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To appear, Dynamical Systems

OPTIMAL QUANTIZATION VIA DYNAMICS

JOSEPH ROSENBLATT AND MRINAL KANTI ROYCHOWDHURY

Abstract. Quantization for probability distributions refers broadly to estimating a given
probability measure by a discrete probability measure supported by a finite number of points.
We consider general geometric approaches to quantization using stationary processes arising
in dynamical systems, followed by a discussion of the special cases of stationary processes:
random processes and Diophantine processes. We are interested in how close stationary
process can be to giving optimal n-means and n

th optimal mean distortion errors. We also
consider different ways of measuring the degree of approximation by quantization, and their
advantages and disadvantages in these different contexts.

1. Introduction

1.1. The General Setting. Let Rd denote the d-dimensional Euclidean space with the Eu-
clidean metric ‖ · ‖. Let P be a Borel probability measure on R

d. Let Vn = Vn(P ) be

Vn(P ) = inf
α∈Dn

∫

min
a∈α

‖x− a‖dP (x),

where Dn := {α ⊂ R
d : 1 ≤ card(α) ≤ n}. We assume that

∫

‖x‖dP < ∞ to make sure that
there is a set α∗

n for which the infimum occurs (see [AW, GKL, GL, GL2]). Here Vn(P ) is
the optimal mean distortion error. The set α∗

n for which we get the optimal mean distortion
error is called an optimal set of n-means and the elements of an optimal set are called optimal

quantizers. For some mathematical background on quantization, see the text by Graf and
Luschgy [GL]. For some recent work on optimal quantizers, see [CR1, CR2, DR, GL3, R1,
R2, R3, R4, RR1]. Note that it is traditional to use ‖x− a‖2 in the definition above, but we
do not do this here because we want to keep as simple as possible the connection between the
integral itself and various ways of approximating the integrand.

Given a fixed αn ∈ Dn, we call dαn

n (x) = mina∈αn
‖x− a‖ the point distortion error, and we

call the mean of the point distortion error, V αn

n =
∫

dαn

n (x) dP (x) =
∫

mina∈αn
‖x− a‖dP (x),

the mean distortion error. We consider various methods of generating model αn. We are
particularly interested in estimates for the rate of convergence to zero, as n goes to infinity,
of the distortion errors of model sequences that have been generated by some dynamical
stochastic process. If we know both a) the rate of convergence to zero of the distortion
errors in the optimal case, and b) in a given model we have good estimates for the rate of
convergence to zero of the distortion errors, then we will have some understanding of how far
from optimality these models are.

Clearly, if we had a uniform estimate for the rate of convergence to zero of the point
distortion error, then by Lebesgue’s Bounded Convergence Theorem we would obtain a rate
estimate for the mean distortion error. Indeed, given (ρn), even if we just had, for a.e. x
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2 Joseph Rosenblatt and Mrinal Kanti Roychowdhury

with respect to P , an estimate mina∈αn
‖x− a‖ = O(ρn) as n → ∞, we would know that also

∫

mina∈αn
‖x−a‖dP (x) = O(ρn) as n → ∞. However, estimates for the mean distortion error

will generally give us limited insight into the best estimates for the point distortion error that
would hold for a.e. x.

In the case that the support K of P is compact, there is a geometric approach for getting a
uniform estimate for the point distortion error. Take any αn ∈ Dn. Think of it as generated
by some process that we believe has a distortion error that is close to the optimal distortion
error. Let rαn

n be the minimum radius r such that the balls of radius r with centers at a ∈ αn

cover K. We call rαn

n the geometric distortion error. This distance provides a good geometric
proxy for the distortion errors. Indeed, it is clear that uniformly the point distortion error for
αn is not larger than rαn

n and hence the minimal mean distortion error
∫

mina∈α∗

n

‖x−a‖dP (x)
is no larger than rαn

n . We will see that many stochastic processes can give good estimates for
rαn

n with a suitable choice of αn, and hence using these processes not only would we have
an estimate for the point distortion error, but we also would have an estimate for the mean
distortion error.

1.2. Using Stochastic Processes. Here is the full range of how one might consider distor-
tion errors generated by some sequence of stochastic processes T = (Tk : k ≥ 1). We assume
that the processes are defined on an underlying state space (Ω, βp, p) which might be a prob-
ability space, but generally would be a σ-finite measure space. For ω ∈ Ω, the range values
of Tk(ω) are in another measure space (Y, βP , P ) which is also naturally a metric space with
metric δY . Elements ω ∈ Ω are the parameters and the values (Tk(ω) : k ≥ 1) the quantizers
associated with the parameter ω.

Given ω ∈ Ω and y ∈ Y , we form the point distortion errors dTn (ω, y) = min
1≤k≤n

δY (y, Tk(ω)).

The mean distortion error ITn (ω) =
∫

dTn (ω, y) dP (y) is itself a stochastic process implicitly
dependent on the choice of ω. For a full analysis, we want to calculate the distribution function
and all the moments of dTn (ω, y). So in particular, we would want to know the distributional
behavior and moments of ITn (ω). It would be ideal to have the distribution functions and
moments of these quantities explicitly in terms of any additional parameters defining the
stochastic process (Tk : k ≥ 1). But we may have to accept just good estimates for sizes of
these as a function of n. In the case when the range space Y is actually a Euclidean space R

l

with the usual Euclidean metric for δ, then we would also want to know how these quantities
depend on the dimension l.

