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Summary 

Desmosomes interconnect epithelial cells together and are abundant in tissues constantly 

challenged by shear forces. They are composed of different isoforms of intercellular adhesion 

proteins which include desmogleins (Dsg) and desmocollins (Dsc). These proteins of 

apposing cells interact in homophilic and heterophilic manner thereby conferring integrity to 

the tissue. When this crucial role of desmosomes is compromised, several desmosome-

associated diseases such as pemphigus may occur. Pemphigus is a blistering disease of the 

skin and oral mucosa. It is caused by anti-Dg3 and anti-Dsg1 autoantibodies that bind to the 

extracellular domains of the desmogleins and perturb their interaction. There are different 

phenotypes of the disease depending on the autoantibody profiles. Pemphigus vulgaris (PV) is 

caused by autoantibodies (PV-IgG) targeting Dsg1 and Dsg3 whereas pemphigus foliaceus 

(PF) is associated with autoantibodies against Dsg1 only. Pemphigus vulgaris is recognized as 

two sub-types; i.e, the mucosal-dominant form (mdPV) caused by anti-Dsg3 autoantibodies 

and the mucocutaneus (mcPV) variant caused by both anti-Dsg1 and anti-Dsg3 

autoantibodies.  

 

Several lines of evidence demonstrated that pemphigus is caused by disruption of Dsg 

interaction when the autoantibodies are interposed between the interacting Dsg (steric 

hindrance) and signaling triggered by autoantibody binding. It has been widely accepted that 

different signaling pathways work in concert in the modulation of desmosome structure and 

dynamics. p38 mitogen activated protein kinase (p38MAPK) has been extensively studied and 

its phosphorylation was detected in cell cultures in response to PV-IgG binding as well as in 

skin lesions of pemphigus patients. Pharmacological inactivation of this pathway attenuated 

cell dissociation in cultures and blister formation in murine models. However, no data was 

available with respect to the role of p38MAPK in blister formation in human skin and 

mucosa. 
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Therefore, we tested the dependency of blister formation and desmosome ultrastructural 

alteration on p38MAPK signaling induced by PV-IgG in human skin and mucosa explant 

cultures. Accordingly, we adapted the existing ex vivo skin model and also established a novel 

ex vivo mucosa model, and employed histological, immune-histochemical as well as electron 

microscopy analyses to determine the role of p38MAPK signaling in PV pathogenesis. 

Human skin biopsies were treated with the mouse monoclonal Dsg3-specific antibodyAK23, 

in comparison to antibody fractions from patients with mucocutaneous PV (mcPV-IgG) or 

mucosal PV (mdPV-IgG). mcPV-IgG only were sufficient to induce blisters as well as  

alterations in desmosome ultrastructure. In contrast, in human labial mucosa explants both 

AK23 and mdPV-IgG were sufficient to induce blisters as well as alterations in desmosome 

ultrastructure. Moreover, inhibition of p38MAPK using the specific inhibitor SB202190 was 

effective to avert blister formation, rescue desmosome size and number as well as preserved 

keratin filament association with desmosomal plaques in human skin. However, in the newly 

established human ex vivo mucosa model, inhibition of p38MAPK with specific inhibitors 

SB202190 and SB203580 was not effective to prevent these alterations. Taken together, our 

data demonstrate that p38MAPK plays a key role in blister formation through modulation of 

desmosome ultrastructure in human skin.  In contrast, blister formation and associated 

ultrastructural changes of desmosomes in mucosa may depend on steric hindrance and other 

signaling pathways independent of p38MAPK. 
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1 Introduction 
 

1.1 Epidermis and oral mucosa 

1.1.1 Epidermis 

The epidermis is the outermost layer of the skin which comprises of a self- renewing stratified 

epithelium (Kanitakis, 2002) (Fig. 1). The predominant cell type of the epidermis is the 

keratinocyte (Wickett and Visscher 2006). These cells synthesize structural proteins called 

keratins which are the predominant structural protein of the epidermis (Rao et al., 2014). 

These are eventually assembled into intermediate keratin filaments (Fuchs, 1995) as the cells 

proceed towards terminal differentiation during their course across suprabasal layers 

(Blanpain and Fuchs, 2006, Wang et al., 2016). Keratinocytes are tethered to one another by 

various types of intercellular adhesion complexes (Simpson et al., 2011). 

Keratinocytes differentiate and mature as they migrate through the suprabasal compartment, 

and as a result exhibit morphological variations ranging from columnar or cuboidal basal cells 

to the highly flattened cells of the stratum corneum (Blanpain and Fuchs, 2006; Arnette et al., 

2016). Accordingly, there are different strata of the epidermis which exhibit variations in 

morphology and the type of keratins they express. The basal layer (stratum basale) is 

constituted mainly by a single layer of columnar or cuboidal cells anchored to the underlying 

basement membrane by hemidesmosomes. These represent the stem cells responsible for the 

regeneration of the epidermis (Watt, 2002). The spinous cell layer (stratum spinosum) is 

called so for its spiny appearance due to the presence of large number of desmosomes. It 

consists of several cell layers. The granular layer (stratum granulosum) consists of cells 

exhibiting characteristic dark-staining keratohyalin granules (Menon, 2002). The corneal layer 

(stratum corneum) is formed by flattened ‘terminally-differentiated’ cells called corneocytes, 
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devoid of nucleus and cytoplasmic organelles. These are dead cells which are eventually 

sloughed off from the skin surface (Blanpain and Fuchs, 2006). In thick skins such as those in 

the palm of hand and sole of foot, there is a subcorneal layer (stratum lucidum) in addition. 

