University of Texas Rio Grande Valley

2-2019

Level 17 Ramanujan-sato Series

Timothy Huber
The University of Texas Rio Grande Valley
Daniel Schultz
Dongxi Ye

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac
Part of the Mathematics Commons

Recommended Citation

Huber, T., Schultz, D. \& Ye, D. Level 17 Ramanujan-Sato series. Ramanujan J 52, 303-322 (2020).
https://doi.org/10.1007/s11139-018-0097-5

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Mathematical and Statistical Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

LEVEL 17 RAMANUJAN-SATO SERIES

TIM HUBER, DANIEL SCHULTZ, AND DONGXI YE

Abstract. Two level 17 modular functions

$$
r=q^{2} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\left(\frac{n}{17}\right)}, \quad s=q^{2} \prod_{n=1}^{\infty} \frac{\left(1-q^{17 n}\right)^{3}}{\left(1-q^{n}\right)^{3}}
$$

are used to construct a new class of Ramanujan-Sato series for $1 / \pi$. The expansions are induced by modular identities similar to those level of 5 and 13 appearing in Ramanujan's Notebooks. A complete list of rational and quadratic series corresponding to singular values of the parameters is derived.

1. Introduction

Let τ be a complex number with positive imaginary part and set $q=e^{2 \pi i \tau}$. Define

$$
r(\tau)=q^{2} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\left(\frac{n}{17}\right)}, \quad s(\tau)=q^{2} \prod_{n=1}^{\infty} \frac{\left(1-q^{17 n}\right)^{3}}{\left(1-q^{n}\right)^{3}}
$$

In this paper, we derive level 17 Ramanujan-Sato expansions for $1 / \pi$ of the form

$$
\begin{equation*}
q \frac{d}{d q} \log s=\sum_{n=0}^{\infty} A_{n}\left(\frac{r\left(r^{2} s+8 r s-r-s\right)}{8 r^{3} s-3 r^{2} s+r-s}\right)^{n}, \quad \frac{1}{s}=r+\frac{1}{r}-2 \sqrt{\frac{4}{r}-4 r-15}, \tag{1.1}
\end{equation*}
$$

where A_{n} is defined recursively. These relations are analogous to those at level 13 and 5 [5, 12],

$$
\begin{array}{rlrl}
q \frac{d}{d q} \log \mathcal{S} & =\sum_{n=0}^{\infty} \mathcal{A}(n)\left(\frac{\mathcal{R}\left(1-3 \mathcal{R}-\mathcal{R}^{2}\right)}{\left(1+\mathcal{R}^{2}\right)^{2}}\right)^{n}, & \frac{1}{\mathcal{S}}=\frac{1}{\mathcal{R}}-3-\mathcal{R}, \\
q \frac{d}{d q} \log S & =\sum_{n=0}^{\infty} a(n)\left(\frac{R^{5}\left(1-11 R^{5}-R^{10}\right)}{\left(1+R^{10}\right)^{2}}\right)^{n}, & & \frac{1}{S}=\frac{1}{R^{5}}-11-R^{5} . \tag{1.3}
\end{array}
$$

Here $a(n), \mathcal{A}(n)$ are recursively defined sequences induced from differential equations and

$$
\begin{equation*}
\mathcal{R}(\tau)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\left(\frac{n}{13}\right)}, \quad R(\tau)=q^{1 / 5} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\left(\frac{n}{5}\right)} . \tag{1.4}
\end{equation*}
$$

Identity (1.3) and explicit evaluations for $R(\tau)$ were used to formulate expansions for $1 / \pi$ including

$$
\begin{equation*}
\frac{1}{\pi}=\frac{1705}{81 \sqrt{47}} \sum_{n=0}^{\infty} a(n)\left(n+\frac{71}{682}\right)\left(\frac{-1}{15228}\right)^{n}, \quad a(n)=\binom{2 n}{n} \sum_{j=0}^{n}\binom{n}{j}^{2}\binom{n+j}{j} . \tag{1.5}
\end{equation*}
$$

This expression is a generalization of 17 such formulas stated by Ramanujan [3, 18]. In each formula, the algebraic constants come from explicit evaluations for a modular function. The sequence A_{k} are coefficients in a series solution to a differential equation satisfied by a relevant modular form. Generalizing such relations to higher levels requires finding differential equations for modular parameters and relevant identities. The series [5, 9, 10, 12] have common construction for primes $p-1 \mid 24$, where $X_{0}(p)$ has genus zero. More work remains to unify constructions for other levels.

The purpose of this paper is to construct level 17 Ramanujan-Sato series as a prototype for levels such that $X_{0}(N)$ has positive genus. Central to the construction is the fact that r and s generate the field of functions invariant under action by an index two subgroup of $\Gamma_{0}(17)$. These constructions and singular value evaluations yield new Ramanujan-Sato expansions, including the rational series

$$
\begin{equation*}
\frac{1}{\pi}=\frac{1}{\sqrt{11}} \sum_{k=0}^{\infty} A_{k} \frac{307+748 k}{(-21)^{k+2}} \tag{1.6}
\end{equation*}
$$

Following [5, 6], an expansion for $1 / \pi$ is said to be rational or quadratic if C / π can be expressed as a series of algebraic numbers of degree 1 or 2 , respectively, for some algebraic number C. We derive a complete list of series of rational and quadratic series from singular values of parameters in (1.1).

In the next section, we given an overview of results at levels 5 and 13 that motivate the approach of the paper. Section 3 includes an analogous construction of level 17 modular functions. This construction is used to motivate the differential equation satisfied by

$$
\begin{equation*}
z(\tau)=\theta_{q} \log s, \quad \theta_{q}:=q \frac{d}{d q}, \tag{1.7}
\end{equation*}
$$

with coefficients in the field $\mathbb{C}(x)$, where

$$
\begin{equation*}
x(\tau)=\frac{r\left(r^{2} s+8 r s-r-s\right)}{8 r^{3} s-3 r^{2} s+r-s} \tag{1.8}
\end{equation*}
$$

We conclude with Section 4 in which singular values are derived for x and used to construct a new class of series approximations for $1 / \pi$ of level 17 . We derive a complete list of values of $x(\tau)$ with $[\mathbb{Q}(x(\tau)): \mathbb{Q}] \leq 2$ within the radius of convergence for z as a powers series in x and therefore provide a complete list of linear and quadratic Ramanujan-Sato series corresponding to $x(\tau)$.

2. Level 5 and 13 Series

The product $R(\tau)$, defined by (1.4), is the Rogers-Ramanujan continued fraction [19]. Together, $R(\tau)$ and $S(\tau)$, defined by

$$
\begin{equation*}
R(\tau)=\frac{q^{1 / 5}}{1+\frac{q}{q+\frac{q^{2}}{1+\frac{q^{3}}{1+\ldots}}}}, \quad S(\tau)=q \prod_{n=1}^{\infty} \frac{\left(1-q^{5 n}\right)^{6}}{\left(1-q^{n}\right)^{6}} \tag{2.1}
\end{equation*}
$$

generate the field of functions invariant under the congruence subgroup

$$
\Gamma_{0}^{2}(d)=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0 \bmod p \text { and } \chi(d)=1\right\} .
$$

This motivates Ramanujan's reciprocal identity [17], [1, p. 267]

$$
\begin{equation*}
\frac{1}{R^{5}}-11-R^{5}=\frac{1}{S} \tag{2.2}
\end{equation*}
$$

Equation (1.3) expresses the logarithmic derivative $Z=\theta_{q} \log S(\tau)$ in terms of a series solution to a third order linear differential equation [5] satisfied by S and the $\Gamma_{0}(5)$ invariant function $T=T(\tau)$

$$
\begin{gather*}
\left(16 T^{2}+44 T-1\right) Z_{T T T}+\left(48 T^{2}+66 T\right) Z_{T T}+\left(44 T^{2}+34 T\right) Z_{T}+\left(12 T^{2}+6 T\right) Z=0, \tag{2.3}\\
Z_{T}=T \frac{d}{d T} Z, \quad T=\frac{R^{5}\left(1-11 R^{5}-R^{10}\right)}{\left(1+R^{10}\right)^{2}} . \tag{2.4}
\end{gather*}
$$

The form of the equation may be anticipated from a general theorem [22] (c.f. [24]).

