
Chapter 3.3: Machine Translation: where are we at today?  

Andy Way 

I. Introduction 

Machine translation (MT) usage today is staggering. Consider Google Translate,1 which as of 

May 2016 was translating an average of 143 billion words a day – 20 words/day for every 

person on the planet, just for a single (albeit the largest) MT service provider – across 100 

language combinations, a doubling in translation volume in just 4 years. This number alone 

already means that MT quality is ‘good enough’ for a range of use-cases, so continuing to 

question the utility of MT is moot. 

The aim of this chapter is to explain to translation/interpreting students and academics, 

professional translators and other industry stakeholders how MT works today, and how the 

field has altered in the last 30 years. I describe the underlying reasons why MT engine-

building changed from being underpinned by grammatical rules to the situation today where it 

is almost entirely data-driven; while for some time most of the research in academia was 

corpus-based, the leading MT engines in industry remained almost wholly rule-based, but 

this dichotomy has now largely disappeared, principally due to the introduction of the Moses 

Statistical MT (SMT) toolkit (Koehn et al., 2007), and the subsequent rise of Neural MT 

(NMT). 

While it was already the case that the dominant paradigm was SMT, a performance ceiling 

was reached relatively quickly, such that for the past ten years or so, MT system developers 

have been ‘smuggling in’ linguistic information in order to improve performance as 

demonstrated by both automatic and human evaluation. Until just three or four years ago, 

SMT was undoubtedly state-of-the-art, but NMT has recently emerged, and in academic 

circles at least, appears to be so promising that many protagonists are already claiming it to 

have surpassed the performance of SMT. In this chapter, I will consider the extent to which it 

is appropriate at this juncture to make this call; SMT remains dominant in the translation 

industry among many translation providers, but the big players like Google Translate and 

Bing Translator2 have already launched NMT systems for many of their language pairs.  

When SMT was launched, many practitioners advocated a ‘pure’ approach, where the 

strategy taken was “let the data decide”; no data cleaning or annotation was countenanced, 

at least initially, so that whatever quality was obtained was due entirely to the intrinsic 

characteristics of the approach rather than any pre-processing techniques. Nonetheless, as 

mentioned above, SMT system developers observed improvements in performance as 

measured by automatic evaluation metrics when introducing linguistic information into the 

engine-building process. With the advent of NMT, similarly ‘pure’ approaches to NMT are in 

vogue, but I question whether here too quality will improve only if syntactic, semantic and 

discourse features are integrated. 

It is clear that human translators have for some time now been using Translation Memory 

(TM) systems (Heyn, 1998) to good effect. Many researchers have demonstrated that SMT 

and TM can be integrated to improve translator productivity (e.g. Ma et al., 2011; Bulté et 

al., 2018), and these benefits now appear fairly regularly in today’s industry-leading CAT 
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tools. TM integration has yet to be done for NMT, and given that I expect TM technology to 

remain as an essential tool in the translator’s armoury for some time to come, I will consider 

how such integration might be brought about. 

I will also discuss how MT quality is measured, the extent to which ‘traditional’ MT 

evaluation is equipped to demonstrate improvements delivered by NMT, what human 

evaluations are currently adding to the mix, and how emerging use-cases where there is no 

place for human translators cause us to fundamentally question the notion of quality. 

 

Figure 1: Progress in Machine Translation over the years (Luong et al., 2016) 

II. The Rise and Fall of Different MT Paradigms 

In this section, I provide a brief history of the major paradigms that have been put forward in 

MT. As Figure 1 illustrates schematically, different MT models have been in vogue at 

different times. Early MT systems were entirely rule-based, but in the 1980s corpus-based 

models came along and became the state-of-the-art by the mid-1990s. In just the last few 

years, the advent of NMT has really shaken up both academia and the wider MT and 

translation industry, and now appears to have taken over the mantle from SMT as the 

dominant paradigm today. In the next sections, I describe briefly the mechanics of each of 

these system types, as well as how the field reacted when they were suggested as 

competing paradigms to the dominant approaches of the day.  

