Sea turtle hatchling sex ratios determined via hormone assay: implications of climate change?

William Hilton^{1,3}, Matthew Godfrey², and Camryn Allen³

¹California State University Stanislaus, Turlock, CA

² North Carolina Wildlife Resources Commission, Beaufort, NC

³Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA

Sea Turtle Species Listed Under the U.S Endangered Species Act (ESA)

Green-Chelonia mydas

Leatherback – Dermochelys coriacea

Hawksbill – Eretmochelys imbricata

Kemp's Ridley – Dermochelys coriacea

Loggerhead – Caretta caretta

Olive Ridley – Lepidochelys olivacea

Conservation Efforts

High Priority for U.S. National Marine Fisheries Service and U.S. Fish and Wildlife Service

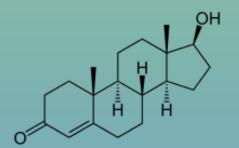
Need to construct effective management approaches

- Critical Habitat
- Genetic Origin
- Demography

One critical piece of demographic data is the **Sex Ratio** of sea turtle populations

Sex Ratio data is important for determining sex-specific survival rates


Cannot use external morphology for sex determination of immature turtles


Cannot use Genetics for sex determination of immature turtles

NO SEX CHROMOSOMES

Sea turtle sex is temperature dependent

Hormone Concentration

Then: Radioimmunoassay (RIA)

Now: Enzyme-linked Immunosorbent Assay (ELISA)

Cheaper, quicker results, sensitive, and no radioactive materials

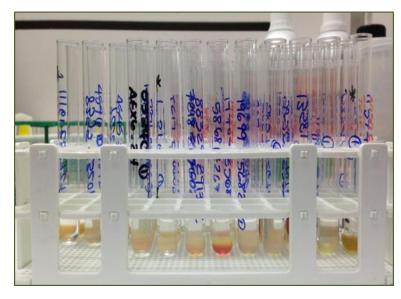
RADIOACTIVE I

Past, Present, and Future?

- ENZO testosterone ELISA validated for use with the six species listed under the ESA
 - Effective at determining sex of immature sea turtles
 - Cross-lab analysis with RIA shows ELISA is as effective

Global female bias

Immature Green Turtle Sex Ratio (F:M)	Location		
0.96:1.0	Hawaii		
1.40:1.0 Bahamas			
2.0:1.0	Heron Island, Australia		
3.26:1.0	Shoalwater Bay, Australia		
3.5:1.0 San Diego Bay, California			
4.0:1.0	Sabah, Malaysia		
4.2:1.0	Clack Reef, Australia		


My Project

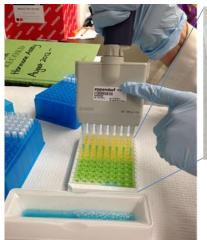
 Validate testosterone (T) and estradiol (E) ELISA for use with loggerhead sea turtle plasma

- 2. Measure the concentration of both T and E in hatchling plasma samples
- 3. Analyze the E:T ratios and assign sex to loggerhead hatchlings
- 4. Compare assigned sex to known sex

Methods Day 1- Hormone Extraction

Followed D. W. Owen's lab extraction methodology

(Wibbles et al. 1987)

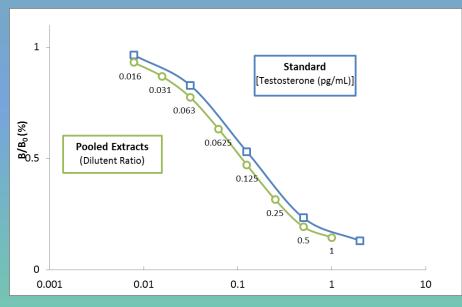

- 1. 50 uL plasma
- 2. Ether added to plasma
- 3. Frozen with liquid nitrogen
- 4. Ether layer decanted
- 5. Dried down
- 6. Re-suspended with acetone
- 7. Dried down overnight

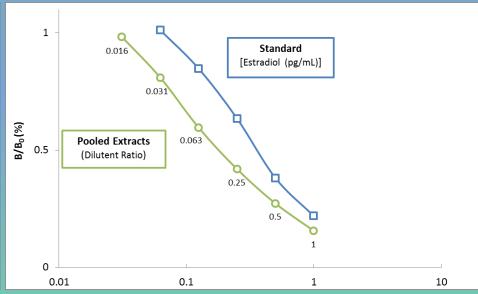
Methods Day 2- Hormone Assays

ENZO High Sensitivity Testosterone ARBOR ASSAYS Estradiol

Quantify hormone concentration via a colorimetric competitive enzyme immunoassay

ENZO Testosterone


Final Plate Color Reaction


Results - Assay Validations

Parallelism/linearity test demonstrated that the assay detects hormones in plasma samples

ENZO High Sensitivity Testosterone

ARBOR ASSAYS Estradiol

Results – Assigned Sex

	n	Estradiol Mean ± STD Range (pg/mL)	Testosterone Mean ± STD Range (pg/mL)	E:T Ratio
Males	25	9.1 (n = 1)	28.4 ± 19.9 3.1 – 88.8	0.7 (n = 1)
Females	20	39.2 ± 20.1 13.4 – 80.0	20.2 ± 8.2 9.5 – 34.2	1.6 (n = 13)
Unknown	13	Not Detectable	Not Detectable	-

Results- Comparison to known Sexes

 Data sent to collaborator.... We are awaiting confirmation of predicted sexes

Acknowledgements

This project has been made possible with support from National Marine Sanctuary Foundation (nmsfocean.org).

Special Thanks Ralph Pace Lesley Anderson Gaby Serra-Valente Daniel Vitensen

More Neat Pics

© Ralph Pace NMFS Permit # 16803

NMFS Research Permit #1591

Questions?

