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Recent progress in decipheringmechanisms of human brain cortical
folding leave unexplained whether spatially patterned genetic
influences contribute to this folding. High-resolution in vivo brain
MRI can be used to estimate genetic correlations (covariability due
to shared genetic factors) in interregional cortical thickness, and
biomechanical studies predict an influence of cortical thickness on
folding patterns. However, progress has been hampered because
shared genetic influences related to folding patterns likely operate
at a scale that is much more local (<1 cm) than that addressed in
prior imaging studies. Here, we develop methodological ap-
proaches to examine local genetic influences on cortical thickness
and apply these methods to two large, independent samples. We
find that such influences are markedly heterogeneous in strength,
and in some cortical areas are notably stronger in specific orienta-
tions relative to gyri or sulci. The overall, phenotypic local corre-
lation has a significant basis in shared genetic factors and is highly
symmetric between left and right cortical hemispheres. Further-
more, the degree of local cortical folding relates systematically
with the strength of local correlations, which tends to be higher
in gyral crests and lower in sulcal fundi. The relationship between
folding and local correlations is stronger in primary sensorimotor
areas and weaker in association areas such as prefrontal cortex,
consistent with reduced genetic constraints on the structural to-
pology of association cortex. Collectively, our results suggest that
patterned genetic influences on cortical thickness, measurable at
the scale of in vivo MRI, may be a causal factor in the development
of cortical folding.

cortical folding | cortical thickness | structural MRI | genetic correlation |
cerebral cortex

Human brain folding—which vastly increases cortical surface
area relative to the cranium—is subject to increasingly rig-

orous experimental investigation. Primate tract tracing provided
early evidence of a mechanistic role for axonal tension (1). How-
ever, biomechanical experiments have shown that the tension
theory (2) is unlikely to be a sufficient generic explanation for
folding (3). Alternatively, folding may result from different neu-
rodevelopmental rates of expansion of superficial and deep cortical
layers (4). A remarkable series of theoretical and biomechanical
studies have shown that, in the setting of such differential expan-
sion, simple variations in the relative rigidity of superficial and
deep layers can produce a biologically plausible pattern of folding
in an in silico cortical model (5–8).
However, biomechanical theories to date have not explained

the partly stereotyped locations of folding, which are extremely

consistent across primary sulci (sulci that are formed earliest in
utero and are most stable across species) and less so across
secondary and tertiary sulci (9, 10). Given the stereotyped map
of how cortical folds emerge during prenatal life (11, 12), it may
be predicted that the cortical sheet shows highly constrained re-
gional differences in expandability, stiffness, or thickness [which
directly affects folding (13)]. Such differences may in turn be
mediated by regional differences in cortical microstructure
and “tethering” to molecular signaling gradients (14), such
that early programs for cortical arealization arise within an
expanding sheet of variegated susceptibility to folding. It is
reasonable to hypothesize that such early constraints would be
partially due to genetic patterning of the cortical sheet prior to
the late fetal phase of dramatic cortical expansion and folding
(15, 16). The role of genetic patterning is also supported by
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highly penetrant genetic mutations that disrupt both folding
and cortical thickness (17).
As comprehensive spatial maps of cytoarchitecture and gene

expression from the human cortex during prenatal life do not yet
exist, neuroimaging studies have provided a critical source of
information about human cortical arealization and its relation-
ship to folding that complements other sources of evidence (18).
Analysis of brain MRI data has quantified human variability in
sulcal locations; the relationship between morphological phe-
notypes such as sulcal depth, curvature, and cortical thickness;
and the heritability of these and other morphological features (19–
22). A putative genetic basis for stereotyped patterns of folding
may be reflected in regionally varying genetic influences on
morphological features such as thickness that influence folding (4,
23–25). Overlap in interregional genetic influences on thickness
can be quantified by the genetic correlation (the shared genetic
basis for the phenotypic correlation between two traits), which is
likely due to pleiotropy. Indeed, it is known that shared genetic
influences account for a great deal of interregional correlations in
morphology at the phenotypic level (which has also been called
“structural covariance”) (26–30).
Despite this progress, what might be called “local” patterns in

