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Abstract 

A practical approach to continuously monitor and provide real-time solar energy prediction can help support reliable 

renewable energy supply and relevant energy security systems. In this study on the Korean Peninsula, contemporaneous solar 

radiation images obtained from the Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) 

system, were used to design a convolutional neural network and a long short-term memory network predictive model, 

ConvLSTM. This model was applied to predict one-hour ahead solar radiation and spatially map solar energy potential. The 

newly designed ConvLSTM model enabled reliable prediction of solar radiation, incorporating spatial changes in atmospheric 

conditions and capturing the temporal sequence-to-sequence variations that are likely to influence solar driven power supply 
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and its overall stability. Results showed that the proposed ConvLSTM model successfully captured cloud-induced variations 

in ground level solar radiation when compared with reference images from a physical model. A comparison with ground 

pyranometer measurements indicated that the short-term prediction of global solar radiation by the proposed ConvLSTM had 

the highest accuracy [root mean square error (RMSE) = 83.458 W·m−2, mean bias error (MBE) = 4.466 W·m−2, coefficient 

of determination (R2) = 0.874] when compared with results of conventional artificial neural network (ANN) [RMSE = 94.085 

W·m−2, MBE = −6.039 W·m−2, R2 = 0.821] and random forest (RF) [RMSE = 95.262 W·m−2, MBE = −11.576 W·m−2, R2 = 

0.839] models. In addition, ConvLSTM better captured the temporal variations in predicted solar radiation, mainly due to 

cloud attenuation effects when compared with two selected ground stations. The study showed that contemporaneous satellite 

images over short-term or near real-time intervals can successfully support solar energy exploration in areas without 

continuous environmental monitoring systems, where satellite footprints are available to model and monitor solar energy 

management systems supporting real-life power grid systems.   

 

Keywords: Solar radiation prediction, convolutional neural network, long short-term memory, COMS-MI, pyranometer, deep 

learning 
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1. Introduction 

Successful integration of the rapidly growing renewable 

energy production into existing or future power grid 

systems is an important challenge for the future global 

energy supply. Any electricity operator needs to ensure a 

precise balance between electricity production and 

consumption to reduce overall costs and sustain electricity 

production [1]. Existing energy plants that run on nuclear 

power, steam (thermal resources), fossil fuels (coal), and 

hydropower can control their energy production according 

to expected consumption by responding to the different 

temporal horizons of their operational power systems [2]. 

However, solar energy is intermittent and unpredictable 

due to its high sensitivity to atmospheric conditions. It is 

also generated by spatially dispersed, small scale power 

plants [3, 4]. This adds to the risk or uncertainty 

underlying system management, which in turn increases 

the cost of solar power production. 

New approaches are required to predict the spatiotemporal 

distribution of solar radiation with a reliable degree of 

accuracy. These will optimize the integration of solar 

energy into existing electrical power grids and ensure its 

favorable trading performance and sustainability in the 

modern electricity market [5].  

 Numerical Weather Prediction (NWP) models are the 

‘gold standard’ for building frameworks based on 

mathematical equations that seek to emulate changes in 

global solar radiation [6]. The main advantage of such 

models is their dynamical modelling ability to represent 

atmospheric properties. For example, solar radiation is 

predicted by interpreting physical processes of 

atmospheric flows, as well as by considering cloud 

movement and other atmospheric components. Real-time 

solar energy power generating systems require short-term 

predictions (within 6h). However, NWP models are 

relatively less reliable for short-term prediction of solar 

radiation because the models need to derive a physical 

valid state after initialization (called the spin-up time). In 

particular, very short-term forecasts (nowcast) of 1–2 h 

ahead, derived by NWP, are less accurate than those 

provided by Machine Learning (ML) approaches [7, 8].  