Keratinocytes offer various defensive functions by forming physical, functional, immunologic 

or microbiological barriers (Menon, 2002; Proksch et al., 2008; Barnard and Li, 2017). In 

addition, the skin plays a crucial role in sensory and body temperature regulation as well as in 

vitamin D synthesis (Menon, 2002). To this end, it harbors epidermal appendages such as 

sweat glands, sebaceous glands, and hair follicles (Meisel et al., 2018). When this epithelial 

barrier function is compromised secondary to weak intercellular junctions, patients will 

experience loss of water and electrolytes and could also be more susceptible to infections 

(Moens and Veldhoen, 2012). 

1.1.2 Oral mucosa 

Compared to the epidermis, the oral mucosa is generally more permeable, structurally 

intermediate between that of the epidermis and intestinal mucosa (Shakya et al., 2011). The 

oral mucosa compromises stratified squamous epithelia (Fig. 1) which exhibits a spatial 

structural and functional diversity (Collins and Dawes, 1987). It may regionally be identified 

as sublingual, gingival, buccal or labial and palatal (Shakya et al., 2011) as well as 

characterized morphologically as lining, masticatory or specialized mucosa (Squier, 1991). 

The lining mucosa is a non-keratinized stratified squamous epithelium separated from the 

underlying fat containing submucosa by a thin layer of loose connective tissue, the lamina 

propria (Bierbaumer et al., 2018). It forms the lining of about 60% of the oral cavity (Collins 

and Dawes, 1987) such as buccal, labial, and sublingual regions, whereas keratinized or 

parakeratinized epithelia constitute the masticatory mucosa of the gingiva and hard palate 

(Bierbaumer et al., 2018).  The epithelial lining of the papillary region of the dorsum of 

tongue is recognized as a specialized mucosa for it entertains the characteristic features of 
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both (Squier, 1991). These epithelial linings play diverse roles such as barrier, secretory or 

absorptive functions. Bound to the apical cell surface of oral epithelium, is a thin film of 

mucus which forms a protective layer to the underlying cells (Shakya et al., 2011).The 

keratinized epithelia of the oral cavity share a lot of structural features with the epidermis 

especially in their pattern of maturation (Squier, 1991) including stratification, keratin 

expression as well as their terminal differentiation which results in cornified cell formation 

(Presland and Dale, 2000; Presland and Jurevic, 2002). However, they exhibit remarkable 

differences in histological features and in the type of differentiation markers they express 

(Gibbs and Ponec, 2000). The epithelia of the oral cavity are less differentiated owing to the 

rapid cellular turnover (Hashimoto et al., 1966) caused by mechanical stress imposed by 

external factors (Donetti et al., 2005). This high rate of proliferation can be evidenced by the 

presence of multiple viable cell layers and abundant Ki67 staining cells in the mucosa (Gibbs 

and Ponec, 2000). 

1.2 Desmosomes 

Cell–cell attachment is a characteristic feature of multicellular organisms. This is crucial for 

the integrity of normal epidermis (Garrod et al., 2002). It is mediated by a set of specialized 

membrane structures which form intercellular adhesion complexes (Dusek et al., 2007). 

Epithelial cells possess these junctional complexes which mainly consist of, from apical to 

basal, a tight junction, adherens junction, and desmosome (Oda and Takeichi, 2011). The 

desmosomes form the adhesive core of these intercellular junctions (Fig. 2). Gap junctions are 

located below these junctional complexes and are involved in cellular communications by 

regulating exchange of small molecules and ions (Herve and Derangeon, 2013). Adherens 

junctions and desmosomes both consist of Ca2+ dependent cadherin molecules but differ in 

the cytoskeletal components they are anchored to; namely, actins and keratins, respectively 

(Troyanovsky et al., 1993; Harris and Tepass, 2010). Adherens junctions form a complete ring 
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around a cell, hence the name zonula adherens, thereby defining epithelial cell polarity 

(Harris, 2012). 

The term desmosome stems from the Greek words “desmo,” which means bond and “soma,” 

meaning body (Calkins and Setzer, 2007). Desmosomes form ‘‘spot welds,’’ referred to as 

maculae adherentes, which make a strong intercellular tethering. They form robust adhesive 

contacts between adjacent epithelial cells and confer tissue integrity when the epithelial sheet 

encounters shear forces (Garrod and Chidgey, 2008; Price et al., 2018). They are mainly built 

from three gene families: cadherins, armadillo proteins (plakoglobin, PG, and plakophilins, 

PKP), and plakins (desmoplakin, DP) (Nekrasova and Green, 2013). The desmosomal 

cadherins, so named for their dependency on Ca
2+

 for adhesion, mainly consist of 

desmogleins (Dsg) and desmocollins (Dsc) (Garrod and Chidgey, 2008). These are 

transmembrane proteins which mediate adhesion with adjacent cells through their 

extracellular domains, and interact with PG and PKP through their cytoplasmic tails (Fig. 2 

b). DP plugs the entire complex to keratin intermediate filaments (Kowalczyk et al., 1999; 

Getsios et al., 2004) (Fig. 2a, b). 

Different components of desmosomal proteins show a tissue-specific as well as a 

stratification-dependent pattern of distribution across the layers of stratified epithelia, and also 

dependent on differentiation status (Arnemann et al., 1993; Johnson et al., 2014). Humans 

express different types of desmosomal cadherin isoforms; four Dsgs (Dsg1–4) and three Dscs 

(Dsc1–3) as in the epidermis and oral cavity (Green and Simpson, 2007). Dsg2 and Dsc2 are 

present in all desmosome bearing tissues and are thus expressed in the heart and simple 

epithelia (Lowndes et al., 2014). In epidermis, Dsg3 and Dsc3 are expressed strongly in the 

deepest layers whose staining progressively fades out as the cells transit out of the 

proliferation zone, whereas Dsg2 is limited to the basal layer (Donetti et al., 2005; Mahoney 

et al., 2006). Dsg1 is first expressed in the interface between the basal and suprabasal cells 
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(Getsios et al., 2009), and together with Dsc1, shows an inverse distribution gradient with 

Dsg3 and Dsc3 as the cells differentiate and stratify (Arnemann et al., 1993; Elias et al., 

2001). In mucosa, Dsg3 is the principal desmoglein present whereas Dsg1 is expressed at low 

level (Shirakata et al., 1998).  