Theorem 2.1. Let Γ be subgroup of $S L_{2}(\mathbb{R})$ commensurable with $S L_{2}(\mathbb{Z})$. If $t(\tau)$ is a nonconstant meromorphic modular function and $F(\tau)$ is a meromorphic modular form of weight k with respect to Γ, then $F, \tau F, \ldots, \tau^{k} F$, as functions of t, are linearly independent solutions to $a(k+1)$ st order differential linear equation with coefficients that are algebraic functions of t. The coefficients are polynomials when $\Gamma \backslash \mathfrak{H}$ has genus zero and t generates the field of modular functions on Γ.

Therefore, from (2.3),

$$
\begin{equation*}
Z=\sum_{k=0}^{\infty} a(n) T^{n}, \quad|T|<\frac{5 \sqrt{5}-11}{8} \tag{2.5}
\end{equation*}
$$

where $a(n)$ is recursively determined from (2.3), and expressible in closed form [5] in terms of the summand appearing in (1.5). The final ingredient needed for Ramanujan-Sato series at level 5 are explicit evaluations for the Rogers-Ramanujan continued fraction within the radius of convergence of the power series. Such singular values for $R(\tau)$ were given by Ramanujan in his first letter to Hardy [2] and can be derived from modular equations satisfied by $T(\tau)$ and $T(n \tau)$. We provide a general approach in Section 4.

To formulate the analogous construction at level 13 , define $\mathcal{R}=\mathcal{R}(\tau)$ by (1.4) and

$$
\begin{equation*}
\mathcal{S}(\tau)=q \prod_{n=1}^{\infty} \frac{\left(1-q^{13 n}\right)^{2}}{\left(1-q^{n}\right)^{2}}, \quad \mathcal{T}(\tau)=\frac{\mathcal{R}\left(1-3 \mathcal{R}-\mathcal{R}^{2}\right)}{\left(1+\mathcal{R}^{2}\right)^{2}} \tag{2.6}
\end{equation*}
$$

A third order linear differential equation [12] is satisfied by the Eisenstein series $\mathcal{Z}(\tau)=$ $\theta_{q} \log \mathcal{S}$ with coefficients that are polynomials in the $\Gamma_{0}(13)$ invariant function $\mathcal{T}(\tau)$. For both the level 5 and 13 cases, the weight zero functions T and \mathcal{T} may be uniformly presented as the quotient of a weight 4 cusp form and the square of a weight 2 Eisenstein series

$$
\begin{equation*}
\mathcal{T}=\frac{\mathcal{U} \mathcal{V}}{\mathcal{Z}^{2}}, \quad T=\frac{U V}{Z^{2}} \tag{2.7}
\end{equation*}
$$

where $\mathcal{U}(\tau)=\theta_{q} \log \mathcal{R}, U(\tau)=\theta_{q} \log R$,

$$
\begin{equation*}
\mathcal{V}(\tau)=\sum_{n=1}^{\infty}\left(\frac{n}{13}\right) \frac{q^{n}}{\left(1-q^{n}\right)^{2}}, \quad V(\tau)=\sum_{n=1}^{\infty}\left(\frac{n}{5}\right) \frac{q^{n}}{\left(1-q^{n}\right)^{2}} \tag{2.8}
\end{equation*}
$$

Both levels require singular values for \mathcal{T}, T [11]. Explicit evaluations for \mathcal{Z} and Z follow from

$$
\begin{equation*}
\mathcal{W}=\frac{\theta_{q} \log \mathcal{T}}{\mathcal{Z}}=\sqrt{1-12 \mathcal{T}-16 \mathcal{T}^{2}}, \quad W=\frac{\theta_{q} \log T}{Z}=\sqrt{1-44 T+16 T^{2}} \tag{2.9}
\end{equation*}
$$

The pairs $(\mathcal{T}, \mathcal{W}),(T, W)$, respectively, generate the field of invariant functions for $\Gamma_{0}(13)$, $\Gamma_{0}(5)$, and r and s generate invariant function fields for the congruence subgroup $\Gamma_{0}(17)$.

Proposition 2.2. Let $A_{0}(\Gamma)$ denote the field of functions invariant under Γ and denote by χ the real quadratic character modulo p. Then
(1) $A_{0}\left(\Gamma_{0}(5)+\right)=\mathbb{C}(T)$ and $A_{0}\left(\Gamma_{0}(5)\right)=\mathbb{C}(T, W)$.
(2) $A_{0}\left(\Gamma_{0}(13)+\right)=\mathbb{C}(\mathcal{T})$ and $A_{0}\left(\Gamma_{0}(13)\right)=\mathbb{C}(\mathcal{T}, \mathcal{W})$.
(3) For prime $p \equiv 1(\bmod 4)$, $A_{0}\left(\Gamma_{0}^{2}(p)\right)=\mathbb{C}\left(R_{p}, S_{p}\right)$, where

$$
\begin{gather*}
R_{p}=q^{\ell_{p}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\chi(n)}, \quad S_{p}=q^{a_{p}} \prod_{n=1}^{\infty} \frac{\left(1-q^{n p}\right)^{b_{p}}}{\left(1-q^{n}\right)^{b_{p}}} \tag{2.10}\\
\ell_{p}=\sum_{n=1}^{\frac{p-1}{2}} \frac{n(n-p)}{2 p} \chi(n), \quad \frac{p-1}{24}=\frac{a_{p}}{b_{p}}, \quad \operatorname{gcd}\left(a_{p}, b_{p}\right)=1 \tag{2.11}
\end{gather*}
$$

A proof of the first two parts of Proposition 2.2 may be given along the lines of the proof of Proposition 3.2. The third part of the Proposition is a main result of [15]. The results of [15] explain Ramanujan's level 5 reciprocal relation (2.2) and his level 13 reciprocal relation [1, Equation (8.4)]

$$
\begin{equation*}
\frac{1}{\mathcal{R}}-3-\mathcal{R}=\frac{1}{\mathcal{S}} \tag{2.12}
\end{equation*}
$$

For our present work at level 17, we apply a new identity proven in [15]

$$
\begin{equation*}
r+\frac{1}{r}-2 \sqrt{\frac{4}{r}-4 r-15}=\frac{1}{s} . \tag{2.13}
\end{equation*}
$$

Our next task is to construct functions analogous to T and W in terms of r, s and Eisenstein series.

3. Functions invariant under $\Gamma_{0}(17)$ and a differential equation

In this Section we prove an analogue to Proposition 2.2 and derive a second order linear differential equation for z defined by (1.7) with coefficents in $\mathbb{C}(x)$, where x is defined by (1.8). In order to construct functions that are invariant under $\Gamma_{0}(17)$, we introduce sums of eight Eisenstein series considered in [14]. Set

$$
\begin{equation*}
\mathcal{E}_{1}(\tau):=\frac{1}{8} \sum_{\chi(-1)=-1} E_{\chi, k}(\tau), \quad E_{\chi, k}(\tau)=1+\frac{2}{L(1-k, \chi)} \sum_{n=1}^{\infty} \chi(n) \frac{n^{k-1} q^{n}}{1-q^{n}} \tag{3.1}
\end{equation*}
$$

where the sum in (3.1) is over the odd primitive Dirichlet characters modulo 17 and $L(1-$ $k, \chi)$ is the analytic continuation of the associated Dirichlet L-series and $\chi(-1)=(-1)^{k}$. For $a \in(\mathbb{Z} / 17 \mathbb{Z})^{*}$, apply the diamond operator [13] to define, for $1 \leq k \leq 8$,

$$
\begin{equation*}
\langle a\rangle \mathcal{E}_{1}(\tau)=\frac{1}{8} \sum_{\chi(-1)=-1} \chi(a) E_{\chi, 1}(\tau), \quad \mathcal{E}_{k}(\tau)= \pm\langle 3\rangle^{k-1} \mathcal{E}_{1}(\tau) . \tag{3.2}
\end{equation*}
$$

