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RESEARCH Open Access

Soil biotic and abiotic conditions negate
invasive species performance in native
habitat
Pushpa G. Soti1*, Matthew Purcell2 and Krish Jayachandran3

Abstract

Background: Most studies on plant invasion consider the enemy release hypothesis when analyzing native
habitats. However, the lower performance of invasive species in the native habitats can be the result of unfavorable
soil conditions in the native habitats. While soil biotic and abiotic factors have a potential to restrict the growth of
invasive species in their native habitats, our understanding of belowground environment of invasive species in their
native habitats is very limited. In this study, we analyzed soil characteristics associated with an exotic invasive plant,
Old World Climbing Fern (Lygodium microphyllum), in its native habitat in Australia and the recipient habitat in
South Florida. Rhizosphere soil samples from both habitats were analyzed for soil physical, chemical and biological
characteristics.

Results: Soil characteristics in the recipient habitats were significantly different compared to those in the native
habitats. Soil samples from the native habitat had low soil pH, and high concentrations of elements such as
aluminum and zinc which are phytotoxic in acidic soil environments. Additionally, mycorrhizal fungi spores were
more diverse in the recipient habitat in Florida compared to the native habitat in Australia.

Conclusion: Overall, our results indicate that growth of an invasive plant in its native habitats could be restricted
by the toxic effects associated with strong soil acidity. Results from this study indicate that invasive plants not only
escape from their natural herbivores but also from toxic soil environment in their native habitats.

Keywords: Soil toxicity, Soil chemistry, Soil microbes, Exotic invasive species, Lygodium microphyllum

Background
Biotic and abiotic interactions of exotic invasive plants
at both below and above ground can vary significantly in
the native and recipient habitats. The potential of any
exotic species to invade a new habitat generally depends
on abiotic tolerance (Alpert et al. 2000; Levine et al.
2004), biotic resistance (Case 1990; Levine et al. 2004;
Bogdziewicz et al. 2019), and propagule pressure (Lock-
wood et al. 2005; Simberloff 2009), or the combination
of these three factors (Byun et al. 2018). Most research
on exotic invasive species is focused on plant traits such
as high growth rate, short lifecycle, high levels of re-
source allocation to reproduction, and flexible utilization
of available environmental resources. Several studies

with biogeographic comparison of invasive species in
their native range and invaded range focus on the im-
pact of variable soil microbes on plant performance
(Callaway and Aschehoug 2000; Hierro et al. 2005; Ver-
meij et al. 2009; Volin et al. 2010). While there is in-
creased research interest in the microbiome of invasive
species (Coats and Rumpho 2014; Kamutando et al.
2019; Ramirez et al. 2019), there is limited information
on the performance of invasive plants in their native
habitats and the restrictions posed by the soil character-
istics. For example, soil pH has complex effect on plant
growth leading to the variation in the distribution of
plant species in acidic or calcareous soils. Diekmann and
Lawesson (1999) reported that pH is one of the major
underlying variables determining the floristic variation
within forest communities. In addition, soil acidity can
result in toxicities of aluminum and manganese and defi-
ciencies or low availability of certain essential elements
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including calcium, magnesium, phosphorus, and molyb-
denum (Foy 1984). These factors may directly or indir-
ectly restrict plant growth through interference in the
development and functioning of symbiotic associations
with rhizobia, mycorrhizas, actinomycetes, and other
plant growth promoting rhizobacteria. It is reported that
soil acidity as a result of Al toxicity has detrimental ef-
fects on plant growth by lowering rooting depth, increas-
ing susceptibility to drought, and decreasing uptake of
subsoil nutrients. Plants exposed to Al toxicity are re-
ported to have stunted growth, small dark green leaves,
late maturity, and thick root tips and lateral roots. They
have many stubby lateral roots but lack in fine branch-
ing, thus, inefficient in absorbing nutrients and water
(Kochian et al. 2004). Similarly, soil texture is also an
important factor influencing the distribution of minerals,
organic matter, microbial community, and other soil
properties (Scott and Naiman 2006).
Once established, invasive species create a favorable