 

Figure 1. Schematic representing histological location of cleft formation in pemphigus 

vulgaris, and distribution of desmoglein isoforms in epidermis and mucosa. Dsg3 is strongly 

expressed in basal epidermis and across all layers of mucosa. Dsg1 is expressed in suprabasal 

and superficial layers in epidermis but its expression is minimal in mucosa. Anti-Dsg1 and 3 

autoantibodies are the culprits in causing loss of adhesive contacts in pemphigus vulgaris. 

Modified from Spindler and Waschke 2018.    
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Ultrastructurally, desmosomes show three morphologically distinct regions: the extracellular 

core region (EC), the outer dense plaque (ODP), and the inner dense plaque (IDP) (North et 

al., 1999) (Fig. 2 b). The ODP is composed of cytoplasmic tails of the Dsg and Dsc, as well as 

the armadillo proteins, PG and PKP whereas the IDP mainly comprises DP (Delva et al., 

2009). A dense midline bisects the desmosomes interconnecting neighboring cells 

corresponding to sites of trans-interactions between the extracellular adhesive domains of 

opposing cadherins (Al-Amoudi et al., 2007) and this represents a Ca
2+

 independent 

hyperadhesive desmosomes characteristic of normal epidermis (Garrod et al., 2005).  

   

 

Figure 2. Desmosome ultrastructure. a) Electromicrograph of desmosomes showing 

desmosomal plaques and associated keratin intermediate filaments; (b) schematic 

representation of the various components of desmosomes with interacting extracellular 

domains, ODP (outer dense plaque), IDP (inner dense plaque). Modified from (a) Waschke 

2008 (b) Waschke and Spindler 2014. 

 

Dsg and Dsc span the membrane and have an extracellular N-terminal domain (head) which 

make cis and trans interactions with desmosomal cadherins of same or adjacent cells, 

respectively (Al-Amoudi et al., 2007). Different homophilic (between similar) and 
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heterophilic (between different) interactions among Dsg and Dsc have been reported in the 

literature (Chitaev and Troyanovsky, 1997, Syed et al., 2002, Vielmuth et al., 2018a). The C 

terminus resides within the ODP where it binds the armadillo proteins. Dsg and Dsc exhibit a 

remarkable similarity, however differ mainly in their tail structure. Both contain four 

extracellular cadherin repeats (EC 1-4) and an extracellular anchor (Garrod et al., 2002). The 

latter is attached to a single transmembrane segment which in turn binds to the intercellular 

anchor on the inner side. Dsc occurs in two isoforms, designated as Dsc-a and Dsc-b 

representing long and short forms, respectively (Garrod and Chidgey, 2008). The latter lacks 

the PG-binding intracellular segment region (Troyanovsky et al., 1993). Dsg possesses 

extended cytoplasmic domains with subdomains. Inwards to the intercellular segment 

successively, are a proline rich linker, a repeating unit domain whose repeats differ among the 

isoforms, the glycine-rich desmoglein terminal domain being the deepest (Berika and Garrod, 

2014)). 

1.3 Desmosome-associated diseases 

Several diseases are implicated when desmosomal functions are compromised producing 

diverse disease phenotypes (Dusek et al., 2007; Waschke, 2008). Desmosomes are targets of 

genetic, infectious and autoimmune diseases which result in a largely weakened cellular 

cohesion leading to impaired functions (Broussard et al., 2015). These diseases result from 

dysfunction or altered expression of some of the desmosomal protein components (Waschke, 

2008). Mutations associated with obligate desmosomal proteins such as Dsg, Dsc or DP 

(Getsios et al., 2004; Stahley and Kowalczyk, 2015) bring about debilitating conditions in the 

respective tissues (Al-Jassar et al., 2013). For example, mutation of Dsg2 and Dsc2 of the 

intercalated discs of the heart muscles causes arrhythmogenic right ventricular 

cardiomyopathy (Bhuiyan et al., 2009). Similarly, mutations in Dsg1 and DP have been 

shown to be associated with inherited inflammatory skin diseases such as severe allergies, 
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multiple allergies and metabolic wasting syndrome (McAleer et al., 2015, Samuelov et al., 

2013). 

Overexpression or down regulation of desmosomal proteins in epithelial cell carcinomas has 

been reported by various researchers. But the exact role is not well known (Waschke, 2008; 

Al-Jassaret al., 2013). On the other hand, infectious agents such as staphylococcus aureus are 

known to produce exfoliative toxin which cleaves Dsg1 thereby inducing blisters as in bullus 

impetigo and staphylococcal scalded skin disease locally or away from the infection site, 

respectively (Amagai, 2010). The most extensively studied human autoimmune disease, 

which is associated with desmosome dysfunction, is pemphigus (Kasperkiewicz et al., 2017).  

1.4 Pemphigus 

In the epidermis and oral mucosa, autoantibodies that target desmosomal proteins cause 

pemphigus, a disease manifested by mucosal and skin lesions (Kasperkiewicz et al., 2017; 

Schmidt et al., 2019). All lesions are histochemically characterized by binding of PV-IgG 

autoantibodies to keratinocyte cell surface proteins (Amagai, 2010). Different pemphigus 

phenotypes occur based on autoantibody profile, tissue specificity and histological location of 

cleft formation (Amagai et al., 1999; Amagai and Stanley, 2012). The main types are 

pemphigus vulgaris (PV) and Pemphigus foliaceus (PF) (Fig. 3).  
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Figure 3. The major clinical phenotypes of pemphigus. A patient suffering from pemphigus 

vulgaris (a) with mucosal involvement (b), and hematoxylene eosin staining showing 

suprabasal cleft formation (c), a pemphigus foliaceus patient (d) with subcorneal histological 

location of the lesion (e). Modified from Waschke 2008 

1.4.1 Pemphigus vulgaris 

Pemphigus vulgaris is caused by circulating autoantibodies which specifically engage the 

extracellular adhesive domains of Dsg3 and Dsg1 in desmosomes (Pollmann et al., 2018) 

