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Abstract— Accurate real-time estimation of the pose and
configuration of the human hand attached to a dexterous haptic
input device is crucial to improve the interaction possibilities
for teleoperation and in virtual and augmented reality. In
this paper, we present an approach to reconstruct the pose
of the human hand and the joint angles of the fingers when
wearing a novel fixed-base (grounded) hand exoskeleton. Using
a kinematic model of the human hand built from MRI data, we
can reconstruct the hand pose and joint angles without sensors
on the human hand, from attachment points on the first three
fingers and the palm. We test the accuracy of our approach
using motion capture as a ground truth. This reconstruction
can be used to determine contact geometry and force-feedback
from virtual or remote objects in virtual reality or teleoperation.

I. INTRODUCTION

Hand exoskeletons allow us to interact with virtual or

remote environments intuitively. It is necessary to acquire

the position and orientation of the human hand and the joint

angles of the fingers, for determining contact or penetration

of remote or virtual environments, positioning the slave

manipulator or virtual human hand, and calculating force

feedback. Several dexterous haptic interfaces use encoders on

mechanical joints fixed to joints of the fingers [1], or sensors

in a data glove [2], [3], which often results in bulky interface

designs when force-feedback is also required. We present

an approach to accurately estimate pose and configuration

of the human hand from only the positions of well-chosen

attachment points to the exoskeleton.

We consider a grounded device with omnidirectional force

feedback. Fixed to the ground, high forces can be rendered,

e.g. reaction forces from fixed objects in virtual/remote

environments, and the user’s weight supported, preventing

fatigue. Omnidirectional feedback allows one to feel various

material properties, e.g. surface friction, or even drag, lift

and buoyancy forces from fluids. Examples of such systems

are [1], [4], [5] and DLR’s novel device Exodex Adam [6].

This (Fig. 1), is a modular exoskeleton attached to the first 3

fingers and the palm, adjustable for a range of human hands.

A. Why do we need hand pose and configuration?

Accurately rendering contact forces in a virtual environ-

ment requires knowledge of the contact geometry. Not only

the contact points, but also the orientation of the fingers

affects force feedback: different parts of the distal phalanx
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Fig. 1. Left, a user connected to Exodex Adam; right, visualisation of
exoskeleton with online prediction of user’s hand pose and configuration.

Fig. 2. The thimbles on the fingers that lock into the exoskeleton are black;
red crosses are attachment points to the exoskeleton, at identical positions
in both cases. Left: 2nd finger does not touch the object but thumb does;
right: 2nd finger is inside the object while thumb does not touch it. Hence
attachment points alone are insufficient to render contact.

have different frictional [7] and mechanical properties [8],

which affect the contact forces to be rendered. In [4], [5], the

attachment point of the human to the exoskeleton is located

near the fingertip, and the point of contact with remote or

virtual objects can be approximated as the attachment point.

In this case, no human hand model is used. Fig. 2 shows

a limitation of this approach: contact with a virtual object

can occur at various places on the finger; assuming a fixed

contact point could lead to predicting contact incorrectly.

Furthermore, in teleoperation, mapping grasping or manip-

ulation to a slave end effector of vastly different kinematics

to the human is nontrivial: joint-to-joint mapping is not

possible. In [9] the transformation on the manipulated object

caused by the motion of the human hand’s contacts is

mapped to a desired movement of the robot hand contact

points. Abstracting further, the system can estimate intention

of the human grasp/manipulation from the hand pose and

configuration, and choose appropriate slave motion, similar

to the gesture-based manipulation approach in [10]. If the op-

erator power-grasps, the slave can assume that grasp stability

is more important than manipulability and grasp accordingly;

in case of a precision grasp, the slave’s grasp could prioritise

easy manipulation of the object in the directions afforded by

the human’s grasp.
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B. Why attach to the palm as well as the fingertips?