II.1 From Rule-based MT to SMT 

As I describe in Way (2009), when Peter Brown of IBM (at the time) stood up at TMI in 

Pittsburgh and again at COLING in Budapest in 1988 and presented SMT as an alternative 

to rule-based translation, significant players in traditional approaches to MT were astonished. 

Pierre Isabelle’s reaction was “We were all flabbergasted. All throughout Peter’s 



presentation, people were shaking their heads and spurting grunts of disbelief or even of 

hostility.” Harold Somers noted “The audience reaction was either incredulous, dismissive or 

hostile”, while Walter Daelemans observed “the Leuven Eurotra people weren’t very 

impressed by the talk and laughed it away as a rehash of ‘direct’ (word-by-word) translation”. 

Prior to Brown et al. (1988a/b), rule-based MT (RBMT) was divided into two camps: 

transfer-based MT and interlingual MT. The Vauquois Pyramid (see Figure 2) visualises 

schematically what was involved in building such systems quite succinctly, with the length of 

each arrow corresponding to roughly the amount of work needed by each component. 

 

Figure 2: the Vauquois Pyramid depicting the three main approaches to RBMT: direct 

translation, transfer-based and interlingual MT (Vauquois, 1968) 

Transfer and interlingual systems were both known as indirect, second-generation 

approaches to MT, and were compared to direct, first-generation MT systems. As can be 

seen in Figure 1, these latter did very little analysis (‘parsing’) of the source language or 

structural generation of the target language; that they worked at all was down to their very 

large bilingual dictionaries. Somewhat surprisingly, these systems enjoyed a relatively long 

shelf life, partly due to the fact that they were very robust, and compared to indirect systems, 

always produced some output, which between ‘similar’ languages (e.g. Portuguese and 

Spanish) could often be very reasonable indeed. In contrast, given that indirect systems 

depended on parsing (to different depths) the source-language input, they were explicitly 

designed to rule out ill-formed input; when I worked on Eurotra (King & Perschke, 1984) 

between 1988-1991, we wrote explicit test suites (Arnold et al., 1993) containing well-formed 

sentences that the analysis component ought to parse correctly and pass on an appropriate 

representation to the transfer stage, as well as ill-formed strings that the analysis stage 



should decree ungrammatical and cause further processing to cease. There were two main 

problems with such an approach: (i) there was a general assumption that people would 

always try to input well-formed sentences into an MT system, and (ii) given that the parser 

was based on a set of handcrafted rules by an expert linguist which was necessarily 

incomplete, the system could not tell the difference between a truly ill-formed string and well-

formed input that simply was not covered by the set of linguistic rules in the grammar. 

Note that in transfer-based systems, the three processes do ‘about the same’ amount of 

work: the source string is parsed into a syntactic (constituency or dependency) tree indicating 

the main actors in the sentence as well as any modifiers; this source-language 

representation is then passed to the transfer component per se, where appropriate lexical, 

syntactic and semantic rules generated a ‘meaning-equivalent’ target-language structure; this 

target dependency tree is then input into the generation (or ‘synthesis’) phase, where a set of 

target-language rules try to produce an appropriate translation. 

In contrast, in interlingual systems, there was no explicit transfer phase, so that the output 

from the deep analysis phase was exactly the same as the input to the deep synthesis 

phase. While this was very attractive in theory, it proved impossible to bring about from a 

practical perspective. Languages simply don’t act the same way, with different languages 

having different ways of representing similar concepts. For example, in English, the 

periphrastic expression “to bake with cheese on top” has to be used, while French has a 

single lexical item – gratiner – to represent the same concept. Assuming an interlingual 

system involving French, English and Japanese, the amount of work that would need to be 

done in (say) a French-to-English engine just because Japanese has different words for “my 

mother”, “your mother” and “mothers in general” would be wasteful, given that neither French 

nor English has different lexical entries for these concepts (Hutchins & Somers, 1992). 

