
Modelling and Simulation of ElasticSearch using
CloudSim

Malika Bendechache∗, Sergej Svorobej∗, Patricia Takako Endo∗‡, Manuel Noya Mario†,
M. Eduardo Ares†, James Byrne∗, Theo Lynn∗
∗Dublin City University (DCU), Dublin, Ireland

Email: {malika.bendechache,sergej.svorobej, theo.lynn}@dcu.ie
† Linknovate, Santiago de Compostela, Spain

Email:manuel@linknovate.com
‡Universidade de Pernambuco, Recife, Brazil

Email: patricia.endo@upe.br

Abstract—Simulation can be a powerful technique for evalu-
ating the performance of large-scale cloud computing services in
a relatively low cost, low risk and time-sensitive manner. Large-
scale data indexing, distribution and management is complex to
analyse in a timely manner. In this paper, we extend the CloudSim
cloud simulation framework to model and simulate a distributed
search engine architecture and its workload characteristics. To
test the simulation framework, we develop a model based on
a real-world ElasticSearch deployment on Linknovate.com. An
experimental evaluation of the framework, comparing simulated
and actual query response time, precision and resource util-
isation, suggests that the proposed framework is capable of
predicting performance at different scales in a precise, accurate
and efficient manner. The results can assist ElasticSearch users
to manage their scalability and infrastructure requirements.

Keywords—ElasticSearch, CloudSim, Simulation, Cloud,
Workload, Query, Modelling, search engine.

I. INTRODUCTION

Search engines are a complex two-sided network connecting
billions of queries with billions of pages. Search engines are
the most common method for consumers to source information
on the Internet; in the UK, search engines are used by 94%
of Internet adult users, by far the most popular source for
information search [1]. In January 2019, nearly 10 billion
search queries were processed by Google in the US alone [2].
Search result delays can lead to user frustration and result in
loss of revenue [3]. The ubiquity and ease of use of search
engines belie a deep layer of computational complexity to
return relevant search results in fractions of a second. Search
engine providers rely on the efficient provision, scaling, and
optimisation of distributed compute infrastructure at hyper-
scale to meet increasingly complex search functionality within
and tightening service constraints [4].

ElasticSearch (ES) [5] is a popular open source search
engine designed to be distributed, scalable, and capable of near
real-time information retrieval [6]. With large and hyper-scale
systems, it is not always feasible to emulate real production
environments due to the high cost of accessing large clusters
of computers, the downside risk of interfering with system
performance, and logistical issues related to testing new algo-
rithms with no access to actual online query traffic. Simulation

can be a powerful technique for evaluating the performance of
large-scale cloud computing services in a relatively low cost,
low risk and time-sensitive manner [7], [8].

Search engines comprise of three major architectural com-
ponents - web crawling, indexing, and query processing,
all of which contribute to the scalability and efficiency of
online search engines [4]. To accurately depict realistic search
engine system behaviour, a simulation model must, therefore,
consider (a) a realistic system workload in the form of queries
submitted by users to the search engine, (b) a virtual resource
provisioning allocation agnostic of the complexities of the
underlying data centre hardware, and (c) a similar data flow
logic as the actual system implementation, under examination.

In this paper, we model and simulate a search engine
using Discrete Event Simulation (DES). To do so, we extend
CloudSim [9], [10] with our simulation model and compare
it with KPI (Key Performance Indicator) traces collected
from a live ElasticSearch cluster deployed in a public cloud
infrastructure by Linknovate.com. Our simulation framework
supports a number of features that can help in search engine
based system deployment and provisioning decisions:

• Modelling and simulation of a distributed data flow with
a hierarchical architecture;

• Custom policy implementation for distributing workload
in the hierarchical architecture;

• Synchronous communication between search engine
components for data aggregation; and

• Flexible modelling that can be easily adapted to integrate
with other CloudSim extensions.

