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Abstract—A successive cancellation (SC) decoder with inac-
tivations is proposed as an efficient implementation of SC list
(SCL) decoding over the binary erasure channel. The proposed
decoder assigns a dummy variable to an information bit whenever
it is erased during SC decoding and continues with decoding.
Inactivated bits are resolved using information gathered from
decoding frozen bits. This decoder leverages the structure of the
Hadamard matrix, but can be applied to any linear code by
representing it as a polar code with dynamic frozen bits. SCL
decoders are partially characterized using density evolution to
compute the average number of inactivations required to achieve
the maximum a-posteriori decoding performance. The proposed
measure quantifies the performance vs. complexity trade-off and
provides new insight into dynamics of the number of paths in
SCL decoding. The technique is applied to analyze Reed-Muller
(RM) codes with dynamic frozen bits. It is shown that these
modified RM codes perform close to extended BCH codes.

I. INTRODUCTION

Since their introduction in [1], various decoding algorithms
for Reed–Muller (RM) codes have been proposed to achieve
performance close to maximum a-posteriori (MAP) with re-
duced complexity (see, e.g., [2]–[9]). Recently, it has been
shown that RM codes can achieve capacity on the binary
erasure channel (BEC) under MAP decoding [10].

Polar codes are the first provably capacity-achieving codes
with low encoding and decoding complexity for arbitrary sym-
metric binary-input discrete memoryless channels (B-DMCs)
[11]. Using successive cancellation list (SCL) decoding [12],
the addition of a high-rate outer code can make them very
competitive in the short- to moderate-length regime (i.e., from
128 to 1024 bits) [13]. Since RM codes are closely related to
polar codes [11] but outperform them under MAP decoding
[14], some decoders proposed for polar codes have been
also used for RM codes, e.g., [9]. As the complexity of the
SCL decoder tends to be large when used to decode RM
codes, hybrid designs [14]–[16] have been considered to trade
performance for decoding complexity. In addition, the authors
of [17] showed how any linear code could be viewed as a
polar code with dynamic frozen bits. They also constructed
subcodes of extended Bose-Chaudhuri-Hocquengham (eBCH)
codes and decoded them using SCL decoding by representing
them as polar codes with dynamic frozen bits. These codes,
dubbed eBCH-polar subcodes, allow one to trade complexity
for performance. Different design algorithms of polar code
variants for a given list size are provided by [18], [19].

In this work, successive cancellation (SC) inactivation
decoding is proposed. It follows the same message passing

schedule as the SCL decoder. However, whenever an informa-
tion bit decodes as erased, it is replaced by a dummy variable,
i.e., it is inactivated, and the decision on it is postponed to
the end of decoding process. The inactivated bits are resolved
using information gathered from decoding frozen bits. This
decoder is subsequently extended to solve for the inactivated
bits during the decoding process.

Similar decoders have been proposed in the past. In particu-
lar, they have been studied for iterative belief propagation (BP)
decoding of low-density parity-check (LDPC) [20] and raptor
codes [21]. They are known to overcome high error floors due
to stopping sets and to provide MAP performance with a lower
complexity than standard Gaussian elimination [22]–[25]. A
BP decoder with inactivations was proposed for polar codes in
[26], yielding an improved bit-error rate, but it appears to use a
different decoding schedule. The authors of [24] proposed and
analyzed the Maxwell decoder for LDPC codes, which guesses
a value for an erased bit whenever the BP decoder is stuck.
Their results demonstrate a fundamental relationship between
BP and MAP decoding based on guessing. Inspired by that
approach, we analyze the SC inactivation decoder to quantify
the complexity required to achieve MAP performance. Based
on the dynamics of the unresolved inactivations during the
decoding process, new insights are provided to understand
performance vs. complexity trade-off.

Numerical results are provided not only for standard polar
and RM codes but also for their variants with dynamic frozen
bits. In particular, RM codes with dynamic frozen bits perform
close to eBCH codes, which are known to be one of the best
performing codes for short block-lengths [13].