(Fig. 1). It initially appears as erosions of oral mucosa with subsequent involvement of the 

skin (Fig. 3 a, b), hence called mucocutaneous PV (mcPV), and as suprabasal clefting in 

histological sections (Payne et al., 2004) (Fig. 3c). The mucosal subtype (mucosal dominant 

PV, mdPV) involves mucous membranes only and is triggered by anti-Dsg3 autoantibodies 

(Amagai et al., 1999) (Fig. 3b). Pemphigus foliaceus causes blistering in the superficial 

epidermis where Dsg1 is highly expressed and Dsg3 is lacking (Fig. 3 d, e). Thus, 

autoantibodies targeting Dsg1 presumably are responsible for the clinical phenotype 

(Kitajima, 2013). Histological locations of clefting as well as tissue-specific manifestation of 

the disease can be explained by what is widely known as ‘desmoglein compensation 

hypothesis’ (Mahoney et al., 1999). In mucosa, since Dsg3 is the predominant desmosomal 

protein and Dsg1 is present at a lower level in the suprabasal layers (Shirakata et al., 1998), 

anti-Dsg3-autoantibodies are able to disrupt Dsg3 interaction where compensatory adhesion 

by Dsg1 is lacking resulting in suprabasal blisters. This same mechanism has been proposed 

to apply to the suprabasal blistering of the epidermis as well (Amagai et al., 1996). In PF, 

anti-Dsg1-autoantibodies cause subcorneal blistering because Dsg3 is absent to compensate 

for adhesive function at the superficial layers in the epidermis (Ding et al., 1997; Shirakata et 

al., 1998) (Fig. 3e). The effect of PV-IgG on cell adhesion has been well characterized under 

controlled conditions. Many laboratory studies have shown that PV-IgG causes Dsg3 
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depletion from membranes in cultures and animal models as well as in human skin explants 

(Aoyama and Kitajima, 1999; Shu et al., 2007; Yamamoto et al., 2007; Spindler et al., 2011; 

Egu et al., 2017) indicating that blister formation and Dsg3 internalization are two 

interconnected events leading to loss of cell adhesion (Jolly et al., 2010). 

1.4.2 Pathomechanisms of pemphigus 

The exact pathomechanism underlying loss of cell contacts of keratinocytes owing to 

pemphigus autoantibodies is not fully unravelled. Among several hypotheses, however, it has 

been widely accepted that steric hindrance and signaling as the most plausible mechanisms 

that drive loss of adhesive contacts in keratinocytes resulting in acantholysis (Spindler et al., 

2018; Spindler and Waschke, 2018).   

1.4.2.1 Role of steric hindrance 

It is well known that epidermal blistering in PV patients is caused by autoantibodies directed 

against the amino-terminal adhesive interface of Dsg3 exodomain (Amagai et al., 1992; 

Tsunoda et al., 2003). IgGs from PV patients was sufficient to induce intraepidermal blisters 

when injected to a mouse (Anhalt et al., 1982; Schulze et al., 2012) or into an ex vivo human 

skin (Hu et al., 1978; Egu et al., 2017). To be more precise, the amino-terminal of the first 

two cadherin repeats of the Dsg3 extracellular domain (EC1 and EC2) are the main targets to 

which PV-IgG preferentially bind (Amagai et al., 1992; Ding et al., 1999; Sekiguchi et al., 

2001; Tsunoda et al., 2003; Di Zenzo et al., 2012). These cadherin residues, crucial for 

adhesive interactions, predominantly contain those epitopes recognized by pemphigus 

autoantibodies (Chan et al., 2010; Di Zenzo et al., 2012; Ohyama et al., 2012). However, 

other studies have shown that a significant amount of PV-IgG bind to the Dsg membrane 

proximal domains (Sekiguchi et al., 2001) which implies that these domains are also, at least 

in part, involved in the disease (Amagai et al., 1992). Hence, a complete adsorption of the 

entire extracellular domain from a pemphigus patient serum was required to abolish blister 
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formation (Amagai et al., 1992; Langenhan et al., 2014). Direct inhibition of desmoglein 

interaction is, hence, caused by the interference of the autoantibodies through binding to the 

extracellular domains of desmogleins (Stanley and Amagai, 2006)).  Interestingly, direct 

inhibition of Dsg interaction has been found for Dsg3 but not for Dsg1, and was detectable on 

the surface of living keratinocytes (Waschke et al., 2005; Heupel et al., 2008; Vielmuth et al., 

2015).  

1.4.2.2 Role of signaling 

A large body of experimental data has shown that pharmacologic inhibition of signaling 

pathways ameliorated intraepidermal cleft formation in vivo and cell dissociation in vitro 

(Berkowitz et al., 2006; Waschke et al., 2006; Delva et al., 2008). It is believed that both 

mechanisms are relevant but not necessarily independent events (Stahley and Kowalczyk, 

2015), although signaling cascades may be activated downstream of antibody binding 

(Getsios et al., 2010; Spindler and Waschke, 2018) or following loss of cell adhesion (Mao et 

al., 2011). Some investigators assert that other factors such as clustering and endocytosis of 

cell surface Dsg3 (Stahley et al., 2016) as well as autoantibody mediated perturbation of 

desmosome assembly (Nekrasova and Green, 2013) in addition may synergistically 

orchestrate blister formation (Kasperkiewicz et al., 2017). 