Firstly, the palm position is needed to determine the

hand pose: the fingertip positions alone are insufficient. [5]

measures the distance from device to palm with ultrasonic

sensors, but it is not known if this suffices to reconstruct the

hand pose accurately. By adding attachment points on the

palm, as in the exoskeleton Exodex Adam, its position in

space can be found and used in reconstructing the hand pose

and configuration (see Fig. 2)

Secondly, most grounded dexterous exoskeletons available

today, such as the aforementioned, ignore force feedback on

the palm. However, the palm is crucial in-hand manipulation

and manual exploration [11], [12]. Applying forces to the

palm can significantly improve the range of haptic feedback

and immersiveness of the user experience. The user can

execute, and have feedback from, both precision grasps with

the fingertips and power grasps with the whole hand.

C. Approach Overview

We find the pose and configuration of the human hand

only using the 5 positions of the attachment points to the

exoskeleton. These are found using forward kinematics of

the exoskeleton and robot arm to which it is attached. They

are fitted to a kinematic model of the human hand, to derive

its joint angles and pose. Since there are more degrees of

freedom (DOFs) in the human hand than those constrained at

the attachment points to the exoskeleton, there is redundancy;

we optimise away from the human hand joint limits in the

nullspace to find the most “natural” position.

Relevant to our study is [13], an evaluation of the Cyber-

Glove. A measurement is a “hit” if the CyberGlove measures

within a given tolerance of the ground truth. We compare our

mean absolute joint error and hit rate to the CyberGlove.

Where in [13] ground truth is determined using physical

fixtures along which the subjects were instructed to align

their fingers, we find ground truth from motion tracking.

II. HAND KINEMATIC MODEL

We use a human hand model from [14] developed by some

of the authors, derived from magnetic resonance imaging

(MRI) data using the methods presented in [15]. The full

kinematic model in [14] has 22 DOFs and the pose of

the hand in space adds an additional 6 (we modelled the

translation and rotation of the hand’s base coordinate system

by 3 orthogonal prismatic joints starting at the fixed base

of the robot arm, followed by 3 revolute joints). We made

some simplifications to reduce dimensionality. Since the 4th

and 5 th fingers are not attached to the exoskeleton, we

disregard them. Fig. 3 shows the resulting model. Joints DIP2

and DIP3 are the distal interphalangeal joints; joints PIP2

and PIP3 the proximal interphalangeal joints; joint IP1 the

interphalangeal joint of the thumb; and the metacarpopha-

langeal joints, i.e. the 2-DOF joints between metacarpals and

proximal phalanges, are designated by MCPX.Y, where X is

the number of the finger and Y is 1 for abduction/adduction

and 2 for flexion/extension. IMC and CM stand for inter-

metacarpal and carpometacarpal respectively.
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Fig. 3. Schematic of hand model, simplified to exclude 4th and 5th fingers.
Cylinders are revolute joints, green lines are links. Not shown are the three
prismatic and revolute joints linking the world coordinate system with the
base coordinate system of the hand (the latter shown here in red). The hand
is in a glove to which flexible plastic parts with magnets are attached; index
and middle fingers and thumb are in finger sleeves with magnets at the ends.

gimbal (red cross is
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Fig. 4. Attachment to Exodex Adam. Magnets on the subject’s glove/finger
sleeves attach to gimbals on the exoskeleton, forming a rigid connection
from the distal phalanges/the palm to the centre of the gimbals. The positions
of the gimbals’ centres are found from the exoskeleton forward kinematics.

The distal and proximal interphalangeal joint angles on

the index and middle fingers have often been assumed

proportional; a ratio of 2
3

(DIP:PIP) is derived from empirical

measurements in [16]; a ratio of 1
2

is suggested for power

grasps in [17]. We assume the DIP joint angle to be the PIP

joint angle scaled by a factor k; how to set k is investigated

in Sec. III. This brought the DOFs of the hand model to 18.

A. Attachment Points on Exoskeleton

The human hand is connected to the exoskeleton at the tips

of the thumb, the index and middle fingers, and at two points

in the palm. The exoskeleton consists of five identical robot

“fingers” from the Five-Fingered Hand [18], attached to an

adjustable, but non actuated base, which in turn is attached to

a KUKA LWR 4+. Since this paper focusses on the approach

of deriving the the human hand pose, the exoskeleton design

is not discussed in further detail; readers are referred to [6].