ML algorithms including artificial neural network (ANN), 

support vector machine (SVM), and random forest (RF) 

are recently developed alternatives to NWP models and 

have been widely applied to predict global solar radiation 

[9–16]. Many of these new models use atmospheric 

datasets of a sufficient length and quality as well as 

relevant parameters to explain the variations in solar 

radiation over a historical period. ML approaches have 

attained a high degree of accuracy in the retrieval and 

prediction of global solar radiation at the Earth’s surface 

[17–22]. The main advantage of ML models, as compared 

with the NWP model, is that the former can simulate the 

spatiotemporal characteristics of global solar radiation 

simply by using ground pyranometer or satellite datasets, 

without understanding the complicated physical processes 

or the related solar radiation dynamics. However, existing 

ML models are unable to consider environmental 
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 1 

information beyond the target points [23, 24]. As solar 

radiation varies in time and space due to the effects of 

cloud movements and the components of the atmosphere 

[25], existing ML methods based on shallow network 

structures (less than two layers), and fixed initial 

conditions [26, 27] are limited with regard to the 

prediction of spatiotemporal solar radiation.  

Deep learning models such as deep neural networks 

(DNNs), long short-term memory (LSTM) networks, and 

convolutional neural network algorithms, have been 

developed to solve complex and nonlinear problems in the 

fields of computer vision and remote sensing [1, 31–34], 

and more recently, solar energy prediction [28-30]. These 

newer methods allow for the building of deeper, more 

complex network structures (often based on multiple 

hidden layers in the overall model architecture) to 

accurately identify the key features present in the 

predictor(s) and target variables [32]. Implementing 

multiple hidden layers can avoid vanishing gradient 

descents and over-fitting issues, which are typical in single 

hidden layer ML models. New activation functions such 

as a rectified linear unit (ReLU) have led to a better 

dropout rate and more effective initialization of kernels or 

weights. Deep learning algorithms can generate accurate 

predictions, particularly for relatively complex and 

stochastic datasets [35–37].  

Considering the potential benefits of deep learning-based 

models, the aims of this study were to: (i) develop a new 

convolutional long short-term memory (ConvLSTM) 

model for one-hour ahead solar radiation prediction using 

geostationary contemporaneous satellite images, and (ii) 

generate spatial solar radiation maps of the Korean 

Peninsula using the ConvLSTM model. The novelty of 

this study is the newly designed ConvLSTM model that 

integrates continuous COMS-MI images to provide 

spatiotemporal variations in solar radiation at any specific 

point.  

2 Materials and Methods  

2.1. Study area and satellite imagery for training 

the deep learning model  

The study area covers the Korean Peninsula (Figure 1). It 

has a temperate monsoon climate, with a cold continental 

climate in the north (similar to northern China) and a 

marine climate in the south (similar to southern Japan 

[38]). The 33 ground pyranometers (model CM21, Kip & 

Zonen) operated by the Korea Meteorological 

Administration (red dots in Figure 1) provided ground 

 

Figure 1. Map of the study area and locations of ground 
pyranometers (red dots) using World Geodetic System 

(WGS) 84 geographic projection. 
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measurements of solar radiation with hourly resolution 

(available at https://data.kma.go.kr). The quality control 

procedures followed the criteria of the Guide to 

Meteorological Instruments and Methods of Observation 

World Meteorological Organization (WMO) No. 8. These 

measurements served to validate global solar radiation 

predictions generated by the deep learning-based 

ConvLSTM model and conventional ANN and RF models.  

In the present study, the COMS-MI satellite was mainly 

used to estimate spatiotemporal solar radiation as an input 

parameter [39]. COMS-MI has five spectral bands, 

ranging from visible to infrared, with spatial resolutions of 

1–4 km. These bands have proved to be quite useful in 

observing atmospheric conditions such as cloud cover and 

atmospheric gas concentrations. The temporal resolution 

of the COMS-MI device ranges from about 15 min to 3 h 

depending on where the observation is made [40]. 

Therefore, it is possible to make a time series of global 

solar radiation images to reflect the continuous flow of the 

atmosphere. In this study, the global solar radiation was 

first estimated by a physical model that used COMS-MI 

satellite spectral bands and atmospheric information. 