The sign in Equation (3.2) is chosen so that the first coefficient in the q-series expansion is 1 . The parameters $\mathcal{E}_{k}(\tau)$ have the product representations [14, Theorems 3.1-3.5]

$$
\begin{align*}
& \mathcal{E}_{1}(\tau)=\binom{q^{8}, q^{9}, q^{17}, q^{17}}{q^{2}, q^{3}, q^{14}, q^{15} ; q^{17}}_{\infty}, \quad \mathcal{E}_{2}(\tau)=q\left(\begin{array}{c}
q^{3}, q^{14}, q^{17}, q^{17} \\
q, q^{5}, q^{12}, q^{16}
\end{array} ; q^{17}\right)_{\infty}, \\
& \mathcal{E}_{3}(\tau)=q^{3}\binom{q, q^{16}, q^{17}, q^{17}}{q^{4}, q^{6}, q^{11}, q^{13} ; q^{17}}_{\infty}, \quad \mathcal{E}_{4}(\tau)=q\binom{q^{6}, q^{11}, q^{17}, q^{17}}{q^{2}, q^{7}, q^{10}, q^{15} ; q^{17}}_{\infty}, \tag{3.3}\\
& \mathcal{E}_{5}(\tau)=q^{3}\left(\begin{array}{c}
q^{2}, q^{15}, q^{17}, q^{17} \\
q^{5}, q^{8}, q^{9}, q^{12}
\end{array} ; q^{17}\right)_{\infty}, \quad \mathcal{E}_{6}(\tau)=q\left(\begin{array}{c}
q^{5}, q^{12}, q^{17}, q^{17} \\
q^{3}, q^{4}, q^{13}, q^{14}
\end{array} ; q^{17}\right)_{\infty}, \\
& \mathcal{E}_{7}(\tau)=q\left(\begin{array}{c}
q^{4}, q^{13}, q^{17}, q^{17} \\
q, q^{7}, q^{10}, q^{16}
\end{array} ; q^{17}\right)_{\infty}, \quad \mathcal{E}_{8}(\tau)=q^{2}\left(\begin{array}{c}
q^{7}, q^{10}, q^{17}, q^{17} \\
q^{6}, q^{8}, q^{9}, q^{11}
\end{array} ; q^{17}\right)_{\infty}, \\
& \left(\begin{array}{c}
a_{1}, \ldots, a_{m} \\
b_{1}, \ldots, b_{n}
\end{array} ; z\right)_{\infty}=\prod_{n=1}^{\infty} \frac{\left(a_{1} ; z\right)_{\infty} \cdots\left(a_{m} ; z\right)_{\infty}}{\left(b_{1} ; z\right)_{\infty} \cdots\left(b_{n} ; z\right)_{\infty}}, \quad(a ; z)_{\infty}=\prod_{n=0}^{\infty}\left(1-a z^{n}\right) .
\end{align*}
$$

A function Ω is now introduced as a level 17 analogue to the level 5 cusp form $U V$. Define

$$
\begin{equation*}
\Omega(\tau)=\mathcal{E}_{1} \mathcal{E}_{2}-\mathcal{E}_{2} \mathcal{E}_{3}+\mathcal{E}_{3} \mathcal{E}_{4}-\mathcal{E}_{4} \mathcal{E}_{5}+\mathcal{E}_{5} \mathcal{E}_{6}-\mathcal{E}_{6} \mathcal{E}_{7}-\mathcal{E}_{7} \mathcal{E}_{8}-\mathcal{E}_{8} \mathcal{E}_{1} . \tag{3.4}
\end{equation*}
$$

Proposition 3.1 demonstrates that the weight two parameters z and Ω, respectively, play a role at level seventeen analogous to that played by the parameters Z and $U V$ at level 5 .
Proposition 3.1. Let $z=z(\tau)$ be defined by (1.7). Then
(1) The Eisenstein space of weight two $E_{2}\left(\Gamma_{0}(17)\right)$ is generated by z.
(2) The space of cusp forms of weight two $S_{2}\left(\Gamma_{0}(17)\right)$ is generated by Ω.
(3) Both z and Ω change sign under $\left.\right|_{W_{17}, 2}$, where $\left.f\right|_{W_{17}, k}(\tau)=17^{-k / 2} \tau^{-k} f(-1 / 17 \tau)$.
(4) Both z and Ω have zeros at the elliptic points $\rho_{ \pm}$, and in the case of Ω, the zeros are simple.

Proof. From (3.2) and the definition of the \mathcal{E}_{i}, if arithmetic is performed modulo 8 on the subscripts,

$$
\begin{equation*}
\langle 3\rangle \mathcal{E}_{k}=\epsilon_{k} \mathcal{E}_{k+1}, \quad \epsilon_{1}, \ldots, \epsilon_{8}=+1,-1,+1,-1,+1,-1,-1,-1 \tag{3.5}
\end{equation*}
$$

This, coupled with the transformation formula for Eisenstein series,

$$
\mathcal{E}_{k}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d) \cdot\langle a\rangle \mathcal{E}_{k}(\tau), \quad\left(\begin{array}{ll}
a & b \tag{3.6}\\
c & d
\end{array}\right) \in \Gamma_{0}(17)
$$

implies that Ω and z are modular forms of weight two with respect to $\Gamma_{0}(17)$. From their q-expansions, we deduce that Ω and z are linearly independent over \mathbb{C}. Therefore, from dimension formulas for the respective vector spaces [13], we see that these parameters generate the vector space of weight two forms for $\Gamma_{0}(17)$. Thus, we obtain the first two claims of Proposition 3.1. The third claim follows from the fact that W_{17} normalizes $\Gamma_{0}(17)$.

As fundamental domain for $\mathbb{H} / \Gamma_{0}(17)$ we take $\bigcup_{k=-8}^{8} F_{k}(D) \cup D$, where D is the usual fundamental domain for the full modular group and $F_{k}(\tau)=\frac{-1}{\tau+k}$. The two elliptic points of order 2 are $\rho_{ \pm}=F_{ \pm 4}(i)$. Since $\mathbb{H} / \Gamma_{0}(17)$ has two elliptic points of order 2 and two cusps, the valence formula for a weight k modular form f on $\Gamma_{0}(17)$ reads as

$$
\operatorname{ord}_{\infty} f+\operatorname{ord}_{0} f+\frac{\operatorname{ord}_{\rho_{+}} f}{2}+\frac{\operatorname{ord}_{\rho_{-}} f}{2}+\sum_{\tau \in \mathbb{H}-\left\{\rho_{ \pm}\right\}} \operatorname{ord}_{\tau} f=\frac{k}{12} \cdot 18
$$

From the q-expansion and the fact that Ω changes sign under $\left.\right|_{W_{17}, 2}$, we know that the two cusps are zeros of Ω, so the valence formula for $f=\Omega$ reads as

$$
1+1+\frac{\operatorname{ord}_{\rho_{+}} f}{2}+\frac{\operatorname{ord}_{\rho_{-}} f}{2}+\sum_{\tau \in \mathbb{H}-\left\{\rho_{ \pm}\right\}} \operatorname{ord}_{\tau} f=3
$$

Since Ω changes sign under $\left.\right|_{W_{17}, 2}$ and the fixed point of W_{17} is not a zero (as one may check numerically), the zeros must come in pairs. Accordingly, the two other zeros must be the two elliptic points, and these are simple zeros. A similar argument gives the result for z.

The cusp form and Eisenstein series from Proposition 3.1 can now be used in the construction of a $\Gamma_{0}(17)$ invariant function of the same form as T, \mathcal{T} given by (2.7). Although the representation for $x(\tau)$ given here appears to differ from that given in the introduction, we ultimately demonstrate agreement of the two representations in Proposition 3.3. The parameters $x(\tau)$ and $w(\tau)$, defined in Proposition 3.2, play roles analogous to corresponding parameters T and W in Proposition 2.2.

Proposition 3.2. If the Fricke involution is denoted $W_{17}=W_{17,0}$ and x and w are defined by

$$
\begin{equation*}
x(\tau)=\frac{\Omega}{z}, \quad w(\tau)=\frac{2}{z} \theta_{q} \log x \tag{3.7}
\end{equation*}
$$

(1) x is invariant under $\Gamma_{0}(17)$ as well as W_{17}; and
(2) x has two simple zeros on $\mathbb{H} / \Gamma_{0}(17)$ at the two cusps.
(3) The field of functions invariant under $\Gamma_{0}(17)$ and W_{17} is $A_{0}\left(\left\langle\Gamma_{0}(17)+\right\rangle\right)=\mathbb{C}(x)$.
(4) The field of functions invariant under $\Gamma_{0}(17)$ is given by $A_{0}\left(\Gamma_{0}(17)\right)=\mathbb{C}(x, w)$.
(5) The relation $w^{2}=-127 x^{4}-48 x^{3}-66 x^{2}-16 x+1$ holds.