At the onset of SMT in the late-80s, it was clear what camp you were in: either the transfer 

camp or the interlingual camp. However, in Way (2009), I noted that pretty quickly, these two 

camps merged to form a de facto alliance against this arrogant statistical newcomer which 

was set to undo all that they stood for. Despite this resistance, the language used early on by 

the new statistical practitioners was conciliatory, indicating a hope that the two communities 

would work together for the betterment of the discipline. I lamented that this did not happen, 

and that this impaired the creation and adoption of the syntax-based systems that came 

onstream in the late 2000s. 

Nonetheless, certainly by the mid-1990s, SMT had come to be dominant, largely due to 

the very influential IBM models laid out in Brown et al. (1993), one of the seminal papers in 

the field. At this time, however, most SMT was word-based, which was odd when one 

considers that example-based MT (Nagao, 1984; Carl & Way, 2003) had from its very 

inception considered the phrase – not the word – as the primary linguistic construct to be 

used as the unit of translation. Koehn et al. (2003) demonstrated how SMT might work in a 

phrase-based manner, and with the advent of tools like Giza++ (Och & Ney, 2003, for word 

alignment) and the Moses toolkit (including phrase alignment) in 2007, phrase-based SMT 

(PBMT) became the dominant paradigm for the next ten years.  

Larger and larger amounts of SMT training data came onstream (e.g. Europarl: Koehn, 

2005), which allowed better and better PBMT models to be built, but only for those 

languages and genres where sufficiently large sets of aligned source—target sentences 

existed. The licence issued with Moses allowed it to be used commercially, so SMT systems 



were quickly deployed to good effect in real industrial scenarios.3 SMT was robust, and 

capable of very good translation output, but suffered from problems such as the omission of 

target-language equivalents to parts of the source sentence (including on occasion really 

important words like not), and wrong target-language word order. As with RBMT, PBMT 

worked especially well between closely-related languages, and much less well when 

translating into morphologically complex languages (like German). 

It was certainly the case when SMT first came along that most system developers relied 

solely on larger and larger amounts of training data to deliver improvements in translation 

quality, as measured by automatic metrics like BLEU (Papineni et al., 2002), METEOR 

(Banerjee & Lavie, 2005) and TER (Snover et al., 2006). However, little by little, SMT engine-

builders began to realise that the only way to break through the performance ceiling –often a 

pretty good level of quality, mind – was to integrate additional syntactic and semantic 

information (e.g. Chiang, 2005). By 2015 or so, such linguistically informed PBMT systems 

were acknowledged to be the state-of-the-art in the field. 

II.2 From SMT to NMT 

However, around this time, researchers (including many newcomers to the field of MT) 

started to demonstrate that NMT systems could be built with good performance. While the 

preferred system set-ups were not so different from those that had been conceived some 

time before (e.g. Forcada & Ñeco, 1997), the hardware that facilitated the huge explosion in 

computation required was now sufficiently powerful to allow these systems to be built in 

practice. 

The first NMT systems started off using convolutional neural nets (Kalchbrenner & 

Blunsom, 2013), but could not beat a PBMT baseline (cdec: Dyer et al, 2010). Improvements 

were seen quite quickly with the first encoder-decoder frameworks (Sutskever et al., 2014), 

which were subsequently extended with a source-language attention model (Bahdanau et al., 

2014). While further improvements have been seen in the interim, this set-up – an encoder-

decoder model with attention – remains pretty much the state-of-the-art today. 

What really disrupted the field were the results achieved by NMT systems at the 

International Workshop on Spoken Language Translation in 2015.4 Luong and Manning 

(2015) demonstrated clear wins over a range of different SMT systems for English-to-

German, a significantly difficult language pair, in terms of automatic evaluation scores. 

Bentivogli et al. (2016) performed an in-depth human evaluation of exactly how the NMT 

model of Luong and Manning (2015) improved in terms of quality, noting that significantly 

fewer morphological, lexical and word order errors were made compared to SMT. They also 

demonstrated that NMT lowered overall post-editing effort by about 25%.  