Several cellular responses to autoantibody binding in pemphigus have been attributed to 

different signaling pathways. These include, among others, groups of mammalian mitogen-

activated protein kinases (MAPKs) such as p38MAPK and extracellular signal-regulated 

kinases (ERK) as well as Rho GTPase, epidermal growth factor receptor (EGFR), Rous 

sarcoma-related kinase (Src) and protein kinase C (PKC) (Esaki et al., 1995; Osada et al., 

1997; Sanchez-Carpintero et al., 2004; Berkowitz et al., 2005; Frusic-Zlotkin et al., 2006; 

Waschke et al., 2006; Getsios et al., 2009; Jolly et al., 2010; Spindler et al., 2011; Espana et 
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al., 2013; Harmon et al., 2013; Walter et al., 2017; Kugelmann et al., 2019; Walter et al., 

2019,). 

p38MAPK is one of the most extensively studied signaling molecule in pemphigus pathology. 

It exists in different isoforms (α, β, γ, δ) displaying a species-specific expression pattern 

(Jiang et al., 1996; Jiang et al., 1997; Cuenda and Rousseau, 2007). The α and β isoforms are 

ubiquitously expressed across cell lines and tissues, the α subtype being the most common 

isoform in adult tissues (Jiang et al., 1997; Cargnello and Roux, 2011). p38MAPK mediates 

cellular responses triggered by inflammation or other environmental responses such as 

chemicals, UV, and oxidative stress (Kim et al., 2008). Deletion of p38MAPK α has been 

shown to reduce proinflammatory gene expression in epithelial cells which underscores its 

role in inflammatory reactions (Kim et al., 2008). Interestingly, p38MAPK has been shown to 

be activated secondary to PV-IgG binding (Berkowitz et al., 2005) and its phosphorylation 

was detected in lesioned skin of PV patients (Berkowitz et al., 2008) and in keratinocyte cell 

cultures treated with PV patient serum (Berkowitz et al., 2005, Kawasaki et al., 2006). 

Furthermore, there is abundant evidence that PV-IgG-induced activation of p38MAPK 

resulted in internalization of Dsg 3 (Jolly et al., 2010), and its subsequent depletion from 

endosomes (Stahley et al., 2016), retraction of keratin intermediate filaments (Berkowitz et 

al., 2005; Spindler et al., 2013; Vielmuth et al., 2018b) thereby perturbing the dynamics of 

desmosome assembly (Mao et al., 2011). Interestingly, a drug-induced inhibition of this 

molecule was sufficient to prevent all these PV-IgG-induced hallmark features of the disease. 

As a result, p38MAKP has become the main focus of interest in pemphigus research among 

the plethora of signaling molecules implicated in PV pathogenesis. 

There are strata of protein kinase cascades functionally subordinate to p38MAPK whose 

phosphorylation mediates the dynamics of their target gene expression (Kim et al., 2008). PV-

IgG-induced activation of p38MAPK has been shown to augment the phosphorylation of its 
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downstream targets such as mitogen-activated protein kinase 2 (MK2) in a dose-dependent 

manner (Mao et al., 2014). MK2 regulates several cellular activities such as actin remodeling 

(Kotlyarov et al., 2002), a process which is relevant to PV pathogenesis.  The latter study 

reported a significant reduction of p38MAPK levels in MK2-deficient mice asserting that 

MK2 functions to maintain baseline p38MAPK protein levels. Specific inhibition of 

p38MAPK was sufficient to prevent MK2 phosphorylation, its major downstream substrate 

(Mao et al., 2014). Moreover, inhibition of MK2 has been shown to block PV-IgG-mediated 

spontaneous blister formation in mice as well as loss of cell surface Dsg3 in human 

keratinocytes (Mao et al., 2014). 

In this study, we demonstrated that pharmacological inhibition of p38MAPK was sufficient to 

avert intra-epithelial blister formation, attenuate reduction in the number and size of 

desmosomes, and preserve keratin filament association with desmosomal plaque in human 

skin (Egu et al., 2017). As a result, we speculate that blistering in PV is mediated by 

p38MAPK through modulation of desmosome ultrastructure in human skin but not in mucosa. 
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1.5 Aim of the study 

The epidermis has been best characterized among stratified keratinizing epithelia for its 

availability, ease to study and its versatility to be used in the investigation of various skin 

related diseases (Presland and Dale, 2000). Most investigations involving the oral mucosa are 

mainly focused on permeability studies primarily related to oral transmucosal delivery of 

drugs (Squier, 1991; Shakya et al., 2011).  Although many diseases which affect the skin such 

as pemphigus vulgaris also involve the mucosa, few data are available to date related to 

mucosal studies and only embrace animal models (Schulze et al., 2012). Therefore, ex vivo 

mucosa model will be a useful approach because, similarly to skin studies, such experiments 

utilize large samples, which is the major drawback in studies involving patient biopsies. 

The importance of desmosomes in conferring integrity to tissues is best illustrated by the 

various diseases that occur when this essential function is compromised which primarily 

affects the barrier function resulting is loss of electrolytes and water as well as increased 

susceptibility to infections. Desmosomes are targets for autoimmune diseases such as 

pemphigus. 

Studies investigating pemphigus pathogenesis have been going on for many decades and the 

precise pathomechanism is not yet fully unraveled. The present study was aimed at adapting 

the existing ex vivo skin model and establishing a novel ex vivo mucosa model to assess the 

role of p38MAPK signaling in the acantholytic changes resulting  from PV-IgG in humans. 