rhizosphere conditions in the recipient habitats (Ehren-
feld 2003; Perkins et al. 2011; Coats and Rumpho 2014)
and increase their fitness (Soti et al. 2019). While it is
generally unlikely to eliminate invasive plant species, the
recipient habitats can probably be managed to maximize
the performance of native species relative to that of in-
vaders by altering resource levels and disturbance re-
gimes (Daehler 2003). Information on the soil
conditions, where the plant has adapted, can provide a
key insight in integrating environmental manipulations
into the habitat restoration projects, but the comparative
analysis soil characteristics in the native habitat of an in-
vasive species remain largely unexplored.
Here, we analyze the role of soil chemistry in the suc-

cessful invasion of south Florida’s natural communities
by a highly invasive plant species, Lygodium microphyl-
lum (Old World climbing fern). L. microphyllum is an
invasive exotic plant species taking over many sites in
freshwater and moist habitats across southern and cen-
tral Florida. In the invaded regions of South Florida L.
microphyllum displays most of the ecological character-
istic associated with successful invasive plants (West-
brooks 1998): it has the ability to grow in varying
hydrological (Gandiaga et al. 2009), nutrient (Volin et al.
2010), and light conditions (Volin et al. 2004). It toler-
ates a wide range of soil pH (Soti et al. 2014, 2015), and
has a strong symbiotic relationship with arbuscular
mycorrhizal fungi (AMF) (Soti et al. 2014). Comparative
analysis of soil samples from both its native range and
invaded region have shown that L. microphyllum, which
had adapted to close-to-neutral soils in Florida, grows in
highly acidic soils in its native range in Australia (Soti
et al. 2014). Additionally, the Food and Agriculture
Organization (FAO) world soil distribution map shows
the soil in the native range, identified by Goolsby et al.

(2003), is a region with high soil acidity. Volin et al.
(2010) indicated that the growth of L. microphyllum was
highest in sandy soils which indicates that this plant pre-
fers well drained sandy soils. Furthermore, the root and
rhizome growth of L. microphyllum was highest in the
sandy soils of south Florida compared to the native Aus-
tralian soils.
L. microphyllum does not have a high economic value

in its native range, thus there is very little information
available about its native ecology, and the available infor-
mation is mostly on its native herbivores. Very little is
known about why this plant is invasive outside its native
range (Ferriter 2001). In the invaded regions in South
Florida, L microphyllum is highly invasive and current
management techniques such as fire, herbicides, and
mechanical removal are inadequate. The prospect of de-
veloping a method that targets the rhizomes of L. micro-
phyllum is compelling; however, the soil biogeochemical
characteristics of L. microphyllum infested sites remain
unexplored. Before we target the rhizomes, it is impera-
tive to elucidate the soil characteristics of the sites,
where this plant has adapted, to obtain baseline informa-
tion. Additionally, it is important to gain information of
the soil characteristics of the native range where this
plant has its origin and adapted habitat. Results from
this study will assist in better understanding of the com-
plex feedbacks between exotic invasive plants, soil mi-
crobial community and soil elements.
To determine if L. microphyllum escaped from the

toxic soil conditions and natural soil enemies, we ex-
plore the variation in the biotic and abiotic soil charac-
teristics of L. microphyllum from both the native and
recipient habitats. We hypothesized that the rhizosphere
soil in the native habitat is generally poor in nutrients
and high in phytotoxic elements such as Al compared to
the recipient habitat in Florida.

Methods
Sites selection
We compared soil samples collected from three different
sites each in Queensland, Australia, where the plant species
is native, and in Florida, United States, where L. microphyl-
lum is a Category I exotic invasive ([FLEPPC] Florida
Exotic Pest Plant Council 2019). Queensland and South
Florida have similar climate conditions such as average
monthly maximum and minimum temperatures, rainfall
amounts, rainfall pattern, and relative humidity (for details
see Goolsby et al. 2003). In its native Australian sites, L.
microphyllum grows around the edges of Melaleuca quin-
quenervia, a major invasive plant in the South Florida or
edges of swamps along with Drynaria sp. and Blechnum
indicum. In the recipient habitat Florida, the plant has
adapted to multiple hydrologic conditions. The three study
sites in Florida were selected based on the different habitat
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conditions: (1) Tree Tops Park, a highly disturbed habitat
which is seasonally flooded, with L. microphyllum growing
in the understory; (2) Jonathan Dickinson State Park, is
relatively undisturbed habitat with sand pine scrub commu-
nities. Here, L. microphyllum grows to the top of the can-
opy of trees; and (3) Central Florida site, a private property
with sand mine spoil dominated by L. microphyllum and a
few native ferns.