Subsequently, the same time series of solar radiation only 

served as the input data for the DNN, ANN, and RF 

models to reduce the size of the computation memory [41-

43]. For more details of the physical model’s development, 

readers may consult previous studies [43, 44]. 

Our estimation of hourly global solar radiation using a 

physical model employed COMS-MI dataset collected 

from a total of 1,100 sequential images between April 1, 

2011 and December 31, 2015 (parts of the time series data 

were not available due to a change in observation mode). 

These data, consecutively recorded between 09:00 h and 

13:00 h local time, were required to predict daytime solar 

radiation at 14:00 h (i.e., at least 1 h after the observation). 

The main reasons for predicting one hour ahead solar 

radiation is that short-term prediction is useful for 

determining whether or not the existing power generation 

is operating [1]. To construct the deep learning-based 

ConvLSTM and conventional ANN and RF models, the 

full dataset was divided into three distinct parts in 

chronological order: training, validation, and test datasets. 

80% of the total datasets were used for training and 

validation of the data-driven models from April 1, 2011 to 

September 8, 2015 (880 images). Among this 80%, about 

10% (i.e., 110 images) was used for validation of the ML 

models during the training process to reduce over-fitting 

problems. The remaining 20% from September 9, 2015 to 

December 31, 2015 (220 images) was used to test the ML 

models to evaluate the performance and generalization of 

these models. 

2.2. Framework of the ConvLSTM DNN model 

The DNN algorithm employed in the present study is 

considered to be an LSTM model, a variant of the 

recurrent neural network (RNN) algorithm. The RNN 

algorithm suffers from a drawback: a complex neuronal 

structure can result in a “vanishing gradient,” which can 

make long-term predictions relatively difficult [44, 46].  
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To overcome this issue, the present study implemented the 

LSTM algorithm (Figure 2), which introduced a memory 

block instead of a neuron [47, 48].  

According to Shi et al. [49], LSTMs and ConvLSTM 

(which uses a convolutional system) have identical basic 

structures, but the more advanced ConvLSTM algorithm 

uses a three-dimensional (3D) tensor for all gates and 

relevant input/output variables. Furthermore, all the 

matrix calculations are changed according to the 

convolutional process, such that the number of weightings 

and biases are dramatically reduced. These changes can 

allow the ConvLSTM algorithm to successfully capture 

spatial features and temporal features in the model’s input 

data. In this study, we used the ConvLSTM algorithm with 

a Tensorflow backend, available from the Keras library of 

Python software version 3.6. 

To configure the most suitable ConvLSTM model 

structure, this study employed techniques previously used 

for video frame predictions [50] as well as short-term 

rainfall predictions [51]. The basic structure of the 

suggested model consists of a combination of hidden 

layers1 (stacked ConvLSTM2D layers) and hidden 

layers2 (stacked Conv3D, ConvLSTM2D, Conv2D layers) 

sections (Figure 3). In hidden layers1, the spatiotemporal 

features of the continuous solar radiation from 09:00 to 

13:00 are captured, and the spatiotemporal features 

stretched by time are compressed into a target time (14:00) 

in hidden layers2.  

Between all convolution layers, a batch normalization 

layer was inserted to increase the training speed and 

prevent over-fitting [52]. These convolution layers used  

40 filters, the “ReLU” activation function and the “He 

normal” initializer, except for Conv2D (single filter). The 

initializer of the filter weights prevented the gradient 

vanishing problem during back-propagation of the error 

and improved the predictive performance [53, 54]. The 

“ReLU” activation function is widely used for training 

procedures, and application of the “He normal” initializer 

is suitable for “ReLU” activation [53]. In the fitting 

process, the mean squared error (MSE) loss function 

coupled with the Adam optimizer was implemented 

because the target variable (solar radiation) is a floating 

number with a physical unit (W·m−2). To identify the 

optimal structure of the ConvLSTM model for predicting 

global solar radiation, the number of ConvLSTM2D layers 

was varied within a range of 1 to 4 (Hidden Layers1, 

Figure 3).  