phenotypic or genetic correlations—the shared genetic influ-
ences on adjacent, small areas of brain and how these vary across
the cortex—have not yet been a focus of investigation, signifi-
cantly limiting the informativeness of prior studies. The paucity
of investigations at this resolution is particularly unfortunate
because local genetic patterning is likely to be important for
folding, a local phenomenon that occurs at an intraregional
scale. Shared (or distinct) genetic influences at the centimeter or
subcentimeter scale more plausibly influence folding than do
long-distance genetic correlations between regions separated by
multiple gyri and sulci. If the hypothesized relationship between
local genetic influences and folding does exist, then we would
expect a neuroanatomical correspondence between maps of local
correlation and maps of folding, the latter of which can be
quantified by the measurement of curvature (18, 31). Moreover,
correlations along the sulcal or gyral axis may have different
strengths than correlations that are tangential to these axes in
the direction of cortical folding. The present study tests these
hypotheses by developing and applying analytic methods to two
large in vivo genetically informative neuroimaging datasets to-
taling over 2,500 scans. Our study discovers profoundly varie-
gated patterns of local genetic correlations in cortical thickness.
The spatial patterning of these local genetic correlations is in-
timately related to sulcal/gyral topology—providing evidence for
a patterned genetic influence on cortical folding.

Results
The methodologies developed for this study successfully identified
maps of covariability in cortical thickness within local “neighbor-
hoods” of the cerebral cortex (Fig. 1). This covariability was found
to have a basis in genetic influences. The strength of these local
genetic influences varied markedly across different areas of cortex
and was robustly related to cortical folding. These maps of pat-
terned local influences on cortical thickness, identifiable in the
adult human brain, may reflect molecular signaling gradients,
cellular variation, and laminar features that influence neuro-
developmental cortical folding.

The Genetic Basis of Local Phenotypic Correlations. In theory, the
strength of local phenotypic correlations could be homogenous
throughout the cortex, or any heterogeneity could be driven
exclusively by nongenetic factors. In order to reject these null
hypotheses, we used data from both the Genetics of Brain Struc-
ture and Function Study (GOBS) (1,443 individuals) and the
Human Connectome Project (HCP) (1,113 individuals) (30, 32–
34), processed with FreeSurfer to yield maps of cortical thickness

(the distance between the gray–white surface and the pial surface)
at ∼10,000 vertices per hemisphere. Spatially varying maps of local
correlations in cortical thickness were identified in both of these
two large neuroimaging datasets, supporting the conclusion that
local phenotypic correlations in cortical thickness were not ho-
mogenous throughout the cortex (Fig. 2). Univariate heritability
was also reasonably high throughout the cortex (SI Appendix, Fig.
S1), indicating that a nontrivial amount of the phenotypic variance
was accounted for by genetic factors.
In addition, the pattern of average local phenotypic correla-

tions between neighboring vertices (phenotypic Lρ) recapitu-
lated the pattern of the average local genetic correlation (genetic
Lρ, isolated based on the extended pedigree structure in the
GOBS, which is optimized for genetic analyses). For both phe-
notypic and genetic correlations, relatively low Lρ occurred in
the fundus of the central sulcus, the circular sulcus of the insula,
superior and inferior temporal sulci, cingulate sulcus, and the
anterior portion of the calcarine sulcus. In contrast, relatively
high Lρ was present in the postcentral and precentral gyri, the
short insular gyrus, and the superior and middle temporal gyri.
Lρ was also moderately high throughout prefrontal cortex (Fig.
2). The observed genetic–phenotypic correspondence was sta-
tistically significant (Pearson’s correlation coefficient, r = 0.64;
Pspin < 0.001) per a randomization procedure (the “spin test”)
based on a null model of random alignment of the cortical sur-
face (35). Importantly, the between-sample genetic–phenotypic