Sample collection
Soil samples were collected during the dry season in both
continents (Table 1, Fig. 1), except for the Central Florida
site (which was added later at the request of Nature Con-
servancy). At each sampling site, six 1m × 1m plots were
selected randomly, and soil from the 10–15 cm deep zone
was collected from all four corners and the center of each
plot with a soil corer (diameter: 18mm) and mixed homo-
geneously into one bulk sample for each plot, resulting in
six composite soil samples from the six different sites in
the two habitats. The soil samples from the local sites in
South Florida were transported to the laboratory in a
cooler, and samples from Australia and Central Florida
were stored in 4 °C and shipped overnight.

Soil nutrient analysis
A small portion of each soil sample was air dried and
passed through a 2 mm sieve for analysis of physico-
chemical properties. They were ground to fine powder
with a mortar and pestle and stored at room
temperature in air-tight containers for further analysis of
nutrients and trace elements. The soil pH was measured
with a pH meter (soil solution ratio 1:2 in water), texture
was measured by the hydrometer method (Bouyoucos
1962), and total organic matter was measured based on
the standard loss on ignition method (500 °C, 5 h; Storer
1984). Total C and N in soil and leaves were measured
with a Truspec CN analyzer. Total Ca, Fe, Al, Mg, K,
Mn and P in soil were measured with an ICP–MS at
USDA, ARS Laboratory, Miami, Florida after following
the acid digestion Method 3050B (USEPA Method 3050
1996). One gram of finely ground soil samples was

transferred to large glass tubes and mixed with 10ml of
30% HNO3. The tubes were covered with a vapor recov-
ery system and heated to 95 ± 5 °C and refluxed for 10
min without boiling under the hood in a heating block
maintained with a Partlow Mic 6000 Profile Process
Controller.
After cooling to 40 °C, 5 ml of concentrated HNO3

was added and the samples were then heated at to 95 ±
5 °C until no brown fumes were given off. The samples
were again cooled to 40 °C, 2 ml of DI water and 3ml of
30% H2O2 were added and heated until the effervescence
subsided. The samples were cooled and diluted to 50 ml
with DI water, centrifuged at 2000 rpm for 10 min and
filtered with a Whatman No. 41 filter paper.

Microbial analysis: bacteria and fungi population
Total colony forming units (CFU) of bacteria and fungi
was determined by the standard spread plate dilution
method as described by Seeley Jr and VanDemark
(1962). Dry equivalent of one-gram soil was mixed in 9
ml sterile water (autoclaved) and was diluted serially.
Samples were vigorously mixed during dilution to assist
in dislodging the bacteria from the soil particles. A serial
dilution of 10− 2, 10− 3, 10− 4, and 10− 5 was made for
fungi and 10− 4, 10− 5, 10− 6, and 10− 7 for bacteria. A
total of 100 μl of diluted soil suspension was spread on
three plates per soil sample for both bacteria and fungi
at each dilution level. Nutrient agar containing cyclohex-
imide solution (to prevent fugal growth) was used for
bacteria and Rose Bengal Agar (RBA) with streptomy-
cine sulphate (to prevent bacteria growth) was used for
the estimation fungal colonization. Agar plants with
spread with sterilized water were used as control. Inocu-
lated plates were incubated at 26 °C for 3 days before the
colonies were counted. Dilution plates with 100 to 300
colonies per plate were counted.

Arbuscular mycorrhizal fungi (AMF) spore extraction and
identification
Results from our previous study indicated that the
mycorrhizal root colonization in L. microphyllum is

Table 1 Sampling sites and dates of sample collection in the recipient habitat and native habitat of L. microphyllum