 In addition, we compared the conventional data-derived 

models, ANN and RF [55, 56], with the performance of 

the proposed DNN model. 

 

Figure 2 Schematic of the long short-term memory 

(LSTM) algorithm used to predict solar radiation. 
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 4 

 In the case of ANN, we designed the neural network 

structure with three layers, namely the input, hidden, and 

output layers [55]. One hidden layer has several hidden 

nodes, including the activation function and weights. To 

avoid over-fitting to the training data, we adopted early 

stopping during the training process. A trial and error 

method was used to determine the number of optimal 

nodes in the hidden layer. RF is a combination of several 

decision trees (30 trees in this study) with randomized 

node optimization and bootstrap aggregating [14, 56, 57]. 

To enhance the generality and prediction performance of 

the trained RF model, we set the ratio of the amount of 

data and the number of input variables to be used in each 

tree. We tested the combination of the number of input 

variables (2 and 3) and the ratio of the amount of input 

data (0.5, 0.632, and 0.8), and found the optimum 

configuration to be 2 variables with an input ratio of 0.8 

[58]. 

3 Results and Discussion 

3.1. Evaluation of the ConvLSTM model 

performance 

 We used the root mean square error (RMSE) between the 

observed and predicted values of solar radiation to assess 

the accuracy of four different ConvLSTM models and 

found relatively small differences (Table 1). The three-

layer ConvLSTM2D algorithm used the lowest number of 

training epochs and proved to be the most accurate (see 

Figure S1 (c) in the supplementary file). In contrast, the 

two-layer ConvLSTM model had the highest number of 

training epochs and the lowest accuracy, and the learning 

process changed due to the unstable loss of the evaluation 

data (see Figure S1 (b) in the supplementary file). The 

most complicated model, the four-layer ConvLSTM2D, 

required the second highest number of epochs. The single 

layer ConvLSTM model showed an unstable trend of 

validation loss and relatively low accuracy. These results 

indicated that the simple structure model was limited in 

terms of accuracy improvement, but that problems such as 

over-fitting also occurred in the complex model. Based on 

this analysis, we selected the three-layer ConvLSTM  

 

Figure 3. Prototype structure for training the deep learning model to predict solar radiation. 
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 5 

model and applied it to predict global solar radiation one 

hour after the input data were measured.   

 
3.2. Evaluation of predicted solar radiation maps 

using the three-layer ConvLSTM model 

Global solar radiation maps generated from values 

predicted for the Korean Peninsula served to visually 

evaluate the performance of the proposed ConvLSTM 

model with only the test datasets. The results of the ANN 

and RF models were compared against those of the 

proposed ConvLSTM. Figure 4 shows three examples of 

predicted global solar radiation maps acquired from the 

ANN, RF and three-layer ConvLSTM models as well as 

the physically based model. Overall, the spatial patterns of 

solar radiation for all three selected samples were well 

predicted using the ANN, RF, and ConvLSTM models 

compared with the corresponding maps generated from 

the output of the physical model (Figure 4 (a), (e), and (i)).  

For the ConvLSTM model, the complex spatial patterns of 

clouds, which lower the solar radiation incident on the 

Earth’s surface, were well simulated using the proposed 

deep learning approach. The high attenuation areas due to 

the prevalence of thick cloud (shown in dark blue) and the 

spatial location of the surrounding thin clouds (shown in 

sky blue) were well matched. However, although the 

spatial location and shapes of the clouds appeared to be in 

good agreement, the predicted maps of global solar 

radiation were relatively smooth in comparison with those 

derived from the physical model and conventional ML 

methods. This was predominantly attributed to the 

convolutional filter of the DNN structure.  