The remaining of this paper is organised as follows. Sec-
tion II introduces discrete event simulation, the CloudSim
architecture, and the ES Search Engine. Section III summarises
our modelling approach for a search engine. Section IV
presents our use case based on Linknovate.com’s deployment
of ES. Section V outlines our methodology and Section VI
presents and discusses the simulation results. Section VII
briefly summarises selected related work. The paper concludes
with a summary of the paper and a discussion of future work
in Section VIII.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/324170869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. BACKGROUND

A. Discrete Event Simulation: CloudSim
Discrete Event Simulation (DES) is a system modelling

concept wherein the operation of a system is modelled as a
chronological sequence of events [11]. DES-based decision
support processes can be divided into three main phases:
modelling, simulation, and finally results analysis. During the
modelling phase, a simulated system is defined by grouping
interacting entities that serve a particular purpose together in
to a model. Once the representative system models are created,
the simulation engine orchestrates a time-based event queue,
where each event is admitted to the defined system model in
sequence. An event represents actions happening in the system
during operation time. Depending on the event type, the system
reaction is simulated, and associated metrics captured. These
metrics are collected at the end of the simulation for results
analysis. Therefore, the system behaviour can be examined
under different conditions. Using DES is beneficial in a
complex, large scale, non-deterministic system environment
where the system definition using mathematical equations may
no longer be a feasible option [12].

There are many different DES frameworks that have been
developed specifically for cloud computing and that provide
a range of useful modelling features [13]. For this study we
have chosen the CloudSim modelling framework, the most
popular cloud computing simulation framework, due to its
proven capability in simulating different cloud topologies and
application architectures and its appropriateness for the scale
envisioned in the use case [14]. CloudSim has two key
features relevant to our paper. Firstly, it has a virtualisation
engine that aids in the creation and management of multiple,
independent, and co-hosted virtualised services on data centre
nodes. Secondly, it is flexible and allows one to switch
between space-shared and time-shared allocation of processing
cores to virtualised services. These features speed up the
development of new application provisioning algorithms for
cloud computing [15].

CloudSim comprises two layers: (i) the Simulation layer
provides support for modelling and simulation of virtualised
Cloud-based data centre environments [15], and (ii) the User
Code layer exposes basic entities for hosts, applications, VMs,
number of users, application types, and broker scheduling
policies [15]. Given its popularity, CloudSim has been ex-
tended significantly since the first version (e.g., [16]–[19]). In
particular, CloudSimPlus [20] improved several engineering
aspects, such as code maintainability, reusability and extensi-
bility thereby enabling greater accuracy, usage simplicity, and
extension facility. As such, we make use of CloudSimPlus in
this paper.

B. ElasticSearch
ElasticSearch (ES) is an open source search engine which

can provide distributed and real time searching capabilities. It
is known as a document database for implementing Apache
Lucene [21] as a back-end for document parsing and structur-
ing [22]. ES has the following features:

• Distributed: Indices can be divided into shards (a chunk
of data), with each shard capable of having any number
of replicas. Routing and re-balancing operations are done
automatically when new documents are added.

• High Availability: ES can form a cluster containing
multiple copies of distributed shards providing error-
resilient data storage. If any error is detected, it will
automatically remove the failed nodes and re-organise
itself to make sure data is safe and accessible.

• Full Text Search: It provides full query-based search
capabilities using the Lucene information retrieval library.

• Document Oriented: ES uses NoSQL database to store
data or documents as objects in JSON format. All doc-
uments are indexed by default, thus providing results at
very fast speeds.

• Schema-free: ES automatically detects the data structure,
data types, and indexes the data accordingly. Users can
also define their own mapping and can change, if re-
quired. ES provides an automatic conflict resolution by
versioning any changes within stored documents.

• Scalability: The ES server can start with a single node
and can be scaled horizontally depending upon concrete
requirements. More nodes can be added to the cluster
dynamically if more capacity is needed.

III. SIMULATING A SEARCH ENGINE IN A PUBLIC CLOUD

In order to simulate a workload in the ES search engine, we
model it using the CloudSimPlus DES framework. Any task
or event occurring in CloudSim is defined by a cloudlet which
represents a submitted job. Therefore, in order to simulate
the ES workload, we model each query as a set of cloudlets
flowing through the nodes in the system (see Figure 2). Our
simulation sets a parameter (# DN/Q) that represents the
number of data nodes used to serve a query.

Providing that a node has the capacity to run a cloudlet,
the execution time of the cloudlet is based on: (i) the total
computational budget required by the cloudlet, (ii) the CPU
of the VM, (iii) the number of cores the cloudlet is able to use
in parallel, and (iv) the amount of CPU and RAM instructions
the cloudlet is able to use at any given time.