This is required to understand the pathomechanism and shed light on possible signaling 

targeted treatment options in the future. To this end, we employed electron microscope studies 

to characterize ultrastructural changes in the context of p38MAPK signaling 

  



  

15 
 

2 Results 
 

 

2.1 Inhibition of p38MAPK signalling prevents epidermal blistering and 

alterations of desmosome structure induced by pemphigus 

autoantibodies in human epidermis. 
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2.2 A new ex vivo human oral mucosa model reveals that p38MAPK 

inhibition is not effective in preventing autoantibody-induced mucosal 

blistering in pemphigus. 
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2 Discussion 

2.1 Mucocutaneous PV-IgG but not mucosal-dominant PV-IgG were 

effective to induce blisters in ex vivo human skin 

p38MAPK has been central in researches involving pemphigus pathogenesis. A large body of 

experimental data has been generated regarding the role of p38MAPK signaling in mediating 

blister formation and other hallmarks of pemphigus (Spindler et al., 2018, Spindler and 

Waschke, 2018). Especially, pharmacological inhibition of this molecule was shown to avert 

cell dissociation in vitro and blister formation in mouse models (Berkowitz et al., 2005; 

2006). Skin biopsies from pemphigus patients have been studied mainly pertaining to layer 

and tissue-specific binding of IgG from various PV phenotypes (Shimizu et al., 1995; Amagai 

et al., 1996). Similarly PV-IgG-triggered ultrastructural changes in desmosomes have been 

characterized using patient samples (Sokol et al., 2015; Stahley et al., 2016). However, no 

sufficient data were available to explain the mechanisms orchestrating these ultrastructural 

changes in human skin. To this end, we used human skin biopsies obtained from body donors 

to evaluate the p38MAPK dependency of blister formation and other hallmarks after 

treatment of healthy skin samples with IgG purified from pemphigus patient serum.  

From histological analysis, only those skin samples treated with mcPV-IgG developed blisters 

but not those treated with either mdPV-IgG or AK23 (Egu et al., 2017). This is expected 

because only IgG containing both anti-Dsg3 and anti-Dsg1 autoantibodies are sufficient to 

induce suprabasal blisters which recapitulated the situation in PV patients. Although AK23 

was potent enough to induce blisters in mouse skin (Spindler et al., 2013), it necessitated the 

application of exfoliative toxin together with AK23 to effect blister in human skin explants 

(Saito et al., 2012).  

On the other hand, immunostaining of PV-IgG-treated samples showed a fragmented staining 

pattern of Dsg3 along the blister floor and roof compared to the smooth pattern in controls 
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which indicates that Dsg3 in desmosomes were depleted owing to PV-IgG binding (Aoyama 

et al., 1999; Saito et al., 2012).  

2.2 Inhibition of p38MAPK prevented blister formation in epidermis 

In our study, inhibition of p38MAPK using SB202190 was sufficient to avert PV-IgG-

induced blister formation in skin explants similar to other studies in murine models 

(Berkowitz et al., 2008; Saito et al., 2012) and rescued Dsg3 depletion from membranes in ex 

vivo human skin cultures (Egu et al., 2017). This highlights the essential role of p38MAPK as 

a key regulator in bister formation in human skin. 

2.3 p38MAPK inhibition preserved desmosome ultrastructure in skin 

Our ultrastructural analysis shows that alterations in desmosomal structure which are 

ultrastructural hallmarks characteristic of pemphigus, including shortening and splitting up of 

desmosomes as well as alterations in keratin association with desmosomal plaques, have been 

reproduced in our model. Accordingly both desmosome number and size have been 

significantly reduced in PV-IgG-treated samples, and this was sufficiently prevented in those 

pretreated with the inhibitor SB202190. Although AK23 was able to cause a significant 

reduction in desmosome size but not number, no blisters developed in the respective samples. 

It means that blister formation which was evident in histological sections in samples treated 

with mcPV-IgG corresponded with reduction in desmosome number but not desmosome size 

in ultrastructural evaluation (Egu et al., 2017). This is in agreement with a study in which 

ultrastructural analysis of lesioned pemphigus patients’ skin asserted that blister formation 

was correlated to loss of desmosomes (van der Wier et al., 2012; Sokol et al., 2015). 

Moreover, we observed a progressive reduction in size, splitting up and absence of 

desmosomes in the vicinity of blisters, which implies that decrease in desmosome size may be 

among the initial episodes leading to loss of desmosomes and eventually resulting in 

acantholysis (van der Wier et al., 2012). Although split desmosomes, intercellular widening 
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and keratin filament dis-association from desmosomes were evident in both mcPV-IgG- and 

AK23-injected skin samples, it occurred to a lower extent in the latter. Tissue and cell specific 

response to autoantibodies present in pemphigus patient serum was demonstrated by a study 

in which mdPV-IgG, when injected to a neonatal mouse, showed no pathogenicity whereas 

mcPV-IgG was pathogenic (Ding et al., 1997). Therefore, the absence of blister in skin 

samples injected with AK23 may be understood in terms of species as well as  tissue 

specificity in autoimmune response (Ding et al., 1997) or compensatory role of Dsg1 

counteracting the dys-cohesive effects impacted by anti-Dsg3 autoantibodies (Mahoney et al., 

1999) or varying cellular responses to monoclonal vs polyclonal antibodies (Saito et al., 

2012). 

After incubation, we applied mechanical shear force (Nikolsky positive) to the samples to 

reproduce similar shear stress encountered by the patients’ skin because this was correlated 

with activation of p38MAPK signaling events (Mao et al., 2011). Interestingly, specific 

inhibition of p38MAPK blunted reduction in desmosome number and size as well as 

preserved keratin association with desmosomal plaque in both PV-IgG- and AK23-treated 

samples (Egu et al., 2017). We also observed intercellular widening associated with reduced 

and/or split desmosomes in the interface of adjacent basal cells as well as in that of basal and 

suprabasal cells, marking the initial pathological events leading to acantholysis as suggested 

occurring in PF (van der Wier et al., 2012) and PV (Takahashi et al., 1985; Diercks et al., 

2009) although intercellular widening has been suggested not been a pre-requisite for 

acantholysis (Sokol et al., 2015). Split desmosomes were recognized at the edge of blisters 

(Shimizu et al., 2002; 2004; Wang et al., 2009; van der Wier et al., 2012; Sokol et al., 2015; 

Stahley et al., 2016) using electron microscopy and SIM. However, there are divergent 

opinions on the mechanism of their occurrence. Some postulate that splitting of desmosomes 

occurs when PV-IgG autoantibodies are interposed between interacting desmogleins thereby 
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weakening adhesion (steric hindrance), followed by shear forces (Shimizu et al., 2002; 2004; 

Wang et al., 2009; Stahley et al., 2016) or outside-in-signaling (Diercks et al., 2009). In in 

vivo experiments in neonatal mouse, it has been shown that desmosomes split up before they 

are eventually internalized (Takahashi et al., 1985). This has been suggested to be an initial 

step leading to acantholysis (Takahashi et al., 1985; Wang et al., 2009) although this 

argument has been challenged (Aoyama et al., 2010). In our study, however, split 

desmosomes were significantly reduced in size which may indicate that desmosomal 

components were depleted in this process, which highlights the involvement of signaling 

mechanisms (Spindler and Waschke, 2018) that may alter the dynamics of desmosome 

assembly and disassembly (Stahley et al., 2016). 