The attachment to the exoskeleton is through a 3-axis

gimbal mounted on a fixed-directional magnetic clutch, see

Fig. 4, allowing a wide range of orientations and placed such

as to avoid gimbal lock during operation. The human’s index

and middle fingers and thumb fit snugly into silicone coated

sleeves with a hard plastic thimble on the end. They are

long enough that the distal phalanx does not slip or rotate

with respect to the thimble, but short enough to constrain

movement of the distal interphalangeal joint of the finger

as little as possible. The human also wears a glove to

which two rigid but flexible plastic parts are attached as

shown in Fig. 3. Magnets attached to these plastic parts

and to the end of the thimbles lock into the gimbals on the

exoskeleton. The position of the gimbals’ centre of rotation

can be determined by forward kinematics from the robot

arm’s and robot fingers’ joint positions. These are referred to

as the “attachment points” of the human and the exoskeleton.

B. Terminology

The elements of qpose are the x, y and z displacements,

followed by roll, pitch and yaw angles, of the hand base

coordinate system with respect to the world coordinate

system. The configuration qconf ∈ R
12 refers to the angles

of the joints in the hand; in order (see Fig. 3), CM1.1,

CM1.2, MCP1.1, MCP 1.2, IP1, MCP2.1, MCP2.2, PIP2,

MCP3.1, MCP3.2, PIP3, IMC45. Values of DIP2 and DIP3

are the values PIP2 and PIP3 scaled by k, as described

in Sec. II. The state q = [q⊤
pose, q

⊤

conf ]
⊤ ∈ R

18 refers to

the combination of both. The positions of the ithattachment

point of the exoskeleton xi ∈ R
3 is measured at the gimbal

centre of rotation. The vector of attachment point positions

in the world coordinate frame of the exoskeleton is defined:

x = [x⊤
1 ,x

⊤
2 , ...x

⊤
5 ]

⊤ ∈ R
15.

C. Inverse Kinematics

We use the iterative Jacobian Transpose Method [19], [20]

for inverse kinematics calculation, where the error between

the desired attachment points (i.e. those measured on the

Exodex Adam exoskeleton) and the actual attachment points

(derived from forward kinematics on the hand) is iteratively

minimised. However, we employ a two-step approach, first

adjusting the hand pose, then the hand configuration.

Explicitly, when q′ is hand state at the previous timestep,

and x is the vector of attachment point positions at the

current timestep, Jpose and Jconf are the partial derivatives

matrices of x with respect to qpose and qconf , and Apose

and Aconf are gain matrices, the hand state q at the current

timestep is updated as in Alg. 1. It was found that this

two-step approach allowed higher gains Apose and Aconf

without causing instability (and hence faster convergence),

than updating all elements of the state at once.

In line 10, the joint values are saturated at the maximum

and minimum allowed values qmin and qmax given in [14].

However, the minimum values of PIP2 and PIP3 are set to a

small value above zero (0.03 rad), disallowing full extension

and hyperextension. Near full extension, the restoring values

AconfJconf(q̂)δx when moving back into flexion in line 7

Fig. 5. Left: a hand without nullspace optimisation in an unnatural position;
right: a hand with a correction acting on all finger joints to pull away from
joint limits, projected into the nullspace.

Algorithm 1 Update hand state

Require: observed attachment point positions x, previous

hand state q′

Ensure: updated hand state q

1: xcalc ← forwardKinematics(q′) // calculate posi-

tions of attachment points on hand given previous state

2: δx← x− xcalc // deviation measured to calculated

3: qpose ← q′

pose +AposeJpose(q
′)⊤δx

4: q̂ ← [q⊤

pose, q
′⊤

conf ]
⊤

5: x̂calc ← forwardKinematics(q̂) // calculate positions

of attachment points on hand given intermediate state

6: δx̂← x− x̂calc // deviation measured to calculated

7: qconf ← q′

conf +AconfJconf(q̂)
⊤δx̂

8: δqcor,N←nullspaceCorrection(J(q̂), q̂, qmax, qmin)
9: qunsat ← [q⊤

pose, q
⊤

conf ]
⊤ + δqcor,N

10: q ← saturateAtJointLimits(qunsat, qmax, qmin)

would be small (since this is essentially a singularity) and

convergence would be slow; in hyperextension, these would

try to extend rather than flex the joints.