The ES search engine has a distributed architecture with
specific characteristics of parallel request processing and
aggregation behaviour. Existing CloudSim models for load
distribution only support sending cloudlets from one sender to
one destination VM at pre-defined times creating one-to-one
mapping between a cloudlet and a processing VM. To simulate
the search engine behaviour, we extended the CloudSim frame-
work to take into account the distributed system behaviour of
both the ES architecture and the workload. The ES workload
is distributed based on different criteria (e.g., the data shard
distribution, the frequency access to a particular type of data
that resides in a particular node in the system). This leads
to different workloads on the data nodes. In our simulation,
we present the workload as a probability distribution of the
number of cloudlets running on every data node.



The following modelling functionalities were added to
CloudSim:

• Single user queries consists of multiple cloudlets which
can be processed in parallel or sequentially by available
VMs.

• The ability to send cloudlets from one sender to several
receiving VMs at the desired time (one-to-many).

• A synchronisation point in the model, where a defined
search engine application component (parent) that gen-
erates multiple cloudlets (children) and waits for their
execution to finish before continuing to process a user
query.

• Allowing simulation users to design their own rules for
workload distribution within cloud deployed distributed
data systems. In this work, we simulate the workload
distribution of an ES node as per the use case studied in
section IV.

The CPU and the RAM usages are calculated automatically
by the CloudSim simulator. However, the default CloudSim
only logs/collects the evolution of the CPU usage of the VMs.

CloudSim takes as parameters how much CPU and RAM
are consumed by a cloudlet and, based on these parameters,
CloudSim calculates how long the cloudlet is running, and
if many cloudlets are running at the same time on the VM,
cloudsim will sum the CPU and RAM consummations of
this VM. Every time there is a change in CPU or RAM
consumption, CloudSim will create an event and save it in
a log. CloudSim has different configurations for the amount
of CPU and RAM a cloudlet is able to use at a time (i.e. full,
absolute or relative amount). Full corresponds to a full CPU
utilisation by the cloudlet; absolute corresponds to a fixed CPU
or RAM amount defined by the user; and relative refers to a
percentage usage of the CPU or RAM by the cloudlet. In our
simulation, the amount of CPU and RAM instructions used
by a cloudlet is set to absolute.

IV. USE CASE: LINKNOVATE.COM

In order to show the results of our search engine simulation,
we took a real use case of the ES search engine deployment at
Linknovate.com. Founded in 2012 in Spain, Linknovate.com
provides a business intelligence service to its clients. Lin-
knovate.com clients primarily access competitive intelligence
through a discovery engine deployed on the Microsoft Azure
cloud, as opposed to a classic search engine. Advanced data
processing at large scale is one of Linknovate.com’s core
activities. By deploying ES, Linknovate.com harvests metadata
(e.g., authors name, affiliation, abstract etc.) from multiple
sources, not just publications (Elseviers Scopus) or patent anal-
ysis (Thomson Reuters) but also more up-to-date sources like
conference proceedings, presentations, grants (e.g. CORDIS)
specialised blogs (e.g. Clean Technica) and specialised outlets
(e.g. MIT Tech Review).

Linknovate.com manages vast amounts of information
throughout different offline and online layers. The off-line
layer, Data Acquisition comprises several pre-processing com-
ponents working in parallel over raw data to homogenise

structure and identify entities and semantic relations. The
online layer, Processing and Indexing, is done over a virtual
cluster of search nodes based on ES. Finally, the Web and
Search layer is where user queries execute several internal
queries over Linknovate.com indices, retrieving the data to be
shown in the User Interface (UI). User queries are received by
the virtual nginx web server that also renders the results pages
(see Figure 1). In this paper, we are focusing on simulating the
online virtual layers (web/search and ES cluster) of the Lin-
knovate.com search engine. Figure 1 represents an overview
of the virtualised layer of the Linknovate.com architecture.

Fig. 1. An overview of the Linknovate.com online architecture.

The deployed search service stack of Linknovate.com con-
sists of a web server where the users input their queries and
an ES cluster which is responsible for the search and returning
the response to the user query. The ES cluster consists of an
ES node and data nodes as shown in Figure 1.

The ES node is responsible for: (i) passing and distributing
the queries among the data nodes; (ii) coordinating and aggre-
gating the search results of different data nodes; (iii) returning
the query result to the web server which in turn will return
it to the user. The data nodes are responsible for storing and
processing old and fresh data.