II. PRELIMINARIES

In the following, xba denotes the vector (xa, xa+1, . . . , xb).
If b < a, it is void. Given a vector xn1 and a set A ⊂
{1, . . . , n}, we write xA for the subvector (xi : i ∈ A). The
notation xA ·yA is used for dot product of two binary vectors.
The length-n all-zero vector is denoted as 0n. We use capital
letters for random variables (RVs) and lower case letters for
their realizations. We denote a B-DMC by W : X → Y , with
input alphabet X = {0, 1}, output alphabet Y , and transition
probabilities W (y|x) for x ∈ X and y ∈ Y . The transition
probabilities of n independent uses of the same channel are
denoted as Wn(yn1 |xn1 ) =

∏n
i=1W (yi|xi). We write BEC(ε)

for the BEC with erasure probability ε. The output alphabet
of the BEC is Y = {0, 1,e}, where e denotes an erasure. We
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consider the BEC in this work unless otherwise stated. The
indicator function 1{P} equals 1 if the proposition P is true
and 0 otherwise. We use capital bold letters for matrices. For
example, Bn denotes the n × n bit reversal matrix [11] and
K2 denotes the 2× 2 Hadamard matrix, i.e.,

K2 ,

[
1 0
1 1

]
.

A. Polar and Reed-Muller Codes

Consider the matrix Gn = BnK
⊗m
2 , where n , 2m and

K⊗m2 is the m-fold Kronecker product of K2. Both polar and
RM codes are generated by suitable row choices from Gn [11],
[27]. Using Gn, the transition probability from the input un1
to the output yn1 is Wn(y

n
1 |un1 ) , Wn(yn1 |un1Gn). Transition

probabilities of the i-th bit-channel, an artificial channel with
the input ui and the output (yn1 , u

i−1
1 ), are defined by

W (i)
n (yn1 , u

i−1
1 |ui) ,

∑
un
i+1∈Xn−i

1

2n−1
Wn(y

n
1 |un1 ).

The code itself is defined by the set of information indices, A.
For example, an (n, k) polar code is designed by finding the k
most reliable bit-channels with indices i ∈ {1, 2, . . . , n} under
the assumption that Ui, i ∈ {1, 2, . . . , n}, are independent and
identically distributed (i.i.d.) uniform RVs. For a particular
channel parameter, these indices can be found using density
evolution [11], [28]. For an r-th order RM code of length n
and dimension k =

∑r
i=0

(
m
i

)
, where 0 ≤ r ≤ m, the set A

consists of the indices, i ∈ {1, 2, . . . , n}, corresponding to the
rows of Gn with the Hamming weight at least equal to 2m−r.
In both cases, encoding is performed via cn1 = un1Gn, with
ui = 0 for the indices i ∈ Ac of frozen bits. The remaining k
positions, ui for i ∈ A, are allocated for information bits.

B. Representing a Linear Code as a Variant of a Polar Code

Let C be an (n, k) code with a full-rank parity-check matrix
H . Consider a vector, cn1 , defined by cn1 , un1Gn. One
can impose linear constraints on un1 , e.g., un1V

T = 0n−k,
such that cn1 is a codeword of C. To this end, we write
cn1H

T = un1GnH
T = 0n−k. Thus, choosing V = HGT

n

defines constraints on input vector, un1 , such that the code C is
represented as a polar code with constraints on the frozen bits
[17]. Using this approach, a bit ui is called frozen if its value
is always 0 or determined solely by the bits ui−11 . Those which
are not always 0 are called dynamic frozen bits. A systematic
way to determine the frozen indices and the constraints on
them is to convert V into V ′ via elementary row operations,
where each column of V ′ has the last non-zero entry in a
distinct row i, 1 ≤ i ≤ n − k. Then, the row index i of the
non-zero entry in the columns of V ′ with a single 1 means
that ui is a static frozen bit, i.e., ui = 0. However, the bit
ui is a dynamic frozen bit if a column has multiple 1’s and i
is the row index of its last non-zero entry. A dynamic frozen
bit can be a linear combination of multiple information bits
and this is reflected by a column in V ′ with the Hamming
weight greater than 2. For a given construction, we say the

dynamic frozen bits are defined by t information bits if t is
the cardinality of the subset of A, consisting of all the indices
of information bits used to define dynamic frozen bits.

In [17], the idea of dynamic frozen bits was used to define
eBCH-polar subcodes. The construction of an (n, k) eBCH-
polar subcode starts by choosing C to be an (n, k′) eBCH
code with k < k′. Then, the frozen indices (for C) are found.
Finally, an additional set of k′ − k bits are frozen to 0.