One of the main reasons why NMT improves compared to SMT on a range of use-cases is 

that once the source sentence has been processed by the encoder, the full context of the 

sentence is available to the decoder for consideration as to what target-language words and 

phrases should be suggested as part of the translation. That is, all source words and their 

context – what are known as “word embeddings” (cf. Mikolov et al., 2013), i.e. how each 

word relates to each other in the particular sentence at hand – are encoded in a single 

                                                           
3 The first commercial system, LanguageWeaver, was based not on Moses but rather on the SMT models of 
Kevin Knight and Dan Marcu at ISI (cf. Benjamin et al., 2003). 
4 http://workshop2015.iwslt.org/ 
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numerical representation (a vector of numbers indicating the final state of the encoder) which 

is sent to the decoder to generate a target-language string. In SMT, a source sentence is 

only translated using lexical and phrasal chunks; unless it is very short, it is never translated 

en bloc. Clearly having a window on the full source sentence is advantageous compared to a 

restriction of just a few words at a time, but managing all that information is non-trivial. 

The encoder-decoder architecture works well, but significant improvement came about 

when the source-language attention model was added. Rather than accepting that all source 

words are equally important in suggesting all target-language words, the attention model 

(similar to word and phrase alignments in SMT) demonstrates which source words are most 

relevant when it comes to hypothesising target-language equivalents. In practice, this means 

that each translation is generated from specific encoder states, with information which is 

much less relevant from other words – perhaps some distance away from the current word of 

focus and of little or no relevance to its translation – being ignored. 

III. Is NMT the new state-of-the-art? 

While the study by Bentivogli et al. (2016) was significant and far-reaching, it has to be noted 

that it only examined one language pair (English-to-German) and one use-case (TED talks). 

Further studies (e.g. Castilho et al. (2017)) have shown that there are situations where PBMT 

can still beat NMT in terms of both human and automatic evaluation. It is widely recognized 

that much larger amounts of training data are needed for good NMT performance compared 

to SMT (cf. Koehn & Knowles, 2017), and training and translation times remain much slower 

than for SMT. 

Nonetheless, many MT practitioners believe that NMT is – or at least will be very soon – 

the new state-of-the-art, to the extent that all MT papers in the very top academic 

conferences feature only NMT models, and Moses scores are only given as comparative 

baseline levels of quality. 

III.1 How is MT Quality Measured? 

In Way (2018), I note that there are three ways in which MT quality is typically measured: via 

human evaluation, automatic evaluation, and task-based evaluation. In the former, human 

raters are asked to select from a (more or less) fine-grained numerical scale for “fidelity” (or 

“accuracy” or “adequacy”), the extent to which a translated text contains the same 

information as the source text; and (ii) intelligibility (or “fluency”), the extent to which the 

output sentence is a well-formed example of the target language.5 While such evaluations 

are (usually) very informative, they are subjective, often inconsistent and take a long time to 

carry out. Accordingly, as is often the case in MT, insights from speech recognition were 

brought to bear in this field too, in particular Word Error Rate (WER: Levenshtein, 1966), and 

Position-Independent Word Error Rate (PER: Tillmann et al., 1997). However, it wasn’t until 

the BLEU metric came in that MT evaluation per se took off. BLEU (and NIST (Doddington, 

2002), which came along around the same time) used different (but related) ways to compute 

the similarity between one or more human supplied ‘gold standard’ references and the MT 

output string based (largely) on n-gram co-occurrence. 

                                                           
5 Here I give primacy to the terms originally used in the ALPAC report (Pierce et al., 1966), with more usual 
terms given in parentheses. 



In Way (2018), I provide a number of problems with such metrics, as well as others arising 

from their (mis)use in the field. I will not rehash those here, but ultimately an MT system 

needs to be used for a particular use-case, which is where task-based evaluation comes in: 

who is the translation actually for? As I point out in that paper:  

“WMT evaluations regularly include specific tasks nowadays, including medical 

translation (e.g. Zhang et al., 2014), automatic post-editing (e.g. Chatterjee et al., 

2015) and MT for the IT domain (e.g. Cuong et al., 2016). We take this as evidence 

that the community as a whole is well aware of the fact that when evaluating MT 

quality, the actual use-case and utility of the translations therein need to be borne in 

mind.” 