Our simulation model reflects the behaviour of the real
ES-based system deployed in a public cloud. As we can see
from Figure 2, when a query is launched, a set of cloudlets
are generated and executed in sequential manner; the first
cloudlet is executed at a web server, then the second cloudlet is
executed at the ES node. From the ES node, a set of cloudlets
(which is less or equal to the number of data nodes) are
distributed and executed at data nodes. Afterwards, another
cloudlet is executed again at the ES node to merge the partial
results coming back from the data nodes. Finally, a last
cloudlet is going from the ES node to the web server as a
response to the user query. Therefore, the total number of
cloudlets that our simulation generates in order to model a



Fig. 2. Modelling the workload in ES using CloudSim

query load is Cloudlet no = 4 + n, where n is the number
of data nodes queried by ES.

In terms of number of messages exchanged between nodes
in the ES architecture, the total number of messages is
represented by the total arrows in Figure 2. We have in total
Messages no = 4 + 2 ∗ n messages, where n is the total
number of data nodes queried by ES. The number of messages
depends on the synchronisation at the ES node, where the ES
node waits to receive all the messages from all data nodes in
order to proceed with the aggregation (see Figure 2).

Query response time is calculated as follows:

ResponseT ime = Time(EndOfLastCloudlet)

−Time(QueryArrival)
(1)

Where EndOfLastCloudlet corresponds to the final
cloudlet at the web server that returns the query result to the
user. Time(QueryArrival) corresponds to the time the query
arrives at the system (web server).

We can also calculate the Effective Time which is the time
spent doing computations (sum of cloudlet execution times),
without considering the wasted time (networking and waiting
times). Note that the sum of cloudlet processing times is given
by summing all the times for : cloudlets of the Web Server
(WS) (two cloudlets), and ES node cloudlets (two cloudlets).
Given that the data node cloudlets are running in parallel,
we only sum the processing time of the longest (latest) data
node (DN) cloudlet (see Figure 2). Therefore, as shown in
Equation 2, we have a total sum of five cloudlet processing
times.

EffectiveT ime = Time(WS QueryCloudlet)

+Time(WS ResultCloudlet)

+Time(ES QueryCloudlet)

+Time(ES ResultCloudlet)

+
n

Max
i=1

(Time(DNCloudletn))

(2)

In CloudSim, every cloudlet c is set to run for a predefined
number of CPU units U(c) (to be defined by the simulation

operator) that reflects the weight of the task it is meant to
represent. On the other hand, every CPU core is only capable
of executing a maximum number of CPU units per second
relative to its frequency and other performance characteristics.
We assume in our simulation that machines are equipped with
3000MHz CPU cores and we consider in our scenario that
these CPU cores are able to run up to 3000 workload CPU
units per second (i.e., one workload CPU unit per 1 MHz). If
we set the CPU consumption of every cloudlet to 10% of the
VM CPU capability (i.e., 300 CPU units per second), a VM
would be able to fully execute a cloudlet within U(c)

300 second
(assuming no preemption in the scheduling).

While we define the number of CPU units for all the
cloudlets running in the WS and ES as 30, we assign the
number of CPU units for the cloudlets in the data nodes
dynamically based on the real workload that we have obtained
from Linknovate.com. For every cloudlet c that runs on a data
node and belonging to aquery q with a query response time
RT(q), we define the number of CPU units for c as shows in
Equation. 3. After computing the total CPU units required for
the query q over all the cloudlets, we take out the CPU units
for the cloudlets on WS and ES, leaving only the CPU units
for the data nodes. Note that after filtering, the Linknovate.com
workload does not contain any query q with a response time
lower than 0.4s.

U(c) = 300×RT (q)− 4× 30 (3)

In addition to the CPU consumption, CloudSim requires that
the amount of RAM that will be utilised by every cloudlet
throughout its execution to be provided. In our experiments,
we allocate 200MB to all the cloudlets.

As we can see in Figure 1, Linknovate.com consists of eight
VMs nodes in total, one web server VM, one ES VM, and six
data nodes VMs.

TABLE I
LINKNOVATE.COM VM CHARACTERISTICS

VM-ID CPU (Cores) RAM (GB) STORAGE (GB)
Web-Server VM0 8 28 1081
ES-Client VM1 16 112 1081
DataNode1 VM2 8 28 1081
DataNode2 VM3 8 28 1081
DataNode3 VM4 8 28 1081
DataNode4 VM5 8 28 1081
DataNode5 VM6 8 28 1081
DataNode6 VM7 8 28 1081

Table I summarises the characteristics of the different nodes
(VMs) forming the Linknovate.com topology.