A

B C

Fig. 1. Schematic of methodological approaches. (A) An illustration of a
patch of triangular mesh fit to the cortical surface. Vertices are colored gray.
Edges between two vertices are colored in accordance with the correlation
in the interindividual variation in the cortical thickness of the two vertices.
(B) Mean local correlation Lρ is the average of the correlation in the in-
terindividual variation of the vertex with that of its neighbors. (C) Correla-
tion orientation (Oρ) is the difference between the axial correlation (parallel
or close-to-parallel to the long axis of the local gyrus or sulcus) and the
tangential correlation (perpendicular or close-to-perpendicular to this axis).
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correspondence was also high (r = 0.55, between GOBS genetic
Lρ and HCP phenotypic Lρ; Pspin < 0.001).
This set of results supported the existence of cortically pat-

terned genetic influences on cortical thickness that were shared
within local anatomical neighborhoods. Moreover, the genetic–
phenotypic correspondence in Lρ suggests that phenotypic cor-
relations are a reasonable proxy of genetic correlations in these
data. Demonstrated here in the context of brain morphology,
genetic–phenotypic correspondence in Lρ is in line with past the-
oretical and empirical predictions that phenotypic correlations can
in general be used a proxy for genetic correlations (26, 36) (SI
Appendix, Results I and II and Fig. S2). This correspondence is also
of large practical importance, as even with high-performance par-
allel computing, it would be intractable to estimate the genetic
component of the millions of phenotypic correlations considered
below.

Consistency across Datasets, Symmetry across Hemispheres, and
Robustness to Methodological Approaches. Given the large num-
ber of potential confounds and divergent methodological choices
involved in any neuroimaging study, replicability is a necessary
condition to conclude that findings may reflect underlying biology
as opposed to technical confounds. Critically, when other variables
were held constant, there was a high anatomical correspondence
between phenotypic Lρ based on analyses of HCP or GOBS
datasets (r = 0.70, Pspin < 0.001; see SI Appendix, Fig. S4). (Given
the high observed similarity between genetic and phenotypic
correlations, comparisons between different datasets and meth-
odological pipelines were in general made based on the pheno-
typic correlations for computational reasons.) The high degree of
consistency across datasets indicated that findings did not depend
on scanner type or differences in data quality. A supplemen-
tal analysis in children aged 8 to 9 from the Philadelphia

Neurodevelopmental Cohort (PNC) further confirmed the sta-
bility of the results across age ranges (SI Appendix, Results III and
IV and Fig. S5).
Since left–right homologs share developmental precursors, a

high degree of left–right symmetry is also expected in neuroana-
tomical phenotypes with early developmental origins. Such left–
right symmetry was observed in maps of Lρ. Quantitatively, this
symmetry was demonstrated using phenotypic Lρ projected on
the CIVET surface, which unlike FreeSurfer has a one-to-one
mapping from left hemisphere vertices to right hemisphere.
Across vertices, the left–right correspondence was substantial
(r = 0.79; Pspin < 0.001). Zooming in on the “local correspon-
dence” (37) (the correlation within a demarcated region spanned
by a 10-mm geodesic distance), there were large areas where
r≅ 1 (SI Appendix, Fig. S6) and no areas where local correspon-
dence was consistently negative—although local correspondence
was lower in prefrontal cortex and the temporal-parietal junction,
and higher on average in sulci compared to gyri. The high degree
of observed left–right symmetry was suggestive of early develop-
mental origins of the biological processes that drive local corre-
lations in cortical thickness.
The pattern of Lρwas also robust to methodological choices in