Proof. The first two assertions follow directly from Proposition 3.1. The third assertion is then a direct consequence of the first two. For the fourth assertion, the functions $x(\tau)$ and $w(\tau)$ are invariant under $\Gamma_{0}(17)$, so it suffices to show that they generate the whole field. Since x has order 2, we have $\left[A_{0}\left(\Gamma_{0}(17)\right): \mathbb{C}(x)\right]=2$. Since $w \notin \mathbb{C}(x)$ because it changes sign under W_{17}, we must have $\left[A_{0}\left(\Gamma_{0}(17)\right): \mathbb{C}(x, w)\right]=1$, that is, the second assertion holds. For the final assertion, the function w^{2} is fixed under W_{17} and has the same set of poles as x, hence it is a polynomial in x. We bound the degree of this polynomial by 4 and find its coefficients by comparing q-expansions.

The parameter x is expressible as the rational function of r and s appearing in the Introduction and in terms of the McKay-Thompson series $17 A$ [8, Table 4A].
Proposition 3.3. Define $\eta(\tau)=q^{1 / 24}(q ; q)_{\infty}$, and let x be defined as in Proposition 3.2. Then

$$
\begin{align*}
x & =\frac{r\left(r^{2} s+8 r s-r-s\right)}{8 r^{3} s-3 r^{2} s+r-s}, \tag{3.8}\\
\frac{1-x}{2 x} & =\frac{1}{4 \eta(\tau)^{2} \eta(17 \tau)^{2}}\left(\sum_{m, n=-\infty}^{\infty}\left(e^{\pi i m}-e^{\pi i n}\right) q^{\frac{1}{4} n^{2}+\frac{17}{4} m^{2}}\right)^{2} . \tag{3.9}
\end{align*}
$$

Proof. From the product representation for r and those for the Eisenstein sums \mathcal{E}_{i}, from (3.3)

$$
\begin{equation*}
r=\frac{\mathcal{E}_{1} \mathcal{E}_{3} \mathcal{E}_{5} \mathcal{E}_{7}}{\mathcal{E}_{2} \mathcal{E}_{4} \mathcal{E}_{6} \mathcal{E}_{8}} . \tag{3.10}
\end{equation*}
$$

Therefore, r is the quotient of weight four modular forms for $\Gamma_{1}(17)$, and $x=\Omega / z$ is the quotient of weight two modular forms for $\Gamma_{1}(17)$. Hence, the quadratic relation between x and r,

$$
\begin{equation*}
\frac{4}{r}-4 r-15=\frac{(x r-1)^{2}(4 r-1)^{2}}{(x+r)^{2}} \tag{3.11}
\end{equation*}
$$

may be transcribed as a relation between modular forms of weight 20 for $\Gamma_{1}(17)$ and proved from the Sturm bound by verifying the q-expansion to order $481=1+20 \cdot 288 / 12$. Then

$$
\begin{equation*}
\sqrt{\frac{4}{r}-4 r-15}=\frac{(x r-1)(4 r-1)}{(x+r)} \tag{3.12}
\end{equation*}
$$

where the branch of the square root is determined using the definition of x and r. Therefore,

$$
\begin{equation*}
x=\frac{4 r-1+r \beta(r)}{4 r^{2}-r-\beta(r)}, \quad \beta(r)=\sqrt{\frac{4}{r}-4 r-15} . \tag{3.13}
\end{equation*}
$$

The first equation of (3.13) is seen to be equivalent to (3.8) by applying (2.13). Equation (3.9) may be derived from respective q-expansions since each side is a Hauptmodul for $\Gamma_{0}(17)+$.

It follows from the first part of Proposition 3.2 and Theorem 2.1 that z satisfies a third order linear homogeneous differential equation with coefficients in $\mathbb{C}(x)$. In order to formulate the differential equation, we state the following preliminary nonlinear differential equation in terms of the differential operator $\theta_{q}:=q \frac{q}{d q}$. This is written even more succinctly as $f_{q}:=\theta_{q} f$.

Lemma 3.4.

$$
\frac{2 z z_{q q}-3 z_{q}^{2}}{3 z^{4}}=\frac{x\left(127 x^{5}-222 x^{4}+126 x^{3}+4 x^{2}+27 x+2\right)}{4(x-1)^{2}}
$$

Proof. Let $f(\tau)$ denote the function on the left hand side of the proposed equality. If z satsifies the functional equation

$$
z\left(\frac{a \tau+b}{c \tau+d}\right)=\epsilon \frac{(c \tau+d)^{2}}{a d-b c} z(\tau)
$$

one can compute that

$$
\frac{2 z z_{q q}-3 z_{q}^{2}}{3 z^{4}}\left(\frac{a \tau+b}{c \tau+d}\right)=\frac{1}{\epsilon^{2}} \frac{2 z z_{q q}-3 z_{q}^{2}}{3 z^{4}}(\tau) .
$$

By Proposition 3.1, we have $\epsilon=1$ for elements of $\Gamma_{0}(17)$ and $\epsilon=-1$ for W_{17}. Thus we see that $f(\tau)$ is invariant under $\Gamma_{0}(17)$ and W_{17} in weight 0 . According to Theorem 4.4, we see that x does not have a pole at the two elliptic points, i.e. $x\left(\rho_{ \pm}\right)=1$. This means that the two zeros of z at these elliptic points are both simple. Hence, z has two other simple zeros p_{1} and $p_{2}=W_{17}\left(p_{1}\right)$, which are also the poles of x, modulo $\Gamma_{0}(17)$, as observed in the proof of Proposition 3.1. Since all of the poles are z are simple, we can take the expansion

$$
z(\tau)=c(\tau-r)+\ldots
$$

at the zeros $r=\rho_{+}, \rho_{-}, p_{1}, p_{2}$, where c is non-zero. Each of these zeros contributes a quadruple pole to $f(\tau)$ since

$$
\frac{2 z z_{q q}-3 z_{q}^{2}}{3 z^{4}}(\tau)=\frac{3}{(2 \pi c)^{2}(\tau-r)^{4}}+\cdots
$$

In the fundamental domain of $\mathbb{H} / \Gamma_{0}(17)$, the translate $F_{4}(D)$ is adjacent to itself. Thus $x(\tau)$ must identify the two halves of the corresponding side of $F_{4}(D)$ (the side that contains $\left.F_{4}(i)\right)$. Likewise for F_{-4}. Therefore, at the elliptic point $\rho_{ \pm}$, the function $x(\tau)$ is locally a holomorphic function of $\left(\left(\tau-\rho_{ \pm}\right) /\left(\tau-\overline{\rho_{ \pm}}\right)\right)^{2}$ so that

$$
x(\tau)=1+c_{ \pm}\left(\tau-\rho_{ \pm}\right)^{2}+\cdots
$$

We see now that $(x-1)^{2} f$ has poles only at p_{1} and p_{2}, each of order six. It is therefore a polynomial of degree six in x, and we can compute that

$$
4(x-1)^{2} f-x\left(127 x^{5}-222 x^{4}+126 x^{3}+4 x^{2}+27 x+2\right)=O\left(q^{7}\right)
$$

The left hand side has poles of order 6 at p_{1}, p_{2} and zeros at least order 7 at 0 and ∞. This contradicts the valence formula unless the left hand side is constant.

We now give the third order linear differential equation for z with rational coefficients in x. The concise formulation of the differential equation in (3.14) is motivated by the general form of such differential equations from [22, 24].