In terms of workload distribution among the data nodes, our
analysis of the six data nodes in the Linknovate.com architec-
ture showed that they have different workload distributions
(number of cloudlets run on each data node over a period of
time) that follow these probabilities respectively: 0.13, 0.14,
0.16, 0.16, 0.18, and 0.23. These probabilities were calculated
based on a real data set provided by Linknovate.com. See
Section V for more details about the data set.



V. METHODOLOGY

The goals of our simulation are: (a) to evaluate the query
response time, and resource consumption (CPU and memory)
under different scenarios, and (b) to analyse the scalability of
the simulator.

Linknovate.com deploys their infrastructure in a public
cloud environment (i.e. Microsoft Azure). Therefore, in this
simulation, we neither focus on the physical machines nor on
the network physical topology.

To run our experiments, we used a real query data set
provided by Linknovate.com. This data set is composed of
1185 queries submitted to Linknovate.com search engine be-
tween 11:23:00 and 13:23:00 on June 07, 2018. We first pre-
processed the query log file by excluding errors or invalid
queries and kept only the valid search queries (OK queries
with HTTP Status=200).

In order to analyse the CPU and RAM consumption of
the Linknovate.com system, we explore four scenarios as
described in Table II.

TABLE II
SCENARIOS STUDIED BASED ON NUMBER OF DATA NODES SERVING A

QUERY.

Scenario Node Distribution

I 2 data nodes/q
II 3 data nodes/q
III 4 data nodes/q
IV 5 data nodes/q

The scenarios are defined based on the number of data nodes
assigned to serve incoming queries. Given a query q, the set of
nodes used to process it is randomly chosen. Therefore we run
each scenario 30 times and calculated the average consumption
across the 30 iterations for each VM. We also calculated the
average of the average consumption of all the VMs in the
system to reflect the CPU and RAM consumption of the whole
system. The standard deviation of both CPU and RAM usage
is also calculated.

VI. SIMULATION RESULTS

We modelled and simulated the Linknovate.com architecture
as per Section III.

A. Response Time Results

We compare the simulated response time of a query against
its actual time as collected from real system traces. We
extracted a subset of 100 valid queries from the data set used.

Figure 3 shows the comparison of actual and simulation
times across the 100 queries. As one can see, the actual time
and the simulation time are very close and they are highly
positively correlated across all the 100 queries tested.

We evaluate the accuracy of our simulation model by
computing the Pearson correlation [23] and the relative error
(er) [24] between the simulation and the real system traces.

The accuracy of the query response time metric achieved
by our simulation model reported a Pearson correlation of

0.9996, a positive correlation between the values reported
by the simulation model and the real system traces. We
obtained a small relative error of 0.0354; this indicates how
close the query response time computed by the simulation
(SimTime) model is relative to the actual query response
time (ActualT ime). The relative error is computed as:
er = εm/x where

εm =

√√√√(

n∑
n=1

(SimTimen −ActualT imen)2/n

where n is the number of queries (size of the sample) and x
is the average of actual time.

B. Response Time vs Query Traffic

We analyse the performance of the Linknovate.com system
by running the simulation with different workloads (query
traffic) to see how much traffic the Linknovate.com system can
handle. We monitor the query response time while varying the
number of queries per second received by the system.

Figure 4 represents a box plot (min, max, lower quartile,
upper quartile) that shows the query response time based on
the number of queries per second the system receives.

Figure 4 shows that with query traffic of up to 80 q/s, the
query response time for all the queries is the same and it is
equal to having one query per second. That means the system
is capable of handling 80 q/s with no waiting time.

Then, between 80 and 120 q/s, we notice a slight increase
in the response time. However, this increase affects all the
queries in the same way (i.e. no difference in response time
between the queries).

As we increase the query traffic beyond 120 q/s, we start to
notice a divergence in query response times. Between 130 and
170 q/s, we see that the system manages to execute several
queries within a short time by delaying the excess of queries.
However, with the increase in query traffic past 170 q/s, the
system fails to even execute a single query in a short time.

C. CPU and RAM utilisation

We analyse the CPU and memory consumption of the
Linknovate.com system based on the defined scenarios in
Section V. As previously mentioned, the CPU units of both
the ES and web server are set to a constant value equal to
300, whereas the CPU units of the data nodes are assigned
dynamically based on the Linknovate.com workload.

