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fect in SDSS data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 The suppression of the CMB lensing and galaxy-CMB lensing power spectra
by massive neutrinos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Source: [1]. The intended sky coverage of the Euclid mission over the course
of six years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Source: [2]. The intended sky coverage of the Simons Observatory small
aperture telescope (SAT) and large aperture telescope (LAT). . . . . . . . 17

2.1 A demonstration of the method of isolating BAO wiggles: smoothed matter
power spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 A demonstration of the method of isolating BAO wiggles: the isolated BAO
signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 The derivative of the matter power spectrum with respect to the neutrino
mass, holding the amplitude of the power spectrum fixed. . . . . . . . . . . 28

2.4 The derivative of the structure growth rate with respect to the neutrino
mass, holding the amplitude of the power spectrum fixed. . . . . . . . . . . 28

2.5 Derivatives of H(z) with respect to various cosmological parameters as a
function of redshift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Derivatives of DA(z) with respect to various cosmological parameters as a
function of redshift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 A breakdown of the forecasted distance information constraints on Mν . . . 33

2.8 Forecasted constraints on Mν from constraining f(k) with RSD. . . . . . . 36

2.9 Derivatives of f(z) with respect to various cosmological parameters as a
function of redshift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Forecasted neutrino mass constraints from RSDs, including different priors
on τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.11 A breakdown of the constraints on Mν available from the scale-dependence
of the matter power spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . 38



x List of Figures

2.12 A breakdown of the constraints on Mν available from combining the scale-
dependence of both Pm(k) and f(k). . . . . . . . . . . . . . . . . . . . . . 39

2.13 Combined constraints on Mν . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.14 A contour plot demonstrating how the constraints on Mν become domi-

nated by the constraints on τ when CMB and galaxy survey information
are combined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.15 Summary of the forecasted constraints on Mν for Euclid. . . . . . . . . . . 43

3.1 Sample convergence, galaxy and cross-power spectra for Simon’s Observa-
tory LAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Constraints on Mν from the CMB only. . . . . . . . . . . . . . . . . . . . . 51
3.3 Improvements on combined galaxy power spectrum constraints on Mν when

adding CMB lensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Contour plot showing the relationship between Mν , As and τ . . . . . . . . 54
3.5 Improvements on BAO-only constraints on Mν when adding CMB lensing. 56
3.6 Improvements on free-streaming constraints on Mν when adding CMB lensing. 57

4.1 A comparison of the fiducial linear and NLO galaxy power spectra. . . . . 62
4.2 Contours showing the relationship between the nuisance parameters of the

NLO power spectrum and Mν . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Constraint forecasts on Mν when using the full NLO galaxy power spectrum. 68
4.4 The derivatives of the NLO galaxy power spectrum with respect to the six

non-linear bias parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 The derivatives of the NLO galaxy power spectrum with respect to the six

non-linear stochastic parameters. . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Constraint forecasts on Mν when using the free-streaming information in

the NLO galaxy power spectrum only. . . . . . . . . . . . . . . . . . . . . 71
4.7 The suppression in the linear and NLO galaxy power spectra caused by

massive neutrinos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8 Constraint forecasts on Mν when using the BAO feature in the NLO galaxy

power spectrum only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9 The NLO constraints on Mν with and without CMB lensing. . . . . . . . . 74

C.1 Feynman diagrams representing the one-loop contribution to the power spec-
trum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



List of Tables

2.1 Fiducial cosmology parameters. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Increments used to calculate numerical derivatives for the various cosmolog-
ical parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Minimal priors imposed on cosmological parameters to keep uncertainties
sensible and matrices invertible. . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Constraints on H(z) and DA(z) using the BAO wiggles in the linear galaxy
power spectrum only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 The 23 (m, p) pairs contributing to the calculation of P 2−2
gg,s . . . . . . . . . . 63

4.2 Fiducial values for the NLO bias and stochastic parameters required for
calculation of the NLO galaxy power spectrum. . . . . . . . . . . . . . . . 65

4.3 A comparison of the constraints on H(z) and DA(z) achievable using the
BAO feature in the linear and NLO galaxy power spectra, marginalised over
nuisance parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.1 Survey parameters for Euclid. . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.2 Survey parameters for HETDEX. . . . . . . . . . . . . . . . . . . . . . . . 86

A.3 Survey parameters for PFS. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.4 Survey parameters for DESI. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.5 Survey parameters for WFIRST. . . . . . . . . . . . . . . . . . . . . . . . 87

A.6 Survey parameters for Simons Observatory: Large Aperture Telescope. . . 88

A.7 Survey parameters for Simons Observatory: Small Aperture Telescope. . . 88

B.1 Neutrino mass constraint forecast summary for Planck and Euclid. . . . . . 90

B.2 Neutrino mass constraint forecast summary for Planck and WFIRST. . . . 90

B.3 Neutrino mass constraint forecast summary for Planck and DESI (ELG only). 90

B.4 Neutrino mass constraint forecast summary for Planck and PFS. . . . . . . 91

B.5 Neutrino mass constraint forecast summary for Planck and HETDEX. . . . 91

B.6 Neutrino mass constraint forecast summary for Simons Observatory and
Euclid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.7 Neutrino mass constraint forecast summary for Simons Observatory and
WFIRST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



xii List of Tables

B.8 Neutrino mass constraint forecast summary for Simons Observatory and
DESI (ELG only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.9 Neutrino mass constraint forecast summary for Simons Observatory and PFS. 92
B.10 Neutrino mass constraint forecast summary for Simons Observatory and

HETDEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Zusammenfassung

Diese Arbeit ist das Ergebnis eines langen Unterfangens, neue Perspektiven und
Erkenntnisse für die Herausforderung der Extraktion starker und robuster Neutrino-
massenbeschränkungen aus aktuellen und zukünftigen kosmologischen Messungen zu
gewinnen. Obwohl die Kosmologie heute die stärksten Einschränkungen für die Neutri-
nomasse bietet und wahrscheinlich auch weiterhin wird, muss eine entscheidende Priorität
sein sicherzustellen, dass diese Beschränkungen für absehbarer Zeit robust genug sind, um
auch Wissenschaftler außerhalb der Kosmologie zu überzeugen.

Die überwiegende Mehrheit der aktuellen oder prognostizierten kosmologischen Neutri-
nomassenbeschränkungen in der Literatur gehen bei der Erlangung ihrer Ergebnisse vom
konkordanten flachen ΛCDM-Modell aus. Trotz der vielen Erfolge ist das ΛCDM-Modell
nicht ohne Herausforderungen, sowohl theoretischer als auch beobachtbarer Natur. Es ist
wichtig, dass alle änderungen, die in Zukunft mit diesem Modell erlangt werden, unsere
Neutrinomassenmessungen nicht wesentlich ändern. Das Ziel unserer Arbeit war es, die
Bedeutung dieser kosmologischen Annahme zu verstehen, mögliche Entartungen zwischen
der Neutrinomasse und anderen kosmologischen Parametern zu verstehen und zu unter-
suchen, wie viel wir wirklich über die Fähigkeit kosmologischer Messungen zur Messung
der Neutrinomasse aussagen können. Wir verfolgen einen semi-analytischen Ansatz unter
Verwendung des Fisher-Matrix-Formalismus.