Theorem 3.5. With respect to the function x, the form $f=z$ satisfies the differential equation.

$$
\begin{aligned}
0 & =3 x\left(254 x^{6}-714 x^{5}+681 x^{4}-250 x^{3}-6 x^{2}-28 x-1\right) f \\
& +x(x-1)\left(1397 x^{5}-2482 x^{4}+1094 x^{3}-28 x^{2}+197 x+14\right) f_{x} \\
& +6 x(x-1)^{3}\left(127 x^{3}+36 x^{2}+33 x+4\right) f_{x x} \\
& +(x-1)^{3}\left(127 x^{4}+48 x^{3}+66 x^{2}+16 x-1\right) f_{x x x}
\end{aligned}
$$

Proof. The differential equation satisfied by $f=z$ is given as

$$
\operatorname{det}\left(\begin{array}{cccc}
f & f_{x} & f_{x x} & f_{x x x} \tag{3.14}\\
(z) & (z)_{x} & (z)_{x x} & (z)_{x x x} \\
\left(z \log _{x} q\right) & \left(z \log ^{q}\right)_{x} & \left(z \log ^{q}\right)_{x x} & (z \log q)_{x x x} \\
\left(z \log ^{2} q\right) & \left(z \log ^{2} q\right)_{x} & \left(z \log ^{2} q\right)_{x x} & \left(z \log ^{2} q\right)_{x x x}
\end{array}\right)=0 .
$$

When expanding this determinant, we make the following substitutions:
(1) For the diffential with respect to x, use the definition (3.7) in the form

$$
\theta_{x}=x \frac{\partial}{\partial x}=\frac{2}{w z} \theta_{q} .
$$

(2) When the first derivative x_{q} appears, use the definition (3.7) in the form

$$
x_{q}=\frac{1}{2} x w z .
$$

(3) When the first derivative w_{q} appears, use the relation between w and x to obtain

$$
w_{q}=-x\left(127 x^{3}+36 x^{2}+33 x+4\right) z
$$

(4) When the second derivative $z_{q q}$ appears, use Lemma 3.4 in the form

$$
z_{q q}=\frac{3 z_{q}^{2}}{2 z}+\frac{3 x\left(127 x^{5}-222 x^{4}+126 x^{3}+4 x^{2}+27 x+2\right)}{8(x-1)^{2}} z^{3}
$$

When these substitutions are made in (3.14), the claimed differential equation results after clearing denominators by multiplying by $(1-x)^{3} w^{5} / 16$ and using Proposition 3.2 (5).

The linear differential equation in Theorem 3.5 induces a series expansion for z in terms of x with coefficients A_{n}.

Corollary 3.6.

$$
\begin{equation*}
z=\sum_{n=0}^{\infty} A_{n} x^{n} \quad|x|<0.05122 \ldots, \tag{3.15}
\end{equation*}
$$

where $A_{0}=2, A_{-1, \ldots,-6}=0$ and

$$
\begin{gathered}
0=(n+1)^{3} A_{n+1}+\left(-19 n^{3}-24 n^{2}-14 n-3\right) A_{n} \\
-3\left(5 n^{3}+27 n^{2}-8 n+4\right) A_{n-1}+\left(101 n^{3}-300 n^{2}+213 n-52\right) A_{n-2} \\
-3\left(55 n^{3}-267 n^{2}+491 n-305\right) A_{n-3}+3(n-3)\left(101 n^{2}-297 n+253\right) A_{n-4} \\
-9(n-4)(n-3)(37 n-66) A_{n-5}+127(n-5)(n-4)(n-3) A_{n-6} .
\end{gathered}
$$

The radius of convergence is the positive root of $127 x^{4}+48 x^{3}+66 x^{2}+16 x-1$.
To make use of the series appearing in Corollary 3.6, we require explicit evaluations for the $x(\tau)$ within the domain of validity. In the next section, we prove that the number of singular values is finite and compile a complete list of quadratic evaluations and expansions.

4. Singular Values and Series for $1 / \pi$

In this Section, singular values for $x(\tau)$ are derived and used to formulate RamanujanSato expansions. The work culminates in a proof that there are precisely 11 singular values for $x(\tau)$ of degree at most two over \mathbb{Q} within the radius of convergence of Corollary 3.6. The series given by (1.6) is the only such expansion with a rational singular value for $x(\tau)$. The main challenge in proving the expansions lies in rigorously determining exact evaluations for $x(\tau)$ for given τ and deriving constants appearing in the Ramanujan-Sato series. To do this, we formulate modular equations for $x(\tau)$ and provide an explicit relation between the modular equations and constants appearing in the series.

We demonstrate in the proof of Theorem 4.7 that the following table is a complete list of singular values for $x(\tau)$ in a fundamental domain for $\Gamma_{0}(17)$ with $[\mathbb{Q}(x(\tau)): \mathbb{Q}] \leq 2$ within the radius of convergence of Corollary 3.6. Each value τ is listed by the coefficients (a, b, c) of its minimal polynomial, and the values are ordered by discriminant.

$$
\begin{array}{lll}
b^{2}-4 a c & \tau(a, b, c) & x(\tau) \\
-1411 & (17,17,25) & (-1025-252 \sqrt{17})^{-1} \\
-1003 & (17,17,19) & (-345-84 \sqrt{17})^{-1} \\
-595 & (17,-17,13) & (-90-21 \sqrt{17})^{-1} \\
-427 & (17,-27,17) & (30+33 i \sqrt{7})^{-1} \\
-427 & (17,-41,31) & (30-33 i \sqrt{7})^{-1} \tag{4.1}\\
-408 & (17,-34,23) & (55+24 \sqrt{2})^{-1} \\
-408 & (34,-68,37) & (55-24 \sqrt{2})^{-1} \\
-340 & (17,-34,22) & (29+4 \sqrt{85})^{-1} \\
-323 & (17,-17,9) & (-22-7 \sqrt{17})^{-1} \\
-187 & (17,-17,7) & -1 / 21 \\
-136 & (17,-34,19) & (12+3 \sqrt{17})^{-1}
\end{array}
$$

Table 1. Complete list of singular values of $x(\tau)$ of degree at most 2 within the radius of convergence of Corollary 3.6, ordered by discriminant.

By Proposition 3.3, finding singular values for $x(\tau)$ is equivalent to finding singular values for the normalized Thompson series $17 A$. The fundamental results needed for such evaluations are presented in [7]. Our work below is a detailed rendition of the general presentation in [7] tailored to the modular function $x(\tau)$. We begin with the set of matrices

$$
\Delta_{n}^{*}(17)=\left\{\left.\binom{\alpha \beta}{\gamma \delta} \in \mathbb{Z}^{2 \times 2} \right\rvert\, \operatorname{gcd}(\alpha, \beta, \gamma, \delta)=1 \text { and } \alpha \delta-\beta \gamma=n \text { and } \gamma \equiv 0 \bmod 17\right\} .
$$

Lemma 4.1. If $\operatorname{gcd}(n, 17)=1$, then $\Delta_{n}^{*}(17)$ has the coset decomposition

$$
\Delta_{n}^{*}(17)=\bigcup_{\substack{\alpha \delta=n \\
\alpha \leq \beta<\delta \\
\operatorname{gcd}(\alpha, \beta, \delta)=1}} \Gamma_{0}(17)\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)
$$

and the double coset representation

$$
\Delta_{n}^{*}(17)=\Gamma_{0}(17)\left(\begin{array}{cc}
1 & 0 \\
0 & n
\end{array}\right) \Gamma_{0}(17)
$$

Proof. Any $\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right) \in \Delta_{n}^{*}$ can be converted to an upper triangular matrix by multiplying on the left by a matrix of the form

$$
\left(\begin{array}{cc}
* & * \\
\frac{\gamma}{\operatorname{gcd}(\alpha, \gamma)} & \frac{-\alpha}{\operatorname{gcd}(\alpha, \gamma)}
\end{array}\right) \in \Gamma_{0}(17) .
$$

It is then easy to see that the claimed representatives are distinct modulo $\Gamma_{0}(17)$. This proves the decomposition formula. Next, by performing elementary row and column operations on the matrix $m \in \Delta_{n}^{*}(17)$, we find matrices $\gamma_{1}, \gamma_{2} \in \Gamma(1)$ such that $m=\gamma_{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \gamma_{2}$. Since

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
n c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{cc}
a & -b n \\
-c & d
\end{array}\right),
$$

we may find appropriate a, b, c, and d such that $\gamma_{1}^{\prime}=\gamma_{1}\left(\begin{array}{cc}a & b \\ n c & d\end{array}\right) \in \Gamma_{0}(17)$. This results in an equality of the form $m=\gamma_{1}^{\prime}\left(\begin{array}{ll}1 & 0 \\ 0\end{array}\right) \gamma_{2}^{\prime}$ where $\gamma_{1}^{\prime} \in \Gamma_{0}(17)$, which forces $\gamma_{2}^{\prime} \in \Gamma_{0}(17)$ as well. This establishes the double coset representation.