As configured, the CPU and RAM consumption of the web
server (VM0) and ES nodes (VM1) are constant across all
the scenarios, while the CPU and RAM consumption of the
data nodes vary based on number of nodes used (Figures 5
and 6). As expected, the more data nodes used by a query,
the more CPU and RAM the system consumes. For example,
Scenario I shows the least consumption for all the VMs in
the system. The probability distributions simulated based on
the Linknovate.com workload traces are clearly shown in both
figures.



Fig. 3. Actual query time Vs Simulation query time.

Fig. 4. Query response time achieved with different query traffic volumes.

VM7 always has the highest consumption of CPU and RAM
across all the scenarios because it has the highest probability
distribution (0.23) followed by VM6 with the second highest
probability (0.18). VM4 and VM5 have the same probability
distribution. Therefore they tend to have the same consump-
tion. Finally, VM2 and VM3 report less consumption due to
their low probabilities (0.13, 0.14, respectively).

D. Simulation Framework Scalability

In order to show the capability of our simulator in handling
large datasets, we run the simulator with different log files
that have different volumes of queries. We conducted our
experiments by running our extended CloudSim simulator on
a DELL-XPS machine with 8GB of RAM and 2.70 GHz
quad Intel Core i5-6400 processor. The user query log file
is collected from the Linknovate.com system for a period
of two days; June 07 and 08, 2018. As one can see from
Figure 7, the simulator takes only about 30 minutes to simulate
a log file that contains up to 100k queries. In fact, up to 80k,
the simulation time increases gradually with the number of
queries. After that the simulation time starts to increase faster.
This shows that the simulator can still handle comfortably
medium to large files. However, for a faster simulation of very
large files, a distributed version of the CloudSim simulator

like Cloud2Sim [25] is needed for faster results. Note that
CloudSim can be easily substituted by Cloud2Sim in our work
for a faster simulation.

In summary, based on the results above, we conclude
that our simulation results are very close to the real system
measurements in terms of query response time (service time).
The analysis of CPU and memory metrics across different
scenarios shows how the system consumption responds to
changes in the number of data nodes serving a query. As
a result, this can help the company to manage their cost in
terms of both CPU and memory consumption. Furthermore,
the results also serve as feedback to Linknovate.com in terms
of how much query traffic their system can accommodate at
the same time. The company can consider increasing their
system nodes’ capacities to handle their desired traffic.

VII. RELATED WORK

Web search engines are complex systems. Constructing
a testbed for such complex systems with a high degree
of verisimilitude is a complex, costly, resource and time-
intensive task. To overcome these issues, simulation has been
introduced. Simulation frameworks provide a relatively low
cost mean to model, understand and evaluate a real system
[26].

Although simulation is widely used for cloud computing
research, there are few research articles that use simulation
to model web search engine systems. Some are based on
mathematical models and as such, they are complex. For
example, in [27], the author modelled and simulated a search
engine by developing two mathematical approaches - adaptive
and selective approaches. These approaches seek to express the
characteristics of the search engine based on the constraints
in the information space.

Other research focused on using DES to model and simulate
search engines. For instance, in [24], the authors modelled
and simulated a web search engine using the Discrete Event
System Specification (DEVS) formalism. The validation of
the proposed model was done by comparing it against an
actual MPI implementation of the WSE and a process-oriented
simulation. DEVS was also used in [28] along with a discrete-
event realisation of timed coloured Petri nets (CPN), and



Fig. 5. Average CPU utilisation by the Linknovate.com system Fig. 6. Average RAM utilisation by the Linknovate.com System

Fig. 7. Simulator scalability

process-oriented simulation (POS) to simulate user behaviour
in search engines. They used a circulating tokens approach
to represent sequences of operations that compete for search
engine resources and benchmark programs to measure the cost
of relevant operations. However, the authors of [28] only
focused on simulating the computational cost of the search
operations.

CloudSim is one of the most popular DES simulation
frameworks, it has been used extensively to model and sim-
ulate cloud computing systems and application provisioning
environments [29], [30]. The CloudSim toolkit supports both
system and behaviour modelling of cloud system components
such as data centres, VMs and resource provisioning policies.
In fact, work in [17] looks at modelling parallel applications
in the cloud using NetworkCloudSim, a CloudSim extension.
However, the focus of their implementation lies on modelling
network interplay between switches and routers traffic flow
which is the area of infrastructure management useful more
for the infrastructure provider. While the current study looks at
a cloud application simulation, it is agnostic to the underlying
data centre network.

