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Abstract

Different geopolitical conflicts of recent years have led to mass migration of several civilian populations. These migrations
take place in militarized zones, indicating real danger contexts for the populations. Indeed, civilians are increasingly targeted
during military assaults. Defense and security needs have increased; therefore, there is a need to prioritize the protection
of migrants. Very few or no arrangements are available to manage the scale of displacement and the protection of civilians
during migration. In order to increase their security during mass migration in an inhospitable territory, this article proposes an
assistive system using a team of mobile robots, labeled a rover swarm that is able to provide safety area around the migrants.
We suggest a coordination algorithm including CNN and fuzzy logic that allows the swarm to synchronize their movements
and provide better sensor coverage of the environment. Implementation is carried out using on a reduced scale rover to enable
evaluation of the functionalities of the suggested software architecture and algorithms. Results bring new perspectives to

helping and protecting migrants with a swarm that evolves in a complex and dynamic environment.
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1 Introduction

The socio-political climate of insecurity over the last year
has led to an increase in the number of asylum applica-
tions and political refugees in many countries, including
Germany, Canada, France, etc. Governments are facing a
real international migration crisis. Indeed, restrictive poli-
cies and civil wars in many countries around the world
have increased refugee claim situations. These migrants who
arrive massively at our borders risk retaliation from their
countries and their lives. It is, therefore, relevant to con-
duct studies that could provide some solutions with respect
to ensuring their protection. However, the limited resources
of governments and the large surveillance areas near the
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borders of several countries make the task almost impos-
sible. For these reasons, our objective is to develop an
autonomous system that enables supervision and protection
of migrants. During their journey, migrants move mainly
by foot with few means of protection exposing themselves
to risky situations. In order to protect them, we need to
gather information about their movement and the environ-
ment around them. Many studies focused on retrieving this
information with different types of networked sensors [1-4].
These networked sensors use mainly WiFi communication
[1-3], but they can also use other protocols like XBee and
Bluetooth [4]. These modes of communication are relatively
easy to set up and can be very useful in transmitting data
between robotic platforms. Therefore, the data gathered can
be used to protect people using groups of rovers. Automatic
management of a robot swarm for better efficiency and to
reduce human involvement in potentially dangerous terrain,
often covering long distances, is a major challenge to this
type of project. In addition, external factors must be taken
into account to provide a safety zone around the group of
migrants. With respect to this challenge, some studies have
been conducted regarding a mobile group of moving rovers
interacting with external factors that have an impact on the
group’s decision [5-8]. The suggested system should track
the migrants, compute some optimal way-points around the
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migrants and manage the robot’s faults. The goal of the
research works is to provide a safety area around the migrants
and real-time assistance. This paper presents only the optimal
way-points and robot faults management algorithm, includ-
ing the rover control. For solving migrants tracking, some
existing solutions could be implemented, such as using fixed-
wing unmanned aerial vehicle (UAV), such as suggested
in [9-11]; however, this subject is out of the scope of this
research work.

Merging data gathered from different robotic systems
allows us to follow-up what is happening on the ground
and protect migrants. To process them, our suggested sys-
tem acts in three steps: (1) analyze the data of migrants’
behavior and give a position to reach for each rover, (2) lead
the rover to this position, keep a motion vector conforming
to the movement of the group of migrants and (3) manage
the faults (abnormal behavior of the rover). The abnormal
behavior of the rover is classified using a convolutional neu-
ral network (CNN) and is compared to a physical model.
We chose to detect four situations, one normal and three
abnormal states: a normal move of a rover on stones, a fall
of one rover, a collision with an obstacle, and a skid on
sand. Methods of human-swarm interaction mostly rely on
orders given by operators via different interfaces, like com-
puters and smart watches [5—-8]. The level of automation is
reduced with such interface. Conversely, the aim of this paper
is to present a wireless body area network (WBAN) compris-
ing rovers, migrants and the different algorithms created to
control the swarm. Our contribution is the design of a new
system labeled SROPRAS (Swarm RObots PRotection Algo-
rithms System). With the collected data from this network, we
wish to identify consistent patterns enabling their processing
using fuzzy logic and CNN. These patterns can be used to
detect automatically several events in order to improving the
effectiveness of the swarm and the protection of migrants.
Therefore, migrants do not need to send orders or commands
to SROPRAS. The rovers will choose by themselves their
paths and target positions with SROPRAS. This ensures a
high level of swarm transparency and reduction in intrusion
for the migrants.

Based on a review of our general approach to set
up the system and the tools used to do the research
work, we described the primary contribution of this paper,
which is the design of SROPRAS based on three dif-
ferent algorithms created to control the swarm of rovers,
including the rover positioning algorithm, the rover plan-
ning trajectory algorithm, the rover moving algorithm, and
abnormal behavior management. Then, we explain how
we can detect the different states of each rover to know
how the swarm will react if there is an issue. The SRO-
PRAS simulations show encouraging results, which are
discussed.
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Fig. 1 Context of the use of the proposed system (simulation video
available in Electronic supplementary material)

2 Related work

An example of the context of our research work is shown in
Fig. 1. Our tool integrates different sensors in order to track
migrants using inertial measurement unit and re-organize the
swarm in real time. Therefore, this section presents some
applications of such sensors in swarm robotics.