As indicated above, we can always try to overestimate these quantities using the geometric
distortion error. It turns out that sometimes the best we can do is to overestimate the
geometric distortion error using the discrepancy of the stochastic processes (Tk : k ≥ 1).
This discrepancy is the main tool in Monte-Carlo integration for the stochastic process and
it plays an important role in quantization too. In this case, the geometric distortion would
be calculated in terms of δY and would be a function primarily of ω and n. The discrepancy
would also depend on ω and n, but would be calculated with respect to a test family of sets,
for example the l-dimensional bounded rectangles in the case that Y = R

l.
In summary, this is the basic program that we use. We choose a sequence α = (α(k) : k ≥ 1)

by via some stochastic process that is explicit, even though it might not give the optimal
quantizers. We then compute an estimate for the mean distortion error, the point distortion
error, or the geometric distortion error using the n points αn = (α(1), . . . , α(n)). Say we have
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done this for the geometric distortion error. We know that

Vn(P ) ≤
∫

min
1≤k≤n

‖x− α(k)‖dP (x) ≤ rαn

n .

If we also have rαn

n ≤ KVn(P ), then we have a good estimate for the optimal mean distortion
error using the geometric distortion error. The best outcome would be if in fact

Vn(P ) ∼
∫

min
1≤k≤n

‖x− α(k)‖dP (x).

Then αn = (α(1), . . . , α(n)) would be what we call an asymptotically optimal set of n-means.
An even better situation would be if in addition we had rαn

n ∼ Vn(P ). However, this last
estimate, indeed both of these, seem to rarely be the case.

1.3. Outline. The comments above explain why we focus on results for stochastic processes
that give estimates of the form rαn

n = O(ρn) with ρn → 0 as n → ∞. We are most interested in
explicit sequences that give asymptotically optimal n-means, for given probability measures,
but these are difficult to obtain. So we are also interested in methods that would seem likely to
give good estimates of this type, and how close the error rate is to that of the asymptotically
optimal n-means.

In this article, we first consider general dynamical models in Section 2 for which there
usually is correlation of the outputs. We prove a Baire category result to show that there is
no global distortion rate for this large class. Then we discuss what is available for the more
special case of random models in Section 3 with uncorrelated variables. Following this, we
look at another special class of dynamical systems, the Diophantine models in Section 4. For
these there is again correlation, but now number theory plays a critical role. Each of these
approaches has advantages over the other. They also have advantages over carrying out the
detailed, hard work needed to construct explicit optimal n-means. The trade-off is that one
generally obtains only at best an estimate that is on the order of the optimal results.

2. Dynamical models

Suppose τ is an invertible, Lebesgue measure m preserving transformation of [0, 1]. Some-
times we may want to consider maps acting on probability spaces with a more complicated
geometry, but for many of the points we want to make in this article using [0, 1] as the
underlying space is perfect for giving the basic results.

Suppose τ is ergodic. Then for a.e. x ∈ [0, 1], the orbit {τk(x) : k ≥ 1} is dense in [0, 1].
For any y ∈ [0, 1], consider the approximation dτn(x, y) = min

1≤k≤n
|τk(x) − y|. We know that

for every y and a.e. x, we have dτn(x, y) → 0 as n → ∞. We would like to know estimates
for the rate that this tends to zero. Some ways this could be considered are these, with each
condition being weaker than the previous one: a) what rate does the max

y∈[0,1]
dτn(x, y) tend to

zero for a.e. x, b) what rates does dτn(x, y) tend to zero for every (or just a.e.) y and a.e. x,

or c) what rate does
∫ 1

0
dτn(x, y) dm(y) tend to zero for a.e. x? The ergodicity of τ guarantees

that M τ
n = maxy∈[0,1] d

τ
n(x, y) tends to zero for a.e. x, and so each of these measures do

converge to zero. We are asking for types of quantization error rate given by the n means
{τ(x), . . . , τn(x)}.

We do want to keep in mind that there is another quantization error that is stronger than
all of the ones above: a gap measurement. For each n, take (xk : 0 ≤ k ≤ n + 1) to be
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(τk(x) : 1 ≤ k ≤ n) ∪ {0, 1} in increasing order i.e. 0 = x0 ≤ x1 ≤ · · · ≤ xn ≤ xn+1 = 1. Let
the gap measurement be gτn(x) = max{xk+1 − xk : 0 ≤ k ≤ n}. Knowing the rate this goes
to zero would be the best we could expect to do since gτn(x) ≥ 2 max

y∈[0,1]
dτn(x, y). But also, the

geometric distortion error is the same thing since 2rτn(x) = gτn(x).
It is clear that the same question as asked above can be considered for any minimal dynam-

ical system. That is, take a compact metric space (X, dX) and a minimal homeomorphism τ
of X . Let dτn(x, y) = min

1≤k≤n
dX(τ

k(x), y). What can be said about how fast this tends to zero

for each y or maximized over y ∈ X?

