPC to-

gether with a linear second order model to control the energy

management system of a medium-sized company building.

The Pareto front for two competing objectives, monetary

costs and thermal comfort, is efficiently determined using the

AWDS scheme and the CUP is chosen as a reasonable trade-

off. This way, the building’s thermal capacity can be used as

an additional storage to avoid high peak costs. Simulations

with real world data showed that the Pareto solutions can

either be used for live control without the need of a priori

weights, or to determine sophisticated weights a posteriori.

The mean weights from 2018 performed well both for 2018

itself as well as for new data from 2019. Due to the use
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Figure 3: Simulation results for 2018. An initial peak of 250 kW has been used, for which the peak costs are not included. For better
comprehension, the average temperature deviations are displayed instead of the actual optimization costs ℓcomf .
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Figure 4: Simulation results for 2019. An initial peak of 250 kW has been used, for which the peak costs are not included. Both the
yearly as well as the monthly means were taken from the 2018 simulations.

of the AWDS to determine the Pareto fronts, our approach

is scalable to more objectives and computationally not too

demanding. Using CPLEX, the calculation of a single Pareto

front takes only 3 to 4 seconds on a regular desktop PC and

is thus appicable in real-time. Therefore, future work will

involve both more objectives such as CO2 emissions as well

as more complex systems, e. g. including electrical vehicle

charging stations and multiple temperature zones.
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