Sites Coordinates Sampling dates

Recipient, FL, US

1 Tree Tops Park 26° 4′0.04″N, 80° 16′ 5.88″W Dec, 2010

2 Central Florida 28° 23′ 4.03″ N, 81° 44′ 41.30″ W June, 2012

3 Jonathan Dickinson 27°0′37.33″N, 80°7′20.28″W Dec, 2010

Native, Queensland, AU

1 Daintree Ferry 16°15′25.57″S, 145°24′3.94″E June, 2011

2 Logan Reserve 27°40′4.16″S, 153°16′0.44″E June, 2011

3 Nudgee 27°22′31.12″S, 153° 5′39.42″E June, 2011
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significantly higher in the invaded regions compared to
the native regions in Australia (see Soti et al. 2014). In
this study, we identified the morphospecies of AMF
sproes in the rhizosphere soil of L. microphyllum in both
the regions following the wet sieving technique (Gerde-
mann and Nicolson 1963). 100 ml of DI water was added
to dry equivalent of 50 g of soil from each site. It was
then mixed vigorously to separate the spores from soil
aggregates. The mixture was washed through a series of
sieves (2 mm, 100 μm and 32 μm). Washing was done
until the water flowing through the sieves was clear. The
sievate retained on the sieves was washed and centri-
fuged with water to remove floating organic debris and
the supernatant was discarded. The pellet in the bottom
was re-suspended in a 50% sucrose solution and centri-
fuged for one minute at 2000 RPM to separate the

spores from denser soil components. Immediately after
centrifugation, spores in the sucrose supernatant were
rinsed in a fine sieve to remove the sucrose. The spores
were then washed into a filter paper for vacuum filtra-
tion. The fungal spores were then mounted on slides for
taxonomic identification to the genus level based on the
spore morphology and wall characteristics, using the de-
scriptions by INVAM (International culture collection of
vesicular-Arbuscular Mycorrhizal Fungi) (n.d.). The
genus that was dominant was taken as the representative
mycorrhizal AMF type for each site.

Statistical analysis
All soil variables were subjected to normality test. The
data was not normalized with transformation, so a non-
parametric test was conducted. Kruskal-Wallis test was

Fig. 1 Sampling sites in recipient habitat in Florida (top) and native habitat in Australia (bottom)

Soti et al. Ecological Processes            (2020) 9:18 Page 4 of 9



done to compare the difference in the rhizosphere soil
status of L. microphyllum among the different sites.
Contrasts were done to test the difference among sites
with the overall model was significant. Pearson’s correl-
ation analysis and was done with all sites pooled to de-
termine relationship between the measured soil
variables. Differences are reported as significant for tests
with P-values ≤0.05. All the parameters were analyzed
with SAS Version 9.2 software.

Results
Soil chemical and physical properties
Soil properties in the study sites were highly variable
and site specific (Tables 2, 3; Fig. 2). Soil texture, shown
in Table 2, varied significantly among the different sites
with native sites having heavier soils (high bulk density)
compared to the recipient sites. Soil chemistry results
also indicated site specific characteristics in the native
and recipient habitats (Table 3; Fig. 2). The Australia
sites had strong acidic soil ranging from pH = 4.1 to 4.55
while the recipient sites Florida had significantly higher
soil pH ranging from 5.60 to 6.57. In general, elements
which are phytotoxic in acidic soil such as Al, Zn, and
Fe were higher in the native sites in Australia except for
site 2, a sand mine spoil, in the recipient habitat (Fig. 2).
Total C and N were highest in the recipient site, and
there was no difference in P among the sites in both na-
tive and recipient habitats.

Bacteria and fungi populations
The average number of bacteria and fungi, colony form-
ing units (CFU) per gram of dry soil, was significantly
different in all six sites (Table 2). Total CFU of bacteria
was highest in native habitat (288 × 106) and lowest in
recipient habitat (39 × 106). Likewise, the total CFU of
fungi was also highest in native site (123.5 × 103). Correl-
ation analysis indicated that, there was no relationship
between the soil organic matter, total carbon on the soil
bacterial and fungal population, however there was a
strong relationship with the soil texture (Table 4). Sur-
prisingly, the bacteria population had a negative relation-
ship with the soil pH while the fungi had no relationship
with the soil pH.

AMF spores
The spore composition based on the morphology was
different among the six sampling sites. Spores of differ-
ent sizes and colors were present in all six sites. Highest
morphological diversity was seen in the two recipient
sites, and the lowest diversity was seen in recipient site
3. Spores of Glomus spp. were found in all the locations
but were dominant in native site 3, and recipient site 2;
spores of Scutellospora spp. were dominant in recipient
site 1 and 3; and spores of Gigaspora spp. in native site
1 (Fig. 3).