We now establish modular equations central to our explicit evaluations for $x(\tau)$.

Proposition 4.2. For any integer $n \geq 2$ with $\operatorname{gcd}(n, 17)=1$, there is a polynomial $\Psi_{n}(X, Y)$ of degree $\psi(n)=n \prod_{\substack{q \mid n \\ q \text { prime }}}\left(1+\frac{1}{q}\right)$ in X and Y such that:
(1) $\Psi_{n}(X, Y)$ is irreducible and has degree $\psi(n)$ in X and Y.
(2) $\Psi_{n}(X, Y)$ is symmetric in X and Y.
(3) The roots of $\Psi_{n}(x(\tau), Y)=0$ are precisely the numbers $Y=x((\alpha \tau+\beta) / \delta)$ for integers α, β and δ such that $\alpha \delta=n, 0 \leq \beta<\delta$, and $\operatorname{gcd}(\alpha, \beta, \delta)=1$.
Proof. The polynomial Ψ_{n} satisfies

$$
\begin{equation*}
(X Y)^{-\psi(n)} \Psi_{n}(X, Y)=\prod_{\substack{\alpha \delta=n \\ \alpha \leq \beta=\delta \\(\alpha, \beta, \delta)=1}}\left(Y^{-1}-x\left(\frac{\alpha \tau+\beta}{\delta}\right)^{-1}\right) \tag{4.2}
\end{equation*}
$$

where the coefficients of Y^{-k} on the right hand side should expressed as polynomials in $1 / X$ for $X=x(\tau)$ as demonstrated in the proof of Corollary 4.3. This relies on the fact that $\Gamma_{0}(17)$ and W_{17} permute the set of functions $x((\alpha \tau+\beta) / \delta)$ where $\alpha \delta=n, 0 \leq \beta<\delta$, and $\operatorname{gcd}(\alpha, \beta, \delta)=1$. The double coset representation in Lemma 4.1 shows that every orbit contains $x(\tau / n)$, and hence the action of $\Gamma_{0}(17)$ on the roots must be transitive. Since

$$
\left(\begin{array}{cc}
0 & -1 \\
17 & 0
\end{array}\right)^{-1}\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
17 & 0
\end{array}\right)=\left(\begin{array}{cc}
\delta & 0 \\
-17 \beta & \alpha
\end{array}\right) \in \Delta_{n}^{*}(17)
$$

it is clear that W_{17} permutes these functions as well by the decomposition in Lemma 4.1. The coefficient of $X^{\psi(n)} Y^{\psi(n)}$ in $\Psi_{n}(X, Y)$ is the constant term of the product on the right hand side of (4.2), which is clearly non-zero because the function $x(\tau)$ does not have poles at the cusps of $\mathbb{H} / \Gamma_{0}(17)$. Therefore, $\Psi_{n}(X, X)$ has the claimed degree $2 \psi(n)$. The symmetry can be proven by noting that $\tau \rightarrow-1 /(17 n \tau)$ interchanges $x(\tau)$ and $x(n \tau)$.

In Corollary 4.3, modular equations $\Psi_{n}(X, Y)=0$ are derived for $X=x(\tau)$ and $y=$ $x((\alpha \tau+\beta) / \delta)$ satisfying the conditions of Proposition 4.2. The proof indicates how modular equations for larger n may be derived and involves techniques analogous to those used to deduce classical modular equations of level n satisfied by the j invariant [16, 21].

Corollary 4.3. We have

$$
\begin{aligned}
\Psi_{2}(X, Y) & =-9 X^{3} Y^{3}-12 X^{3} Y^{2}+X^{3} Y+2 X^{3}-12 X^{2} Y^{3} \\
& +8 X^{2} Y^{2}+10 X^{2} Y+X Y^{3}+10 X Y^{2}-X Y+2 Y^{3} \\
\Psi_{3}(X, Y) & =435 X^{4} Y^{4}+231 X^{4} Y^{3}+231 X^{3} Y^{4}+45 X^{4} Y^{2}-385 X^{3} Y^{3}+45 X^{2} Y^{4} \\
& -39 X^{4} Y-63 X^{3} Y^{2}-63 X^{2} Y^{3}-39 X Y^{4}+4 X^{4}+9 X^{3} Y+123 X^{2} Y^{2}+9 X Y^{3} \\
& +4 Y^{4}+15 X^{2} Y+15 X Y^{2}-X Y .
\end{aligned}
$$

Proof. The level $n=2$ result is representative of $n=3$ and other cases. For $n=2$, we have

$$
\{(\alpha, \beta, \delta) \mid \operatorname{gcd}(\alpha, \beta, \delta)=1,0 \leq \beta<\delta, \alpha \delta=n\}=\{(1,0,2),(2,0,1),(1,1,2)\}
$$

Let $x(\tau)$ be defined as in Proposition 3.2. Then

$$
x_{1}=x(\tau / 2), \quad x_{2}=x(2 \tau), \quad x_{3}=x\left(\frac{\tau+1}{2}\right) .
$$

By (4.2),

$$
\Psi_{2}(1 / X, 1 / Y)=Y^{-3}-\left(\frac{x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}}{x_{1} x_{2} x_{3}}\right) Y^{-2}+\left(\frac{x_{1}+x_{2}+x_{3}}{x_{1} x_{2} x_{3}}\right) Y^{-1}-\frac{1}{x_{1} x_{2} x_{3}} .
$$

By Theorem 3.2, we know that $1 / x(\tau)$ is analytic on $X_{0}(17)$ except for simple poles at the cusps. Therefore, the only poles in $\mathbb{H} / \Gamma_{0}(17)$ of the coefficients of Y^{-k} are at points equivalent to the cusps 0 and ∞. We can explicitly compute the q-expansion for each of the coefficients and deduce that each has a pole of order at most 3 at $q=0$. Since each coefficient is invariant under $\Gamma_{0}(17)$ and W_{17}, the coefficients may be expressed as polynomials of degree at most 3 in $1 / x(\tau)$. Explicitly,

$$
\begin{aligned}
-\frac{x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}}{x_{1} x_{2} x_{3}} & =-\frac{2}{q^{2}}-15+O(q) \\
\frac{x_{1}+x_{2}+x_{3}}{x_{1} x_{2} x_{3}} & =\frac{20}{q^{2}}+\frac{108}{q}+419+O(q) \\
-\frac{1}{x_{1} x_{2} x_{3}} & =\frac{8}{q^{3}}+\frac{62}{q^{2}}+\frac{316}{q}+1307+O(q) .
\end{aligned}
$$

Therefore, with $x=x(\tau)$, we may determine polynomials in $1 / x$ such that

$$
\begin{aligned}
& c_{1}(\tau)=-\frac{1}{x_{1} x_{2} x_{3}}-\left(-\frac{9}{2}-6 x^{-1}+\frac{1}{2} x^{-2}+x^{-3}\right)=O(q), \\
& c_{2}(\tau)=\frac{x_{1}+x_{2}+x_{3}}{x_{1} x_{2} x_{3}}-\left(-6+4 x^{-1}+5 x^{-2}\right)=O(q), \\
& c_{3}(\tau)=-\frac{x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}}{x_{1} x_{2} x_{3}}-\left(\frac{1}{2}+5 x^{-1}-\frac{1}{2} x^{-2}\right)=O(q) .
\end{aligned}
$$

Since the functions $c_{j}(\tau), j=1,2,3$, are analytic on the upper half plane and at the cusps of $X_{0}(17)$, each c_{j} is constant, and $c_{j}(i \infty)=0$.