III.2 Does MT Evaluation need to change with NMT coming onstream? 

It has to be acknowledged that the problem of MT quality assessment is an unsolved one, 

and research efforts are ongoing to improve on the metrics that are commonly used today. 

One question that is worth asking is the extent to which such metrics are sufficiently 

discriminative to accurately demonstrate the real improvement that NMT offers over SMT. 

The translational improvements discovered by Bentivogli et al. (2016) are astonishing, 

especially bearing in mind that PBMT had been the dominant paradigm for 25 years or so, 

and that NMT has only come in as a realistic alternative in the past four years. In my opinion, 

n-gram-based metrics such as BLEU significantly underplay the real benefit to be seen when 

NMT output is evaluated. As I note in Way (2018), it simply cannot be the case that a 2-point 

improvement in BLEU score – almost an irrelevance on a real industrial translation use-case 

– which was typically seen in WMT-2016 where NMT systems swept the board on all tasks 

and language-pairs (Sennrich et al., 2016), can be reflective of the improvements in word 

order and lexical selection noted by Bentivogli et al. (2016). Note that Shterionov et al. (2018) 

actually computed the degree of underestimation in quality of three popular automatic 

evaluation metrics – BLEU, METEOR and TER – showing that for NMT, this may be up to 

50%. 

Metrics such as ChrF (Popović, 2015) which operate at the character level – or 

combinations of word- and character-based models (e.g. Chung et al. 2016; Luong & 

Manning, 2016)6 – may be a move in the right direction, but the field will doubtless see new 

metrics tuned particularly to NMT in the very near future. 

III.3 Is the Translation Industry ready to provide NMT? 

Let us suppose that NMT either already is the new state-of-the-art in terms of MT quality, or 

very soon will be. The big free online players – Google Translate and Bing Translator – have 

both switched over at least some of their language-pairs to NMT models. Note that Amazon 

AWS only very recently announced their own NMT service,7 so there is no doubt that where 

the largest multinational companies are concerned, the decision has been made to throw in 

their lot with NMT. 

                                                           
6 In order to mitigate the problem of unknown words, character-based NMT models were proposed; if a word is 
unknown at the level of the lemma, some translation knowledge may be available at the subword level. 
Passban et al. (2018) demonstrate that splitting lemmas into roots and morphemes in a principled linguistic 
manner outperforms such arbitrary subword models. 
7 https://aws.amazon.com/translate/ 

https://aws.amazon.com/translate/


Accordingly, those language service providers (LSPs) who rely on online MT provided by 

third-parties such as these will already have benefited from the improvements in quality 

afforded by NMT. But what about those MT providers who have developed services in-house 

around the Moses platform? I have already noted that neural MT engine training times are 

much slower – typically of the order of several weeks – than their SMT counterparts, so 

much so that people are claiming PBMT training times to be fast nowadays, although of 

course nothing has changed in that regard; it is simply the case that in comparison, NMT 

model training is incredibly slow, with billions of mathematical optimisations needed until the 

neural net converges to its optimal set-up. I have also noted that typically an order of 

magnitude larger data is needed to train a good NMT model compared to PBMT, and it is a 

fact that these datasets do not exist for almost all industry clients. In addition, the hardware 

needed to train an NMT system is expensive; GPUs contain thousands of CPUs, each of 

which can carry out its own calculation in parallel. Assuming most suppliers of customised 

MT engines do not have such hardware in-house, but rather rely on cloud-based services, 

the cost of additional MT engine training will have to be passed on to clients, although the 

latter should see most if not all of this returned by the huge improvements in MT quality and 

resultant decrease in post-editing effort required. 