Remark 2.1. We expect that the questions above for ergodic dynamical systems might be
best asked in the original natural geometric structure on which the map τ is defined. For
example, take an ergodic automorphism τ of the two torus T2. Replace the distance function
of absolute value by the two dimensional Euclidean distance inherited on T

2 from the natural
map π : [0, 1]2 → T

2. See Remark 2.13 for more details.
We could also be considering a differentiable mapping τ on a manifold M that is ergodic

with respect to a natural probability measure on M . These types of geometric structures
have been studied extensively from the viewpoint of generalizing the classical discrepancy
calculations that we commented on earlier. But there seems to be not as much known about
the quantization approximation itself.

It is evident also from a number of cases that a perhaps better measure of the quantization

error would be Iτn =
∫ 1

0
dτn(x, y) dm(y), taken for any x ∈ [0, 1]. Clearly, Iτn(x) ≤ M τ

n(x). See
in particular this issue as discussed in Section 3 and Section 4.

2.2. Rates are Always Non-generic. The above discussion show us that the following Baire
category result gives us some important information about the limits of geometric distortion
errors for the class of stationary dynamical systems. We take M to be the group of invertible,
measure-preserving transformations of the probability space ([0, 1], m). We consider the weak
topology on M i.e. the strong operator topology on the group of continuous linear operators
T τ (f) = f ◦τ , with f ∈ L2([0, 1]). A standard fact is that the weak topology on M is given by
a complete pseudo-metric. In particular, it is a Baire space i.e. any intersection of a countable
set of open, dense sets is also dense. We say that a set G in a Baire space is residual if it
contains such a dense Gδ set, and a set F is meager if it is a complement of a residual set.

Theorem 2.3. Take a fixed δ > 0 and ρn → 0, ρn > 0 for all n. Consider the set F of maps

τ ∈ M such that on a set of x ∈ [0, 1] with measure at least δ, we have Iτn(x) ≤ Kρn for some

constant K and for large enough n, both depending on x. Then this is a meager set in the

weak topology; actually its complement is a dense Gδ set.

Proof. We write F as
∞
⋃

K=1

∞
⋃

N=1

∞
⋂

n=N

{τ : m{x : Iτn(x) ≤ Kρn} ≥ δ}.

Let BN =
∞
⋂

n=N

{τ : m{x : Iτn(x) ≤ Kρn} ≥ δ}. We can see this is closed in the weak topology

determined by ∆ if we show each of the sets {τ : m{x : Iτn(x) ≤ Kρn} ≥ δ} is closed
in this topology. We can see this last fact is true as follows. Take any sequence (τs) in
{τ : m{x : Iτn(x) ≤ Kρn} ≥ δ}. Suppose (τs) converges to σ ∈ M in the metric ∆. This
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means that for all k ≥ 1, ‖f ◦ τks − f ◦ σk‖1 → 0 as s → ∞ for every f ∈ L1(X). So for all
k ≥ 1 and x,

∫

|x − τks (y)| dm(y) →
∫

|x − τk(y)| dm(y) as s → ∞. Hence, for all n and x,
Iτsn (x) =

∫

min
1≤k≤n

|x− τks (y)| dm(y) converges to Iτn(x) =
∫

min
1≤k≤n

|x − τk(y)| dm(y) as s → ∞.

Thus, because m{x : Iτsn (x) ≤ Kρn} ≥ δ for all s, we also have m{x : Iτn(x) ≤ Kρn} ≥ δ.
This shows that F is an Fσ set in the weak topology. So to prove our result, we need

only to show that BN contains no interior. Suppose on the contrary that τ ∈ W ⊂ BN

with W being a weak open set. Then by standard methods one can show there is a cyclic
transformation τ0 ∈ W . Even more, we can have a partition {Ej : j = 1, . . . , J} of X with
each set m(Ej) = 1/J and such that if τ0 is any measure preserving map that sends the sets
Ej , sending Ej to Ej+1 for all j, and EJ to E1, then τ0 ∈ W . Now (if necessary) we modify
τ0 (but keeping it a cyclic permutation of the sets Ej as above). First, take intervals Sj of the
same small, positive length and let Dj = Ej\Sj and Cj = Ej∩Dj . We now need to also adjust
the lengths of Sj, keeping them of some small, positive length (possible different) so that the
sets Dj all have the same measure. We now modify τ0 so that it actually cyclically permutes
the sets Dj in the sense above, and as a result the sets Cj too, with the same permutation
of the index j → j + 1, 1 ≤ j < J and J → 1. These adjustments are made so that τ0 is

still in W . Considering the center half of the intervals Sj , we see that for all x ∈
J
⋃

j=1

Dj , we

have for all m, Iτ0m (x) ≥ γ for some, possibly quite small, value γ > 0. Now, as part of these

adjustments, we can arrange that
J
⋃

j=1

Dj has measure at least 1 − δ
2
. This combination of

estimates guarantees that for all m, there exists x such that γ ≤ Iτ0m (x) ≤ Kρm. But since
ρm → 0 as m → ∞, we cannot have γ ≤ Kρm for all m. The conclusion is that BN cannot
have interior in the weak topology. �

Remark 2.4. This result means that there is no rate for Iτn , no matter how slow, for the
quantization error rate which would apply to a Baire category large set of maps M. Since
the ergodic mapping are themselves a dense Gδ set, for any specific quantization error rate
as above, there would be (many) ergodic mappings that do not satisfy this condition. This
means the same thing would be true when attempting to get a general rate result for dτn(x).
Moreover, it means that there cannot be a pointwise rate either i.e. some rate (ρn) such that
for all τ ∈ M, Iτn(x) ≤ ρn for large enough n depending on x, which holds for all x in some
set of non-zero measure.