In Theorem 4.4, we prove each evaluation from Table 1. The evaluations are proven by showing that $x(\tau)$ satisfies a modular equation of degree n for some n.
Theorem 4.4. Each evaluation for $x(\tau(a, b, c))$ from Table 1 holds, and $x(\tau(17,-8,1))=1$.
Proof. First note that

$$
\tau(17,-34-19)=\frac{1}{17}(17+i \sqrt{34})
$$

Therefore,

$$
x(\tau)=x\left(i \sqrt{\frac{2}{17}}\right)
$$

Observe that with

$$
\tau=i \sqrt{\frac{2}{17}}, \quad-\frac{1}{17 \tau}=\frac{\tau}{2}
$$

Since $x(\tau)$ is invariant under the Fricke involution W_{17}, we have $x(\tau)=x(\tau / 2)$. That is, $X=Y$ in the degree 2 modular equation above. Setting $Y=X$ and simplifying the equation, we get

$$
\begin{equation*}
X^{2}(X-1)(X+1)\left(9 X^{2}+24 X-1\right)=0 \tag{4.3}
\end{equation*}
$$

Now that we have proven $x(\tau)$ satisfies (4.3), we may numerically deduce $x(\tau)$ is a root of $9 X^{2}+24 X-1$, and

$$
x\left(i \sqrt{\frac{2}{17}}\right)=-\frac{4}{3}+\frac{1}{3} \sqrt{17} .
$$

We may similarly prove $x(\tau(17,-8,1))=1$ and the remaining evaluations in Table 1 from modular equations of degree n if we can determine, for each given value of $\tau=\tau(a, b, c)$, an upper upper triangular matrix $(\alpha, \beta ; 0, \gamma)$ such that $x(\tau)=x((\alpha, \beta ; 0, \gamma) \tau)$ and $\alpha \delta=n$, $0 \leq \beta<\delta, \operatorname{gcd}(\alpha, \beta, \delta)=1$, with $\operatorname{gcd}(n, 17)=1$. For each τ, Table 2 provides a $\gamma \in \Delta_{n}^{*}(17)$ such that $\gamma \tau=\tau$ or $W_{17} \tau$ and a $\Gamma_{0}(17)$ equivalent upper triangular matrix ($\alpha, \beta ; 0, \gamma$).

$\tau(a, b, c)$	Element of $\Delta_{n}^{*}(17)$	$(\alpha, \beta ; 0, \gamma)$
$(17,17,25)$	$(-1,-2 ; 17,-25)$	$(1,2 ; 0,59)$
$(17,17,19)$	$(1,0 ; 17,19)$	$(1,0 ; 0,19)$
$(17,-17,13)$	$(-1,0 ; 17,-13)$	$(1,0 ; 0,13)$
$(17,-27,17)$	$(13,-17 ; 17,-14)^{\dagger}$	$(1,81 ; 0,107)$
$(17,-41,31)$	$(20,-31 ; 17,-21)^{\dagger}$	$(1,68 ; 0,107)$
$(17,-34,23)$	$(-1,0 ; 34,-23)$	$(1,0 ; 0,23)$
$(34,-68,37)$	$(-2,1 ; 51,-37)$	$(1,11 ; 0,23)$
$(17,-34,22)$	$(-1,1 ; 17,-22)$	$(1,4 ; 0,5)$
$(17,-17,9)$	$(-2,1 ; 17,-18)$	$(1,9 ; 0,19)$
$(17,-17,7)$	$(-1,0 ; 17,-7)$	$(1,0 ; 0,7)$
$(17,-34,19)$	$(-1,1 ; 17,-19)$	$(1,1 ; 0,2)$
$(17,-8,1)$	$(3,-1 ; 17,-5)$	$(1,1 ; 0,2)$

Table 2. Elements of $\Delta_{n}^{*}(17)$ mapping τ to its image under W_{17} or fixing ${ }^{\dagger}$ τ and a corresponding $\Gamma_{0}(17)$ equivalent upper triangular matrix $(\alpha, \beta ; 0, \gamma)$.

For values $x(\tau)$ in the domain of validity for series from Corollary 3.6, we may construct Ramanujan-Sato expansions via Theorem 4.5, a specialization of [4, Theorem 2.1].

Theorem 4.5 (Series for $1 / \pi$). Suppose there is a matrix $(a, b ; c, d) \in\left\langle\Gamma_{0}(17), W_{17}\right\rangle$ such that

$$
\frac{a \tau+b}{c \tau+d}=\frac{\alpha \tau+\beta}{\delta}
$$

for $\alpha \delta=n$ and $0 \leq \beta<\delta$. Set $X=x(\tau)$, which is determined from $\Psi_{n}(X, X)=0$, and further set

$$
W=w(\tau), \quad \Psi_{X}=\frac{\partial \Psi_{p}}{\partial X}(X, X), \quad \Psi_{Y}=\frac{\partial \Psi_{p}}{\partial Y}(X, X)
$$

and let $\epsilon \in \mathbb{Q}$ and $\eta= \pm 1$ satsify for all τ

$$
z\left(\frac{a \tau+b}{c \tau+d}\right)=\epsilon(c \tau+d)^{2} z(\tau), \quad w\left(\frac{a \tau+b}{c \tau+d}\right)=\eta w(\tau) .
$$

If A_{k} is the sequence defined in Corollary 3.6 and

$$
\begin{aligned}
B= & -\frac{i W\left(\delta^{2} \Psi_{X}(a d-b c)+\alpha^{2} \eta \epsilon \Psi_{Y}(c \tau+d)^{4}\right)}{2 \alpha^{2} c \eta \epsilon \Psi_{Y}(c \tau+d)^{3}} \\
C= & \frac{i \delta^{2}(b c-a d) W}{2 \alpha^{2} c \eta \epsilon \Psi_{Y}^{3}(c \tau+d)^{3}}\left(\Psi_{X} \Psi_{Y}\left(\Psi_{X}+\Psi_{Y}\right)\left(1+\theta_{X} \log W\right)\right. \\
& \left.+\left(\Psi_{X}^{2} \Psi_{Y Y}-2 \Psi_{X} \Psi_{X Y} \Psi_{Y}+\Psi_{X X} \Psi_{Y}^{2}\right) X\right),
\end{aligned}
$$

then

$$
\frac{1}{\pi}=\sum_{k=0}^{\infty} A_{k}(B k+C) X^{k}
$$

Proof. Differentiate the relation

$$
z\left(\frac{a \tau+b}{c \tau+d}\right)=\epsilon(c \tau+d)^{2} z(\tau)
$$

once and the relation

$$
\Psi_{n}\left(x(\tau), x\left(\frac{\alpha \tau+\beta}{\delta}\right)\right)=0
$$

twice and then set τ to the value in the hypothesis of the theorem.

Corollary 4.6. If A_{k} is the sequence defined in Corollary 3.6,

$$
\begin{aligned}
\frac{\sqrt{11}}{\pi} & =\sum_{k=0}^{\infty} A_{k} \frac{307+748 k}{(-21)^{k+2}}, \\
\frac{2 \sqrt{154 \sqrt{17}-634}}{\pi} & =\sum_{k=0}^{\infty} A_{k} \frac{1779-195 \sqrt{17}+3040 k}{(-22-7 \sqrt{17})^{k+2}}, \\
\frac{214 \sqrt{119}-882 \sqrt{7}}{\pi} & =\sum_{k=0}^{\infty} A_{k} \frac{9241-1047 \sqrt{17}+21280 k}{(-90-21 \sqrt{17})^{k+2}}, \\
\frac{\sqrt{1041894 \sqrt{17}-4295839}}{\pi} & =\sum_{k=0}^{\infty} A_{k} \frac{71065-15096 \sqrt{17}+50740 k}{(-345-84 \sqrt{17})^{k+2}}, \\
\frac{9 \sqrt{2038550094 \sqrt{17}-8405157343}}{\pi} & =\sum_{k=0}^{\infty} A_{k} \frac{74004567-11655082 \sqrt{17}+178775028 k}{(-1025-252 \sqrt{17})^{k+2}}, \\
\frac{\sqrt{14(1267990301 \mp 85084065 i \sqrt{7})}}{\pi} & =\sum_{k=0}^{\infty} A_{k} \frac{3370317797 \pm 95119383 i \sqrt{7}+12974719520 k}{161874(30 \pm 33 i \sqrt{7})^{k}},
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\sqrt{9 \sqrt{17}-37}}{\pi} & =\sum_{k=0}^{\infty} A_{k} \frac{32-3 \sqrt{17}+32 k}{(12+3 \sqrt{17})^{k+2}}, \\
\frac{261 \sqrt{5}-135 \sqrt{17}}{\pi} & =\sum_{k=0}^{\infty} A_{k} \frac{21500-788 \sqrt{85}+54720 k}{(29+4 \sqrt{85})^{k+2}}, \\
\frac{539 \sqrt{6} \mp 735 \sqrt{3}}{\pi} 2^{(1 \mp 1) / 2} & =\sum_{k=0}^{\infty} A_{k} \frac{58962 \mp 7226 \sqrt{2}+199920 k}{(55 \pm 24 \sqrt{2})^{k+2}} .
\end{aligned}
$$