Those forward-thinking translators who have already integrated MT into their pipeline 

should benefit immediately from the improvements in MT quality to be seen. As I noted in the 

previous section, current MT quality assessment metrics are insufficiently discriminative to 

provide a realistic representation of the absolute improvement in quality seen with NMT, so it 

is open to doubt as to whether LSPs will be able to reflect this better quality in terms of 

higher levels of TM fuzzy matches (Sikes, 2007), with the concomitant reductions in pay to 

translators who are post-editing MT output. It seems to me that this is a good time for 

translators who have yet to use MT in their translation workflow to consider doing so without 

delay, as their productivity should rise pretty quickly, while LSPs are still tied in to post-

editing rates of pay related to SMT. 

MT has been integrated very well now with existing TM tools, with TM matches above well-

defined thresholds being suggested to translators for post-editing, and MT used for all 

segments below such thresholds.8 NMT shouldn’t make too much of a difference, here, 

except that even more so than SMT, NMT output can be deceptively fluent; sometimes 

perfect target-language sentences are output, and less thorough translators and 

proofreaders may be seduced into accepting such translations, despite the fact that they may 

not be related to the source sentence at hand at all! In contrast, when the attention model 

provides too much focus on particular source-language words, errors such as that in Figure 3 

can be seen; fortunately, these are easy to spot. 

Finally, on the subject of quality, for a long time SMT models failed to deliver good enough 

quality for English-to-Japanese for Japanese translators to even consider post-editing MT 

output. Mike Dillinger (personal communication) now informs me that the quality seen from 

NMT is leading them to reconsider, and the sorts of questions being asked are exactly the 

same as those raised years ago in the scope of European languages. 

 

                                                           
8 Moorkens and Way (2016) discuss the extent to which translation jobs should be carved up in this way, as 
well as how MT output is significantly preferred to TM matches when fuzzy match thresholding is removed. 



 

Figure 3: Google NMT error due to an overly attentive Attention Model (18th July 2017) 

IV. Informing research through the industry 

As I stated at the outset, MT has never been as popular, and pretty much everyone in the 

industry knows that they have to embrace it as an enabling technology. Rather than 

outsource their MT requirements, companies like Google, Microsoft, Facebook, eBay and 

Amazon have (understandably) been recruiting leading academics to build their own internal 

MT offerings for some time now. 

However, the result is that the relatively few MT centres of excellence that existed five 

years ago have become even rarer. I also took three years leave-of-absence to build 

industry-leading customised MT engines for two translation companies in the UK, but 

decided to return to my academic position to keep the MT team at my university together. 

One knock-on benefit to academic MT teams like my own is that excellent staff can be 

recruited from disbanded academic MT teams. However, at the same time, professionals 

with artificial intelligence (AI) and machine learning (ML) skills are highly prized, and the 

discrepancy between rates of pay which has always been there in academia and industry is 

widening at a rate of knots.9 

Despite taking on leaders of academic teams into their companies, industry leaders are in 

the same breath bemoaning the fact that they are unable to recruit MT developers, as there 

are not enough trained experts coming from academic programmes to fill all the vacancies 

currently available. But they can’t have it both ways: if they recruit the leaders of large, 

renowned academic groups, who used to train the MT developers of tomorrow, they 

shouldn't be surprised when the number of such potential recruits falls away. What MT 

academics want, therefore, is for industry to petition government to obtain more support for 

MT, AI, and ML in academia, so that the industrial community can be served to our mutual 

advantage.10 

Note, however, that this cannot all be centrally funded by government. While there is no 

doubt that attracting research hubs of multinational companies pays off considerably – not 

                                                           
9 https://www.nytimes.com/2017/10/22/technology/artificial-intelligence-experts-salaries.html 
10 This is starting to happen in my own country, Ireland: https://irishtechnews.ie/irelands-first-industry-driven-
masters-in-artificial-intelligence-is-launched/ 
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https://irishtechnews.ie/irelands-first-industry-driven-masters-in-artificial-intelligence-is-launched/
https://irishtechnews.ie/irelands-first-industry-driven-masters-in-artificial-intelligence-is-launched/


just in terms of direct employment and return to the exchequer but also as it pertains to 

ancillary services – if those companies want a steady stream of suitably equipped new staff 

with up-to-date skill-sets trained by the best available lecturing staff, then they too will need 

to (at least part-)pay towards the tools and services required for their education. 