2.4 p38MAPK inhibition ameliorated PV-IgG-dependent keratin filament 

dissociation from desmosomal plaques  

In our study, a gradient of plaque density was evident in the vicinity of blisters depending on 

the degree of acantholysis. In addition, retraction of keratins from the plaques was observed 

similarly to other studies (Takahashi et al., 1985; Wang et al., 2009). The relevance of keratin 

filaments in cell adhesion was demonstrated by the studies in which absence of keratins has 

been linked to impaired adhesive function associated with altered desmosome morphology 

(Kroger et al., 2013; Bar et al., 2014). Recent works with keratin-deficient cells pinpointed 

that keratins are crucial in regulating intercellular adhesion through stabilizing desmosomes 

fine tuned by signaling (Loschke et al., 2015; Vielmuth et al., 2018b). Earlier studies revealed 

that keratins unplug from desmosomes in response to PV-IgG binding in a mechanism 

dependent on p38MAPK activity (Berkowitz et al., 2005). Moreover, inhibition of p38MAPK 

abrogated keratin granule formation and dissolution, which represents the disassembly of the 

keratin filament network (Woll et al., 2007). In light of this, in our ex vivo model, preservation 

of keratin association via inactivation of p38MAPK pathway underscores the crucial role of 
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keratin filaments in p38MAPK-dependent stabilization of desmosomal contacts (Egu et al., 

2017).  

2.5 Mucosal-dominant PV-IgG and AK23 were effective in inducing blisters 

in ex vivo human oral mucosa 

It has been recently hypothesized that different autoantibody profiles determine the specific 

clinical phenotype in pemphigus consequently triggering specific signaling pathways (Walter 

et al., 2017). Besides, since mcPV also involves the mucous membranes mainly associated 

with the oral cavity, we tested the role of p38MAPK in ex vivo mucosa model which was in 

principle similar to the skin model we used to investigate a similar role in human epidermal 

explant culture (Egu et al., 2017). As a result, it necessitated establishment of an ex vivo 

human oral mucosa model. Viability tests using MTT and TUNEL assays yielded positive 

results qualifying the tissues for the intended study. In addition, expression of desmosomal 

proteins in human oral mucosa matched previous reports in the literature using 

immunostaining and quantitative PCR (Shirakata et al., 1998; Teh et al., 2011). Accordingly, 

our data confirmed Dsg3 to be the predominant isoform of the desmosomal cadherins 

expressed across the entire epithelial layers in oral mucosa, whereas Dsg1 expression was 

minimal and absent in the basal layer (Egu et al., 2020). Histological examination revealed 

that samples injected with mdPV-IgG or AK23 developed suprabasal blisters characteristics 

of mdPV patients (Kasperkiewicz et al., 2017; Pollmann et al., 2018). In contrast, in our skin 

model mdPV-IgG and AK23 were not sufficient to cause blistering signifying the pathogenic 

role of anti-Dsg1 autoantibody in deep epidermal and mucosal layer blister formation 

(Mahoney et al., 1999). 

2.6 Inhibition of p38MAPK was not effective to block blister formation in 

oral mucosa. 

In contrast to the epidermis, inhibition of p38MAPK was not effective to blunt the 

acantholytic effect of both mdPV-IgG and AK23, in which anti-Dsg3 but not anti-Dsg1 
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autoantibodies were present. Then we tested whether MK2, a major downstream effector of 

p38MAPK, was activated in response to AK23 activity and whether this activation could be 

inhibited as well. This yielded a positive result similarly to previous reports in which 

activation of MK2 was detected in lesional skin of pemphigus patients (Mao et al., 2014). In 

our present study, however, this inactivation of p38MAPK was not paralleled by abrogation 

of blistering induced by AK23 which is in agreement with a previous finding in which AK23 

was used in combination with exfoliative toxin (Saito et al., 2012). This data demonstrate that 

the p38MAPK inhibitor used in this study was effective to inhibit autoantibody-induced 

activation of p38MAPK in mucosa. However, inhibition of this signaling pathway was not 

sufficient to blunt blistering in mucosa indicating that its relevance for blistering is different 

for mucosa compared to epidermis (Egu et al., 2020). 

2.7 Inhibition of p38MAPK did not preserve desmosome ultrastructure in 

oral mucosa 

In our ultrastructural analyses of mucosa samples, we observed a significant reduction in size 

and number of desmosomes similarly to other ultrastructural studies in oral mucosa of 

pemphigus patients (Sokol et al., 2015; Stahley et al., 2016). Because inhibition of p38MAPK 

was sufficient to block blistering and rescue desmosome ultrastructure in human skin 

explants, we assumed p38MAPK would play a similar role in desmosome regulation in 

mucosa. However, unlike in the epidermis, p38MAPK inactivation, which was confirmed by 

Western blot analysis, didn’t avert decrease in desmosome number and size in human labial 

mucosa explants (Egu et al., 2020). 