the data analysis pipeline (see SI Appendix, Fig. S4). There was
reasonably high anatomical correspondence between maps of Lρ
regardless of the degree of anatomical smoothing used during
image processing (25- vs. 10-mm full-width at half-maximum
smoothing kernels in FreeSurfer; r = 0.36, Pspin < 0.001). Simi-
larly, there was a reasonable correspondence between alternative
preprocessing pipelines (FreeSurfer vs. CIVET), indicating a
robustness to the diverse subroutines used in these pipelines (r =
0.31, Pspin < 0.006). The largest differences between the pipelines
were located in the precuneus (Lρ lower in CIVET) and in the
inferior occipitotemporal gyri (Lρ lower in FreeSurfer). Finally,
the pattern of Lρ was robust to two approaches for quantifying a
vertex’s local neighborhood, whether the neighborhood com-
prised the six adjacent vertices on the cortical mesh or all of the
vertices within a 10-mm geodesic distance (r = 0.68, Pspin <
0.001). Because it is based on a larger amount of data, the
distance-based neighborhood is expected to have a higher signal-
to-noise ratio. Subsequent results are therefore based on phe-
notypic Lρ calculated using FreeSurfer processing of HCP data
with a 25-mm smoothing kernel and a 10-mm geodesic neigh-
borhood. Overall, the degree of replicability in the pattern of
results increases our confidence that our findings do reflect an
underlying biological process.

Relationship with Gyral–Sulcal Patterns. If the cortical pattern of
shared genetic influences on cortical thickness did relate to
cortical folding, we would predict an anatomical correspondence
between these maps and folding patterns. As hypothesized, the
pattern of Lρ corresponded with sulcal/gyral organization, es-
pecially in primary somatomotor, superior temporal/insular, and
cingulate areas. In other words, relatively homogeneous areas of
high or low Lρ appeared to occur along anatomical regions de-
marcated by sulcal or gyral boundaries (38), with greater vari-
ability in Lρ when transversing sulcal or gyral boundaries.
Moreover, peaks and valleys of local correlations tended to occur
in sulcal fundi or gyral crests, indicating a relationship between
Lρ and folding. Visual verification of this relationship was con-
firmed via highly magnified projections onto cortical flat maps at
the regional level (Fig. 3). Quantitatively, this result was con-
firmed when modeling folding via mean curvature (which is
positive in outwardly curved sulci and negative in inwardly
curved gyri). There was a global correspondence between Lρ and
mean curvature (r = −0.28, Pspin < 0.001), indicating that Lρ
tended to be lower in sulci and higher in gyri (Fig. 4 A and B).
The relationship with curvature was also preserved in a child-
hood sample from the PNC (r = −0.32, Pspin < 0.001;

Local Correlation (Lρ) Genetic Local Correlation (Lρ) Phenotypic 
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Fig. 2. Shared, local genetic influences on the pattern of cortical thickness
across the cortex, in the GOBS datasets. (A) For all subjects, thickness was
estimated at ∼10,000 vertices of the triangular mesh fit to the left and right
cortical surface, and the interindividual variation of each vertex was corre-
lated with the interindividual variation of each of its neighbors (here, ad-
jacent vertices on the cortical mesh) to yield the phenotypic correlation.
After regressing out the nonlinear relationship between the anatomical
distance between vertices and these correlations, the local correlation (Lρ) of
each vertex was calculated as the mean of its correlations with its neighbors.
For purposes of visualization, Lρwas z-transformed within each cortical map.
The dashed red lines mark boundaries between gyral regions of FreeSurfer’s
Desikan atlas (38), such that the dashed lines generally occur within sulcal
fundi. (B) The phenotypic correlation was decomposed into environmental
(SI Appendix, Fig. S2) and genetic components based on the subjects’ ex-
tended pedigree structure. Genetic Lρ was then calculated analogously to A.
There is a strong and statistically significant anatomical correspondence be-
tween these maps (SI Appendix, Fig. S3). A, anterior; I, inferior; L, lateral; LH,
left hemisphere; M, medial; P, posterior; RH, right hemisphere; S, superior.
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SI Appendix, Results IV and Fig. S5) and when using a “center-
ring” alternative to smoothing, where the average thickness within
5 mm of a vertex was correlated with the average thickness at a
distance of 5 to 7 mm to estimate Lp (r = −0.30, Pspin < 0.001; SI
Appendix, Results II and Fig. S7). This anatomical correspon-
dence is consistent with the hypothesis that patterned genetic
influences on cortical thickness influence patterns of cortical
folding in the developing brain.
Since the locations of folding are stereotyped only in a subset