Proof. The first five series may be derived by setting $\tau=\frac{1}{2}+\frac{1}{2} \sqrt{\frac{n}{17}} i$ and using $\frac{17 \tau-9}{34 \tau-17}=$ $\frac{\tau+(n-1) / 2}{n}$ with $\epsilon=-1 / 17$ and $\eta=-1$ in Theorem 4.5 for the values $n=11,19,35,59,83$. The subsequent pair may be derived from Theorem 4.5 by setting $\tau=(\pm 7+\sqrt{427} i) / 34$, using $(11 \tau-2) /(17 \tau-3)=(\tau+69) / 107$ and $(13 \tau+3) /(17 \tau+4)=(\tau+82) / 107$, respectively. The next three arise from setting $\tau=\sqrt{\frac{n}{17}} i$ and using $\frac{-1}{17 \tau}=\frac{\tau}{n}$ for $n=2,5,6$. The final series comes from setting $\tau=\sqrt{3 / 34} i$ and using $\frac{-1}{17 \tau}=\frac{2 \tau}{3}$.
Theorem 4.7. There are precisely eleven $\Gamma_{0}(17)$ inequivalent algebraic τ in the upper half plane such that $[\mathbb{Q}(x(\tau)): \mathbb{Q}] \leq 2$ with $x(\tau)$ in the radius of convergence of Corollary 3.6.
Proof. We formulate a complete list of algebraic τ such that $[\mathbb{Q}(x(\tau)): \mathbb{Q}] \leq 2$ using well known facts about the j invariant [20]. First, for algebraic τ, the only algebraic values of $j(\tau)$ occur at $\Im \tau>0$ satisfying $a \tau^{2}+b \tau+c=0$ for $a, b, c \in \mathbb{Z}$, with $d=b^{2}-4 a c<0$. Moreover, $[\mathbb{Q}(j(\tau)): \mathbb{Q}]=h(d)$, where $h(d)$ is the class number. Since there is a polynomial relation $P(x, j)$ between x and j of degree $2[7$, Remark 1.5.3], we have $[\mathbb{Q}(j(\tau)): \mathbb{Q}] \leq$ $2[\mathbb{Q}(x(\tau)): \mathbb{Q}]$, and so values τ with $[\mathbb{Q}(x(\tau)): \mathbb{Q}] \leq 2$ satisfy $[\mathbb{Q}(j(\tau)): \mathbb{Q}]=h(d) \leq 4$. Therefore, the bound $|d| \leq 1555$ for $h(d) \leq 4$ from [23] implies that the following algorithm results in a complete list of algebraic $(\tau, x(\tau))$ with $[\mathbb{Q}(x(\tau)): \mathbb{Q}] \leq 2$:

For each discriminant $-1555 \leq d \leq-1$,
(1) List all primitive reduced $\tau=\tau(a, b, c)$ of discriminant d in a fundamental domain for $P S L_{2}(\mathbb{Z})$. Translate these values via a set of coset representatives for $\Gamma_{0}(17)$ to a fundamental domain for $\Gamma_{0}(17)$.
(2) Factor the resultant of $P(X, Y)$ and the class polynomial

$$
H_{d}(Y)=\prod_{\substack{(a, b, c) \text { reduced, primitive } \\ d=b^{2}-4 a c}}\left(Y-j\left(\frac{-b+\sqrt{d}}{2 a}\right)\right) .
$$

The linear and quadratic factors of the resultant correspond to a complete list of $x=x(\tau)$, for τ of discriminant d, such that $[\mathbb{Q}(x(\tau)): \mathbb{Q}] \leq 2$. Associate candidate values τ from Step 1 to x by numerically approximating $x(\tau)$. For each tentative pair, (τ, x), prove the evaluation $x=x(\tau)$ as indicated in the proof of Theorem 4.4.
The algorithm is easy to implement. The resulting values of $\tau(a, b, c)$ with $x(\tau)$ within the radius of convergence of Corollary 3.6 are given in Table 1.

References

[1] B. C. Berndt. Ramanujan's notebooks. Part III. Springer-Verlag, New York, 1991.
[2] B. C. Berndt and R. A. Rankin. Ramanujan, volume 9 of History of Mathematics. American Mathematical Society, Providence, RI, 1995. Letters and commentary.
[3] J. M. Borwein and P. B. Borwein. Ramanujan's rational and algebraic series for $1 / \pi$. J. Indian Math. Soc. (N.S.), 51:147-160 (1988), 1987.
[4] H. H. Chan, S. H. Chan, and Z.-G. Liu. Domb's numbers and Ramanujan-Sato type series for $1 / \pi$. Adv. Math., 186(2):396-410, 2004.
[5] H. H. Chan and S. Cooper. Rational analogues of Ramanujan's series for $1 / \pi$. Math. Proc. Cambridge Philos. Soc., 153(2):361-383, 2012.
[6] H. H. Chan, Y. Tanigawa, Y. Yang, and W. Zudilin. New analogues of Clausen's identities arising from the theory of modular forms. Adv. Math., 228(2):1294-1314, 2011.
[7] I. Chen and N. Yui. Singular values of Thompson series. In Groups, difference sets, and the Monster (Columbus, OH, 1993), volume 4 of Ohio State Univ. Math. Res. Inst. Publ., pages 255-326. de Gruyter, Berlin, 1996.
[8] J. H. Conway and S. P Norton. Monstrous moonshine. Bull. London Math. Soc., 11(3):308-339, 1979.
[9] S. Cooper. Sporadic sequences, modular forms and new series for $1 / \pi$. Ramanujan J., 29(1-3):163-183, 2012.
[10] S. Cooper, J. Ge, and D. Ye. Hypergeometric transformation formulas of degrees 3, 7, 11 and 23. J. Math. Anal. Appl., 421(2):1358-1376, 2015.
[11] S. Cooper and D. Ye. Explicit evaluations of a level 13 analogue of the Rogers-Ramanujan continued fraction. J. Number Theory, 139:91-111, 2014.
[12] S. Cooper and D. Ye. The Rogers-Ramanujan continued fraction and its level 13 analogue. J. Approx. Theory, 193:99-127, 2015.
[13] F. Diamond and J. Shurman. A first course in modular forms, volume 228 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.
[14] T. Huber, D. Lara, and E. Melendez. Balanced modular parameterizations. arXiv:1405.6761 [math.NT], Preprint.
[15] T. Huber and D. Schultz. Generalized reciprocal identities. Proc. Amer. Math. Soc., To Appear.
[16] S. Lang. Elliptic functions, volume 112 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1987. With an appendix by J. Tate.
[17] S. Ramanujan. Notebooks. Vols. 1, 2. Tata Institute of Fundamental Research, Bombay, 1957.
[18] S. Ramanujan. Modular equations and approximations to π [Quart. J. Math. 45 (1914), 350-372]. In Collected papers of Srinivasa Ramanujan, pages 23-39. AMS Chelsea Publ., Providence, RI, 2000.
[19] L. J. Rogers. Second Memoir on the Expansion of certain Infinite Products. Proc. London Math. Soc., S1-25(1):318.
[20] T. Schneider. Arithmetische Untersuchungen elliptischer Integrale. Math. Ann., 113(1):1-13, 1937.
[21] G. Shimura. Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kanô Memorial Lectures, No. 1.
[22] P. Stiller. Special values of Dirichlet series, monodromy, and the periods of automorphic forms. Mem. Amer. Math. Soc., 49(299):iv+116, 1984.
[23] M. Watkins. Class numbers of imaginary quadratic fields. Math. Comp., 73(246):907-938 (electronic), 2004.
[24] Y. Yang. On differential equations satisfied by modular forms. Math. Z., 246(1-2):1-19, 2004.