C. Successive Cancellation and SC List Decoding over BEC

Upon observing the channel output yn1 , the SC decoding
estimates the bit ui successively from i = 1 to i = n as

ûi =

{
ui if i ∈ Ac

fi(y
n
1 , û

i−1
1 ) otherwise,

(1)

by using the previously estimated bits ûi−11 in the function

fi(y
n
1 , û

i−1
1 ) ,


0 if PUi|Y n

1 ,Ui−1
1

(0|yn1 , ûi−11 ) = 1

e if PUi|Y n
1 ,Ui−1

1
(0|yn1 , ûi−11 ) = 1

2

1 if PUi|Y n
1 ,Ui−1

1
(0|yn1 , ûi−11 ) = 0

(2)

where the probabilities PUi|Y n
1 ,Ui−1

1
(0|yn1 , ûi−11 ) are computed

recursively under the assumption that Uj , i < j ≤ n, are
i.i.d. uniform random bits [11]. The inputs to the algorithm
are PCi|Yi

(0|yi), i = 1, . . . , n. For standard SC decoding, the
process aborts with a frame error if ûi = e for any i.

We recall the genie-aided SC decoder where, at each de-
coding stage i, the decoder is provided with the true prior bits
ui−11 by a genie [11]. Let P (SC) and P (GA) denote the block
error probabilities of the SC and genie-aided SC decoders,
respectively. Then, we have the following relation [29], [30].

Proposition 1. For any fixed A, P (SC) = P (GA).

The proof is provided in the appendix for completeness and
is valid for any B-DMC. Let εi , PUi|Y n

1 ,Ui−1
1

(e|yn1 , ui−11 ).
Then, P (SC) = P (GA) ≤

∑
i∈A εi due to Proposition 1. Thus,

the design of polar codes minimizes this upper bound on the
block error probability for a given channel erasure rate ε.

In SCL decoding [12], several instances of an SC decoder
are run in parallel, each having a different hypothesis on the
previous estimates ûi−11 at a decoding stage i. Each hypothesis
ûi−11 is referred to as a decoding path. Over the BEC, if (1)
provides an erasure for an information bit ui with i ∈ A,
then a path is duplicated to take into account both options,
namely ûi = 0 and ûi = 1 [14], [31]. Also, whenever a frozen
bit is encountered, the number of active paths is halved if its
decoded value contradicts its known value because this reveals
that half of the paths are invalid [32]. Note that the complexity
of SCL decoding is constrained by imposing a maximum list
size L. We declare an error if, at any stage during the decoding
process, the number of active paths exceeds L or if more than
one path is active at the end of the process.

III. SC INACTIVATION DECODING

Assume un1 is encoded and transmitted over the BEC(ε),
providing the channel output yn1 . Consider the case where



(1) provides an erasure, i.e., ûi = e. Instead of duplicating
the path as in SCL decoding, the SC inactivation decoder
introduces a dummy variable ũi and stores the decision as
ûi = ũi, called an inactivation event. It continues decoding
with the next stages using the same schedule as for SC
decoding. Then, (2) is allowed to be a function of the previous
inactivated variable. For example, assuming there is no other
inactivation for the information bits in between, it can output
either an erasure or a linear combination of ũ0 , 1 and the
previous variable ũi, i.e., a0 ⊕ aiũi with a{0,i} ∈ {0, 1}2, for
all bits uj with j > i. We have to separate the cases where (i)
uj is an information bit and (ii) uj is a frozen bit. In case (i),
if the function (2) outputs an erasure, the decoder inactivates
another bit, namely ûj = ũj . Otherwise, it continues with the
decoding of the next bit by knowing that ûj = a0 ⊕ aiũi.
In case (ii), if the decoder outputs an erasure or has a trivial
combination, i.e, a{0,i} = 02, it sets ûj = 0 and continues
with the next bit. However, if it outputs a combination where
ai = 1, then it learns the value of the previously inactivated bit
as ũi = a0. The SC inactivation decoder stores the equation
separately and keeps decoding with ûj = a0 ⊕ aiũi.