of sulci, with greater intersubject variability in the locations of
other sulci thought to be under looser genetic control, the degree
of anatomical correspondence between folding and Lρ should
also be spatially heterogenous. This spatial heterogeneity was
captured by the local correspondence, which showed specific
areas of high-magnitude correspondence between mean curva-
ture and Lρ (Fig. 4 C and D). This correspondence tended to be
negative in sulci, indicating lowest Lρ in the sulcal valley where
mean curvature is most positive. Using a cluster-based imple-
mentation of the spin test, seven clusters bilaterally were statis-
tically significant (P < 0.05, familywise correction for multiple
comparisons). All of these clusters were composed of negative
correspondence within sulci. Prefrontal cortex, an area of the
brain enriched for relatively high intersubject variability in sulcal
locations, was notable in having relatively low local correspon-
dence with mean curvature. On visual inspection, this finding is
consistent with the observation that Lρ in prefrontal cortex is
relatively high but also relatively spatially uniform within this
area of cortex, without the kind of sulcal–gyral variability ob-
served elsewhere in the brain.

Orientation of Local Correlations. In theory, spatial heterogeneity
in local correlation could be limited to the average strength of
local correlations. Alternatively, a relationship with folding
would be supported by differential strength of correlations in
different directions relative to sulcal fundi or gyral crests. These
differences in the local “correlation orientation” ðOρÞ were
quantified relative to the sulcal/gyral axis (SGA) at each vertex,

which was defined as the axis of minimum change in sulcal depth.
This axis provided a consistent frame of reference relative to
folding throughout the cortical mantle. Axial correlations were
parallel to (“along”) this axis, tangential correlations were per-
pendicular to (“across”) this axis, and Oρ was defined as the
normalized difference between axial and tangential correlations.
Local correlations along the sulcal or gyral axis differed in
strength compared to local correlations tangential to these axes,
reflected by a remarkable pattern of variation in Oρ across the
cortex (SI Appendix, Fig. S9 A and B). Overall, anatomical cor-
respondence was low between Oρ and mean curvature (r = 0.05,
Pspin > 0.5). The spatial heterogeneity in anatomical corre-
spondence between Oρ and mean curvature was captured by
local correspondence, which showed significant clusters of posi-
tive local correspondence bilaterally in the central sulcus and
precentral gyrus, suggesting relatively a greater axial orientation
in sulcal fundus. In addition, there was a significant cluster of
negative local correspondence along the marginal sulcus in the
left hemisphere, suggesting relatively higher tangential orienta-
tion in the sulcal fundus; SI Appendix, Fig. S9 C and D). Overall,
Oρ had a complex spatial neuroanatomical profile.

Discussion
The colocalization of folding with local genetic influences on
cortical thickness is a significant contribution to existing models
of cortical folding, which have difficulty in explaining the ste-
reotyped location of certain gyri and sulci (17). Patterned, local
correlations in cortical thickness may capture the genetic co-
ordination of microstructural properties that constrain cortical
folding. The importance of such local correlations in cortical
thickness is predicted by previous neuroimaging studies, but
prior investigations of thickness covariability focus on correla-
tions between regions across the entire brain (39, 40). At this
scale, shared genetic influences tend to be much stronger on
average at short distances (30), consistent with the prediction
that evolutionary pressure decreases distances between highly
connected brain areas to decrease metabolic and wiring costs
(41). The topographical variation of local correlations reported
in the present study greatly expands upon these prior results.
We propose that the observed differences in local correlations

track differences in the development of cortical thickness, which
may contribute to the emergence of stereotyped cortical folding.
There is prior support for the fact that genetic correlations in