For the conventional ANN and RF models, the predicted 

maps of solar radiation were similar. These models 

predicted one hour ahead solar radiation by training or 

validating their network weights based on the difference 

of each pixel, unlike the convolutional filter. Therefore, 

they predicted more detailed spatial patterns of clouds and 

intensities of high and low values of solar radiation than 

the ConvLSTM model. Nevertheless, some problems 

persisted with the ANN and RF models. In the first and 

second rows in Figure 4, the red circled areas contain thin 

clouds (Figures 4 (b), (c), and (f), (g)) that do not exist in 

the reference images (a), and (e); thus, the clouds were 

predicted incorrectly by both models. This could be 

caused by a biased training towards clear and thick cloud 

cases that have more examples and are easier to predict  

Table 1. Summary of the prediction results according to the structures of the tested ConvLSTM models 

Model structure (kernel size) 
Number of 

parameters 

MSE 

(RMSE) 

(W·m−2) 

Epochs 

ConvLSTM2D(3×3) 1 layer-Conv3D(3×3×3)-ConvLSTM2D(3×3)-

Conv2D(1×1) 
218,321 

5757.25 

(75.88) 
69 

ConvLSTM2D(3×3) 2 layer-Conv3D(3×3×3)-ConvLSTM2D(3×3)-

Conv2D(1×1) 
333,841 

6010.87 
(77.92) 

80 

ConvLSTM2D(3×3) 3 layer-Conv3D(3×3×3)-ConvLSTM2D(3×3)-

Conv2D(1×1) 
449,361 

4981.41 

(70.58) 
59 

ConvLSTM2D(3×3) 4 layer-Conv3D(3×3×3)-ConvLSTM2D(3×3)-

Conv2D(1×1) 
564,881 

5545.96 

(74.47) 
77 
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 6 

than thin clouds since the optimizing process of the ML 

models was designed to increase the total accuracy. In 

addition, the prediction of global solar radiation by the 

ANN and RF models appeared to be underestimated when 

compared with the ConvLSTM and physical models. 

We used two reference datasets to appraise the 

performance of our data-driven model: reference images 

from the physical model and ground measurements from 

the pyranometers located in South Korea. First, each of the 

predicted solar radiation maps from the data-driven 

models was validated with reference images of the 

physical model using only the test datasets (from 

September 9, 2015 to December 31, 2015), as shown in 

the density scatter plots in Figure 5. All the data-driven 

approaches showed good predictions of one-hour ahead 

solar radiation using their own trained network structures 

integrated with the COMS geostationary satellite data. For 

all three cases, the highest density in each figure appeared 

in an area that received a low level of solar radiation, 

which was attributed to cloud effects. Among the data-

driven models, the predictions of the ConvLSTM model 

in Figure 5 (a) showed the highest statistical agreement 

(RMSE = 71.334 W·m−2, R2 = 0.895) with the reference 

images of the test dataset. However, the MBE of 

ConvLSTM was higher, which indicated it tended to 

overestimate more than the other models. Nevertheless, 

the Inter-Quartile Range (IQR) distribution of ConvLSTM 

was narrower, and the range of the overall deviation was  

Physical model ANN RF ConvLSTM 

 

Figure 4. Predicted global solar radiation maps for the Korean Peninsula developed using the ANN, RF, proposed 

ConvLSTM, and the physical models for 14:00 h (local time) September 25, 2015, 14:00 h (local time) October 8, 2015, 

and 14:00 h (local time) December 17, 2015. The red circles represent areas that are incorrectly predicted to be cloudy in 

the ANN and RF models. 
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smaller compared to the ANN and RF models (see Figure 

S2 in supplementary file). Extreme values tended to be 

reduced by considering the spatial relation of neighboring 

pixels with the convolutional filer. The second and third 

highest accuracies were obtained by the RF (RMSE = 

76.961 W·m−2, R2 = 0.853) and ANN (RMSE = 78.422 

W·m−2, R2 = 0.851) models (Figure 5 (b) and (c), 

respectively), but these results were not significantly 

different from those of the proposed deep learning 

approach.  