Remark 2.5. There has recently been a similar result proved by A. Junqueira [J] in the
topological setting. It seems likely that just assuming a one point rate as in [J] will not be
adequate in the measure-theoretic category because maps can be changed on a null set without
changing their measure-theoretic dynamics.

We state this corollary of Theorem 2.3 to emphasize what has been proved.

Corollary 2.6. Take a fixed δ > 0 and ρn → 0, ρn > 0 for all n. Consider the set F of maps
τ ∈ M such that on a set of x ∈ [0, 1] with measure at least δ, we have the maximum gap
gτn(x) ≤ Kρn for some constant K and for all large enough n, depending on x. Then this is a
meager set in the weak topology; actually its complement is a dense Gδ set.

This is not to say that there cannot be a good rate result for a large set of ergodic maps.
Indeed, take any ergodic rotation τα given by α whose terms in the simple continued fraction
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for α are bounded. Then the result in Graham and Van Lint [GVL], and also in Schoissen-
geier [Sch] shows that ρn = 1

n
does work for the quantization error rate.

It is not clear how pervasive this rate result can be since conjugating these examples does
not necessarily preserve the gap structure. However, we can certainly get some rate for a
dense class. Just take a countable dense set of ergodic mappings and use diagonalization to
obtain a sufficiently slow rate. This gives,

Proposition 2.7. There is a countable set S of ergodic mappings in M which is dense in

weak topology and a decreasing sequence ρn → 0 as n → ∞ such that rτn(x) = O(ρn) for all

τ ∈ S and a.e. x.

Remark 2.8. It would be very useful to know that via cutting and stacking one can construct
an ergodic, rank one map τ such that 2ndτn(x) → 1 as n → ∞ for a.e. x. It is not clear what
rate works for maps like Chacon’s map, and it is not likely to have this property. But another
such construction, with many divisions and some spacers at each inductive step should give
at least an ergodic mapping, and one with this asymptotically optimal point distortion rate.

2.9. Discrepancy. The quantization process is closely related to discrepancy estimates. See
Kuipers and Niederreiter [KN], especially the chapter notes, for a wealth of background in-
formation and references on discrepancy. Another more recent reference that is also excellent
is Drmota and Tichy [DT]. We again take our interval modulo one, but we suppress this in
the notation for simplicity.

Definition 2.10. Given a sequence α = (α(k) : k ≥ 1) in [0, 1], the discrepancy

Dn(α) = sup{| 1
n

n
∑

k=1

1[x,y](α(k))− (y − x)| : 0 ≤ x < y ≤ 1}.

The discrepancy

D∗
n(α) = sup{| 1

n

n
∑

k=1

1[0,y](α(k))− y| : 0 < y ≤ 1}.

It is easy to see that D∗
n ≤ Dn ≤ 2D∗

n.
Now if Dn < δ, then for any interval I of length δ, there must be some αk ∈ I with k ≤ n.

So min
1≤k≤n

|x− α(k)| ≤ δ. Hence, we have the following useful basic estimate:

Lemma 2.11. For any x ∈ [0, 1], we have min
1≤k≤n

|x− α(k)| ≤ Dn(α).

In particular, we can consider the discrepancy Dn(Oτ(x)) where Oτ (x) is the forward time
sequence (τk(x) : k ≥ 1) for an erogdic map τ . As a consequence of the estimate in Lemma 2.11
and the non-generic behavior in Theorem 2.3, we have this Baire category result.

Corollary 2.12. Take a fixed δ > 0 and ρn → 0, ρn > 0 for all n. Consider the set F of maps
τ ∈ M such that on a set of x ∈ [0, 1] with measure at least δ, we have Dn(Oτ(x)) ≤ Kρn for
some constant K and for large enough n, both depending on x. Then this is a meager set in
the weak topology on M.

Remark 2.13. Here is an example of related dynamical rate questions that occur when the
underlying measure space is changed for which the only result on geometric distortion error
rates that we know is through discrepancy estimates. Take an ergodic automorphism A of
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the two torus T2. Let dAn (x, y) = min
1≤k≤n

dT2(y, Akx), where dT2 is the natural Euclidean metric

distance (taken mod one actually). Let IAn (x) =
∫

T2

dAn (x, y) dλT2(y). What can be said about

how fast this goes to zero for a.e. x? The estimate to prove or deny here would be that
IAn = O(1/n) since the ergodic map A is Bernoulli, and hence reasonably quickly mixing. If
instead, we consider dAn (x) = max

y∈T2

dAn (x, y), what is the rate that this overestimate for IAn goes

to zero for a.e. x? What we are most interested in is if these rates are really faster than what
would come out of using overestimates given by the natural two dimensional discrepancy

DA
n = sup

r<s,u<v

∣

∣

∣

∣

∣

1

n

n
∑

k=1

1[r,s]×[u,v](T
kx)− (s− r)(v − u)

∣

∣

∣

∣

∣

.