Despite the popularity of ES search engine, no articles could
be identified that simulated ES performance in the cloud.
In this paper, we took advantage of the popularity of both

CloudSim as a cloud simulator and ES as a powerful search
engine to extend the CloudSim simulator framework in order
to simulate the performance of ES search engine on a public
cloud and thus inform better decision making on ES cloud
deployments.

VIII. CONCLUSION AND FUTURE WORK

We have described, modelled and simulated the Elastic-
Search architecture. We proposed a new simulation model
based on extending the CloudSim simulator. We have added to
CloudSim two main features that characterise any distributed
architecture: (i) modelling one-to-many cloudlets, and (ii)
adding a synchronisation barrier at the ES node to allow it to
wait for all the data nodes cloudlets to finish their execution
before proceeding with aggregation of the data node results.
The simulation helps us understand how the ElasticSearch
search engine works. The Linknovate.com search engine is
used as a use case study to validate our modelling and
simulation. We compared the results of our simulation in
terms of query response time against the actual query response
time collected from actual Linknovate.com system traces. The
evaluation of the accuracy of the simulation results shows no
significant statistical differences between the simulated results
and the real data. We also looked at the CPU and RAM
consumption of the Linknovate.com system by taking different
scenarios where we evaluate how the CPU and RAM usage
vary based on the number of data nodes responding to a
query. This can help the company to manage their costs. We
also evaluated the query traffic volumes that Linknovate.com
system can handle at a given time. This can help the company
understand their system architecture and how they can im-
prove/scale it in order to support their desirable query traffic.

For future research, we will use this simulation framework
to examine key areas for optimisation of ElasticSearch in the
cloud including efficient query balancing on the search servers,
replica and shard allocations, and balancing CPU and memory
usage of the different virtual nodes. We also plan to look
at how the simulator can be used to inform auto-scaling to
cope with changing system demands including deployment
strategies and other balancing approaches.



ACKNOWLEDGEMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 732667 (RECAP).

REFERENCES

[1] “Adults: Media use and attitudes report 2019,” https://www.ofcom.org.
uk, accessed: 2019-06-07.

[2] “Number of explicit core search queries powered by
search engines in the united states as of january 2019
(in billions),” https://www.statista.com/statistics/265796/
us-search-engines-ranked-by-number-of-core-searches, accessed:
2019-06-07.

[3] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost
of a cloud: Research problems in data center networks,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008. [Online].
Available: http://doi.acm.org/10.1145/1496091.1496103

[4] B. B. Cambazoglu and R. Baeza-Yates, “Scalability and efficiency
challenges in large-scale web search engines,” in Proceedings
of the 39th International ACM SIGIR Conference on Research
and Development in Information Retrieval, ser. SIGIR ’16. New
York, NY, USA: ACM, 2016, pp. 1223–1226. [Online]. Available:
http://doi.acm.org.dcu.idm.oclc.org/10.1145/2911451.2914808

[5] Elasticsearch B.V, “Open Source Search Analytics - ElasticSearch,”
2019. [Online]. Available: https://www.elastic.co/

[6] O. Kononenko, O. Baysal, R. Holmes, and M. W. Godfrey, “Mining
modern repositories with elasticsearch,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: ACM, 2014, pp. 328–331. [Online]. Available:
http://doi.acm.org.dcu.idm.oclc.org/10.1145/2597073.2597091

[7] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable cloud computing environments and the cloudsim toolkit:
Challenges and opportunities,” in 2009 international conference on high
performance computing & simulation. IEEE, 2009, pp. 1–11.

[8] S. Svorobej, P. Takako Endo, M. Bendechache, C. Filelis-Papadopoulos,
K. M. Giannoutakis, G. A. Gravvanis, D. Tzovaras, J. Byrne, and
T. Lynn, “Simulating fog and edge computing scenarios: An overview
and research challenges,” Future Internet, vol. 11, no. 3, p. 55, 2019.

[9] S. Mehmi, H. K. Verma, and A. Sangal, “Simulation modeling of cloud
computing for smart grid using cloudsim,” Journal of Electrical Systems
and Information Technology, vol. 4, no. 1, pp. 159–172, 2017.