In Kapitel 2 dekonstruieren wir gründlich die Beschränkungen der Neutrinomasse, die
bei zukünftigen Galaxie-Rotverschiebungsdurchmusterungen zu erlangen sind. Galaxie-
Clustering-Messungen reagieren in vielerlei Hinsicht empfindlich auf massive Neutrinos.
Wir bieten isolierte Schranken aus Expansionsratenmessungen durch baryonakustische
Schwingungen (BAOs) und den Alcock-Paczynski-Test. Wir zeigen auch die einschränk-
ende Wirkung von Redshift-Raumverzerrungen (RSD). Wir entwickeln eine neue Methode
zur Isolierung der charakteristischen skalenabhängigen Unterdrückung im Leistungsspek-
trum als Sonde der Neutrinomasse und zeigen, dass die damit verbundenen Schranken
sowohl kosmologieunabhängig als auch relativ stark sind. Wir zeigen, dass alle anderen
Einzelproben der Neutrinomasse und der kombinierten Randbedingungen stark kosmolo-
gieabhängig sind. Obwohl bereits bekannt war, dass es in kosmologischen Messungen eine
Entartung zwischen der Neutrinomasse und der optischen Tiefe zur Reionisation (τ) gibt,
erklären wir erstmals deutlich den Ursprung dieser Entartung.

In Kapitel 3 erweitern wir unsere Studie um prognostizierte Informatio-
nen aus zukünftigen CMB-Experimenten (Cosmic Microwave Background, kosmis-
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cher Mikrowellenhintergrund), einschließlich verbesserter E-Moden-Polarisations- und
CMB-Gravitationlinsenmessungen. Wir zeigen, dass das Hinzufügen optimaler
primärer Anisotropieinformationen zu unseren Freiströmungsbeschränkungen die Neu-
trinomassenbeschränkungen signifikant verstärkt und gleichzeitig kosmologieunabhängig
hält. Wir zeigen auch, dass Freiströmungssignale in den Leistungsspektren der CMB-
Gravitationlinsenmessungen und der Galaxie-CMB-Gravitationlinsenmessungen auch
isoliert werden können, um die Einschränkungen der Freiströmung weiter zu verbessern.
Schließlich zeigen wir, dass kombinierte und reine BAO-Neutrinomassenbeschränkun-
gen auch in Kombination mit zukünftigen modernsten CMB-Messungen stark kosmolo-
gieabhängig bleiben.

In den Kapiteln 2 und 3 arbeiten wir ausschließlich mit linearen Leistungsspektren,
die auf einigen der von uns betrachteten Skalen wohl ungültig werden könnten. In Kapi-
tel 4 erweitern wir unsere Analyse sowohl für Galaxienhaufen als auch für CMB-Linsen,
um die Leistungsspektren der nächst höheren Ordnung zu nutzen. Die Einbeziehung von
Beiträgen der zweitwichtigsten Ordnung verbessert die Freiströmungssignatur im Leis-
tungsspektrum. Durch die Vielzahl zusätzlicher Störparameter im Leistungsspektrum sind
die schlussendlichen Schranken jedoch noch etwas schwächer als im linearen Fall. Aber die
meisten qualitativen Ergebnisse der vorangegangenen Kapitel bleiben weiterhin gültig, und
die Freiströmungsschranken bleiben der einzige kosmologieunabhängige Test der Neutrino-
Masse.



Zusammenfassung xv

This thesis is the result of a long endeavour to bring new perspectives and insights to
the challenge of extracting strong and robust neutrino mass constraints from current and
future cosmological measurements. Although cosmology provides the strongest constraints
on the neutrino mass today and will likely continue to into the foreseeable future, ensuring
that these constraints are robust enough to also convince scientists outside of the cosmology
community must be a crucial priority.

The vast majority of current or forecasted cosmological neutrino mass constraints in
the literature assume the concordance flat ΛCDM model when extracting their results.
Despite its many successes, the ΛCDM model is not without challenges, both theoretical
and observational. It is important that any changes that are made to this model in future
do not significantly alter our neutrino mass measurements. The goal of our work has been
to understand the significance of this cosmological assumption, to understand possible
degeneracies between the neutrino mass and other cosmological parameters, and to examine
how much we can really claim about the capacity of cosmological measurements to measure
the neutrino mass. We take a semi-analytical approach, using the Fisher matrix formalism.

In Chapter 2, we thoroughly deconstruct the constraints on the neutrino mass avail-
able from future galaxy redshift surveys. Galaxy clustering measurements are sensitive
to massive neutrinos in many ways. We provide isolated constraints from expansion rate
measurements provided by baryon-acoustic oscillations (BAOs) and the Alcock-Paczyński
test. We also demonstrate the constraining power of redshift-space distortions (RSD). We
develop a new method of isolating the characteristic scale-dependent suppression in the
power spectrum as a probe of the neutrino mass, and show that the constraints it pro-
vides are both cosmology-independent and relatively powerful. We show that all of the
other individual probes of the neutrino mass and the combined constraints are strongly
cosmology-dependent. In addition, although it was already known that there is a degen-
eracy between the neutrino mass and the optical depth to reionisation (τ) in cosmological
measurements, we explain clearly the origin of this degeneracy clearly for the first time.

In Chapter 3, we extend our study to include forecasted information from future cosmic
microwave background (CMB) experiments, including improved E-mode polarisation and
CMB lensing measurements. We show that adding optimal primary anisotropy information
to our free-streaming constraints strengthens them significantly while still keeping them
cosmology-independent. We also show that free-streaming signals in the CMB lensing and
galaxy-CMB lensing power spectra can also be isolated to improve free-streaming con-
straints further. Finally, we show that combined and BAO-only neutrino mass constraints
remain strongly cosmology-dependent even when combined with future state-of-the-art
CMB measurements.

In Chapters 2 and 3, we work exclusively with linear power spectra, which could ar-
guably become invalid on some of the scales we consider. In Chapter 4, we extend our
analysis for both galaxy clustering and CMB lensing to make use of next-to-leading-order
power spectra. Including next-to-leading-order contributions enhances the free-streaming
signature in the power spectrum. However, the large number of additional nuisance pa-
rameters in the galaxy power spectrum mean that the final constraints are still somewhat
weaker than in the linear case. But most of the qualitative results of the previous chap-
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ters hold true, and the free-streaming constraints remain the only cosmology-independent
probe of the neutrino mass.



Chapter 1

Introduction

The 2015 Nobel prize in physics was shared by Takaaki Kajita and Arthur B. McDonald
“for the discovery of neutrino oscillations, which shows that neutrinos have mass”1. This
represented the first experimentally proven clear deviation from the Standard Model of
particle physics, which originally predicted neutrinos to be massless particles. Despite in-
credible efforts to measure neutrino masses from both the particle physics and cosmological
angles, meaningful constraints on the masses of the three known neutrino mass states have
yet to be achieved.

There are three major avenues of exploration underway in the quest to measure the
neutrino mass scale more precisely, which are helpfully complementary. The first of these
is neutrino oscillation experiments, which can now strongly constrain the squared mass
differences between two pairs of mass values. Solar oscillation experiments constrain ∆m2

21

and atmospheric oscillation experiments ∆m2
31. This leaves us with two possible neutrino

mass hierarchies depending on the sign of ∆m31 - the so-called normal and inverted hier-
archies (see Figure 1.1). Today, the 1σ constraints stand at ∆m2

21 = 7.55 ± 0.2 10−5eV2

and ∆m2
31 = 2.5 ± 0.03 10−3eV2 (the latter assuming normal ordering), and the normal

hierarchy is currently favoured at 3.4σ2. This provides enough information to derive a
lower bound on the total neutrino mass, Mν =

∑3
i=1mν,i, of just under 0.06 eV for normal

ordering and a little over 0.1 eV for inverted ordering. Achieving an upper bound on Mν

of below 0.1 eV could therefore exclude the inverted neutrino mass hierarchy.
A second set of laboratory-based attempts to measure the neutrino mass come from β

decay and neutrinoless double-β decay experiments. In theory, precise measurements of
the endpoint of the β decay electron spectrum should provide the cleanest measurements
of the neutrino mass. With sufficient resolution, one could see the impact of the individual
mass states on the electron energy spectrum. Despite the robustness of this approach,
the projected uncertainties are relatively large. The KATRIN experiment aims for a 90%
C.L. constraint of 0.2 eV on the electron neutrino mass [3]. Neutrinoless double-β decay
experiments could soon reach a similar sensitivity [4], but are limited by the fact that the
constraints only apply if neutrinos are Majorana particles.