See Losert, Nowak, and Tichy [LNT], and Nowak and Tichy [NT], and citations in these
articles, for the overestimates on discrepancy that are available here, and in higher dimensions.
At least when one eigenvalue of A has modulus larger than 1, we have DA

n = O(ln5(n)/
√
n).

2.14. Shrinking Targets. Consider an ergodic mapping of [0, 1] and a fixed sequence (ρn)
decreasing to zero. A geometric shrinking target result would give information about the
Lebesgue measure of the set of points x such that we have for all y (or perhaps only a.e. y),
infinitely often τn(x) ∈ [y − ρn, y + ρn]. Typically we would want to know that either this
holds for a.e. x , or in contrast to this it might hold only on a null set of x. The first case is
called a visible geometric shrinking target, and the second case is called an invisible geometric

shrinking target. These extremes are the best types of geometric shrinking target properties.
It turns out that the geometric distortion error rτn(x) gives an estimate for a shrinking target

rate. Indeed, using Boshernitzan’s Theorem [B], we prove this theorem in [RR2].

Proposition 2.15. Suppose we have a sequence (ρn) such that for a.e. x, we have the

geometric distortion error rτn(x) ≤ ρn for large enough n depending on x. Then we have

the geometric shrinking target behavior that for a.e. x, we have for all y, infinitely often

τn(x) ∈ [y − ρn, y + ρn].

It follows that there is always some shrinking target rate.

Proposition 2.16. For every ergodic mapping τ , there is a sequence (ρn) tending to zero so

that for all y ∈ [0, 1], the sequence of intervals (Bρn(y) : n ≥ 1) is an a.e. visible geometric

shrinking target with respect to τ .

Remark 2.17. Shrinking target theorems for general dynamical systems are studied exten-
sively in the Rosenblatt and Roychowdhury [RR2], where there also are background and
references on this topic. In the end, the best values of rτn are not known in general. Indeed,
we see in this article sometimes we have to use the (generally) much larger discrepancy of the
sequence (τk(x) : k ≥ 1) to get an upper bound on the geometric distortion error. Similarly,
there is generally a loss of speed when using the geometric distortion error to derive a geo-
metric shrinking target results. This is what allows for difference in Baire category results
when considering suitable rates in shrinking target theorems as opposed to geometric distor-
tion error rates. In particular, in [RR2], it is shown there that shrinking target properties are
sufficiently flexible so the behavior is actually generic in many non-trivial cases, unlike with
quantization error rates where the behavior is only for a first category class of maps, as noted
in Theorem 2.3 and Corollary 2.12.
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3. IID Models

Consider a method of randomly generating n-means for uniform measure on the interval
[0, 1] modulo one. We take α = (α(k) : k ≥ 1) to be IID random variables with uniform
distribution. We actually are taking α(k, ω) with ω ∈ Ω as the model underlying probability
space (Ω, P ), but we will suppress the dependence on ω if it will not create confusion.

Suppose we want an estimate for dn({α1, . . . , αn}). The simplest approach would be to
estimate how many terms (α(1), . . . , α(n)) are needed so that each interval Ij = [j/M, (j +
1)/M ], j = 0, . . . ,M−1 contains at least one point, with high probability. This will guarantee

that our quantization error
∫ 1

0
min
1≤k≤n

|x− α(k)| dx is no larger than M
∫ 1/M

0
x dx = O(1/M).

Proposition 3.1. With probability 1−1/ ln(n), the point distortion error dn({α1, . . . , αn}) =
O(ln(n)/n).

Proof. It is easiest to consider the probability of the complementary case: no term α(k), k =
1, . . . , n is in some Ij . This probability is (1 − 1

M
)n for each such j. So an estimate for the

entire scope of the possibility is M(1 − 1
M
)n. Taking M = n/ ln(n) as a real variable would

give for large n, M(1− 1
M
)n ∼ 1/ ln(n). Hence, with probability 1− 1/ ln(n), each Ij contains

some α(k), 1 ≤ k ≤ n. This gives the estimate 1/M = ln(n)/n for the quantization error with
this probability. �

Remark 3.2. Proposition 3.1 only gives convergence in measure as n goes to ∞, but a simple
increase in the size of M can guarantee an almost sure result. Note: instead of the optimal
distortion error of C/n, this approach is giving a somewhat worse estimate of C ln(n)/n.

We can get more information from a distributional calculation. Consider the probability
P ({ω : n min

1≤k≤n
|x − α(k, ω)| ≥ t}). It is easy to see that this is (1 − 2t

n
)n. So scaling of

the distortion error by n results in convergence in distribution to the distribution function
d(t) = 1− e−2t, t ≥ 0, one can also compute expectations, and other moments. For example,
we have the following result.

Proposition 3.3. The probabilistic mean of the point distortion error in the IID case satisfies
∫

Ω

min
1≤k≤n

|x− α(k, ω)| dP (ω) = O(1/n).

Proof. One computes
∫

Ω

n min
1≤k≤n

|x− α(k, ω)| dP (ω)

=

∫ ∞

0

P ({ω : n min
1≤k≤n

|x− α(k, ω)| ≥ t}) dt =
n/2
∫

0

(1− 2t/n)n dt =
n

2(n+ 1)
.