[10] G. T. Hicham and E. A. Chaker, “Cloud computing cpu allocation and
scheduling algorithms using cloudsim simulator.” International Journal
of Electrical & Computer Engineering (2088-8708), vol. 6, no. 4, 2016.

[11] A. M. Law, W. D. Kelton, and W. D. Kelton, Simulation modeling and
analysis. McGraw-Hill New York, 2000, vol. 3.

[12] J. Idziorek, “Discrete event simulation model for analysis of horizontal
scaling in the cloud computing model,” in Proceedings of the 2010
Winter Simulation Conference. IEEE, 2010, pp. 3004–3014.

[13] J. Byrne, S. Svorobej, K. M. Giannoutakis, D. Tzovaras, P. J. Byrne,
P. stberg, A. Gourinovitch, and T. Lynn, “A review of cloud computing
simulation platforms and related environments,” in Proceedings of the
7th International Conference on Cloud Computing and Services Science
- Volume 1: CLOSER,, INSTICC. SciTePress, 2017, pp. 679–691.

[14] T. Lynn, A. Gourinovitch, J. Byrne, P. J. Byrne, S. Svorobej, K. Gian-
noutakis, D. Kenny, and J. Morrison, “A preliminary systematic review
of computer science literature on cloud computing research using open
source simulation platforms,” in Proceedings of the 7th International
Conference on Cloud Computing and Services Science - Volume 1:
CLOSER,, INSTICC. SciTePress, 2017, pp. 565–573.

[15] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[16] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications,” in 2010 24th IEEE international conference on
advanced information networking and applications. IEEE, 2010, pp.
446–452.

[17] S. K. Garg and R. Buyya, “Networkcloudsim: Modelling parallel ap-
plications in cloud simulations,” in 2011 Fourth IEEE International
Conference on Utility and Cloud Computing. IEEE, 2011, pp. 105–113.

[18] M. Barika, S. Garg, A. Chan, R. N. Calheiros, and R. Ranjan, “Iotsim-
stream: Modelling stream graph application in cloud simulation,” Future
Generation Computer Systems, vol. 99, pp. 86–105, 2019.

[19] A. Siavashi and M. Momtazpour, “Gpucloudsim: an extension of
cloudsim for modeling and simulation of gpus in cloud data centers,”
The Journal of Supercomputing, vol. 75, no. 5, pp. 2535–2561, 2019.

[20] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. Inácio, and
M. M. Freire, “Cloudsim plus: a cloud computing simulation framework
pursuing software engineering principles for improved modularity, ex-
tensibility and correctness,” in 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). IEEE, 2017, pp. 400–406.

[21] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in action:
covers Apache Lucene 3.0. Manning Publications Co., 2010.

[22] R. Kuc and M. Rogozinski, Elasticsearch server. Packt Publishing Ltd,
2013.

[23] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[24] A. Inostrosa-Psijas, G. Wainer, V. Gil-Costa, and M. Marin, “Devs
modeling of large scale web search engines,” in Proceedings of the
Winter Simulation Conference 2014. IEEE, 2014, pp. 3060–3071.

[25] P. Kathiravelu and L. Veiga, “Concurrent and distributed cloudsim
simulations,” in 2014 IEEE 22nd International Symposium on Modelling,
Analysis & Simulation of Computer and Telecommunication Systems.
IEEE, 2014, pp. 490–493.

[26] V. Moysiadis, P. Sarigiannidis, and I. Moscholios, “Towards distributed
data management in fog computing,” Wireless Communications and
Mobile Computing, vol. 2018, 2018.

[27] M. K. Nasution, “Modelling and simulation of search engine,” in Journal
of Physics: Conference Series, vol. 801, no. 1. IOP Publishing, 2017,
p. 012078.

[28] M. Marin, V. Gil-Costa, C. Bonacic, and A. Inostrosa, “Simulating
search engines,” Computing in Science & Engineering, vol. 19, no. 1,
p. 62, 2017.

[29] R. Kumar and G. Sahoo, “Cloud computing simulation using cloudsim,”
arXiv preprint arXiv:1403.3253, 2014.

[30] W. Long, L. Yuqing, and X. Qingxin, “Using cloudsim to model and
simulate cloud computing environment,” in 2013 Ninth International
Conference on Computational Intelligence and Security. IEEE, 2013,
pp. 323–328.