1https://www.nobelprize.org/prizes/physics/2015/summary/
2https://globalfit.astroparticles.es/

https://www.nobelprize.org/prizes/physics/2015/summary/
https://globalfit.astroparticles.es/


2 1. Introduction

Cosmological measurements complete the set of competitive neutrino mass measure-
ments available currently or in the near future. Assuming Mν = 0.06 eV, massive neutri-
nos should constitute about 0.15% of the energy density of the universe today. This small
component has several subtle but theoretically measurable effects on cosmological observ-
ables, which will be discussed in detail in both this and later chapters. In complement
to oscillation experiments, cosmological large-scale structure (LSS) and cosmic microwave
background (CMB) lensing experiments are primarily sensitive to the total neutrino mass
Mν . The strongest upper bounds on Mν come from cosmology, with Planck offering a 2σ
constraint of Mν < 0.12 eV last year, by combining CMB temperature and polarisation
measurements with CMB lensing and baryon acoustic oscillation (BAO) measurements
from galaxy redshift surveys [5], in the framework of the standard ΛCDM model with
the neutrino mass as a single parameter extension. This result is intriguingly close to the
inverted hierarchy lower limit. But despite these impressive results, cosmological measure-
ments of the neutrino mass suffer from significant issues that laboratory experiments do
not because of the complexity of the system being examined. The great success of modern
cosmology is the concordance ΛCDM model, which has proven remarkably capable of ex-
plaining the observed properties of our universe using only six basic parameters. However,
it is not without its problems, and there are a great number of theoretical extensions that
could be added (see [6] for a review). Cosmological neutrino mass constraints are usually
extracted using global fits to combinations of datasets, almost always varying the six base
ΛCDM parameters and Mν , and with many other possible parameters being assumed and
kept fixed. Because the effects of the neutrino mass on cosmological observables are so sub-
tle, this raises the possibility of very large relative errors because of possible degeneracies
with other cosmological parameters. One would therefore expect neutrino mass constraints
from cosmology to depend heavily on the cosmological model assumed. This is exactly the
issue addressed by this thesis.

The rest of this chapter is intended to give the reader sufficient background to under-
stand the results derived in Chapters 2-4. We begin by briefly reviewing the history of
cosmological neutrinos (Section 1.1) and the free-streaming behaviour on small scales that
distinguishes their effects on the evolution of cosmic structure from other forms of matter
(Section 1.2). We then discuss how this behaviour impacts the evolution of the matter
power spectrum (Section 1.3). In Section 1.4, we discuss the physical origins of important
elements of the galaxy power spectrum (the observable in galaxy redshift surveys) that
can be used to constrain cosmological parameters, including baryon acoustic oscillations
(BAOs), the Alcock-Paczyński test and redshift-space distortions (RSD). In Section 1.5,
we discuss how the lensing of the CMB by large-scale structure is sensitive to the neutrino
mass. In Section 1.6, we briefly review how one can extend galaxy redshift survey and
CMB lensing measurements into the regime where linear approximations of structure for-
mation fail. Finally, in Section 1.7, we provide more background information on how we
forecast neutrino mass constrains in this thesis in practise. We give an introduction to the
Fisher matrix formalism, motivate the importance of exploring the parameter space beyond
ΛCDM when extracting constraints, and explain why we focus on particular cosmological
extensions and not others.
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Figure 1.1: A graphical representation of the two possible neutrino mass hierarchies.

The results of this thesis are contained in Chapters 2-4. Chapter 2 focuses on disen-
tangling the constraints on Mν available from galaxy redshift surveys, using minimal CMB
information. Chapter 3 extends this analysis to include full CMB anisotropy information
and focuses on the contribution of CMB lensing. Chapter 4 extends the results of the two
previous chapters into the mildly non-linear regime by making use of the next-to-leading-
order or one-loop power spectra.

1.1 Cosmological Neutrinos

The cosmic neutrino background (CNB) was generated in the very early universe at high
temperatures and held in equilibrium with the primordial plasma by weak interactions.
Originally ultra-relativistic, the neutrinos gradually become non-relativistic over the course
of the history of the universe. Their contribution as radiation at early times and as matter
at late times is responsible for their distinctive effects on the evolution of the universe.

Here we use some simple approximations to describe the basic properties of this neutrino
background. Originally coupled to other particles by weak interactions, the neutrinos hold
a Fermi-Dirac momentum distribution

f(p) =
1

exp[(p− µ)/T ] + 1
, (1.1)

with p the momentum, T the temperature and µ the chemical potential (which should be
negligible).
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As the universe expands and cools, neutrinos decouple from the rest of the plasma.
However, the distribution function in Equation 1.1 is maintained because neutrinos are
non-interacting and the temperature and neutrino momentum redshift in the same way as
the universe expands. This fact is very useful, as it allows us to derive many interesting
parameters related to the neutrino distribution as a function of time.

The temperature of neutrino decoupling can be estimated by comparing how the weak
interaction rate and the expansion rate evolve as a function of temperature, and turns
out to be at around 2.5 MeV. Directly after decoupling, neutrinos and photons maintain
the same temperature. However, electron pair production rates drop quickly once the
temperature falls below the electron mass. If instantaneous decoupling of neutrinos is
assumed, the excess energy is transferred to photons, but not to the decoupled neutrinos.
One can use entropy conservation arguments to relate the temperatures of the cosmic
microwave background (CMB) and the CNB

Tν
Tγ

=

(
4

11

)1/3

. (1.2)

This gives a CNB temperature today of approximately 1.95 K.

One can also derive the temperature at which a particular neutrino mass state becomes
non-relativistic by calculating the mean neutrino energy from Equation 1.1 as a function
of temperature, to find that

1 + znr,i = 1890
(mν,i

1 eV

)
. (1.3)

We can therefore see that at least two of the neutrino mass states must be non-relativistic
today.

Finally, another important parameter related to neutrino properties is Neff, the effective
number of relativistic species. It quantifies the contribution of neutrinos to the radiation
density in the early universe.

ρR = ργ

(
1 +

7

8

(
4

11

)4/3

Neff

)
(1.4)

Neff is expected to have a value of 3.046 for three neutrino species, with the small deviation
from 3 accounting for some non-thermal distortion of the spectra caused by electron-
positron annihilations. Neff can be constrained using Big Bang nucleosynthesis because ργ
determines the expansion rate during that epoch. Neff is currently constrained to 2.99±0.34
at 95% C.L. with combinations of Planck and BAO data [5]. Any significant deviation from
the expected value would imply the existence of additional unknown relativistic species in
the early universe.
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1.2 Neutrino Free-Streaming

We can infer from the current neutrino mass bounds that the three neutrino mass states
were relativistic at decoupling (see Equation 1.3 and the bounds given at the beginning
of this chapter). Relativistic massive neutrinos are classified as hot dark matter. Their
behaviour when relativistic is distinguished from that of cold dark matter and baryons
by the fact that they free-stream rather than clustering gravitationally. The transition
of massive neutrinos from free-streaming particles to gravitationally responsive matter
imprints a signature on large-scale structure observables that distinguishes them from
other forms of matter, as we will see in the next section.

The scale above which neutrinos cluster in gravitational potential wells is called the
free-streaming scale

kFS =

(
4πGρ̄a2

v2
th

)1/2

, (1.5)

sometimes understood more intuitively as a free-streaming length

λFS = 2π
a

kFS
= 2π

√
2

3

vth
H
. (1.6)

This is analogous to the Jeans length, the scale below which pressure prevents the grav-
itational collapse of a fluid. At early times, when neutrinos are relativistic, their free-
streaming length is equal to the Hubble radius. This changes after the non-relativistic
transition, when vth falls as [7]

vth =
〈p〉
m

=
3.15Tν
m

=
3.15T 0

ν

m

(a0

a

)
≈ 158(1 + z)

(
1 eV

m

)
km s−1. (1.7)

Note that 〈p〉 = 3.15Tν holds true for a relativistic Fermi-Dirac distribution with negligible
chemical potential, and we used the relation in Equation 1.2 for T 0

ν = 1.95 K. The free-
streaming length therefore evolves after the non-relativistic transition as

λFS = 8.1(1 + z)

(
H0

H(z)

)(
1 eV

m

)
h−1 Mpc. (1.8)

The free-streaming length grows as (aH)−1 after transition, and so is at its minimum value
at transition. Importantly, we see that the free-streaming scale is a function of the neutrino
mass.