Second, the predicted solar radiation data from each model 

were compared with those recorded at the ground stations 

scattered across South Korea to calculate the actual 

amount of solar energy available to the photovoltaic (PV) 

systems. Ground-based pyranometers were considered the 

ultimate reference for validating the solar radiation 

predicted by the models. However, unlike the reference 

images from the test dataset, a test on the pyranometer 

measurements of solar radiation through satellite 

observations was performed. This determined the spatial 

representativeness of the ground stations due to spatial 

discrepancies induced by the systematic differences 

between pixel-based satellite global solar radiation and 

hemisphere upward-looking-based pyranometer 

measurements [44]. For the ConvLSTM model, the 

predicted solar radiation showed the highest correlation 

with the ground measurements under all sky conditions 

(Figure 6a) and also showed the highest accuracy (RMSE 

= 83.458 W·m−2, MBE = 4.466 W·m−2, coefficient of 

determination (R2) = 0.874) with the ground pyranometer 

data when compared with the conventional ML methods. 

In addition, the prediction accuracy of the solar radiation 

by ConvLSTM was comparable and almost similar to the 

retrieval accuracy of the physical model (RMSE = 81.843 

W·m−2, MBE = 8.414 W·m−2, R2 = 0.880; see Figure S3 

in the supplementary file). The ANN (RMSE = 94.085 

W·m−2, MBE = -6.039 W·m−2, R2 = 0.821) and RF (RMSE  

 

Figure 5. Density scatterplots describing the correlation between the reference images from the physical model and the 

predicted maps of solar radiation data for the test dataset only. Performance of each data-driven model was validated using 

the reference images of the physical model. Results for (a) ConvLSTM, (b) RF, and (c) ANN models. The dotted line is 

the one-to-one reference line, and the solid line is the regression line. 
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= 95.262 W·m−2, MBE = -11.576 W·m−2, R2 = 0.839) 

models were less accurate (Figures 6 (c) and (b), 

respectively). Results indicated that the existing ML 

methods somewhat underestimated the values compared 

to the ground measurements. This is consistent with the 

statistical results of the ConvLSTM prediction maps that 

were compared with the reference images of the physical 

model in Figure 5. In addition, the accuracy of the 

statistical results is different from that of the reference 

images and ground measurements used to validate the 

data-driven models (Figures 5 and 6). This is because of 

the difference between pixel-to-pixel comparisons for 

reference images and the manner of determining which 

window of the satellite corresponded to which ground 

measurement stations. In other words, when compared 

with ground measurements, spatial window size around 

the station was more important than the pixel value 

corresponding to the position of the ground measurement 

due to the hemisphere upward-looking-based pyranometer 

measurements. This may have resulted in the higher 

accuracy of ConvLSTM when compared with ground 

pyranometer data because convolutional filters of DNN 

were able to train environmental information beyond the 

target points, ensuring successful capture of the spatial 

features of solar radiation.  

The proposed ConvLSTM algorithm has been proven to 

effectively simulate the variations in solar radiation under 

all sky conditions using the test dataset from late summer 

to early winter. Since the influence of clouds is the largest 

factor in determining the accuracy of solar radiation, 

ConvLSTM would also be applicable to the whole year 

[14, 43, 59]. 

Lastly, we analyzed the temporal changes in the predicted 

solar radiation from each model to determine how well the  

 

 

 

Figure 6. Density scatterplots describing the correlation 

between ground pyranometer data and modeled solar 

radiation data. Model results from the (a) ConvLSTM, 

(b) RF, and (c) ANN models were validated with 

pyranometer measurements located on the ground in 

South Korea. 
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 9 

proposed methods captured the abnormal variations in 

solar radiation due to cloud effects. Figure 7 shows time 

series comparisons of the solar radiation on each day from 

DNN, RF, and ANN using the ground pyranometer, 

predicted one-hour ahead (at 14:00 local time) from the 

chronological test dataset. We selected two stations ((a) 