Inertial measurement unit (combination of accelerome-
ters, gyroscopes, and magnetometers) is widely used in the
field of robotics to help localization algorithms. The received
data can be analyzed: motion measurement of robotics arm
or mobile robots [12,13], tracking people or robotic systems
[14,15], gait analysis [16,17], and inertial navigation or posi-
tioning for mobile robots [18,19]. Its affordability and ease
of use on multiple robotic platforms make its integration in
robot swarm possible [20].

Swarms of mobile robots enable the execution of many
tasks faster and more effectively than a lone robot, for
example, in field exploration [21,22], search for a target
of surveillance [23,24] or rescue [25,26]. This is possible
because of their number as well as their group intelligence,
which allows distribution of tasks between robots in the
swarm. Depending on its level of autonomy, the swarm can
perform more or less complex tasks. Most modern mobile
swarms are controlled by one or more operators [7]. They
must follow the evolution of the robots and influence their
performance if necessary, usually by assigning them a differ-
ent goal to achieve [27]. However, this interaction depends
on the communication mode between robots and humans
[28]: speech, gesture, joystick or all of them. The point is
that interactive exposure to a robot can change a user’s per-
spective of expectations from a robot’s behavior. Therefore,
the communication mode between robots and humans should
be carefully chosen to achieve desired objectives. Moreover,
this communication mode should be transparent to provide
an autonomous swarm.

However, improving the interaction between robots and
humans is not enough to achieve effective autonomous
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swarms. The structure of decision-making should find an
optimal balance between the individual command of a robot
and the overall performance of the swarm. The robot must
have enough liberty to be capable of performing its actions,
but it must comply with the aims of the swarm. Some rovers
can follow a direction [29], perform mechanical actions [30],
and measure environmental conditions [31], while some oth-
ers can assign goals and trajectories [19-21]. In this article,
our swarm should be able to coordinate all these actions while
following a group of migrants. Other research works have
been designed to help the operator select a robot in particu-
lar. This leads to a simplification of the interaction between
the operator and the swarm [32]. But a complex swarm that
needs to perform different actions, like that of our research
work, it is complex for a human to control all robots sepa-
rately while carrying out their tasks. Moreover, the suggested
swarm should react as a function of the human behavior and
not as a function of a command.

Some solutions have been suggested to solve this issue.
One of them is to define two different roles among the robots
that make up the swarm. One or many robots will be the
leader(s) of the swarm that give instructions and collect all
the information, and the others will only communicate with
the leader to give all the information needed and carry out
their instructions [33]. The operator has only the relevant
information and can control or influence the leader to inter-
act with the swarm [34]. Another solution is to define the
operator as the leader of the swarm; this will allow him to
directly assign goals to the swarm who will adapt his local
command through their robots [35,36].

In order to implement this system, some frameworks for
swarm control were suggested and designed [37], such as
Robotic Operating System (ROS) [38,39]. ROS is a meta-
operating system that can run on one or more computers, and
it provides several features: hardware abstraction, low-level
device control, implementation of commonly used features,
transmission of messages between the processes, and the
management of the installed packages [40,41]. In other
words, ROS is a server-client able to provide an implementa-
tion of distributed artificial intelligence algorithms inside the
swarm; therefore it will take all the team decisions related to
the swarm’s actions [42,43].

Artificial intelligence is the most modern technology in
the field of robotics. With precise control and less computing
time, it can be easily implemented in mobile robot. Moreover,
it has the advantage of overcoming some mathematical prob-
lems in motion and path generation. One issue it can answer
is the recognition of a robot’s state due to situations they
can encounter and the solution they can execute to deal with
it. Currently, many sensors allow us to gather information
on their environment and some algorithms can analyze these
data [44,45]. However, they are specific to some situations
and cannot be used in a more general case. For this reason,

many studies focus on implementation of deep learning algo-
rithms in mobile robot. This type of algorithm works for the
majority of situations encountered. They are found in many
fields of mobile robotics, including obstacle avoidance [46],
cooperation between several robotic systems [47] and detec-
tion of a robot’s state using camera [48]. On the basis of these
studies, we can use deep learning to evaluate the state of a
robot with data gathered from different sensors. Some studies
used a multilayer perceptron with data from an accelerome-
ter and gyroscope as input to detect the fall of a robot [49].
Specifically, some other studies used convolutional neural
network (CNN) to process the data gathered from sensors
so as to detect different human activities [50] and recognize
some hand gestures by using an IMU [51]. We decided to
apply this principle based on [52] and [53] on the rover to
detect its state. According to this algorithm, the swarm will
have all the necessary information to carry out some choices
and adapt itself to the environmental constraints.

The management of multi-robots could be applied in harsh
environments, such as mountains and valleys, which contain
many different kinds of obstacles [5—8]. On these difficult
fields, some properties of swarms allow them to adapt their
behavior to face situations like damage of one of their robots.
To this end, their capacity to deal with information through a
decentralized system gives them an important advantage dur-
ing military operations. If one of their robots is damaged or
destroyed, the swarms will normally continue to operate with
the remaining robots. Then, they will plan their deployment
according to their aims and situations encountered. More-
over, they will take into account the movement constraints of
their robots to optimize their results [54]. Indeed, depending
on to the type of robot, they will have more or less degree
of freedom to move [55]. Finally, the utilization of WiFi and
XBee allows us to send the required data in a short period of
time, facilitating and reducing the time of decision-making
[56-58].