1.3 The Matter Power Spectrum

The matter power spectrum underlies all of the most important observables used to con-
strain the mass of neutrinos within the scope of this thesis. In the large-scale/linear regime,
the galaxy power spectrum measured by galaxy redshift surveys (Chapter 2) is a simple
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Figure 1.2: The relative change in the matter power spectrum Pm(k) (dashed lines) and
the baryon-CDM power spectrum Pbc(k) (solid lines) with the addition of a given neutrino
mass, holding Ωm fixed. The lower mass bound of 0.06 eV uses the approximation of
one massive neutrino and two massless neutrinos, while for the upper mass bound of 0.27
eV three degenerate neutrino mass states are assumed. One can see that the neutrinos
contribute like additional cold dark matter on large scales, but suppress the power spectrum
on small scales, and that they also suppress the growth of baryon-CDM perturbations.

function of the matter power spectrum modified by bias and a redshift-space distortion
term and with a shot noise term. The CMB lensing power spectrum (Chapter 3) is derived
from an integral over redshift of the matter power spectrum. Understanding how neutrinos
affect the evolution of the matter power spectrum is therefore crucial to understanding how
the neutrino mass can be constrained with cosmological surveys.

The matter power spectrum is defined as the Fourier transform of the two-point corre-
lation function of matter perturbations

P (z, k) = 〈|δm(z, k)|2〉, (1.9)

where

δm = δρm/ρ̄m =

∑
i ρ̄iδi∑
i ρ̄i

. (1.10)

and cold dark matter (CDM), baryons and massive neutrinos are the species of interest.
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Assuming a Gaussian field, the power spectrum contains all of the information re-
quired to describe the field. The standard cosmological model describes the evolution of
the universe in terms of the gravitational amplification of initially very small primordial
fluctuations over time. These fluctuations are believed to be small quantum fluctuations
enhanced to macroscopic scales by inflation. The primordial power spectrum is assumed
to be almost scale invariant

P (k) = Ask
ns . (1.11)

where ns is close to 1. Radiation provides the dominant energy component of the early uni-
verse, and fluctuations that cross the horizon during radiation domination are prevented
from collapsing under gravity by radiation pressure. Once the time of matter-radiation
equality is reached, perturbations inside the horizon begin to grow as a result of gravita-
tional collapse, and the power spectrum shape then deviates from its power law shape on
small scales, with the matter-radiation equality scale being imprinted on the shape of the
matter power spectrum. For cold dark matter and baryons (after the baryon drag epoch),
the continuity and Euler equations can be combined to provide an evolution equation

δ′′m +
a′

a
δ′m −

3

2

a′

a

2

Ωm(z)δm = 0. (1.12)

This equation corresponds to Equation C.8 in Appendix C, in which we provide an overview
of the governing principles of linear and non-linear perturbation theory, and is derived in
more detail in that appendix. On large scales, neutrino perturbations evolve in the same
way, so the power spectrum is the same as it would be without massive neutrinos but with
the same total Ωm. But on small scales, neutrinos free-stream and do not cluster, so matter
perturbations are suppressed automatically by a factor of 1− fν , where fν = Ων/Ωm. For
a neutrino mass of 0.06 eV, this corresponds to a suppression in the power spectrum of
around 1% on small scales.

However, the strongest impact of the effect of massive neutrinos on the power spectrum
comes from their effect on the growth of cold dark matter and baryon perturbations. If we
consider Equation 1.12 for the growth of baryon and cold dark matter perturbations, the
change in Ωbc as a result of allowing for the extra neutrino component (while keeping Ωm

fixed) will suppress the growth of δbc on small scales. Dark matter and baryon perturbations
normally grow proportionally to the scale factor a in the matter-dominated era. With
massive neutrinos, they grow proportionally to a1− 3

5
fν [8].

Accounting for this effect, the power spectrum in the small-scale limit is actually sup-
pressed in total by a factor of approximately (1− 8fν), and the baryon-CDM power spec-
trum by a factor of (1−6fν), with the addition of massive neutrinos. This result is derived
analytically using linear perturbation theory by [7], and is a rough approximation. The
precise effect of massive neutrinos on the power spectrum is best measured numerically
using Boltzmann codes such as CLASS [9], as is done in Figure 1.2.
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Figure 1.3: Source: [10]. The galaxy power spectra data and best-fit models from for the
CMASS galaxy sample in the SDSS data release 9. The subplot shows the isolated BAO
wiggles.

1.4 The Galaxy Power Spectrum

Naturally, the matter power spectrum cannot be directly observed. Galaxy redshift surveys
instead measure the galaxy power spectrum (see Figure 1.3). Galaxies are not perfect
tracers of the underlying matter field, and bias relates the galaxy over-density δg to the
matter over-density δbc. Note that the galaxy power spectrum is a function of the baryon
and cold dark matter power spectra only, because neutrino perturbations do not form
galaxy haloes. On linear scales, the bias takes the form of a simple linear relation, b =
δg/δbc. This relates the galaxy power spectrum to the matter power spectrum as

Pg(k) = b2Pbc(k) + n−1
g , (1.13)

where the final term accounts for shot noise because the galaxies are considered as dis-
crete point-like objects. A real galaxy power spectrum from the Sloan Digital Sky Survey
(SDSS) is shown in Figure 1.3. Equation 1.13 neglects the angular dependence of the
measured galaxy power spectrum that arises due to redshift-space distortions and the
Alcock-Paczyński effect. These will be dealt with separately in the following sections.
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Figure 1.4: Source: [11]. Panels (a) and (b) show the unreconstructed correlation function
and power spectrum from an SDSS-III BOSS DR12 galaxy sample in two dimensions
(parallel and perpendicular to the line of sight). The clear anisotropy in both panels
arises as a result of redshift-space distortions and the Alcock-Paczyński effect. Panel (c)
demonstrates the presence of BAO wiggles by showing the power spectrum divided by the
best-fit smooth power spectrum.



10 1. Introduction

1.4.1 Baryon Acoustic Oscillations

Sound waves in the primordial baryon-photon plasma generated by opposing radiation
pressure and gravity forces were frozen into the baryon distribution after decoupling. The
radius reached by these waves by the time of decoupling is usually referred to as the sound
horizon. This scale is now imprinted in the matter and galaxy correlation functions as
a preferred clustering scale. The single peak corresponding to this scale in the correla-
tion function becomes the characteristic wiggles seen in the power spectrum when Fourier
transformed (see the subplot in Figure 1.3).

The BAO scale is much larger than the scale of virialised structures, making it relatively
robust against non-linear effects. The angular size of the sound horizon is well constrained
from CMB data, so the apparent size of the sound horizon as a function of redshift in large-
scale structure can be used to infer cosmological distances. The BAO scale can therefore
be used as a standard ruler to measure the expansion rate history of the universe. Since
it was first measured [12, 13], BAOs have become one of the primary ways of constraining
modern cosmology. A thorough review of all aspects of this topic is provided in [14]. Figure
1.4 (c) shows the BAO signature in real data in two dimensions.