Heuksando, (b) Jeonju)), which had the largest standard 

deviation during the test dataset periods. The overall 

trends in time series of solar radiation were decreasing 

during the winter season for both sites, and intermittent 

low peak values were mainly due to the attenuation by 

cloud effects. ConvLSTM (red long dash lines) not only 

captured the dramatic decreases in solar radiation well 

(Figure 7), but also clearly had the highest accuracies for 

Heuksando (RMSE=77.445 W·m−2, MBE= -11.707 

W·m−2) and Jeonju (RMSE=81.890 W·m−2, MBE= -

28.378 W·m−2). However, besides cloud effects, there are 

some atmospheric factors that may rapidly reduce solar 

radiation such as fire haze, smog, and particulate matter.  

Although it is difficult to evaluate the influences on solar 

radiation by various atmospheric variables using COMS 

satellites and pyranometers only, we believe that the 

prediction algorithms presented in this study are useful in 

developing predictions model for more diverse 

atmospheric variables using appropriate satellite and 

ground sensors. 

 

Summary and Conclusions  

The DNN algorithm (i.e., ConvLSTM) proposed in this 

paper can produce reliable simulations with fewer 

variables, but the depth of such a model network structure 

is not directly proportional to the accuracy of the 

predictions. To improve the versatility of the ConvLSTM 

model, this study examined four different DNN structures, 

each with a different depth, to construct the optimal 

number of ConvLSTM2D layers. To avoid over-fitting 

and gradient vanishing, we used several built-in model 

optimization options, such as batch normalization, 

initialization of kernel weights and an early stopping phase. 

The three-layer ConvLSTMD algorithm was found to be 

optimal and was used to generate spatial maps of solar 

radiation. Results were compared against those of the 

physical model as well as conventional ML methods.  

 

Figure 7. Time series comparisons of solar radiations 

from each of DNN (red long dash line), RF (green 

medium dash line), ANN (blue short dash line) with 

ground pyranometer (black line) for the test dataset at 

every 14:00 local time. The two of ground stations for 

Heuksando (a), and Jeonju (b) were selected based on 

the scale of solar radiation variations. 
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Overall, the results showed that the ConvLSTM model 

was able to predict maps of solar radiation relatively well, 

even in the presence of nonlinearities (e.g., cloud 

movements), which are inherent in any dynamical system. 

In particular, the spatial patterns representing complex 

cloud movements and their dynamical intensities 

(including attenuations) were spatially well matched 

against maps derived from a physical model. The accuracy 

of the ConvLSTM model prediction maps had the highest 

agreement with both the reference images of the physical 

model and the ground reference data compared to the 

results of the ANN and RF approaches. For the reference 

images, ConvLSTM showed the highest accuracy (RMSE 

= 71.334 W·m−2, R2 = 0.895), followed by RF and ANN 

(RMSE = 76.961 W·m−2, R2 = 0.853; and RMSE = 78.422 

W·m−2, R2 = 0.851, respectively). Compared to the ground 

pyranometer data, ConvLSTM also showed the highest 

accuracy (RMSE = 83.458 W·m−2 and MBE = 4.466 

W·m−2, R2 = 0.874) compared to the ANN (RMSE = 

94.085 W·m−2, MBE = −6.039 W·m−2, R2 = 0.821) and RF 

(RMSE = 95.262 W·m−2, MBE = -11.576 W·m−2, R2 = 

0.839) methods. Although the spatially representative 

solar radiation maps became relatively smooth due to the 

convolutional filters, the ConvLSTM model was useful to 

capture the spatial features of solar radiation according to 

atmospheric flow. In addition, calculation time is also an 

important factor for the real-time application of prediction 

models. In the case of DNN, the prediction took 0.042 

seconds per image (see Table S1 in supplementary file), 

indicating that the calculation speed was appropriate. Thus, 

this study highlights a new pathway for using 

contemporaneous satellite images to capture the nonlinear 

behavior of the atmospheric system to design and manage 

solar-powered energy systems. 
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