�

Remark 3.4. Going further than this distributional convergence is not going to be possible
because of the Hewitt-Savage Theorem [HS]. It shows that if this sequence converges a.e.
or even just in measure, then the limit function would be a constant. The distributional
convergence shows that this is not possible.
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Suppose we want to improve our estimate on the point distortion error. As remarked in
Section 2.9, the quantization process is closely related to discrepancy estimates. Here is how
this works out in the case of IID sequences. We use the following result of K-L Chung [KLC]
which is the best possible discrepancy result for IID sequences.

Theorem 3.5. For a.e. ω,

lim sup
n→∞

√
2nD∗

n(α(ω))
√

ln ln(n)
= 1.

Combining this with Lemma 2.11 gives this upper bound on the distortion error.

Corollary 3.6. For a.e. ω, min
1≤k≤n

|x− α(k)(ω)| = O(
√

ln ln(n)/
√
n).

However, the actual point distortion error rate in the IID case is much faster than what
this discrepancy estimate gives. For simplicity of notation, for the maximum gap measure in
this case, write gn(ω) instead of gαn where α = {α(1, ω), . . . , α(n, ω)}. Here is the result of
Levy [L].

Proposition 3.7. For an IID uniform sequence in [0, 1], ngn(ω) = O(ln(n)).

What we are considering here is the first step in the classical problem of non-parametric
statistics: gap measurements. Beyond the largest gaps, one can also look for the next largest
gap, the next, and so on, and the sizes and distribution of the values of these successive gaps.
This type of order statistics of uniformly distributed IID processes in [0, 1] is now very well
understood. For improvement on Levy’s Theorem and more on order statistics for uniform
random variables see the articles by L. Devroye [LD1, LD2] and P. Deheuvels [PD1, PD2, PD3].
Indeed, Levy’s Theorem can be made more specific. For example, in L. Devroye [LD2], the
following result is shown.

Proposition 3.8. Almost surely in ω

lim inf
n→∞

(ngn(ω)− ln(n) + ln ln ln(n)) = − ln(2)

and

lim sup
n→∞

(ngn(ω)− ln(n))/2 ln ln(n) = 1.

There is one important improvement that can be made; see Cohort [PC]. If we also integrate
with respect to x as above, then there is a.s. convergence to a computable constant. That is,
we switch from a point distortion error to the mean distortion error for the IID model. Then
we have the following.

Proposition 3.9. There is a non-zero constant C such that for a.e. ω,
∫ 1

0

n min
1≤k≤n

|x− α(k, ω)| dx

converges to C as n → ∞.

Remark 3.10. Proposition 3.9 is proved by calculating variances and using an infinite series
method. Cohort [PC] actually carries these calculations out in greater generality than our one
dimensional setting. This article contains other interesting results related to a.s. convergence
of the random proxy for optimal n-means and conclusions that follow about the asymptotic
optimality of the random n-means.



10 Joseph Rosenblatt and Mrinal Kanti Roychowdhury

Remark 3.11. a) The most important point that the result in Cohort [PC] gives us is that the
mean distortion error is generally much smaller than the point distortion error, or a geometric
distortion error like the maximum gap measurement. These in turn are much smaller than
what would be given by using just the discrepancy of the random sequence. But then it
is well known that lim sup

n→∞
nDn = ∞ for every sequence. So it is not surprising that the

same thing is true in this IID model for nrn(ω), although we will see in Section 4 that this
type of divergence does not hold in some interesting deterministic settings. In any case, the
probability and statistics literature give good results for the IID model for the exact rate at
worst that nrn(ω) tends to ∞. Calculating this rate for higher dimensional cubes, and with
respect to other common distributions for the IID sequence besides the uniform distribution,
would be very worthwhile.

b) By the results in Section 2.14, specifically Proposition 2.15, by the above results, we
would get a geometric shrinking target rate of ln(n)/n for the random sequence of centers.
However, there is a much better result available as given in Shepp [Sh]. See Rosenblatt and
Roychowdhury [RR2] for more details.

If the measure P that we are quantizing is not uniform, then to get a good quantization, we
need to adjust the placement of the random variables (α(k) : k ≥ 1). The obvious approach
is to just take α(k) to be IID with distribution given by the fixed probability measure P .

Then we would have the empirical measures 1
n

n
∑

k=1

δα(k) converging weakly to P . The result

of Theorem 7.5 in Graf and Luschgy [GL] shows that our random empirical measure would
not be asymptotically optimal except in the case of uniform measure. See also the discussion
following Theorem 7.5 in [GL] .

4. Diophantine Models

4.1. The Weyl sequences. Now consider a method of generating good n-means that relies
on some classical number theory: a Diophantine model. We take α(k, θ) = {kθ} for all k ≥ 1.
Here θ is some irrational number and {t} denotes the fraction in [0, 1) such that t = {t} + k
for some integer k.

We know that α(θ) = (α(k, θ) : k ≥ 1) is uniformly distributed on [0, 1] and moreover
there is a classical estimate in Khinchin [AK] for the discrepancy Dn(α(θ)) that holds for
a.e. θ. This estimate come from metric facts about continued fractions and Diophantine
approximation. This discrepancy estimate is in some sense parallel to the iterated logarithm
method of Chung. See Kuipers and Niederreiter [KN] for some discussion of this theorem of
Khinchin.