In general, the decoder can have g inactivations for the
information bits uG\{0} with G , {0, i1, i2, . . . , ig}, 0 < i1 <
i2 < · · · < ig < i before decoding ui, i.e., ûG\{0} = ũG\{0}.
For some binary vector aG , the function fi is

fi(y
n
1 , û

i−1
1 ),

{
aG · ũG if PUi|Y n

1 ,Ui−1
1

(aG · ũG |yn1 , ûi−11 ) = 1

e otherwise.
(3)

Assume that the decoder inactivates g bits in total during a
decoding attempt. Then, the final step of SC inactivation de-
coding is to solve a system of linear equations in g unknowns.
This will have a unique solution only if the equations obtained
from frozen bits have rank g. This algorithm is equivalent to
an SCL decoder over the BEC with unbounded list size [32,
Appendix A], thus, it implements MAP decoding.

We extend the inactivation decoder to include path pruning
like SCL decoding. The decoder’s operation is unchanged
whenever an information bit is encountered, i.e., in case (i)
above. In case (ii), if (3) does not deliver an erasure, it
provides the equation aG · ũG = 0.1 If aG has a non-zero
term, the equation is solved for ũij as ũij = aG\{ij} · ũG\{ij},
ij = max{i ∈ G : i 6= 0}, and stored. This is called a
consolidation event. The decoder continues with ûj = 0. We
declare an error if there remains any unresolved ũi at the end.
Analysis of this decoder provides insights into dynamics of
the number of paths in SCL decoding for the BEC.

IV. NUMBER OF INACTIVATIONS FOR MAP DECODING

Let ûi−11 denote the decoding output of SC inactivation
decoding with possible inactivations before estimating ui.

Lemma 1. fi(yn1 , u
i−1
1 ) = e if and only if fi(yn1 , û

i−1
1 ) = e.

Proof. The case where ûi−11 does not contain any inactivation,
i.e., ûi−11 = ui−11 , is trivial.

1If it is a dynamic frozen bit, the right-hand side of the equation is the
linear combination defining it (see Sec. II-B). For simplicity, assume it is not.

Thus, we assume that the decoder inactivated some infor-
mation bits, i.e., ûj = ũj for some j, 1 ≤ j < i.

Now, suppose that (a) fi(y
n
1 , u

i−1
1 ) = e, meaning

PUi|Y n
1 ,Ui−1

1
(ui|yn1 , ui−11 ) = 1/2 for both ui ∈ {0, 1}, and

that (b) we have a vector aG such that PUi|Y n
1 ,Ui−1

1
(aG ·

ũG |yn1 , ûi−11 ) = 1; thus, fi(yn1 , û
i−1
1 ) 6= e. But, (b) implies

PUi|Y n
1 ,Ui−1

1
(aG · uG |yn1 , ui−11 ) = 1 by replacing inactivated

bits with their values and having u0 = ũ0 (equivalently,
u0 = 1). This contradicts (a).

Now, consider the other direction, i.e., suppose that (c)
fi(y

n
1 , u

i−1
1 ) = ui and (d) fi(yn1 , û

i−1
1 ) = e. Then, (c) implies

that PUi|Y n
1 ,Ui−1

1
(ui|yn1 , ui−11 ) = 1 for some ui ∈ {0, 1}.

Then, there exists a vector aG for which we have

PUi|Y n
1 ,Ui−1

1
(aG · ũG |yn1 , ûi−11 )

∣∣∣
aG ·ũG=ui,û

i−1
1 =ui−1

1

= 1

and this contradicts (d).
Note that density evolution is able to compute the probabil-

ities εi exactly, i.e., the erasure probabilities of the genie-aided
SC decoder [11].
Lemma 2. Let bi denote the probability of having an inacti-
vation for ui in the SC inactivation decoder. Then,

bi =

{
0 if i ∈ Ac

εi otherwise.

Proof. Let b′i denote Pr[fi(y
n
1 , û

i−1
1 ) = e]. Then, we have

b′i
(a)
= E[1{fi(yn1 , ûi−11 ) = e}] (b)

= E[1{fi(yn1 , ui−11 ) = e}] (c)
= εi

where (a) and (c) follows from the definition of probability
and (b) from Lemma 1. The result follows from (1).

Corollary 1. Let G be a RV equal to the total number of
inactivations made by the decoder during a decoding attempt.
Then, E[G] =

∑
i∈A εi.

Proof. Follows from the expectation of inactivation indicator
events and Lemma 2.