The intermediate values q̂ were used for the nullspace

optimisation in line 8, in order that Jconf need not be

recalculated with the new values of q – this is the most

computationally expensive step, apart from the calculation

of the nullspace correction. The latter is explained next.

D. Nullspace Optimisation

With 3 × 5 = 15 constraints for an 18-DOF system, the

inverse kinematics problem is under-defined; i.e. there are

several possible inverse kinematics solutions for a given set

of exoskeleton positions. See Fig. 5: sometimes the inverse

kinematics returns unnatural solutions, typically with one or

more human hand joints at or near position limits. For this

reason, nullspace optimisation was run in parallel to move

the fingers away from the joint limits (line 8, Alg. 1). A

correction acting on all finger joints is defined as follows:

δqi,cor = αi

qi,max + qi,min − 2qi
qi,max − qi,min

,

where αi is a “stiffness” for the ith joint and qi, qi,max,

qi,min, and δqi,cor are the ith elements of the vectors q, qmax,

qmin, and δqcor, respectively. This is then projected into the

nullspace: δqcor,N = Nδqcor, and added to the finger joint

and base angles (line 9 of Alg. 1); the effect is that the



finger joints move away from their limits while the positions

of the attachment points stay the same. The static nullspace

projector N was calculated as in [21]:

N = I − J⊤(JW+)⊤, (1)

JW+ = W−1J⊤(JW−1J⊤)−1, (2)

where JW+ is the weighted pseudoinverse of the Jacobian

(the dependency on q is dropped for brevity) with weighting

matrix W . Since the dimension of the nullspace is 3 (18

DOF - 15 constraints), different projections are possible.

A weighted inverse can yield a projection where δqcor,N

corrects the joint angles in the human hand away from their

limits, more than correcting its pose.

The unweighted pseudoinverse (i.e., W is the identity

matrix I) can be calculated in polynomial time using single-

value decomposition (SVD) [22]. We define:

W−1 = ΩΩ
⊤, H = JΩ,

and (2) reduces to an unweighted inverse:

JW+ = ΩH⊤(HH⊤)−1 = ΩHI+ (3)

If W is chosen as a diagonal matrix with entries

[w1, w2, ....] along the diagonal, then Ω is also a diagonal

matrix with entries [w−0.5
1 , w−0.5

2 , ....]. We chose w−0.5
i for

i ∈ {1, ..., 6} (i.e. the elements relating to pose) and for

IMC45 as 100, for PIP2 as 10, and for the rest as 1.

The stiffness αi was tuned to 0.1 for CM1.1 and 1.2, and

MCP1.2; 0.04 for MCP2.1 and 2.2, 0.02 for MCP3.1 and

3.2, and 0.01 for all other joints.

Despite the high dimensionality, with this rearrangement

we were able to calculate the nullspace projector in parallel

with the robot control (the computation took too long to

run in the same model as the inverse kinematics and robot

control in real time ). Note: by using the SVD to find the

pseudoinverse of J and by approximating it in Sec. II-C by

its transpose, we avoid calculating inverses of large matrices.

III. EVALUATION

The accuracy of the inverse kinematics prediction is tested

experimentally. It is challenging to obtain a ground truth

measurement of the human hand when attached to such

an exoskeleton. Vision and depth-based systems, such as

LeapMotion1 perform poorly, since the equipment attached

to the hand makes it difficult for the software to identify the

fingers. Instead, we used a 5-camera infrared motion-tracking

system from Vicon Ltd2 along with retroreflective markers

arranged into rigid patterns, affixed to rigid bodies on the

hand, as detailed in [23] and shown in Fig. 6.