Theorem 4.2. For any non-decreasing g such that
∞
∑

n=1

1
g(n)

< ∞, for a.e. θ, one has for the

sequence α(θ) = (kθ mod 1 : k ≥ 1)

nDn(α(θ)) = O(ln(n)g(ln ln(n))).

Remark 4.3. Curiously enough, the discrepancy estimate here is better than the discrepancy
estimate available in the IID case.

From Theorem 4.2 and Lemma 2.11, we clearly have this parallel to Proposition 3.1.

Proposition 4.4. If δ > 0, for a.e. θ, the point distortion error dn(α(θ)) = O(ln(1+δ)(n)/n).
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Remark 4.5. The estimate in Proposition 4.4 is not as good as the optimal one that would
be C/n. Actually, this estimate is not even as good as the one from the IID model, specifically
Proposition 3.1. However, this Diophantine approach has the virtue of being somewhat more
explicit than the IID approach.

The overestimate above from Khinchin’s Discrepancy Theorem is most likely too large to
give a good rate for the distortion error in the Diophantine model. For example, see the results
in Graham and Van Lint [GVL]. Their results on gaps tells us some very interesting facts.
Let dθn(y) = min

1≤k≤n
|y − {kθ}| and let Mθ

n = max
y∈[0,1]

dθn(y).

Proposition 4.6. There is an absolute constant γ > 0 such that for any irrational θ, we have

lim inf
n→∞

nMθ
n + γ ≤ lim sup

n→∞
nMθ

n.

This means that the quantization error rate obtained from ({kθ} : k ≥ 1) can never be
optimal in the strict sense, but only optimal by a bounded proportion of the optimal error
rate. These examples also demonstrate another sure way that discrepancy is too large. But
interestingly enough, if θ has bounded terms in its simple, continued fraction expansion, then
sup
n≥1

nMθ
n < ∞. Indeed, this is characteristic of such irrational numbers.

Remark 4.7. There does not seem to be a result in the literature of the following type: there
is a sequence (h∗

n : n ≥ 1) with h∗
n increasing to ∞, such that for Lebesgue a.e. θ, we have

nMθ
n = O(h∗

n), and for any other sequence (hn) with this property, sup
n≥1

h∗
n/hn is bounded.

Note: the discrepancy estimate we have used shows that for any δ > 0, nMθ
n = O(ln1+δ(n)).

So ln1+δ(n) a candidate for h∗
n. However, we do not believe that this rate is optimal and we

are still seeking the optimal quantization error rate h∗
n for this model.

Generally, we have for some C > 0, nDn ≥ C ln(n) infinitely often; see Kuipers and
Niederreiter [KN], Theorem 2.2 with k = 1, while ndθn is bounded when θ has bounded terms
in its continued fraction expansion. Note: for these same θ, the overestimate for nDn is
C ln(n); see Kuipers and Niederreiter [KN], Theorem 3.4.

Remark 4.8. It is possible that the Diophantine results here can be improved by a couple
of other different approaches. One approach would be to take a specific very good value of
θ, actually the Golden Mean ratio. See Motta, Shipman, and Springer [MSS] where optimal
transitivity is studied to limit the gaps in the sequence. Another approach would be to use
bounded remainder sets so that the discrepancy error can be perhaps better controlled. See
both Haynes, Kelly, and Koivusalo [HK1] and Haynes and Koivusalo [HK2].

Remark 4.9. Another interesting direction to pursue here is to take as our quantization
sequences such as {2kθ}, or more generally {nkθ} for some increasing sequence (nk). We do
not see right now any clear way to get gap measurements for a point distortion error rate
in these cases. However, there is considerable literature on discrepancy in these cases. For
example, see Philipp [P] for the case of powers of 2, that in some ways can be considered as
a Diophantine version of the IID model, as can be the case using any sequence (nk) which is
lacunary. This analogy might suggest that the point distortion error and the mean distortion
error are like the ones for the IID uniformly distributed case. For example, is it true that
the maximal gap gn in ({2kθ} : k ≥ 1) is on the order of ln(n)/n? Also, see articles by
Berkes, Fukuyama, and Nishimura [BFN], Aistleitner and Fukuyama [AF], and Aistleitner
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and Larcher [AL1, AL2] where very interesting results on what types of discrepancy estimates
are available for the sequences ({nkθ} : k ≥ 1). They show that any rate (up to standard
restrictions) is possible for a suitable sequence (nk).

4.10. The Farey points. One additional parallel here is that one can replace the Diophantine
model by (in some sense) its close relative: Farey fractions. It is more natural here to consider
each set Fn of Farey fractions as a potential good quantization for uniform measure. The
Farey fractions Fn of order n are all rational fractions p/q with q ≤ n and gcd(p, q) = 1.

The cardinality of Fn is 3n2

π2 + (n ln(n)). As in Kargaev and Zhigljavsky [KZ1], let dFn (x) =
min

p/q∈Fn

|x− p
q
|. They give the following mean and point distortion asymptotics.

Proposition 4.11. Moreover, the mean distortion error

IFn =

∫ 1

0

dFn (x) dx =
3 ln(n)

π2n2
+O(

1

n2
)

as n → ∞.