Discussion
Objective of this study was to analyze the role of soil
rhizosphere, soil chemistry, and biology on the success
of an invasive species in the recipient habitat compared
to its native habitat. While our study was limited in the
number of sampling sites and sampling frequency, our
results show that there was a significant difference in the
soil chemical, biological as well as physical characteris-
tics in these two habitats, native and recipient. These soil
characteristics can potentially, on their own or in com-
bination with other habitat features, promote the exten-
sive growth of exotic invasive plant in the recipient
habitat compared to its native habitat.
Our results show that L. microphyllum has adapted to

nutrient poor and highly acidic soils in its native habitat.
In the recipient habitat, the plant can perform equally
well in acidic soils and outcompete coexisting vegetation
in slightly higher pH levels. Soil pH between 5.5 to 7.5 is
known to provide the optimal growing conditions for
this plant (Soti et al. 2015). The recipient sites in Florida,
where L.microphyllum is invasive, had the optimum soil
pH range. In addition, this pH range is also optimal for
AMF which has been found to enhance the growth of L.
microphyllum (Soti et al. 2014). In the native sites
Australia, the soil pH was significantly lower than opti-
mal for both the plant and AMF.
Along with strong acidic conditions, the native soils

also had high concentration of Al, which is considered
to be phytotoxic in strong acidic soils (Delhaize and
Ryan 1995; Lidon and Barreiro 2002; Kochian et al.
2005). One of the sites in recipient habitat, where L.

Table 2 Soil texture and mean ± standard error of the means of total colony forming units (counts × 106) of bacteria; (counts × 103)
of fungi per gram of soil in the invaded and native sites

Sites Soil Texture Sand % Silt % Clay % CFU of Bacteria g− 1 soil CFU of Fungi g− 1 soil

Tree Tops Park, FL, US Sandy loam 78 16.5 5.5 143.66 (13.00) 73.83 (12.27)

Central Florida, US Clay 13 40 47 138.33 (10.78) 61.16 (9.82)

Jonathan Dickinson, FL, US Sand 98 2 0 39 (4.28) 46.66 (7.76)

Daintree Ferry, Queensland, AU Silt loam 25 57.5 17.5 288 (16.56) 123.5 (13.63)

Logan Reserve, Queensland, AU Sandy clay loam 67.5 20 12.5 103.83 (10.12) 50.5 (8.75)

Nudgee, Queensland, AU Loam 50 32.5 17.5 153.5 (6.15) 49.00 (4.60)
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Table 3 Mean (Std. Dev.) of the selected soil chemical characteristics in the native sites in Australia and invaded sites in Florida

Variable Central Florida (FL) Daintree (AU) Jonathan Dickinson (FL) Logan (AU) Nudgee (AU) Tree Tops (FL)

C % 4.03 (0.84)c 2.70 (0.44)c 3.02 (1.88) c 12.90 (2.43)b 4.28 (1.19)c 22.43 (4.15)a

Ca (mg g−1) 0.41 (0.13)b 0.47 (0.11)b 3.35 (1.77)b 0.43 (0.25)b 0.09 (0.01)b 17.21 (6.31)a

Cu (μg g−1) 8.42 (2.81)b 43.94 (12.31)a 1.84 (0.54)c 10.16 (0.57)b 6.74 (1.57)b 14.76 (4.02)b

K (mg g−1) 0.16 (0.10)b 1.77 (0.35)a 0.09 (0.05)b 1.49 (0.30)a 0.12 (0.02)b 0.18 (0.05)b

Mg (mg g−1) 0.20 (0.10)c 0.55 (0.18)b 0.21 (0.11)c 1.27 (0.17)a 0.25 (0.05)c 0.68 (0.27)b

Mn (mg g−1) 0.02 (0.01)b 0.27 (0.14)a 0.02 (0.01)b 0.02 (0.00)b 0.04 (0.00)b 0.05 (0.03)b

N % 0.20 (0.26)c 0.18 (0.03)c 0.49 (0.10)b 0.71 (0.04)b 0.26 (0.10)c 1.27 (0.17)a

OM % 8.65 (1.09)c 8.07 (2.89)c 4.32 (0.90)c 35.50 (7.04)b 11.45 (4.71)c 44.42 (2.71)a

P (mg g−1) 1.03 (0.25)a 0.91 (0.16)a 1.15 (0.09)a 1.16 (0.05)a 0.97 (0.06)a 1.22 (0.16)a

Means within rows followed by same letter are not significantly different at P ≤ 0.05