A. Robot Control

The Exodex Adam exoskeleton is torque controlled and

is compliant to human force cues: when the human moves

their arm or fingers, the exoskeleton, including the robot

arm, moves with them with minimal resistance. The system

1www.leapmotion.com retrieved 20.7.18
2www.vicon.com, retrieved 20.7.18
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PIP3 hand pose
IMC45

MCP1.2

Fig. 6. Markers placed on the human hand and the joints they measure.

neutral P1 P2 P3

P4 P5 P6

Fig. 7. Hand positions. Top, from left to right: neutral position, fingers
outstretched (P1), pointing with index finger (P2), diver’s “OK” (P3).
Bottom, from left to right: power-grasp of small object (P4), power-grasp
of larger object (P5), touch base of pinky with tip of thumb (P6).

employs gravity compensation, meaning the weight of the

device is not carried by the user, and the measured torques

are fed forward with a gain to the commanded torques,

meaning the perceived inertia of the device is lower than

its actual inertia as in [24]. The fingers additionally have

friction compensation as described in [25]. A full discussion

of the control is outside the scope of this paper.

B. Experiment Methodology

A standard set of hand positions and gestures which were

judged relevant to telemanipulation and interaction with a

virtual environment were chosen:

P1 Fingers outstretched

P2 Pointing with index finger

P3 Diver’s “OK” finger

P4 Power-grasp of small (e.g. apricot-sized) object

P5 Power-grasp of larger (e.g. grapefruit-sized) object

P6 (Try to) touch base of pinky with tip of thumb

These are all shown in Fig. 7 and demonstrated in the

video. Subjects start in a neutral position, move to the first

position (or as close as possible), back into the neutral

position, then to the next position, etc. The parts of the

human hand state measured by the motion-tracking were:

• hand base coordinate system (qpose)

• metacarpophalangeal flexion joint, thumb (MCP1.2)

• proximal interphalangeal joint, index finger (PIP2)

• proximal interphalangeal joint, middle finger (PIP3)

• cupping joint in the palm (IMC45)

These were chosen since they led to the most robust tracking

in pre-trials, have rigid bodies to which the markers can be



attached without much skin movement, and have only one

degree of freedom (e.g. the metacarpophalangeal joints of

the fingers, which have both flexion and abduction, were

excluded) – an exception is the metacarpophalangeal joint of

the thumb, since abduction/adduction is limited in motion.

While theoretically possible to track these 5 simultaneously,

the rate of misidentification of markers due to occlusion

made this impractical. Instead, each was tracked individually.

Tracking was performed at 100Hz. We recorded the

ground truth from the motion capture as well as the positions

of the exoskeleton attachment points. Offline, we ran the

inverse kinematics algorithms using different values of k, and

with and without nullspace optimisation, with the same input

values (i.e. the time series of the attachment point positions).

This was performed as if it were running in real time, i.e. at

833Hz and with the values from the nullspace optimisation

delayed by one cycle period as described in Sec. II-D.

Subjects were 4 males and 1 female, median age 25, none

of whom were the original subject used to create the model

in [14]. Lengths in the hand model were scaled by the ratio

of the subject’s hand length (distance from wrist to tip of

middle finger) to that of the original subject.

C. Normalising Measurements

Since there were variations in the exact positioning of the

markers on the hand of each subject, the offset between the

zero positions of the measured angles and the calculated

angles was taken as the average offset during the neutral

positions prior to each of the 6 positions. There are offsets

between the frame of the marker measuring hand pose and

of the hand base coordinate system, and between the motion

tracking frame and the exoskeleton world frame. A measured

transformation matrix of the marker position Tm and a

calculated position T c are related by T c = ATmB, where

A represents the transformation from the world frame of the

exoskeleton to the motion-tracking frame. B represents the

pose offset of the marker placed on the human hand. The

matrices A and B are estimated by regression on T c and

Tm at the neutral positions, for each subject.

D. Experiment Results

Tab. I shows mean absolute error and hit rate (defined

in Sec. I-C) averaged over the 6 held positions for each

subject, both with and without nullspace correction, and for

different k values. We took the tolerance as ±15◦, as this was

used in [13] for joints MCP1.2, PIP2 and PIP3. For the base

coordinate system, we find mean absolute position error and

angular error from the measured to the calculated (corrected

with A and B as described above). These are shown in

Tab. II, broken down by movement. In all cases, values are

averaged over the 1 second during which the positions are

held. Fig. 8 shows the tracking of joint PIP2 of subject 3

and Fig. 9 shows the base coordinate system position, roll

pitch and yaw angles, positional error and angular error.