Gyral crest

high correlation

post-central
gyrus

inferior temporal gyrus

posterior cingulate

med correlation

low correlation

Fig. 3. Flattened surfaces showing the phenotypic correlations between
adjacent vertices, which are the basis for the brain maps of average local
correlation (Lρ) and orientation of local correlation (Oρ). Phenotypic Lρ is
shown on the surface plot in the center (as per Fig. 1), with three anatomical
gyri outlined in red. Flat maps of these gyri are shown, clockwise from
center: postcentral gyrus, inferior temporal gyrus, and posterior cingulate. A
relationship between phenotypic correlation and the location of the gyral
crest within these gyri can be observed in each of these cases.
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Fig. 4. Mean phenotypic local correlation ðLρÞ and its relationship with
gyral–sulcal organization as measured by mean curvature. (A) Map of mean
curvature. Sulci are positively curved, while gyri are negatively curved. (B)
Map of Lρ. (C) Map of local correspondence between mean curvature and Lρ.
(D) Significant clusters of local correspondence based on the spin test. See SI
Appendix, Fig. S8 for analogous maps showing both cerebral hemispheres.
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cortical thickness, and the phenotypic correlations to which they
are closely related, reflect coordinated changes in thickness in
neurodevelopment (42, 43) and arise from spatial gradients of
signaling molecules (29). At the cellular level, thickness may
relate to the size of and number of neurons in cortical columns,
which partially dictate the function of different cortical areas (1,
44, 45). Moreover, biomechanical models have clearly demon-
strated that thickness influences folding, with increased average
thickness expected to result in wider folds (13). To our knowl-
edge, the biomechanical effect of stereotyped spatial variation in
thickness is unexplored but could plausibly influence the locali-
zation of folding in neurodevelopment; the latter comprises a
testable prediction for future biomechanical studies. Zones of
low average correlation may reflect gradient boundaries in terms
of different growth factors influencing alternative development
of cortical thickness on either side of the boundary. These
boundaries represent plausible anchor points for folding, which
is supported by their correspondence with primary sulci in the
present work. The plausibility of the proposal that different
factors influence thickness in sulci vs. gyri is consistent with
differences in the laminar basis of sulcal and gyral thickness; gyri
are on average thicker than sulci, and this increased thickness
disproportionately stems from expansion of deep cortical layers
that disproportionately project to subcortex as opposed to other
cortical areas (1, 44).
It is important to note possible alternative explanations for our

empirical findings. We argue that the physical effects of thick-
ness on a folding surface may anchor folding patterns. However,
thickness also reflects aspects of cellular composition and the
extracellular matrix (46), which may independently affect cortical
stiffness and thereby folding (13). Finally, the observed corre-
spondence could result from an alternative influence of folding
on thickness, or a third variable that emerges subsequent to
cortical folding in neurodevelopment. Critically, we demonstrate
that the correspondence between local correlations and curva-
ture is preserved in a childhood sample aged 8 to 9, supporting
the hypothesis that this correspondence results from coordinated
development prior to maturity. However, as folding is complete
before age 8, an alternative approach to confirm the role of
cortical thickness variation in the formation of sulci and gyri
would be to directly map the temporal dynamics of changes in
thickness and local thickness covariance relative to changes in
folding in utero—an approach that is increasingly possible using
recent prenatal imaging resources (47, 48). Of note, our results
do not imply that folding is only under genetic control in the
subset of sulci where there is correspondence with local thickness
covariance; a role for genetic factors that influence thickness in
no way precludes the many other factors that are expected to
influence curvature in a regionally heterogenous fashion.
The normative model we propose provides a framework for