3 Suggested swarm of rovers

We suggest a swarm of rovers to evaluate the control algo-
rithm proposed in the paper. First, we present the rovers used
for the swarm. Second, we discuss the wireless body area
network and the motion tracking used with the rovers to com-
municate and track people during their motion. For outdoor
applications, we suggest the usage of a drone to have the
position of migrants and rovers as shown in Fig. 2a. The
evaluation of the swarm will be done indoors for logistic
reasons. Figure 2b shows the suggested framework used in
our research work. The motion tracking was done by using
eight NaturalPoint OptiTrack cameras, replacing drone with
a technology of localization, such as lidar and IR cameras
for migrant localization and GPS for rover localization (1).
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Fig.2 a Suggestion of setup in
outdoor environment, b
experimental setup in the
laboratory
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For the two suggested systems, it is always the same soft-
ware configuration. The localization of robots and people is
achieved by a camera’s node in ROS (2). Then, the differ-
ent algorithms (positioning (3), path planning (4) and state
detection (5)) presented in Sects. 4.1, 4.2, and 4.4 are applied.
The results are used by the robot drive controller presented
in Sect. 4.3 to drive the rovers to their targeted positions in
real time (5). The idea of the system comes from a swarm
of rovers and UAV for Mars exploration [59]. However, our
challenge will be migrants’ detection and the control algo-
rithm in order to protect the migrants and provide a safety
area.

@ Springer

3.1 Rovers

In order to evaluate the suggested algorithms and architec-
ture, we used a reduced scale rover composed of two ser-
vomotors and four wheels (Lynxmotion Aluminum A4WD1
Rover). Their battery capacity is up to 3h, 1h at full speed.
The maximum speed is approximately 2 m per second. How-
ever, a full scale implementation will need a rover such as
those available at Boston Dynamic or Argo-XTR (including
J8 XTR: 30km/h with a 12501b payload that can be used for a
gasoline generator and a solar panel kits). Any kind of rover
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could work with our algorithm (humanoid, legged, wheeled,
hexapod, quadruped, etc.).

The reduced scale rover selected in this research work
has been used in many different swarm projects, including
the student competition organized by NASA Swarmathon to
collect materials such as water ice and useful minerals from
the Martian surface to be used by astronauts who land on
Mars in future missions [60]. One servomotor controls the
speed of the robot, and the other controls its rotation. It is also
built with three different types of sensors: three ultrasonic
sensors to detect very near obstacles, a laser sensor (lidar)
in order to avoid all collisions in the swarm’s environment,
and an angular sensor (IMU) to allow the computation of the
orientation of each robot. The entire components work and
communicate by mean of Arduino hardware. The system is
implemented on Ubuntu 14.04 LTS OS with the use of Robot
Operating System (ROS) [38] and [39].

3.2 Wireless body area network (WBAN)

To establish a protocol of communication in our swarm using
ROS, we chose to use WiFi through the ESP8266. ESP8266
is a micro-controller with an integrated WiFi module. Each
robot need to be connected with one ESP in order to create
a network of WiFi module that communicates a fairly large
amount of information within a short period of time. The
ROS community has already suggested a node for the ESP,
and it is, therefore, possible to develop an integrated platform
for the swarm.

3.3 Motion tracking

Many projects use drones to follow-up people or vehicles; the
method depends on the environment of the drones and their
missions. Some of these methods target accurately a person
and can differentiate many groups of people [61] and [62].
Dual rotating infrared (DRIr) sensor was suggested as a new
technology to track multiple targets moving unpredictably
[63]. Moreover, differentiation between animal, adult human,
and children is suggested in [64]. A data fusion algorithm
is used with unattended ground sensor (UGS) to make this
differentiation. UGS is also used to differentiate vehicles.

This aspect is still a research subject, which we will
study in our future works. Since our algorithms are evalu-
ated indoors in a laboratory environment, we used a motion
capture system, a network of eight Optitrack Flex3 camera,
to determine the positions of people and robots in real time.
The position obtained from the motion capture acts as the
drone to provide the data to the rovers. Data are sent in real
time to a ROS server that will analyze them and store them
into a database including the data given by the rovers.

4 Suggested algorithms to command the
swarm and rovers

The following section details our algorithms that control the
positions of the rovers and drive them around a group of
migrants. The suggested command and control algorithms
are executed in four steps: i) an algorithm takes information
from the motion capture camera and gives every rover a target
to reach; ii) a second algorithm takes the precedent result and
computes a trajectory for each rover; iii) a fuzzy logic bloc
coded on the rover will receive the information and drive
it to the target with the appropriate motion vector; and iv)
a convolutional neural network (CNN) differentiates some
events related to the state of a rover.

4.1 Rover localization algorithm

In order to provide a trajectory to the rovers around the group
of migrants, the algorithm searches a database for the local-
ization of each person. Each position is represented by a point
in a 3D coordinate (world) frame, which allows us to define
the cloud of points made by the group of migrants or rovers.
In order to provide a safety area, rovers should be around the
group. The convex hull of the cloud of points of migrants is
used to place our rovers beyond this one.