The use of BAOs to map out the cosmological expansion history at low redshifts has
been crucial to deriving the bounds on cosmological parameters we have today. From the
Friedmann equations we have

H2(z)

H2
0

= ΩRa
−4 + Ωma

−3 + Ωka
−2 + ΩΛ. (1.14)

We can therefore see that the expansion rate scales differently with different energy com-
ponents of the universe. Precise measurements of the BAO scale as a function of redshift
can therefore be fitted to extract constraints on these components.

1.4.2 Redshift-Space Distortions

When measuring the position of a galaxy, its position along the line of sight is determined
from its redshift. However, the redshift that is measured is a function of two components
- redshifting due to the expansion of the Universe (called the Hubble flow) and the unique
peculiar velocity of a particular object along the line of sight.

Although the magnitude of the peculiar velocity component is usually small compared
to that of the Hubble flow, it can have a significant effect on the measured power spectrum
along the line of sight, introducing anisotropy into constructed galaxy clustering maps.

There are two regimes of interest. On large scales, objects will coherently fall towards
large overdensities. Galaxies on the far side of such an overdensity will therefore appear
closer to us, and those on the near side further away when their redshifts are measured. In
redshift-space, these galaxies will then appear to be more clustered than they actually are.
This is called the Kaiser effect [15]. On small scales, virialisation will induce significant
random velocities. This will have the opposite effect, reducing the apparent strength of
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clustering along the line of sight. This is called the Finger-of-God effect, so called because
the effect manifests in clustering maps as long ‘fingers’ of galaxies pointing in our direction.

Although redshift-space distortions (RSD) make it more difficult to measure line-of-
sight galaxy positions, they also add independent information that can also be used to
constrain cosmology, by providing us with direct information on the velocity field and
therefore on the growth of structure.

Accounting for the Kaiser effect, the power spectrum in Equation 1.13 is modified to

Pg(k) = (b+ fµ2)2Pm(k) + n−1
g . (1.15)

The Finger-of-God effect is often approximated using an exponential function

Pg,FoG(k) = Pg(k) exp
(
−k2µ2f 2σ2

v

)
, (1.16)

where σ2
v is the velocity dispersion. When working in the linear regime in Chapters 2 and

3, we account only for the Kaiser effect.
An excellent (unpublished, but publicly available) review of the topic of redshift-space

distortions has been provided by Shun Saito in the form of lecture notes3.

1.4.3 Alcock-Paczyński Test

Another source of anisotropy in the redshift-space power spectrum arises from the Alcock-
Paczyński (AP) effect [16]. In real galaxy surveys, three-dimensional galaxy positions are
inferred by measuring angular positions on the sky and redshifts. In order to convert
these measurements into three-dimensional maps in real space, values of the expansion
rate H(z) and angular diameter distance DA(z) must be assumed. If the values assumed
are not in proportion to each other, the resulting distribution will be distorted, violating
the requirement for isotropy given by the cosmological principle. The AP effect therefore
provides an additional method of constraining the expansion rate history beyond standard
ruler methods like BAOs (Section 1.4.1).

1.5 CMB Lensing

Large scale structure between us and the last scattering surface distorts the primary tem-
perature and polarisation anisotropies in the CMB through gravitational lensing. This
results in many significant effects, including a smearing of the acoustic peaks, the produc-
tion of B-mode polarisation and the introduction of non-Gaussianity. A thorough review
of the theory of the topic is provided in [17].

The CMB lensing power spectrum therefore provides a useful additional probe of large
scale structure. It is a function of the projected matter distribution between us and the
last scattering surface. This is of interest because it means that the relative suppression

3https://wwwmpa.mpa-garching.mpg.de/~komatsu/lecturenotes/Shun_Saito_on_RSD.pdf

https://wwwmpa.mpa-garching.mpg.de/~komatsu/lecturenotes/Shun_Saito_on_RSD.pdf
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Figure 1.5: The relative change in the CMB lensing and galaxy-CMB lensing power spectra
Cκκ
l and Cgκ

l (the latter at z = 1.35) with the addition of a given neutrino mass, holding
Ωm fixed. The masses are distributed between the three neutrino species as in Figure 1.2.
Once again, the neutrinos suppress the power on small scales.

in matter clustering on small scales discussed in the previous section is also imprinted on
the CMB lensing power spectrum (see Figure 1.5).

The CMB lensing potential is defined as

φ(n̂) = −2

∫ χ?

0

dχ

(
dA(χ, χ?)

dA(χ?)dA(χ)

)
Ψ(x, χ), (1.17)

where Ψ is the gravitational potential, χ? is the the comoving distance last scattering,
n̂ is the direction of observation and dA is the comoving angular distance, equal to the
comoving distance in a flat universe, and otherwise defined in Equations 3.5 and 3.6 of
Chapter 3.

To derive the angular power spectrum (see [18] for more detail), we take the two-point
function of φ in Fourier space and expand it in spherical harmonics. This gives, in terms
of the gravitational potential power spectrum PΨ(k, z, z′)

Cφφ
l =

8

π

∫
k2dk

∫ χ?

0

dχ

∫ χ?

0

dχ′PΨ(k, dA(χ), dA(χ′))jl(k, dA(χ))jl(k, dA(χ′))(
dA(χ, χ?)

dA(χ?)dA(χ)

)(
dA(χ′, χ?)

dA(χ?)dA(χ′)

)
.

(1.18)



1.6 The Next-to-Leading-Order Power Spectrum 13

PΨ can be easily related to Pm using the Poisson equation

PΨ(k, χ) =
9

4

H4
0 Ω2

m(1 + z)2

k4
Pm(k, z). (1.19)

At high l, PΨ varies slowly compared to the Bessel functions and we can use the Limber
approximation ∫

k2dkjl(kdA(χ))jl(kdA(χ′)) = (π/dA(χ)2)δ(χ− χ′). (1.20)

We can also replace k with l/dA(χ) on small scales and change the integration variable to
redshift to get

Cφφ
l = l−4

∫ z?

0

dzW (z)Pm

(
l

dA(z)
, z

)
. (1.21)

W (z) is usually called the lensing kernel

W (z) = 9
c−3H4

0

H(z)
d2
A(z)

(
dA(z, z?)

dA(z?)dA(z)

)2

Ω2
m(1 + z)2. (1.22)

In this thesis, we work in terms of the lensing convergence (which is the observable) instead
of the lensing potential when generating our results. The convergence is related to the
lensing potential by

κ =
1

2
∇2φ. (1.23)

The convergence power spectrum is then given by

Cκκ
l =

9

4

∫ z?

0

dz

H(z)
(1 + z)2H4

0 Ω2
md

2
A(z)

(
dA(z, z?)

dA(z?)dA(z)

)2

Pm(k). (1.24)

This can be related to the form given in Chapter 3 using Ωm = ρm/ρcrit = 8πGρm/3H
2
0 .

CMB lensing and two-dimensional galaxy positions can also be cross-correlated to give
the galaxy-CMB lensing power spectrum, which also shows a relative suppression on small
scales induced by the presence of massive neutrinos (see Figure 1.5).

1.6 The Next-to-Leading-Order Power Spectrum

The linear matter power spectrum is derived by assuming that fluctuations on different
scales evolve independently of each other, through the linearisation of the governing equa-
tions (the Poisson, continuity and Euler equations). This works well on large scales and at
early times (when δm � 1). However, later gravitational dynamics leads to the coupling
of fluctuations on different scales in Fourier space, and this approach no longer suffices.
Moving beyond the linear regime requires higher order perturbation theory, taking as a first
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step the next-to-leading-order or one-loop power spectrum. The derivation is summarised
in Appendix C.

In Chapter 4, we extend our results for the galaxy power spectrum in Chapter 2
into the mildly non-linear regime, following the formalism for the calculation of the NLO
galaxy power spectrum provided by [19]. The authors derive a complete description for
the redshift-space NLO galaxy power spectrum, including both non-linear bias terms and
selection effects.