how alterations of cortical patterning may underpin neuropsy-
chiatric risk for disorders such as schizophrenia. In schizophre-
nia, thickness is decreased (49), folding is disrupted (50), and
structural covariance and functional connectivity are altered es-
pecially at anatomically local spatial scales (51, 52). Histologi-
cally, pyramidal neuron dendritic spine density is decreased (53–
55). This set of findings is compatible with a disruption of the
model of early developmental cortical patterning described in
this paper. Empirical predictions follow, including the disruption
of local correlations in cortical thickness in schizophrenia, and a
role for schizophrenia risk genes in driving normative cortical
patterning.
It is also important to address methodological issues related

to the present study. One limitation is the use of phenotypic
correlation as a proxy for genetic correlation in some of the
analyses, for computational reasons, although this practice is
supported by prior studies (26, 36) and we show that these pat-
terns of correlation strongly correspond with one another in our

data. In addition, smoothing by image processing pipelines is
expected to inflate phenotypic correlations in cortical thickness.
A nonbiological basis of the results such as an image processing
confound must be considered, but is less plausible (although not
ruled out entirely) given the correspondence of results between
different image processing pipelines and different datasets.
In summary, this study provides evidence for patterned genetic

influences on cortical thickness, which are shared within local
cortical neighborhoods less than 1 cm apart on the cortical sur-
face and correspond anatomically with cortical folding in the
adult human brain. These patterned maps may reflect local sig-
naling gradients that provide a spatial template for cortical
folding patterns during early development, by influencing corti-
cal thickness and the biomechanical properties of local tissue.
Disruption of these gradients may in turn underlie folding dis-
ruption in developmental neuropsychiatric disorders.

Materials and Methods
Study Sample, Image Acquisition, and Data Availability. The GOBS, HCP, and
PNC datasets have been described in detail in prior publications (30, 32–34).
Briefly, the GOBS consisted of high-resolution MRI in 1,443 individuals (836
females; age mean, 40.7; SD, 15.5; range, 18 to 85) from randomly ascer-
tained extended pedigrees of Mexican American individuals living in San
Antonio, Texas. The HCP is a publicly available resource and consists of MRI
data from 1,113 individuals (606 females; age mean, 28.8 y; SD, 3.7; range,
22 to 37) from 457 unique families. Image processing used FreeSurfer, ver-
sion 5.3 (56–58). Cortical thickness was calculated as the distance between
the gray–white and pial surfaces at each vertex. Mean curvature, a measure
of cortical folding, was defined as the average of the principal curvatures at
each vertex (31). For comparison, the Montreal Neurological Institute CIVET
pipeline (version 1.1.10) was also used to calculate cortical thickness on the
HCP sample, as previously described (59). For fidelity of comparison to
FreeSurfer surfaces, this mesh was down-sampled to 9,895 uniform cortical
regions by merging triangular faces into single regions (where the thickness
of each region was the average of the thickness of the vertices within the
region). See SI Appendix, Methods I and Results IV for further details.

The HCP data used in this study are available to investigators deemed to
have a legitimate research use according to the Restricted Access Data Use
Terms described at https://www.humanconnectome.org. The PNC data are
available through dbGaP (phs000607.v1.p1). The genotype data for GOBS
participants are available through dbGap (phs001215.v2.p2). The GOBS im-
aging phenotypes used in this study are available from the National Institute
of Mental Health Repository (https://www.nimhgenetics.org). Alternatively,
data from the GOBS cohort can be applied for by contacting D.C.G.
(david.glahn@childrens.harvard.edu) or J.B. (john.blangero@utrgv.edu). Ac-
cess to data by qualified investigators is subject to ethical and scientific re-
view (to ensure the data are being requested for valid scientific research)
and must comply with all relevant guidelines. The completion of a material
transfer agreement signed by an institutional official will be required. All
GOBS participants provided informed consent, and the study was approved
by institutional review boards at Yale University and the University of Texas
Health Science Center at San Antonio. Code used for analyses presented in
this paper is available at https://github.com/aaronab.