Corollary 1 describes the average number of inactivations
required with a code defined by A for MAP performance when
the transmission is over the BEC(ε), providing the expected
number of unknowns for the resulting linear system.2

For the SC inactivation decoder with consolidations, let Gi

be a RV denoting the number of unresolved inactivations after
decoding ui. Its expectation E[Gi] is important for analyzing
the error probability of an SC inactivation decoder with a fixed
maximum number of inactivated bits gmax as well as that of
an SCL decoder with a list size L set to L = 2gmax . In Section
V, numerical estimates of E[Gi] are shown.

Remark 1. The performance improvement under MAP decod-
ing when interpolating from polar to RM codes is driven by
the weight spectrum improvement, e.g., the minimum distance
increases [14], [15]. This comes at the cost of a higher
MAP decoding complexity. The quantity E[G] is obtained
from analyzing the inactivation decoder and this allows us
to quantify this complexity increase. Another way to improve

2This relation was first observed in [32, Appendix A] for SCL decoding
with unbounded list size, where an inactivation event is replaced by a
branching event as an SCL decoder branches paths if it encounters an erasure.



the distance spectrum is to embed dynamic frozen bits [17].
Although the number of inactivated bits remains unaffected by
the use of dynamic frozen bits, they do add extra complexity to
the decoder. The additional complexity is related to the total
number of information bits used to define dynamic frozen bits
because it affects the sparsity of the binary vector operations.

V. NUMERICAL RESULTS

In this section, we consider (i) polar codes, (ii) RM codes,
(iii) eBCH-polar subcodes (with 7 dynamic frozen bits) [18] as
well as (iv) RM codes with dynamic frozen bits. Numerical
results are provided for rate R = 1/2 codes of length n ∈
{128, 512} using a MAP decoding implemented via the SC
inactivation decoder. Note that the polar codes are designed
for the erasure probability ε = 0.4 via density evolution [11].
The Singleton bound (SB) [33], a lower bound on the block
error probability of any binary linear code, and the Berlekamp
random coding bound (BRCB) [34], a tight upper bound on
the average block error probability of the linear code ensemble
defined via parity-check matrices, are provided as benchmark.

In Fig. 1, the block error rates (BLERs) are shown. For any
length n, RM codes outperform polar codes. The eBCH code
performs very close to an instance from the (128, 64) random
code ensemble. It is constructed with the idea explained in
Sec. II-B by allocating the first k positions for information
bits and having all frozen bits as dynamic, which are set to
random linear combinations of all information bits. The BLER
of the eBCH-polar subcode is also provided as a reference and
it performs slightly better than the RM code.

In Fig. 2, the expected numbers of inactivations E[G] from
Corollary 1 are provided together with the results obtained
from simulations for n = 128, demonstrating that the analysis
is exact. In addition to larger number of inactivations, the
eBCH code has 35 dynamic frozen bits, which are defined by
in total 35 information bits. Therefore, the average decoding
complexity for eBCH code is much higher than for the
others. For this blocklength, surprisingly, E[GRM] is close
to E[GeBCH−pol], where the eBCH-polar subcode has an
additional complexity due to dynamic frozen bits.

In Fig. 3, the BLERs for two variants of RM codes with
dynamic frozen bits are provided. In d-RM codes, all frozen
bits are set to random linear combinations of the previous
information bit(s). For n = 128, the d-RM code’s performance
is close to that of the eBCH code. The second variant, 7d-RM
code, is designed for a lower decoding complexity compared
to the d-RM code by declaring all but the last 7 frozen bits
as static. The dynamic frozen bits are set to random linear
combinations of first 10 information bits since they are more
likely to be erased. This code performs within an erasure
probability gap of 0.04 from the eBCH code at a BLER
≈ 10−6. For n = 512, the flattening in the curve of the RM
code at BLER ≈ 10−5 is avoided by the d-RM, performing
close to the SB down to a BLER ≈ 10−7.