Considering the few number of persons during our exper-
iments, we computed each point part of the convex hull with
the gift wrapping algorithm [65], as shown in Fig. 5. For
higher number of persons, another algorithm, like the Gra-
ham scan algorithm [66] or the Chan algorithm [67], should
be used.

Of course, some exception exists and is taken into account,
as shown in Fig. 3:

e For less than three migrants, we cannot apply an algo-
rithm to search a convex hull because three non-aligned
points are needed at least. In that case, the gravity center
of the localization of migrants is used as a circle center,
which will have a radius higher than the safety distance
between migrants and rovers.

e If the number of migrants is more than three, the algo-
rithm will search to define the convex hull of the group
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Fig.3 Rovers position algorithm around a convex hull
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(labeled inside convex hull). Once this inside convex hull
is defined, we expand it by a certain safety distance prede-
fined by the operator. This will create an outside convex
hull where the rovers will be located.

In both cases, rovers will be placed uniformly around the
migrants. This algorithm gives as output the predicted posi-
tion of the rover around people. It is the next two algorithms,
the path planning and the robot drive control, that will drive
the rover until it reaches its target. The gravity center of the
group is used as the center of uniform angular cutting off
a plane; the number of sections depends on the number of
rovers available to perform the mission. We chose to begin
the first section from the mean direction of the group of peo-
ple. Consequently, the first rover of the swarm will be always
located in front of the group (vector direction of the group
motion) on the outside convex hull and becomes the leader of
the swarm. If we have two rovers, the second will be placed
behind the group, bringing up the rear of the group. For three
rovers, these will be on the second convex hull and each
should have a position doing, respectively, an angle of 120°
and —120°, respectively, with the first rover in front of the
group and the gravity center of the people. An additional
rover will divide the angle.

As aresult of the group motion, each target of the rovers is
moved accordingly. The rovers will be moved in such a way
to achieve their targets and constantly surround the group
during the mission. It is also possible to give each rover a
motion vector determined by the group motion vector near
them. A scalar product of the motion vector and the normal
vector of the rover on the inside convex hull is used to know
if a migrant will go out of the convex hull or not. When
a migrant is going out of the inside convex hull, the rover
near him takes the motion vector of the person that has the
maximum value of scalar product of his motion vector and
the normal vector of the rover. Otherwise, the rover will take
the motion vector of another person near him. If nobody is
less than 6 m from the rover, it will take the average motion
vector of the group.

To link the computed positions to the rover, we associate
them by the nearest distance between each other. Two differ-
ent results are shown in Figs. 4 and 5. The predicted positions
given by the algorithm are sent in a database to be used by the
path planning algorithm presented in the following section.

4.2 Path planning

Many global path planning and local path planning meth-
ods exist in real time [44]. In our case, we chose the local
VFH (vector field histogram) method which provides us real-
time processing while avoiding trajectory oscillation issues
presentin the VFF (virtual force field) method. The result will
be coupled with the robot’s control drive algorithm, which
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allows the rovers to move in their environment to reach their
target and avoid obstacles at the same time [68].

The algorithm will work on each rover’s node on ROS,
allowing us multiprocessing at the same time for all con-
nected rovers. The node searches a database for all positions
of obstacles situated in a local map defined by a square of
2 x 2m around the rover, including any migrants who are
assimilated as obstacles. The size of the square is chosen in
order to anticipate new obstacles and avoid them near the
rover without being too wide to save computing time and
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memory during the process. The map and each obstacle coor-
dinate are in centimeter resolution. This resolution generates
a certain amount of data. Consequently, we chose an array of
20 x 20 representing the square of the map; in other words,
each case of this local map contains the obstacles in an area
of 10 x 10cm. This will substantially reduce the processing
time.

When obstacles are detected inside a case of the map, the
value of this case is set to one. Otherwise, the case is set to
zero. Then, we apply the local VHF method to compute a
trajectory. The matrix composed of 20 x 20 cases is divided
into 15 rectangular sections of width adapted to the rover
(40cm), allowing the rover to pass between two obstacles if
it is possible. This division is done once at the beginning of
the program and is stored in the global variables to reduce the
processing time. An example of a section is shown in Fig. 6.

Once the sections around the rover are created, the algo-
rithm verifies the presence of obstacles in each of them. Every
section without obstacles is memorized and represented as
a potential goal to reach by the rover with a middle point
located at their border. The direction chosen will be the one
whose middle point is closer to the target that is to be reached,
i.e., the point given by the control position algorithm. This
direction will be sent to the rover by a local drive control
algorithm. If the target to be reached is inside the map of
the rover, the algorithm will check if it is possible to reach it
directly. If this is the case, it defines it as the final direction
to reach. An example is shown in Fig. 7. The black rect-
angular blocs represent obstacles around the rover, and the
coordinates targeted are (21, 8). The selection of the target
depends on the average motion vector of the group (direction
and velocity).