We will briefly discuss the bias parameters required for the calculation of the next-
to-leading-order galaxy power spectrum in Chapter 4. On small scales, the simple bias
relation in Equation 1.13 is no longer sufficient (see [20] for an up-to-date review). But on
scales where perturbation theory still holds, the growth of structure is still dominated by
gravity, and the relationship of the galaxy density and the underlying matter density field
can be encapsulated at a given order in a small number of bias parameters related to the
matter density and tidal fields (and their derivatives)

δg(x, τ) =
∑
O

bO(τ)O(x, τ). (1.25)

In the simplest case, one can treat the galaxy density field as an expansion in powers of the
matter density field with associated bias parameters. This is sometimes called the local
bias expansion.

δg(x, τ) =
∑
n

bn(τ)δnbc(x, τ) (1.26)

Taking this only to n = 1 gives δg = b1δbc, as used in the linear galaxy power spectrum
(Section 1.4). We include both b1 and b2 in the non-linear galaxy power spectrum in
Chapter 4. Bias parameters can also be related to the tidal field

Kij = Dijδm =

(
∂i∂j
∇2
− 1

3
δij

)
δm. (1.27)

and bK2 in Chapter 4 is paired with the operator K2 = KijK
ij. There is also a bias

parameter associated with another tidal operator, Otd

Otd =
8

21
KijD

ij

(
δ2
m −

3

2
K2

)
. (1.28)

The set of bias parameters of interest in Chapter 4 is completed by those associated with
a higher derivative operator of the density field ∇2δ and the velocity field ∇2v, with the
latter being required to account for the conversion from real space to redshift space.

The final galaxy power spectrum in Fourier space also contains three stochastic terms.
The first of these, denoted P

{0}
ε , corresponds to that in Equation 1.13 and represents shot

noise due to the discreteness of the field. Another, P
{2}
εεη corresponds to the Finger-of-God

effect (Section 1.4.2).
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1.7 Forecasting Constraints on Cosmological Param-

eters

1.7.1 The Fisher Matrix

Throughout this thesis, we use the Fisher matrix formalism to quantify our forecasted
constraints. The Fisher matrix is a simple tool used to determine how much constraining
information an observable x can contain about the parameters of an underlying model, θ.
It is defined as

Fαβ =

〈
∂2[− lnL]

∂θα∂θβ

〉
. (1.29)

where L is the likelihood. Inverting the Fisher matrix provides a covariance matrix, with
the square roots of the diagonal elements giving the forecasted errors on the individual
model parameters. The Cramér-Rao bound requires that the Fisher matrix bounds are the
best achievable constraints.

Given the covariance matrix C of an observable P (for example, the galaxy power
spectrum or a CMB power spectrum), a Fisher matrix can be easily constructed for the
parameters of a cosmological model using

Fαβ =
∂P

∂θα
C−1 ∂P

∂θβ
. (1.30)

The Fisher matrix has some limitations. It requires the assumption of a Gaussian likeli-
hood (usually a reasonable assumption when CMB and low-redshift large scale structure
information are combined, as the parameters are relatively well constrained). It also does
not account for systematic errors. However, it is ideal for the purposes of this thesis for a
number of reasons. Our goal is not to develop the most realistic forecasts, but to compare
the constraining power of different sources of cosmological information, and the degen-
eracies inherent therein. The Fisher matrix also has some advantages over Markov chain
Monte Carlo (MCMC) forecasts, which are the other popular choice in the literature. Be-
sides its obvious efficiency, the Fisher matrix is ideal for deconstructing the constraining
power of cosmological data, because the input derivatives can be modified to vary only
specific variables that we want to contribute to constraints.

1.7.2 Extensions beyond flat ΛCDM

Given that the consensus ΛCDM model has so successfully connected cosmological obser-
vations from different epochs in the history of the universe, and the fact that many of its
predictions are being further validated by ever-improving measurements, one might wonder
why extensions to ΛCDM need to be considered at all. Besides philosophical issues with
the fact that the two largest components of the model - cold dark matter and dark energy
- are barely understood, there are increasingly concerning tensions in the measurements of
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certain parameters between datasets, most importantly, in the present-day matter fluctu-
ation amplitude σ8 and the Hubble constant. In the latter case, tensions between Planck
predictions and local measurements of the Hubble constant have now reached a significance
of 3.6σ.

It would be impossible for us to investigate all possible extensions to the model in
doing our analysis. A flat ΛCDM cosmology is generally defined by specifying six free
parameters, though one has a degree of freedom in choosing some parameters because of
their interdependence. In our work we follow the example of the Planck Collaboration,
taking our free parameters to be the angular size of the sound horizon θs, the physical
baryon and cold dark matter (CDM) density parameters ωb = Ωbh

2 and ωcdm = Ωcdmh
2,

the curvature fluctuation amplitude As, the scalar spectral index ns and the optical depth
to reionisation τ . Of course, we also add a free Mν and from Chapter 3 onwards, a free
Neff.

In our analysis in this thesis, we choose to analyse the cosmology-dependence of our
forecasts by focusing on two particular extensions to this model - free curvature (Ωk) and
a free dark energy equation of state (w0), which is also allowed to vary in time in some
cases with the addition of a wa parameter, so that

w = w0 + wa(1− a). (1.31)

We chose to focus on these two extensions for a reason. The curvature parameter would
be expected to be degenerate with the neutrino mass in CMB because of the geometric
degeneracy between the Ωk and the matter density [21][22]. The dark energy equation
of state provides a significant degree of freedom when allowed to also be time-dependent.
In other words, these extensions were chosen because they seemed the most likely to
significantly weaken constraints, and therefore provide conservative results. Although there
are already very strong constraints from Planck on Ωk (= 0.001± 0.002) and w0 (−1.03±
0.03), we will see in the course of this thesis that even this allows enough room for significant
effects on neutrino mass constraints.

1.7.3 Future Surveys

The aim of this work is to qualitatively understand the origins of cosmological neutrino
mass constraints and their robustness when permitting the possibility of more complex
cosmological models than flat ΛCDM. Although the papers published from this work have
included constraint forecasts for a number of planned and theoretical galaxy and CMB
surveys, these have been a secondary outcome and intended to demonstrate principles
rather than to be taken as either optimal or realistic constraints.

Because of this, the list of future experiments for which we have performed forecasts
is not exhaustive. Throughout the main chapters of this thesis, we take Euclid4 as our
sample galaxy survey and Simons Observatory5 as our sample CMB experiment. Both

4euclid-ec.org
5simonsobservatory.org
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Figure 1.6: Source: [1]. The intended sky coverage of the Euclid mission over the course
of six years. The different colours represent different years.

Figure 1.7: Source: [2]. The intended sky coverage (light regions) of the Simons Observa-
tory small aperture telescope (SAT) and large aperture telescope (LAT), showing also the
galactic dust emission distribution. The LAT survey aims to overlap as much as possible
with the DESI and LSST surveys.

list improving neutrino mass constraints as a major motivation for their experiments. In
Appendix B, we present limited forecasts for HETDEX6, PFS7, DESI8 and WFIRST9.

For Euclid [23, 24] we consider the ‘Euclid Wide Survey’, which aims to cover 15,000
deg2 of the sky (see Figure 1.6) out to a redshift of 2.1, observing 2 billion galaxies in
total, and obtaining spectra for about 50 million of them. It will carry out ambitious

6hetdex.org
7pfs.ipmu.jp
8desi.lbl.gov
9wfirst.gsfc.nasa.gov
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measurements of both galaxy clustering and weak lensing.
The Simons Observatory project [2] is a combination of two surveys with two telescopes

- the small aperture telescope (SAT), which will cover about 10% of the sky, and the large
aperture telescope (LAT), which will cover about 40% (see Figure 1.7). We consider both
in combination in this thesis, although the LAT is much more significant for our purposes.



Chapter 2

Galaxy Clustering

Much of the content of this chapter has been published in [25]. Some of the results may
vary slightly as a result of a small correction made after the original submission (detailed
in an Appendix of [25] and also in Section 2.4.4 of this chapter.)