Fig. 4 shows the average number of unresolved inactivations
E[Gi] as the SC inactivation decoder with consolidations
proceeds from i = 1 to i = n with n = 128 at ε = 0.4
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for the polar and RM code. This highlights the performance
vs. complexity trade-off. The code with a better performance,
i.e., RM code (see Fig. 1), has more inactivations at early
stages due to more information bits at unreliable positions;
hence a larger decoding complexity. The frozen bits placed at
fairly reliable positions help resolve the inactivations, yielding
a better performance. The decoder is not able to resolve the
inactivated bits for the polar code because of the lack of
frozen bits at reliable positions appearing after inactivations.
Hence, E[Gi] provides a measure to quantify performance
vs. complexity trade-off. On the one hand, many unresolved
inactivations increase complexity and are, hence, undesired.
On the other hand, too few inactivations to begin with do not
make best use of the information provided by frozen bits when
it comes resolving inactivations.

In Fig. 5, E[Gi] is provided for codes with dynamic frozen
bits. Observe the large number of inactivations for the random
code, where they are mostly resolved at the end. The eBCH
and the d-RM codes provide a similar performance (see Fig.
3) with a lower complexity compared to the random code. In
addition, the eBCH-polar code has the lowest complexity; yet,
with a degraded performance (see Fig. 3). The 7d-RM code
is an exemplary construction for a code performing halfway
between the eBCH-polar and d-RM codes (see Fig. 3). An
analysis of the additional complexity due to dynamic frozen
bits is left to future work.

VI. CONCLUSION

An inactivation decoder is proposed using the schedule of
the SC decoding for transmission over the BEC. Using density

evolution, the expected number of inactivations is derived
analytically. The results are illustrated numerically for vari-
ous codes. The expected number of unresolved inactivations
quantifies the performance vs. complexity trade-off for the
proposed SC inactivation or SCL decoder for MAP decoding
of a given code.
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APPENDIX

A. Proof of Proposition 1

Note that the relation P (SC) ≤ P (GA) is shown already in
[11] while the equality is formalized later [29], [30]. Let T ,
{(un1 , yn1 ) ∈ Xn × Yn : uAc = 0n−k}. For each sample point
(un1 , y

n
1 ) ∈ T , the SC decoder outputs a vector ûn1 (u

n
1 , y

n
1 )

whose elements are computed recursively as

ûi(u
n
1 , y

n
1 ) =

{
ui if i ∈ Ac

fi(y
n
1 , û

i−1
1 (un1 , y

n
1 )) otherwise.

The event of having the first bit-error at the i-th bit (informa-
tion bit) under SC decoding is defined as B(SC)

i , {(un1 , yn1 ) ∈
T : ûi−11 (un1 , y

n
1 ) = ui−11 , fi(y

n
1 , û

i−1
1 (un1 , y

n
1 )) 6= ui}. How-

ever, the bit-error event for the same bit ui under a genie-aided
SC decoder is B(GA)

i , {(un1 , yn1 ) ∈ T : fi(y
n
1 , u

i−1
1 ) 6= ui}.

Observe that B(SC)
i ⊆ B(GA)

i [11].

Lemma 3.
⋃̀
i=1

B(SC)
i =

⋃̀
i=1

B(GA)
i for all ` ∈ {1, . . . , n}.

Proof. We use induction. It is trivial for ` = 1. Assume that it
holds for some ` = `′. Note that the sets B(SC)

i are disjoint for
i = 1, . . . , n. Therefore, the proof is concluded if it is shown

that B(SC)
`′+1 = B(GA)

`′+1 \
`′⋃
i=1

B(GA)
i . To this end, we write

B(GA)
`′+1 \

`′⋃
i=1

B(GA)
`′+1 = B(GA)

`′+1 \
`′⋃
i=1

B(SC)
i (4)

= B(GA)
`′+1 \ {(u

n
1 , y

n
1 ) ∈ T : (f1(y

n
1 , u

0
1),

f2(y
n
1 , u

1
1), . . . , f`′(y

n
1 , u

`′−1
1 )) 6= u`

′

1 } (5)

= B(SC)
`′+1 (6)

where (4) follows from the induction hypothesis, (5) from the
unions starting from i = 1 to i = `′, e.g., the first union is

B(SC)
1 ∪B(SC)

2 = {(un1 , yn1 ) ∈ T : (f1(y
n
1 , u

0
1), f2(y

n
1 , u

1
1)) 6= u21}.

Finally, we have (6) by combining the definitions of B(SC)
`′+1

and B(GA)
`′+1 .

The result follows from Lemma 3 by setting ` = n.
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