4.3 Robot drive control
Once the positions are found for the trajectories, the server

sends the results to the available rovers in the mission. A local
drive control algorithm receives the current position of the

Fig.7 Simulation of a section’s algorithm: black rectangular blocs rep-
resent obstacle

rover and the setpoints: the desired position and the desired
motion vector until the rover reaches the target. The rover
does not have a linear drive control but needs to take some
decisions in real time. To overcome this issue, a fuzzy logic
bloc architecture was developed to drive it [69] and [70].

We chose three inputs that can give information about how
to reach the target: (1) the distance between its position and
the desired position, (2) the angular difference between the
currentrover’s orientation and the angle created by his current
position and the desired position (target to reach), and finally
(3) the distances between the rover and obstacles measured
by the lidar. Because each rover has two servomotors, the
system has two outputs: a speed command and a rotation
command.

Each variable is presented in Table 1. We chose to use
triangular functions to describe each of them: (1) distance
between the rover and the target in centimeters (zD = zero
Distance, nD = near Distance, mD = middle Distance, fD
far Distance), (2) angle in degrees (zA = zero Angle, nA
= near Angle, mA = middle Angle, fA = far Angle), (3)
distance between rover and obstacles in centimeters (nO =
near Obstacle, mO = middle Obstacle, fO= far Obstacle), (4)
speed command (nV = not Velocity, sV = slow Velocity, V =
Velocity, fV = fast Velocity), and (5) angle command (nO =
not Orientation, sO= slow Orientation, O = Orientation, fO
= fast Orientation).

With these variables, we can write some rules as follows:

R; : ifx;is X} ... and x, is X,

Then yy is Y ... and y, is Y. (1)
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Table 1 Fuzzy logic variables used for the rover motion

Table 2 Fuzzy logic rules

Rover drive control

Fuzzy logic rules

Variables Membership functions and values

Input

Distance zeroDistance tri([0 0 0 15])
nearDistance tri([10 20 20 50])
middleDistance tri([40 65 65 90])
farDistance tri([80 90 90 1907)

Angle zeroAngle tri([0 0 0 20])
nearAngle tri([15 30 30 60])
middleAngle tri([50 75 75 100])
farAngle tri([90 100 100 200])

Obstacle nearObstacle tri([0 0 0 40])
middleObstacle tri([30 50 50 70])
farObstacle tri([60 70 70 190])

Output

Speed command notVelocity tri([0 0 0 5])
slowVelocity tri([0 10 10 15])
Velocity tri([12 21 21 27])
fastVelocity tri([25 31 31 37])

Angle command notOrientation tri([0 0 0 8])
slowOrientation tri([5 11 11 17])
Orientation tri([15 21 21 27])
fastOrientation tri([25 31 31 37])

There are 768 possible rules for this system. To reduce
processing time, we selected 28 of them that allow us to
drive the rover in all rover statuses. The rules selected, and the
results are presented in Table 2. At the defuzzification step,
the output variables are sent to the drive control. The direction
to turn is determined earlier according to the position of the
rover and the position of the target.

The integration of these three algorithms enables each
rover to move around the convex hull while avoiding col-
lision with its environment. However, if one rover has some
issues, the swarm should be aware of the situation to adapt
itself. For this reason, we chose to analyze all possible states
of each rover. These states are presented in the next section.

4.4 CNN for states differentiation

In order to protect migrants in a complex environment, our
system should be able to know the state and activity of each
rover. This is essential to ensure appropriate distribution of
the rover around the group. Indeed, if one of the rovers has an
issue and cannot follow its desired position target, the swarm
should be able to adapt itself to protect the sector uncovered
by the rover that is not available. To detect some of these
situations, we used a CNN according to a library of states
(events) defined in the following section.
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Rules  Inputs Outputs
Distance Orientation Obstacle Speed  Angle

1 zD zA nO/mO/fO  nV nO
2 nD zA nO/mO/fO sV nO
3 mD zA nO sV nO
4 mD zZA mO/fO \% nO
5 fD zA nO sV nO
6 fD zZA mO \Y nO
7 fD zZA fO v nO
8 zD nA nO/mO/fO  nV sO
9 zD mA nO/mO/fO nV (0]
10 zD fA nO/mO/fO nV fO
11 nD nA nO/mO/fO sV sO
12 nD mA nO sV sO
13 nD mA mO/fO sV (0]
14 nD fA nO/mO/fO  nV fO
15 mD nA nO sV sO
16 mD nA mO/fO \Y sO
17 mD mA nO sV (0]
18 mD mA mO/fO v (0]
19 mD fA nO/mO nV fO
20 mD fA fO sV fO
21 fD nA fO v sO
22 fD nA mO v sO
23 fD nA nO sV sO
24 fD mA fO v (0]
25 fD mA mO A% (0]
26 fD mA nO sV (0]
27 fD fA nO sV fO
28 fD fA mO/fO v fO

(1) States definitions for one rover: To detect the events
that will generate a rover state, we created a library of differ-
ent events and states that the rover will encounter:

e State 0: the rover is not connected yet to the server (the
leader); it is not a part of the swarm.

e State 1: The rover is fully operational and is a part of the
swarm, receiving and executing the orders which there
are sent to him.