2.1 Introduction

The galaxy power spectrum measured by galaxy redshift surveys provides multiple probes
that can be used to constrain cosmological parameters. Massive neutrinos alter cosmolog-
ical distances through their modification of the expansion rate, and cosmological distance
scales can be constrained using standard rulers such as the baryon acoustic oscillation
(BAO) scale (see Section 1.4.1), and through the Alcock-Paczyński (AP) test (see Section
1.4.3), which requires that isotropy is conserved when models are converted from redshift
space. BAO information, in particular, is a popular probe of cosmological parameters be-
cause it is easily understood using linear theory and is easily measured, and does not depend
heavily on an understanding of galaxy bias. For this reason, many previous studies have
focused on extracting neutrino mass constraints from this source alone [26, 21]. Redshift-
space distortions (RSD) (see Section 1.4.2) are used to constrain the growth of structure
and are also affected by the additional matter provided by non-relativistic neutrinos.

However, there is nothing unique about the qualitative effect of massive neutrinos on
the expansion rate of the universe or the large-scale structure growth rate. Either of these
effects could be mimicked by the addition of other kinds of matter, or by changes in the
nature of dark energy. The aim of this chapter is to deconstruct the information used to
constrain the neutrino mass from galaxy redshift surveys, and to isolate the information
available from those signals that are uniquely identifiable as the effects of massive neutrinos.

It is well known that neutrino free-streaming suppresses the growth of structure on small
scales relative to that on large scales to an extent that is proportional to their mass, as
outlined in Section 1.2. This results in small but distinctive signatures in the matter power
spectrum Pm(k, z) (see Section 1.3) and in the structure growth rate f(k, z). The possibility
of constraining the neutrino mass through a scale-dependent measurement of f(k, z) from
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RSD was recently explored by [27]. The magnitude of the relative suppression also changes
over time, leading to a redshift-dependence that also contributes to the uniqueness of the
signal.

In this chapter, we aim to deconstruct the constraints on the neutrino mass offered by
galaxy surveys, in order to understand how much constraining information is offered by
each of the components listed above. In particular, we want to determine how sensitive
the different constraints are to extensions to the cosmological model. We use minimal
CMB information (we expand this in Chapter 3) and work only in the linear regime (the
non-linear regime is investigated in Chapter 4).

The rest of this chapter is organised as follows. Section 2.2 provides a breakdown of our
calculation method. Section 2.3 provides our findings, with some details expanded upon
in Section 2.4. Section 2.5 comprises our conclusions.

2.2 Methodology

2.2.1 Overview

Model Parameters

Our simplest fiducial model consists of the six standard ΛCDM parameters and an ad-
ditional total neutrino mass parameter. Fiducial values for the ΛCDM parameters were
extracted from [28] based on the results from the TT,TE,EE+lowP dataset (see table 4 of
[29]). At certain points we expand this model to free the curvature parameter Ωk and
the dark energy equation of state parameter w (which in some cases is allowed to be
time-dependent). We assume a fiducial neutrino mass of 0.06 eV, which is close to the
minimum limit implied by current neutrino oscillation experiments [see, for example, 30,
for a relatively recent review of neutrino mass hierarchy measurements]. We make the
approximation of one massive neutrino and two massless neutrinos. Our Fisher matrix
parameters and their fiducial values are summarised in Table 2.1. Note that linear galaxy
bias is also marginalised over as a nuisance parameter in all of our calculations, and its
fiducial value varies depending on the survey and redshift bin. We carry out all of our
forecasts with Euclid as an example survey (see Section 1.7.3). The survey parameters are
given in Appendix A and results for an extended range of surveys in Appendix B.

Priors

All of our calculations are built upon a CMB prior. In the simplest case, we generate
a minimalistic CMB ‘compressed likelihood’ prior from MCMC chains selected from the
Planck Legacy Archive (the base mnu plikHM TT lowTEB dataset). The compressed likeli-
hood prior compresses the information available from the CMB into four parameters that
are effectively observables - the shift parameter R =

√
ΩmH2

0DA(z∗)/c (where DA is the
angular diameter distance to the surface of last scattering), the angular scale of the sound
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Parameter Definition Fiducial value
ωb Baryon density Ωbh

2 0.02225
ωc Cold dark matter density Ωch

2 0.1198
100θs θs: Sound horizon size at last scattering (rad) 1.04077
τ Optical depth to last scattering 0.079
ln(1010As) As: Amplitude of the primordial power spectrum 3.094
ns Spectral index of the primordial power spectrum 0.9645
Mν(eV) Total neutrino mass 0.06
w0 Time-independent dark energy equation of state parameter -1
wa Time-dependent dark energy equation of state factor 0
Ωk Curvature parameter 0

Table 2.1: Summary of the model parameters. The first seven parameters are always free,
and the final three are free in some cases. We also marginalise over a free linear bias
parameter in each redshift bin.

horizon at last scattering lA = π/θs, ωb and ns (see section 5.1.6 of [29] for more informa-
tion). We use the Fisher matrix mechanism to propagate these constraints into constraints
on our cosmological parameter set. The advantage of the compressed likelihood prior is
that the constraints it provides are relatively insensitive to variation in the curvature or
dark energy equation of state. We also add very broad Gaussian priors on the parameters
not constrained by the CMB prior to keep them within sensible ranges (see Section 2.3.1
for more information). In some cases, signficant improvements on the constraints can be
achieved by including in the prior information on parameters related to the amplitude of
CMB fluctuations, As exp(−2τ) and τ , because of a significant degeneracy (see Section
2.4.3) and we highlight those cases.

The Full Galaxy Power Spectrum Fisher Matrix

To forecast the maximum amount of cosmological information available from a galaxy
survey, constraints on the observed galaxy power spectrum Pg(k, µ) (where µ is the cosine
of the angle with respect to the line of sight) are propagated directly into constraints on
the cosmological parameters. The covariance of Pg(k, µ) can be most simply expressed for
a given (k, µ) increment as [see, e.g. 31, 32]

〈∆Pg(k, µ)2〉 =
2π2

V k2∆k∆µ
2Pg(k, µ)2, (2.1)

where V is the volume of the redshift bin being observed, and ∆k and ∆µ are the bin sizes
for the wavenumber and angle with respect to the line of sight, respectively. Equation 2.1
applies in the case in which only one galaxy tracer population is assumed, with a single
value assumed for the galaxy bias in each redshift bin. Here Pg(k, µ) is the full observed
galaxy power spectrum including shot noise. Equation 2.1 can be appropriately generalised
into a multi-dimensional band power matrix in cases in which multiple tracer populations
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(with different biases) are used, which also accounts for their cross-correlation. For a single
galaxy tracer population, we calculate the galaxy power spectrum in a particular redshift
bin (including linear RSD) and shot noise as

Pg(k, µ) =
[
b+ f(k)µ2

]2
Pbc(k) + n̄−1

g . (2.2)

Here b is the fiducial bias of the galaxy sample, f is the growth function with f = d lnD
d ln a

(where D is the linear growth rate of perturbations) and Pbc is the real-space baryon-CDM
power spectrum. n̄g is the galaxy number density and the final term accounts for shot
noise. In the linear regime, f is often taken as independent of scale, but massive neutrinos
reduce the relative value of f on small scales by a small amount, so we include this effect
here.