As this problem resolves itself, further and deeper collaboration between industry and 

research is likely to be seen. More and more researchers are interested not just in an 

academic publication, but also in solving real problems of benefit not just to industry, but also 

relevant to their fellow academics. While many authors of papers at leading conferences in 

the field seldom consider potential end-users, it was recently announced that from 2018, the 

North American branch of the Association for Computational Linguistics (NAACL) will feature 

an industry track, focusing on disseminating results which apply cutting-edge research to real 

world problems. While plenty of such work exists already (e.g. Wang et al., 2016; Calixto et 

al., 2017), anything which explicitly gets more researchers to try to focus on truly impactful 

endeavours as opposed to being strictly of academic value is to be welcomed. 

V. Informing the industry through research 

There are differing views on whether users of a technology need to know the principles on 

which it is founded in order to (i) understand how the outputs are formed, and (ii) try to 

improve the underlying technology. Assuming that knowing how an MT system is built is 

useful, there is no doubt that non-experts found the principles of SMT hard to understand. In 

two companion papers (Hearne & Way, 2011; Way & Hearne, 2011), we provided an 

explanation of SMT for linguists and translators which attracted positive feedback.  

Accordingly, translators that have already embraced MT have just about gotten their heads 

around SMT and how it works, but now NMT looks like eclipsing that framework. While 

PBMT quickly consolidated around the Moses toolkit, in contrast there is a proliferation of 

deep neural net tools in existence which NMT developers can use, including Tensorflow,11 

OpenNMT,12 PyTorch,13 and Nematus.14 

Again, unsurprisingly, many non-experts – even those who have been around the 

language industry for some time – find recent research papers on NMT unintelligible. I have 

already provided a high-level explanation of how an NMT system works in Section II.2, and I 

hope that my description of the encoder-decoder system with attention is understandable to 

a broad audience; interested readers should consult Forcada (2017) for another explanation 

of NMT for non-experts. 

                                                           
11 https://www.tensorflow.org/ 
12 http://opennmt.net 
13 https://pytorch.org/ 
14 https://github.com/rsennrich/nematus 
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Figure 4: a schematic depiction of a feed-forward neural network 

NMT is just one example of sequence-to-sequence learning using a neural network; others 

include text summarization and speech recognition. Essentially the neural network comprises 

(i) a set of input nodes, (ii) a set of hidden nodes (in one or more hidden layers; if there is 

more than one, the network is said to be ‘deep’, hence “deep learning”), and (iii) a set of 

output nodes, as in Figure 4. Each input node is connected to each hidden unit, and each 

hidden unit is connected to each output node; if there is more than one hidden layer, then 

each node in one hidden layer is connected to all the nodes in the next hidden layer, and so 

on. The mathematical complexity of deep learning comes about as the weight (or 

importance) of every connection between every node needs to be optimised. One way of 

doing this in the “training” phase is to (i) initially assign random weights to each connection,15 

(ii) supply a set of inputs where the outputs are known (e.g. if a vectoral representation of an 

image of a bird is input, the neural net can be expected to predict the label “bird”, not “dog”)), 

and (iii) percolate (via “back-propagation”: Rumelhart et al. (1986)) any errors back through 

the network until the weights are optimally adjusted and no further improvement in accuracy 

can be seen. The neural net is then frozen, and new inputs are provided to the system (in the 

“testing” phase) and the accuracy is evaluated by observing how often the neural net 

accurately predicts the correct label. 

Most people acknowledge that MT is one of the hardest problems we are trying to address 

in computer science, as so many inputs (each word in each sentence) are required, many 

hidden units in many hidden layers are needed, and many outputs (i.e. possible translations) 

may be observed. Note too that unlike the feed-forward neural network in Figure 4, most 

state-of-the-art networks are “recurrent”, meaning that some units are linked to themselves; 

this permits inputs and outputs of any size, whereas feed-forward networks allow only fixed-

                                                           
15 Including to “bias” nodes, which are connected to each hidden unit to prevent that hidden unit from being 
‘switched off’ in case of a zero-sum input. 



length inputs and outputs. Accordingly, it can be seen quite quickly that the number of 

calculations is astronomical. Billions of tweaks of the weights are needed before the optimal 

configuration of the neural net is arrived at, and no further improvement can be seen. This is 

why GPUs – excellent at performing calculations on matrices, which are standard structures 

used in neural processing – are needed for network training, although decoding can be run 

fairly smoothly on CPUs. 