e State 2: This state indicates that the rover experienced
an unexpected network disconnection from the server.
As we do not have any control over it, it is tem-
porarily removed from the swarm awaiting a potential
re-connection. The swarm adapts itself to this situation
by changing the distribution of the rover around the out-
side convex hull.
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e State 3: The rover experienced a serious fall. This fall has
been detected by the CNN due to the data of the IMU.
Thereafter, if the server detects that the rover is moving
to its targeted position, its state returns to 1. Otherwise,
the rover is removed from the swarm awaiting the inter-
vention of an operator. The swarm adapts itself to this
situation as described in state 2.

e State 4: In some environments, such as the desert or tem-
perate forests, there is a risk of the wheels of the rover
skidding in sand, snow, ice or mud. This state refers to
this situation. The skidding is detected both by the CNN
and the server, who sees that the rover is not moving
despite its commands. Then, the rover is removed from
the swarm awaiting the intervention of an operator.

e State 5: It is possible that a lidar did not detect some
obstacles in the current trajectory of the rover. This state
indicates a collision. The collision is detected by the CNN
due to the data given by the IMU. The server disconnects
the rover from the swarm while it is trying to get around
the obstacle. When the rover evaluates that it can reach
the outside convex hull, it is reinstated into the swarm.
The obstacle that was not detected is registered to avoid
this situation with other rovers.

e State 6: This state indicates that the rover is trapped in
some branches of trees or some obstacles that it cannot
overcome and escape from. The CNN detects this state,
and the rover is removed from the swarm awaiting the
intervention of an operator.

e State 7: Considering that the rover could be used for sev-
eral hours, it should be recharged or fulled frequently
whenever solar panels are used. This state enables the
system to predict maintenance using a predictive algo-
rithm.

e State 8: The rover has the aim of protecting migrants
in risky areas. This state indicates that the rover expe-
rienced an explosion or irreparable damages. The rover
is removed from the swarm and should be replaced or
destroyed.

e State 9: While the rover is traveling, it could experience
some damages preventing it from pursuing its mission.
This state indicates to the operator that the rover needs
to be fixed. It is temporarily removed from the swarm.

This library of events allows us to follow in real time the
state of each rover and the swarm evolution. The operator
can act if one of them needs an intervention. The swarm is
also kept updated about any rover that cannot be used. It can
remove any rover in real time to adapt itself to the situation.
In the next part, we will present the CNN that can detect these
events. Considering that we evaluated the swarm in a labora-
tory environment, we could not test all the situations above.
We selected four states: (1) the rover is moving normally on

small stones; (2) it is falling, (3) it has experienced a collision
and is trying to escape; and (4) the rover has skidded in sand.

(2) Suggested CNN architecture: To detect these different
states, many studies have been conducted. Anti-skid systems
have been developed over the years, such as the one that
is presented in [71]. The gyroscope and magnetometer give
some data, which are processed by a Kalman filter to get
a correct orientation after the skid. Then, some kinematics
equations are applied on the result to control the trajectory
of the robot. Also, some fall detection processes were imple-
mented. For instance, the Nao robot uses a deep learning
approach to predict a fall [49]. It uses a multilayer perceptron
composed of 100 values of the x and y-axis of the gyro-
scope concatenate in one vector for the input. The output is
defined by two states: the robot is stable or unstable. For col-
lision avoidance, sensors are used to detect obstacles to be
avoided by implementing a plannified trajectory. Collision
occurs when the sensors fail to detect objects (cross-talk,
absorption, refraction, reflection, etc.). Bumpers are adapted
to indoor motion as suggested in [72] and do not work in
mud, sand, and gravel; we prefer IMU information, which
does not interfere with the composition of the environment.
Moreover, the dynamic model of the rover is not available,
and we prefer to use an IMU sensor. Other research works
specialized in the detection of one event, whereas our work is
concerned with the classification and differentiation of each
state.

As we shown in the Related Work section, many robotic
projects rely on CNN to process the data obtained from sen-
sors. One advantage of CNN is that it learns directly from
features identified to differentiate events. Moreover, it can
deal with more data with fewer weight in comparison with
a multilayer perceptron. This allows it to use less memory,
and it is easier to implement in robotic systems.

Our network relies on data from the IMU, sampled at
20Hz. A sliding window of 13 samples over 2 s in each axis of
the accelerometer and the gyroscope is memorized in order to
extract some features from them. An overlap of 12 samples
is used to slide the window. More than 2400 acquisitions
were realized to create a dataset that will train the network.
With these raw data describing the four (4) situations selected
previously, we calculated some features and kept nine (9)
of them that we can use to differentiate the different states.
These features are shown in Table 3 (where Ay ;, Ay i, Az ;
are measurements taken in the axis of accelerometer, and
Gyi» Gy,i, G, are measurements of the gyroscope; i
is the sample of the window). With these measurements, we
created an image of 9 x 9 x 1 pixels as input to the CNN based
on the method used in [52] and [53]. To do that, we took the
value of the feature and duplicated it on all the lines, one line
for one feature. The choice of this spatial representation is
arbitrary. We wanted to have a small image to be processed
by a small number of filters (2 convolutional filters in our
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Table 3 Features from the data of IMU

IMU Features

Accelerometer Mean(Ay ;)
Std(VTAZ, + A2, + A2)))
Std(Ax ;)

Skewness(v/(A7 ; + A2, + A2)))
Skewness(Ay ;)

Mean(v/(GY; + G2, + G2 )
Mean(Gy,;)

Std(Gy,i)

Kurtosis(G; ;)

Gyroscope

case). Other techniques exist such as [50]. In this case, the
input of the neural network is directly the raw data of the
IMU in a short window of time. The CNN should find the
features and classify the different activities. In our case, we
found some explicit features to differentiate each state of the
robot. In order to obtain a better result there, we directly build
the image with them.