IV. DISCUSSION

The finger angles had a mean absolute joint error of

between 7 − 12◦. For the thumb, index and middle fingers,

TABLE I

COMPARISON OF MEAN ABSOLUTE ERROR (DEG, ABOVE) AND HIT RATE

(%, BELOW) WITH (N.S) AND WITHOUT (X) NULLSPACE, FOR

DIFFERING VALUES OF k. HIGHEST HIT RATES IN BOLD

MCP1.2 PIP2 PIP3 IMC45
k X N.S. X N.S. X N.S. X N.S.

0 16.3 8.1 7.1 7.7 10.3 11.5 9.3 8.2
0.167 15.7 8.4 7.1 7.5 10.9 11.6 9.0 8.1
0.333 15.1 8.3 7.2 7.3 11.5 11.5 8.8 8.0
0.5 14.6 8.2 7.3 7.4 12.1 11.2 9.2 8.0

0.667 14.6 8.3 7.4 7.4 12.0 11.1 9.0 7.9
0.833 14.6 9.0 7.7 7.7 12.0 11.0 8.9 7.8

1 14.6 9.0 8.0 7.8 11.9 10.7 8.7 7.8

MCP1.2 PIP2 PIP3 IMC45
k X N.S. X N.S. X N.S. X N.S.

0 50.0 83.3 83.3 90.0 73.3 63.3 76.7 83.3
0.167 53.3 86.7 83.3 90.0 70.0 70.0 80.0 83.3
0.333 60.0 86.7 83.3 93.3 63.3 73.3 80.0 83.3

0.5 60.0 86.7 83.3 93.3 60.0 73.3 80.0 86.7

0.667 63.3 86.7 83.3 93.3 60.0 76.7 80.0 83.3
0.833 63.3 86.7 76.7 90.0 60.0 73.3 80.0 83.3

1 66.7 86.7 76.7 86.7 60.0 73.3 80.0 83.3

TABLE II

MEAN ABSOLUTE ERROR IN POSITION (MM, ABOVE) AND ORIENTATION

(DEG, BELOW), FOR DIFFERING VALUES OF k, AND (END COLUMN)

WITHOUT NULLSPACE OPTIMISATION

k P1 P2 P3 P4 P5 P6 Average w/o N.S.

0 12.5 18.7 17.3 19.1 11.1 27.7 17.8 17.6
0.167 12.0 17.8 16.9 18.8 10.4 27.7 17.3 17.5
0.333 11.3 17.2 16.5 18.2 9.7 28.2 16.9 17.5
0.5 11.1 17.0 16.3 17.8 9.8 28.4 16.7 17.5

0.667 10.9 17.0 16.4 17.6 10.0 28.4 16.7 17.6
0.833 10.9 17.1 16.6 17.7 10.1 28.7 16.9 17.6

1 11.1 17.3 16.7 17.8 10.3 28.9 17.0 17.8

k P1 P2 P3 P4 P5 P6 Average w/o N.S.

0 19.8 26.4 17.2 25.0 14.2 22.9 20.9 20.0
0.167 18.5 25.3 16.5 23.9 13.2 21.4 19.8 19.9
0.333 17.1 24.3 15.9 22.6 12.4 20.3 18.7 19.7
0.5 16.5 23.6 15.5 21.4 11.7 19.7 18.1 19.4

0.667 15.5 22.8 14.8 20.6 11.4 19.8 17.5 19.4
0.833 15.5 22.7 15.4 20.4 11.4 19.9 17.5 19.3

1 15.6 22.7 16.1 20.8 11.4 20.1 17.8 19.3
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calculated value is blue. ◦ are neutral positions, × are positions P1–P6 in
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Fig. 9. Tracking of the base coordinate frame, subject 4, k =
2

3
. Above:

z-coordinate tracked (orange) and calculated (blue). Below, position error
(blue) and angular error (red). ◦ are neutral positions, × are the positions
P1–P6 in order. At 90s, the subject moves their hand around quickly; the
lag between the calculated and actual positions results in an error.

this is a good result; for the cupping angle IMC45, the range

of joint motion in the model is only 29◦, so we cannot

confidently state that the value of 8◦ error is significantly

better than random. Though error does not improve in PIP2

and PIP3 with nullspace optimisation, hit rate does.