The mathematical underpinning of neural networks is fairly hair-raising, but I anticipate that 

the description of neural nets provided together with my description of the state-of-the-art 

NMT model today and the explanation provided in Forcada (2017) will suffice for most 

translators to know how the whole set-up works, and how they may help deep-learning 

engineers improve their systems. At the same time, I trust that this will prove useful to other 

industry players not au fait with the current technology, in order for them to consider using 

NMT to underpin their translation services. 

VI. Concluding Remarks 

This paper has undertaken several challenges: (i) to discuss different MT paradigms, (ii) to 

argue which of those paradigms might be considered state-of-the-art today, (iii) to explain to 

non-experts how neural MT works, (iv) to discuss whether today’s automatic evaluation 

metrics are sufficiently fine-grained to accurately reflect the dramatic improvements we have 

seen recently in terms of MT quality, and (v) to reflect on the relationship between academia 

and industry in the field of MT today. 

We concluded that if NMT is not already the state-of-the-art in the field, it certainly has the 

potential to become so, and very soon. Accordingly, I trust that the description of the 

underlying deep-learning technology and the state-of-the-art NMT configuration may benefit 

a wide range of non-experts, who might be struggling to understand how this new paradigm 

actually works, why it outperforms PBMT, but also what problems remain to be solved. 

These can be examined both from a research perspective – including providing fine-grained 

MT evaluation metrics to accurately reflect the considerable improvement in MT quality that 

has recently been seen – and an optimisation point of view, especially in terms of improving 

NMT engine training times.  

By providing an insight into how academia and industry need to help each other in these 

turbulent times, I anticipate that this will contribute to the building of stronger bridges 

between academic research and the language industry. As we concluded in Way & Hearne 

(2011), this collaboration is sorely needed if the field as a whole is to benefit. While SMT 

appears to have only a limited future, with NMT having emerged as the dominant force in 

MT, such collaboration is needed more than ever. It is encouraging to see that the lesson 

learned by SMT practitioners regarding the improvements to be seen by incorporating 

linguistic information seem to be being taken onboard, by some NMT practitioners at least 

(cf. García-Martínez et al., 2016; Sennrich & Haddow, 2016).  

With the considerable improvements in MT quality that have been seen in recent times has 

come an increase in hype, most notably from journalists, most of whom don’t understand 

how the technology works, but also from MT developers such as the Google and Microsoft 

NMT teams; the claim by Wu et al. (2016) that Google NMT was “bridging the gap between  

human and machine translation [quality]” led to considerable hyperbole and hysteria from 

different camps, which was amplified recently by the claim by Hassan et al. (2018) that 



Microsoft had “achieved human parity” in terms of translation quality.16 Those of us who have 

seen many paradigms come and go know that overgilding the lily does none of us any good, 

especially those of us who have been trying to build bridges between MT developers and the 

translation community for many years. The human-in-the-loop will always remain the most 

important link in the chain, at least where dissemination of translated material is required; all 

MT system developers are trying to do is improve the output from their systems to make 

technology-savvy translators more productive. MT systems are unlikely ever to “bridge the 

gap” or “achieve human parity” with human quality translation. Just because a new paradigm 

is in vogue does not mean that MT has become easy, or a solved problem, as some would 

like to make out (e.g. Goodfellow et al., 2016:473). Let’s see how many of the newcomers to 

MT are still here in a decade; my prediction is that a good percentage of them will indeed 

discover that MT is too difficult, and that certain problems remain hard to solve, just like 

they’ve always been … which is why translators are very much still needed, and always will 

be. 
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