The network used in our research work to detect the four
different situations is composed of two convolutional layers,
as shown in Fig. 8. First, the network initializes with random
weights the convolutional layers. The first layer of convolu-
tion is composed of a kernel with a dimension of 4 x 4 x 10
and the dimension of the second layer kernel is 2 x 2 x 20.
Then, the input takes a picture of 9 x 9 x 1 pixels based on
features extracted from the data of the IMU. The output is
given by a multilayer perceptron to classify the picture from
the features. It has 100 perceptrons and four outputs which

2 4 6 8 10 12 1 9x9x1 3x3x1

represent each of the four situations selected. The result is
given by the Softmax function with a threshold of 0.6. At
each iteration, the output is compared to the desired result,
and the weights are adjusted by the back-propagation method
to obtain the target results. The learning rate decreases lin-
early over the time. We chose this configuration because of
the small size of the picture and the memory size constrain
of our system.

The dataset is composed of 2873 pictures to evaluate the
network. We chose to use 86% of them for the training part
and 14% to test our results. The repartition of the folds was
determined randomly. Regarding the 2468 pictures used for
the training, 2033 of them were used to change the weights,
and the other 435 pictures were used to validate the result
during the training. Each of them is annotated in XML files
indicating the situation that they are representing in the train-
ing. Four hundred and five (405) pictures were not used
for the training, and we tested our network with them. The
results are shown in Sect. 5.2. In this research, all the CNN
algorithms were developed using TensorFlow (Python) and
performed on a computer equipped with a 2.66 GHz Intel(R)
Xeon(R) W3520 CPU, a NVIDIA GeForce GTX 1080 and
10GB RAM. The time of a training was two (2) hours for
500,000 steps.

5 Experimental results

Considering that the evaluation is executed indoor, only
some selected situations defined previously are used. We will
present one of them in the next part and the result given by the

1x1x1 State 1

AL

State 2

r‘\

State 3

AT X

{ Raw Data

Fig.8 CNN for state detection
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Fig.9 Movements of the rovers 100
and the migrants during the test
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CNN for all the four situations detected. Two reduced scale
rovers were used during these tests. A reduced scale rover
is enough to achieve a clear demonstration of the suggested
architecture and algorithms for this critical application.

5.1 Swarm of rover reaction

In this part, we present the results obtained during the fall
of one of the two rovers given the mission to protect one
migrant. Then, the operational rover adapts itself and changes
its behavior to lead the mission.

In order to test our system, we used an indoor area of
3 x4 m surrounded by eight cameras, which allow us to know
the position of the simulated migrants and the rovers. Due to
the room configuration, we set the minimal distance between
the rovers and the simulated migrants to 75 cm. This choice
gives the rovers enough space to move without annoying the
simulated migrants.

The motion of the simulated migrants and the rovers dur-
ing this test is described as follows:

(1) The rovers surround the migrant. Once they are around
him, the migrant moves.

(2) The rovers follow him, and then the leader in front of
the group (Rover 1 in Fig. 9) falls into a hole. After
the rover falls, the migrant turns to his left, and the
operational rover (Rover 2 in Fig. 9) adapts itself to the
situation, taking the place of Rover 1 in front of the
migrant.

(3) Atthe end, the migrant retraces his steps with the rover.
This behavior is presented in Fig. 9.

The data of the IMU of each rover are sent to the server
and used to detect the fall of the rover during its trajectory.
Figure 10 refers to the rover in front of the migrant. It is
composed of two parts: one part is the data of the IMU

0 50 100 150

(accelerometer and gyroscope), and the second part is the
command sent to the motors (linear speed and rotation).
Three events are presented as the following:

(1) The first event is the robot moving to reach its target
position. As shown in Fig. 9, the blue path corresponds
to this robot. It detects its target position and goes in
front of the migrant.

(2) The second event is the fall of the robot into a hole as
detected by the CNN, which is very different from the
first event.

(3) The fallis detected by the CNN, which leads to the third
event: the robot stops its motors because it is jammed.
This reaction is observable with the command sent to
the motor. Just after the fall, they are set to zero.

Figure 11 refers to the second robot that is behind the
migrant at first. It is also composed of two parts: one part
is the data of the IMU (accelerometer and gyroscope), and
the second part is the distance to the targeted position and
the command sent to the motors (linear speed and rotation).
Three events are also presented:

(1) The first event is the robot moving to reach its target
position. The red path on Fig. 9 corresponds to this
robot. It detects its target position and goes behind the
migrant.