It has been proposed that p38MAPK is activated in response to disruption of cell contacts 

caused by PV-IgG in Nikolsky positive skin, and thereby resulting in depletion of 

desmosomal proteins (Mao et al., 2011). Thus, it can be understood why inhibition of 

p38MAPK did only attenuate the increased skin fragility but didn’t block blister formation 
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(Mao et al., 2011) which reflects the situation in our mucosa model.  Besides, inactivation of 

p38MAPK did not prevent blistering induced by AK23 as well similar to other studies (Saito 

et al., 2012). On the other hand, the oral cavity is exposed to an incessant environmental stress 

including moisture, chemicals, heat and abrasion (Presland and Jurevic, 2002) which 

necessitates a rapid healing process (Hashimoto et al., 1966). As a result, oral epithelial cells 

have a faster turnover (Donetti et al., 2005) leading to the formation of less differentiated 

organelles (Hashimoto et al., 1966). In line of this, we observed small desmosomes lacking a 

dense mid-line, characteristic of mature desmosomes, in the basal and suprabasal layers of 

labial mucosa which might have contributed to increased tissue fragility. Furthermore, a 

previous ultrastructural study of healthy human buccal mucosa showed less number of keratin 

filaments along with reduced desmosome size in the basal keratinocytes as compared to the 

skin (Hashimoto et al., 1966). Reports from studies of mouse skin also correlated loss of 

keratin filaments with a largely reduced size and number of desmosomes (Bar et al., 2014), 

which highlights the essential role of keratins in maintaining intercellular adhesion and 

desmosome integrity (Vielmuth et al., 2018b). Moreover, Dsg1 is expressed at a lower degree 

in oral mucosa whereas it is the major desmoglein isoform in the superficial epidermis. In the 

latter, Dsg1 was detectable in desmosomes tethering the basal and suprabasal cells where the 

cells enter into a differentiation phase which highlights the essential role of Dsg1 in 

promoting keratinocyte differentiation (Getsios et al., 2009). In another study, ectopic 

expression of desmoglein in keratinocyte cell cultures rescued defective differentiation caused 

by UVB (Johnson et al., 2014). Therefore, absence of Dsg1 in mucosal keratinocytes may 

limit the potential of the cells to differentiate and may impair the recovery of the cells after 

PV-IgG-induced desmosome dysfunction. Taken together, the unique nature of the 

composition of desmosomal proteins in mucosa, the tissue and layer specific properties of 

signal modulation, and the high turnover rate of the cells might have contributed to the failure 
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of the mucosa cells to withstand the PV-IgG-induced loss of adhesion after p38MAPK 

inhibition unlike in epidermis (Egu et al., 2020). 

We can hereby speculate that PV-IgG autoantibody binding to desmogleins by direct 

inhibition of Dsg3 interaction perturbs the interconnection between desmosomes of adjacent 

cells eventually causing cell dissociation (Fig. 4). Autoantibody binding triggers p38MAPK 

activation which augments the pathogenesis by further activating downstream cascades 

thereby causing disturbance of desmosome assembly and disassembly dynamics, ultimately  

 

Figure 4. Schematic showing possible pathomechanisms in pemphigus. The underlying 

pathomechanism appears to be different for epidermis and mucosa. While p38MAPK 

signaling predominates in epidermis (designated by a thick arrow), steric hindrance 

(represented by a thin arrow) and other downstream signaling events independent of 

p38MAPK may orchestrate the processes leading to mucosal acantholysis. 
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resulting in Dsg3 depletion and endocytosis (Fig. 4). Inhibition of p38MAPK effectively 

rescues loss of cell cohesion in skin but this is not effective in mucosa due to tissue fragility 

caused by high cell turnover as well as absence of Dsg1 to promote cell adhesion. 

In summary, the use of ex vivo models is of paramount importance since it allows assessing 

the role of various signaling molecules under controlled conditions. Besides, larger specimens 

could be utilized in these models which would solve the problem related to harvesting a 

sizable sample from patient biopsies. However, ex vivo studies in mucosa are mainly limited 

to permeability studies regarding drug absorption aimed at identifying most efficient route of 

drug administration (Caon and Simoes, 2011, Squier, 1991). To this end, we successfully 

established a novel mucosa ex vivo model which will be helpful for further investigation not 

only of pemphigus pathogenensis but also other mucosa related-diseases. 

 

In conclusion, since cellular responses to the various signaling molecules differ among tissues 

and between species, it appears to be highly invaluable to evaluate the different signaling 

pathways and test the potency of the respective inhibitors, characterized in cell cultures and 

mouse models, in human skin and mucosa as a subsequent step in the development of an 

innovative and effective therapeutics to pemphigus. In view of this, p38MAPK, being a key 

regulator in pemphigus pathogenesis, could be one potential therapeutic signaling target as 

evidenced by its specific inhibition which rescued desmosomes and preserved the 

desmososome-keratin filament association in our ex vivo skin. 
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4 Annex  

4.1 Abbreviations 

Ca2+   calcium ion 

Dsc   desmocollin 

Dsg   desmoglein 

DP   desmoplakin 

DMEM   Dulbecco’s modified eagle 

medium 

EGFR  epidermal growth factor 

receptor 

ELISA   Enzyme-linked 

Immunosorbent Assay 

EC   extracellular 

 h   hour 

IF  immunofluorescence 

Cy3   Indocarbocyanin 3 

IgG   immunoglobulin  

µl   microliter 

µm   micrometer 

µg   microgram 

µM  micromolar 

mm   millimeter  

MAPK   mitogen-activated protein 

kinase  

M  Molar [g/mol] 

mcPV  mucocutaneous pemphigus 

vulgaris 

mdPV  mucosal dominant pemphigus 

vulgaris 

min   minutes 

nm   nanometer 

PV  pemphigus vulgaris 

PF  pemphigus foliaceus 

Pg   plakoglobin 

Pkp   plakophilin 

Pkc  protein kinase C 

SEM   standard error of the mean 

Src   rous sarcoma kinase 

TEM   transmission electron 

microscope 

U   unit
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