Proposition 4.12. For any ǫ > 0 and for a.e. x:

lim
n→∞

n2dFn ln1+ǫ(n) = ∞
lim inf
n→∞

n2dFn ln(n) = 0

lim sup
n→∞

n2dFn / ln(n) = ∞

lim
n→∞

n2dFn / ln
1+ǫ(n) = 0.

Remark 4.13. These very good estimates suggest that in the Diophantine case we might have
similar results. One reason for expecting this is that the arguments for the approximation by
Farey fractions often take advantage of properties of Farey fractions that also give insights
into the Three Gaps Theorem for the Weyl sequence in the Diophantine model, see Polanco,
Schultz, and Zaharescu [PSZ]. For a recent article about the Three Gap Theorem itself, see
T. Van Ravenstein [VR]. What is thus suggested is that we can perhaps expect the gaps in
({nθ}) to be on the order of ln(n)/n for a.e. θ. But the precise over and under-estimates
in terms of limit supremum and limit infimum may cause some variation in this. But also,
perhaps for a.e. θ, there is some constant C(θ) such that

∫ 1

0

min
1≤k≤n

|x− {kθ}| dx ∼ C ln(n)

n
as n → ∞.

Remark 4.14. We should observe that there is a classical discrepancy estimate when using the
Farey fractions Fn. The first result in this direction appears in Niederreiter [N1]; he shows
that using the Nn points in Fn, one has for the discrepancy c1√

Nn

≤ DF
Nn

≤ c2√
Nn

for some

constants c1 and c2. Following this, Dress [FD] gave the very nice explicit value: DF
Nn

= 1
n
.

Given that Nn ∼ 3n2

π2 , this explains the result that Niederreiter had obtained earlier on the
discrepancy of the Farey points.
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The asymptotic deviation (in a suitable measure) of the Farey fractions from uniformly
placed points is equivalent to the Riemann Hypothesis. The classical result is this. Take the
Farey fractions Fn and let Nn be the cardinality of Fn. Let (f

n
k : 1 ≤ k ≤ Nn) be Fn written

in increasing order. Consider ∆n(s) =
n
∑

k=1

|xk − k
n
|s for some fixed s. Franel [F] proved that

the Riemann Hypothesis is equivalent to ∆n(2) = O(nr) for all r > −1. In particular, this
would show that ∆n(2) = O(1/

√
n), and hence this sum deviation tends to zero as n → ∞.

Also, Landau [Landau] showed that the Riemann Hypothesis is equivalent to ∆n(1) = O(nr)
for all r > 1/2.

This way of measuring the offset from a regular distribution represented by uniformly spaced
points suggests another way in which we can test our sequence α for the distance from
optimal n-means. We take any sequence α = (α(k) : k ≥ 1) generated by random models in
Section 2, Diophantine models in this section, or dynamical methods as in Section 4. We take
x1, . . . , xn to be α(k), k = 1, . . . , n written in increasing order. Then consider the difference

∆α

n (s) =
n
∑

k=1

|xk − k
n
|s for some fixed s, e.g. s = 1 or s = 2. What is the best over-estimate

ρ(n) in each of these cases so that ∆α

n (s) = O(ρ(n)) for all n ≥ 1? Indeed, when do we have
∆α

n (s) → 0 as n → ∞? This is at least conjecturally the case for the Farey fraction estimate
in place of the Weyl sequence. What happens in the Diophantine model? What happens
with a random model or a dynamical systems model? We do not know the answers here yet,

but something can be said in the Diophantine case. Given θ, take (x
(θ,n)
k : 1 ≤ k ≤ n) to be

{{kθ} : 1 ≤ k ≤ n} written in increasing order. Let ∆θ
n(s) =

Nn
∑

k=1

|x(θ,Nn)
k − fk

n |s. What is the

best rate control for this in terms of n, given fixed θ? It is not hard to see using the Three
Gaps Theorem that in this case ∆θ

n(s) = O(n). So to get smaller sizes for ∆M
n (s), we will have

to switch to a random model or dynamical model M that is not as rigid as the Diophantine
model.

Remark 4.15. Given two sequences α1 and α2, it is not clear what geometric or measure-

theoretic property is equivalent to a rate control on ∆
(α1,α2)
n (s) =

n
∑

k=1

|α1(k)− α2(k)|s.

Remark 4.16. It is not too difficult to prove a Baire category result of this type. Consider

a Lebesgue measure-preserving, ergodic invertible map τ of [0, 1]. Given y ∈ [0, 1], let (x
(τ,y)
k :

1 ≤ k ≤ n) be (τk(y) : 1 ≤ k ≤ n) in increasing order. For p, 0 < p < ∞, let the deviation

∆
(τ,y)
n (s) =

n
∑

k=1

|x(τ,y)
k − k

n
|s. Given any rate ρn > 0 such that ρn/n → 0 as n → ∞, and any

ǫ > 0, the set B consisting of mappings τ such that ∆
(τ,y)
n (s) = O(ρn) for all y ∈ B with

m(B) ≥ ǫ, is first category in the ergodic mappings with the usual symmetric pseudo-metric.
Hence, the generic mapping yields no rate result at all. It is not actually clear at this time
if there are ergodic mappings for which there are rate results. The obvious candidate would
be a rotation by an angle whose continued fraction expansion has bounded elements, like the
Golden Mean ratio.
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