In Tables I and II, it appears that no single value of

k minimises the error. However, hit rates were maximal

using nullspace optimisation at k = 2
3

, supporting its use

in the literature. In the experiments, the joint limits of the

exoskeleton’s robotic fingers were often reached, particularly

in positions P1 and P6, and a virtual spring is implemented

in the control so that the joints never reach their limits. The

human therefore perceives a force at the attachment points,

which was seen to deform the distal joints (PIP2, PIP3, IP1).

A potential solution would be to increase the length of the

finger thimbles such that the distal joints are constricted, but

this would hinder free movement.

Compared to CyberGlove, our approach performs well. On

the CyberGlove, hit rates between 86−100% were observed

on the PIP2 and PIP3 joints and between 33− 96% for the

MCP1.2 (the value of 33% was at 90◦ flexion). Our sensor-

less approach has hit rates of 93.3% and 76.7% on PIP2 and

PIP3 and 86.7% on MCP1.2. The accuracy on the thumb

metacarpophalangeal joint is particularly promising, given

the thumb’s central role in manipulation [26]. Nullspace

optimisation appears to improve hit rate for all joints.

For the pose of the hand, the worst tracking was observed

in P6 in the position and P2 in the angle. P6 is a difficult

position to recreate on the exoskeleton and it may be that the

human hand had to contort into unnatural positions, which

were not found by the algorithm.

1) Unreliable Ground Truth: During high flexion angles

in the 2nd and 3nd fingers, the markers often tended to slip

such that the angle was undermeasured, contributing to poor

tracking. Some markers could also not be placed directly on

the skin, but only on the glove, so slippage occurred between

glove and skin. Finally, to measure the thumb angle, one

marker was on the plastic magnet attachment on the palm,

which often did not flex sufficiently when the thumb flexed.

2) Evaluation and Possibilities for Improvement: Judging

from our previous work in gesture-commanded teleopera-

tion [10] and preliminary trials, this accuracy is sufficient

for gesture and intention recognition, see video attachment.

With regard to teleoperation and virtual reality (VR), since

the attachment points to the exoskeleton are close the hu-

man fingertips, and these can be determined from the joint

encoders very precisely, the joint angle error leads to a small

position error in the attachment with virtual/remote objects.

This accuracy was achieved with no sensor attached to the

hand. It could be further improved by adding angular sensors

to the gimbal at the exoskeleton attachments, so that the

orientation of the distal phalanges and the points on the palm

could be measured. Sensor fusion with e.g. a data glove is

expected to improve accuracy, in particular near singularities

(e.g. full extension of the human fingers), in hyperextension

of the fingers, and in measuring the joint IMC45.

The approach is iterative, so the hand state estimate is

updated incrementally. This leads to a lag between measured

and computed state, visible in Fig. 9. Increasing computing

power to compute more than one iteration per control cycle,

and tuning gains (or adding an integral gain term) could

improve tracking performance. Additionally, the flexibility

of the individual’s fingers played a large role. While subject

2 could not hyperextend finger joints, in subject 3 hyperex-

tension was often observed. This could be addressed by 1)

considering the DIP2 and DIP3 joints as independent degrees

of freedom and using sensors as mentioned above to measure

them, or 2) restricting hyperextension with a mechanical

stop in the glove–however, this restricts free human hand

movement, which is a key feature of this exoskeleton.

Finally, Exodex Adam, the exoskeleton we use, has the

capacity for an extra robot finger. This could be attached

to the 5th finger of the human, allowing this finger’s joints

to be estimated. Inter-finger relationships in [17] could be

exploited to estimate joint angles in the 4th finger.

V. CONCLUSION AND FURTHER WORK

We present and evaluate an approach for real-time estima-

tion of human hand pose and configuration on a grounded

exoskeleton connected to the fingers and the palm. Inverse

kinematics on a redundant system is augmented by nullspace

optimisation, which improves accuracy. Possibilities for fur-

ther improving accuracy and extending the approach are

identified. The next step is using these predictions to provide

realistic force feedback in a variety of virtual and remote

environments.
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