Fig. 2 Concentrations (mean ± SE) of known phytotoxic elements aluminum (a); iron (b); and zinc (c) along with soil pH (d) in different sites in
the native and recipient habitats of L. microphyllum. Bars with same letter are not significantly different at P ≤ 0.05
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microphyllum was growing over sand mine spoil, had
the highest concentration of Al. However, this was not a
restricting factor for L. microphyllum growth. Al toxicity
is reported to cause alterations of physiological and bio-
chemical process of plants and consequently in their
productivity (Kochian 1995). Plant species differ in their
Al tolerance, but L. microphyllum grown in Australian
soil had lower biomass allocation to the belowground
structures (rhizomes and roots) compared to the plants
grown in Florida soils. When L. microphyllum escaped
the highly acidic soil and clayey soil environment in the
native habitat to the sandy and slightly alkaline soils in
the new habitat, they could have acclimated to lowered
investment cost in defense and reallocation of the re-
sources to growth and reproduction, increasing their
colonizing success.
Various soil and plant factors cause a significant influ-

ence in the soil microbial community, which have a fun-
damental role in nutrient cycling, plant growth and root
health. It is widely reported that the rhizosphere com-
munity of different plant species growing in the same
soil are distinct because of differences in root exudation

(Badri and Vivanco 2009; Brimecombe et al. 2000). Like-
wise, individual plant species can harbor different micro-
bial communities in different soil types (Yang and
Crowley 2000). A strong effect of soil texture on bacteria
and fungi population was evident in this study. Native
sites with the highest percentage of silt harbored highest
CFUs of bacteria and fungi, while Jonathan Dickinson
site in Florida with 98% sand had the lowest CFUs of
bacteria and fungi. This kind of influence of soil texture
on the structure of microbial population has been re-
ported previously (Garbeva et al. 2004; Fang et al. 2005).
An unexpected result was, the bacteria and fungi popu-
lation remained uninfluenced by the soil organic matter,
total C or soil pH which indicates a possible difference
in the litter quality and secondary metabolites produced
by the plant in its native range and invaded community
and warrants further research.
Our results indicate that L. microphyllum had a symbi-

otic relationship with multiple species of AMF depend-
ing on the site conditions. Our two sites, Central Florida
and Tree Tops which had higher diversities of spores are
relatively disturbed sites compared to the other sites
which had lower diversity of spores. This is an expected
result and is in line with the Intermediate Disturbance
Hypothesis (IDH) (Huston 1979), which suggests that a
less disturbed healthy ecosystem has lower diversity of
arbuscular mycorrhizal fungi. We found that Glomus sp.,
which is reported to be the dominant and most abun-
dant genus of AMF, was present in all sites but

Fig. 3 Dominant AMF morphotypes extracted from the rhizosphere soil of L. microphyllum in the both the native and recipient habitats. Glomus
spp. spore (a, e, f); Gigaspora spp. (h, j); Scutellospora spp. (b, d, g, i)

Table 4 Correlation between CFUs of bacteria and fungi and
soil parameters

pH OM% N% C% Sand Silt Clay

CFU of Bacteria −0.59* −0.15 −0.09 −0.17 −0.71* 0.81* 0.41

CFU of Fungi −0.21 − 0.21 −0.15 − 0.16 −0.64* 0.69* 0.44

*Significant at P < 0.0001
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dominant in the native sites in Australia and one recipi-
ent site in Florida. Spores of Scutellospora sp. were dom-
inant in the two-recipient site with slightly higher soil
pH and sandier in texture. This study provides evidence
that mycorrhizal fungi spore composition is different in
the native and recipient habitats along with the soil
characteristics, but an in-depth analysis with the use of
molecular technique is necessary to identify the AMF
species and their relationship with L. microphyllum. Fu-
ture studies should focus on exploring the microbial
community in the sites invaded by L. microphyllum and
their role in its growth and competitive ability.

Conclusions
Improved understanding of habitat characteristics of an
invasive plant in its native and recipient range is import-
ant to understand whether the invaders have escaped
hostile environmental conditions in their native range.
Biogeographic variation in soil conditions could play an
important role in the invasive success of nonnative
plants in recipient habitats. Our results suggest that L.
microphyllum can be growing poorly in its native range
in Australia because of the soil toxic effects associated
with soil acidity along with soil texture. In addition,
while we were not able to determine the specific roles of
the soil microbial community, difference in the microbial
populations and types in the two regions could in part
explain the extensive growth of L. microphyllum in the
recipient habitats in south Florida. Thus, land managers
should focus on soil restoration to manage the extensive
growth of invasive species and increase the competitive
ability of native species.
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