(2) The second event is the fall of the robot in front of
the migrant. When the fall is detected by the CNN,
the fallen robot is removed from the swarm because
it cannot continue its mission. The robot behind the
migrant becomes the only robot in the “swarm,” and its
targeted position changes. It should now be in front of
the migrant. Therefore, the command sent to the motor
changes quickly.
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Fig. 10 Interaction between
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(3) The third event is that the second robot reaches its new
position in front of the migrant. At sample 72, the dis-
tance to the target has increased because of the change
in target. Therefore, the command of the linear speed
increases to adapt the rover to this new destination.

5.2 Performance of state estimation with CNN

In order to measure the performance of our CNN in classi-
fying some situations, we calculate two indicators: (1) the
precision (i.e fraction of the relevant situations among those
found) and (2) the recall (i.e fraction of the relevant situations
that were found over the total amount). Both measures are
currently used to evaluate the performance of classification
systems [73]. Their values can be computed using Egs. (2)
and (3):
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40 60 80 100 120
Samples
.. TP
Precision = ———— )
TP + FP
TP
Recall = ———— 3)
TP + FN

where, TP is the number of true positives, FN is the number
of false negatives and FP is the number of false positives.

To measure these two indicators, we used a dataset of 405
pictures obtained from the data given by the IMU: 223 for
a rover in motion on stones, 87 for a collision between a
rover and an obstacle, 52 for the fall of a rover, and 43 for a
rover that skidded on sand. These data were not used for the
training of the CNN in order not to bias the results. With the
CNN described previously, we obtained the results shown in
Table 4.
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Fig. 11 Detection of the fall and Accelerometer
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The state of the rover is classified with precision and recall
rates of the CNN between 91 and 100%. Despite not being
able to recognize all states with 100% accuracy, our CNN
architecture can provide some information with several ben-
efits to the swarm.

Compared to [49], which detected the fall of a robot with
a multi-perceptron layer, our results seem better. Our sug-
gested algorithm does not detect only a fall, and the kind of
robot is different (humanoid vs. rover). Regarding 52 falls,
we obtained a recall and precision of 98%. In [49], at the end
of their training, they obtained a precision of §9.84% and a
recall of 98.37%. Our method seems to give better results in
the estimate of true falls. This is probably due to the fact that
we used nine features (five from accelerometer and four from
gyroscope) to detect a fall, while other research projects used
only two inputs from the gyroscope.

Also, the processing time is very short. Therefore, the
swarm reacts quickly to an issue. Further, we can add as
many situations as we want to be detected as long as we
have data to make the training of the CNN. Then, the swarm
will be able to adapt itself to many situations. Having a real-
time monitoring system in place to monitor rover state in
an outdoor environment provides a mechanism to improve
rover behaviors and increase the protection of migrants by
the swarm.

6 Conclusions
The follow-up of a group of migrants using rovers (mobile

robots) is challenging regarding the autonomy of the swarm
in the interaction between migrants and rovers. This project
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Table 4 Detection results with a

. Situations Number in
testing dataset and a threshold of

Correctly detected

Incorrectly detected situations Precision Recall

Not detected (FN) Mis-detected (FP)

0.6 data situations
Stones 223 221
Collision 87 79
Fall 52 50
Skid 43 43

1 1 99.5 99.5
1 7 91.9 98.8
1 1 98 98
0 0 1 1

concerns mainly the integration of trajectory planning using
convex hulls to provide a safety area around the migrants
as well as a strategy to manage the swarm. Some of these
methods are used in very specific domains but have never
been implemented in a mission for the protection of migrants.

The rover’s states, identified by using a CNN, allow us to
follow their possible issues and to improve the rover’s behav-
ior. This enables the swarm to adapt itself to the environment
through its evolution. In this research work, we were able to
validate and demonstrate the effectiveness of the approach,
both at the level of the logic of the system and its response.
Through this evaluation, some improvements can be sug-
gested such as localization of migrants using a fixed wings
UAV. Geo-localization of migrants is a very difficult task
since it mainly depends on differentiation of migrants from
other objects or obstacles in the environment.

Furthermore, better models for positioning robots around
the group could be studied, implemented, tested and evalu-
ated. Instead of arranging them in a uniform way, we could
position them, for example to cover a zone more dangerous
than the others. Improvements in the algorithm of planning
can also take place. One could seek to validate the path to its
final target by verifying that we do not encounter problems
with trajectory oscillations.

7 Future works

As this application is critical and should require the use of
human participants with a research ethical approval from a
Research Ethics Board (REB) for an adequate performance
evaluation, this paper presents only the overall design, includ-
ing a process that can be used for such an application. Of
course, using human participants will demonstrate the com-
mercial version of this research work. Moreover, many other
experiments could be performed: (1) drone and migrants
detection and localization, (2) drone tactical autonomous
decision for target following, (3) true interaction with par-
ticipants and (4) gas filling strategy of the swarm by a third
party drone. Each of these projects will be presented in other
research works.

@ Springer

Finally, it should be interesting to identify some motion
patterns of the group in order to anticipate their trajectory
and help the swarm optimize their position for improving
protection. Some issues related to the state of a rover should
be solved by the swarm itself by cooperation between the
rovers. For example, when one of them has a difficulty, we
can imagine other rovers helping it. This could avoid the
intervention of an operator.

These developments will continue to refine the SROPRAS
system of protecting a group of migrants with a swarm of
robots in order to avoid operators’ intervention in dangerous
situations.
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