Local Correlations of Cortical Thickness. Informed by familial information from
extended pedigrees, SOLAR (60) was used to confirm significant heritability
of cortical thickness at each vertex, as well as to decompose the phenotypic
correlation ðρÞ into the environmental correlation ðρEÞ and the genetic cor-
relation ðρGÞ between neighboring vertices on the cortical mesh. ρ is equiv-
alent to the “structural covariance” between vertices, while ρG is an estimate
of the proportion of the shared variance due to shared genetic factors (see SI
Appendix, Methods II–III for further details). Age, age2, sex, and total brain
volume were also included as covariates in these models.

Two methods were used to determine a vertex’s local neighborhood: in
the first method, adjacent vertices on the triangular cortical surface (∼6
neighbors per vertex); in the second method, vertices within 10 mm of a
vertex, calculated using geodesic distance on the triangular mesh (∼30
neighbors per vertex). The nonlinear relationship between the local corre-
lations between neighboring vertices and the anatomical distance between
these vertices across the cortex was regressed from the strength of these
correlations (after r-to-z transformation) using generalized additive models
in the R package gam (61), and the residuals after this step were used in all
subsequent analysis. This regression step is necessary as smoothing is
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imposed by image processing pipelines for the purposes of spatial normal-
ization, which could result in spurious correlations (see SI Appendix, Results II
for further details). The correlation between an individual vertex and each
of the vertices in its neighborhood was averaged to yield Lρ.

The Orientation of Local Correlations. We also quantified a measure of an-
isotropy in a vertex’s Lρ (higher correlations along a specific directional axis),
which we labeled the “orientation of correlation” ðOρÞ (Fig. 1C). To find Oρ
at each vertex, v, we first estimated the orientation of the SGA at v. The SGA
provided a biologically meaningful frame of reference throughout the
cortical mantle, whereby directions parallel to (“along”) the SGA at a vertex
are defined as axial, while directions perpendicular to (“across”) the SGA are
defined as tangential. Then, the axial correlation ðLρaxÞ is the correlation in
the axial direction, quantified as the average of correlations within 30 de-
grees of SGA; the tangential correlation ðLρtanÞ is the correlation in the
tangential direction, quantified as the average of the correlations within
30 degrees of the direction that is orthogonal to SGA. The vertex’s orien-
tation is defined as follows: Oρ= ðLρax − LρtanÞ=sdðLρÞ, where sdðLρÞ is the SD
of all of the vertex’s correlations. Intuitively, a highly positive Oρ corre-
sponds to a vertex with an axial orientation, a highly negative Oρ corre-
sponds to a vertex with a tangential orientation, and Oρ≅0 corresponds to
a relatively isotropic orientation. See SI Appendix, Methods III for further
information.

Statistical Testing of Anatomical Correspondence. The global anatomical
correspondence between two maps, such as those of genetic and phenotypic

Lρ, was quantified using a previously described randomization procedure
(the “spin test”) (35). Here, the null hypothesis is that the observed corre-
spondence is due to a random alignment between the maps that is not
greater than is expected by chance. This null is operationalized by randomly
rotating one map relative to the other map and recalculating the measure
of correspondence. See SI Appendix, Fig. S3 for an illustration of this pro-
cedure. Local correspondence was quantified using a method similar to the
previously described approach of “local cortical coupling” (37). In brief, this
procedure quantifies the correspondence between two surfaces, within a
demarcated local area around each vertex—a sliding 10-mm geodesic win-
dow only including points within 10 mm of that vertex. The statistical sig-
nificance of local correspondence was quantified using cluster-based version
of the spin test, which rejects the null hypothesis of no local correspondence
for clusters of vertices while controlling for multiple comparisons. See SI
Appendix, Methods IV for further information.
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