To convert observational measurements into a galaxy clustering model, fiducial values of
H(z) and DA(z) must be assumed. If the product of H(z) and DA(z) assumed is incorrect,
the three-dimensional model will be distorted. This is the AP test, and it provides another
source of constraints on our cosmological parameters. Therefore, as a final step, we convert
our k values into observable units and re-write the power spectra accordingly:

P (kobs
‖ , kobs

⊥ ) =
H(z)

Hfid(z)

(
DA,fid(z)

DA(z)

)2

P (kcom
‖ , kcom

⊥ ), (2.3)

where kobs
‖ = kcom

‖ (Hfid(z)/H(z)) and kobs
⊥ = kcom

⊥ (DA(z)/DA,fid(z)).
The linear matter power spectra used in our calculations were all generated using CLASS

[9]. To generate the fiducial Pbc(k) and f(k) values as well as the numerical derivatives
∂Pbc/∂θα and ∂f/∂θα, we generated matter power spectra for a very dense sample of z
values, and stored the results in a two-dimensional table of k and z values. This table
could then be interpolated to provide Pbc(z, k) values. Values of D(k) could be extracted
by dividing the power spectra, and f(z, k) = d lnD(z, k)/d ln a could then be calculated.

Care was taken with derivatives to ensure that they were not very sensitive to the
increments by which the parameters were varied in their calculation. Increments that
are too small can result in numerical scattering, while those that are too large lose finer
elements of the structure. Derivatives were generally calculated as (P [θ+ ε]−P [θ− ε])/2ε,
with P being either Pbc(k) or f(k), and with ε taking the values outlined in Table 2.2.

All of our constraints in this chapter are calculated with marginalisation over the lin-
ear galaxy bias b. Derivatives with respect to the bias parameter(s) can be calculated
analytically using Equation 2.2. For a single tracer population:

∂Pg(k, µ)

∂b
= 2

[
b+ f(k)µ2

]
Pbc(k). (2.4)

It is important to define maximum and minimum usable k values in each redshift bin
of a survey. kmin is calculated based on the dimensions of a particular redshift bin. kmax

is a scale beyond which non-linear effects are too strong for linear approximations to be
accurate. We choose kmax = 0.2 h Mpc−1 here. In the case of BAO-only projections
(the BAO signal is particularly robust against non-linear effects), it is common practice
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Parameter Increment (ε)
ωb 0.001
ωc 0.0025
100θs 0.005
τ 0.025
ln(1010As) 0.05
ns 0.01
Mν(eV) 0.02
w0 0.01
wa 0.01
Ωk 0.01

Table 2.2: List of the increment sizes used to calculate the derivatives numerically for each
parameter.

to replace the sharp k-cutoff with an exponential degradation factor in the signal, which
replicates a gradual smearing effect on the BAO peaks (see [33, 34]). In [35], it was
suggested that the degraded BAO information could be recovered by reconstructing the
original linear density field for a particular galaxy survey by using knowledge gleaned from
the galaxy distribution to reverse the displacements of galaxies due to bulk flows and
cluster formation. In the paper related to this chapter [25], for our BAO-only calculations,
we replaced the sharp k cut-off with an exponential damping factor given by

PBAO, damped(k, µ) = PBAO exp

[
−1

2

(
k2
‖Σ

2
‖ + k2

⊥Σ2
⊥
)]
. (2.5)

The damping scales Σ‖ and Σ⊥ were calculated as a function of the structure growth rate
f(z) and the amplitude of the power spectrum σ8(z) as described by [34]. We followed the
example of [32] to account for the possibility of improving constraints with reconstruction.
We multiplied the damping scales for a given redshift bin by a reconstruction factor r
calculated using the value of ngPg(k = 0.14 h Mpc−1, µ = 0.6) in that bin. For high-
density bins, r reached a maximum of 0.5, while in low-density bins it was just 1. For
intermediate values, we interpolated over the same table of values given by [32]. In all
other cases (beyond BAO), we used a sharp cut-off at 0.2 h Mpc−1.

We abandoned this approach for our follow-up paper [36], switching instead to a hard
cut-off kmax. This was done because we found that the results from the two approaches
were not that different, and for ease of comparison with the other sets of results. In this
chapter, for consistency with the next two chapters, we use once again a simple kmax. One
can see how little difference this detail makes by referring to the results in the published
paper for comparison.
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Figure 2.1: The fiducial matter power spectrum for z=0.65 (the first Euclid redshift bin)
with and without the BAO wiggles smoothed out.
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Figure 2.2: The fitted BAO signal removed from the power spectrum in Figure 2.1.
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Removing Baryonic Oscillations from the Matter Power Spectrum

In the following sections, we attempt to determine the constraints that can be placed
on the sum of the neutrino masses using different elements of the observed galaxy power
spectrum. The sinusoidal BAO signal varies in both its phase and amplitude with many of
our cosmological parameters. In some cases we need to remove the BAO signal from our
Fisher derivatives of the matter power spectrum to isolate other effects, or to isolate the
effects on the BAO signal alone.

We can consider the power spectrum to consist of two components, a BAO component
and a smooth component (S): Pbc(k) = PS(k) + PBAO(k). There are several common
methods of extracting PS (which can then be subtracted to obtain PBAO alone), including
fitting a spline to Pbc(k) that passes through the zero-points of the BAO oscillation, or using
a formula for calculating the smooth power spectrum like that provided by [37]. These
methods are unsuitable in our case, however, as we require the derivatives of PBAO or PS for
insertion into the Fisher matrix, and small inaccuracies in the fitting of the matter power
spectra can lead to artificially large or distorted derivatives. Therefore, we first calculate
the derivatives of the full Pbc(k), and then apply a smoothing function to the derivatives
themselves to extract the smooth part of the derivative, which can be subtracted from the
full derivative to obtain the derivative of the oscillatory part.

As a smoothing function we use a Savitzky-Golay filter [38]. The Savitzky-Golay filter
sees the BAOs as noise and because of its averaging technique provides more consistent
results than spline-fitting, which depends on manual selection of zero-point k values by
sight. This application of the Savitzky-Golay method can be validated by applying it to
a fiducial power spectrum (rather than a derivative) and then subtracting the fit from the
original data to show a very regular and smooth BAO signal. In the case of derivative
fitting, the smoothing is done in d lnP (k)/dθ - log k space, and then both the original
and smoothed spectra are plotted with a linear P (k) scale to ensure that the fit remains
reasonable. The derivative of the BAO component can then be obtained via subtraction
and inspected. Figures 2.1 and 2.2 show the smoothed power spectrum and the isolated
BAO wiggles for z = 0.65.

2.2.2 Distance Information

The most popular distance probe used to constrain cosmological parameters is the BAO
feature. However, the broadband galaxy power spectrum also provides other means of con-
straining the cosmological distance parameters H(z) and DA(z) [39]. The AP test requires
H(z) and DA(z) to scale appropriately with each other so that cosmological isotropy is
preserved in real space. Other characteristic scales in the matter power spectrum, includ-
ing the matter-radiation equality peak and the Silk damping scale, also provide distance
constraints.
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Full Distance Constraints

To extract the maximum amount of distance information from the galaxy power spectrum,
we first use Equation 2.1 to extract constraints on Pg(k, µ). We then propagate these
constraints into constraints on lnH(z) and lnDA(z) (marginalised over bias b, the growth
factor f and the underlying matter power spectrum Pbc) using the following derivatives
(see e.g. [39]):

∂Pg(k, µ)

∂ lnDA

=
∂Pg(k, µ)

∂k

∂k

∂ lnDA

+
∂Pg(k, µ)

∂µ2

∂µ2

∂ lnDA

, (2.6)

∂Pg(k, µ)

∂ lnH
=
∂Pg(k, µ)

∂k

∂k

∂ lnH
+
∂Pg(k, µ)

∂µ2

∂µ2

∂ lnH
. (2.7)

The derivatives of Pg(k, µ) with respect to k and µ2 can be obtained directly from the
calculated fiducial Pg(k, µ). The other terms are easily derived analytically:

∂k

∂ lnDA

= k(1− µ2);
∂k

∂ lnH
= −k(µ2);

∂µ2

∂ lnDA

=
∂µ2

∂ lnH
= −2µ2(1− µ2). (2.8)

BAOs

In the case that we want the information from the BAO signal alone, we must apply the
method outlined in Section 2.2.1 to replace the full derivative of the matter power spectrum
with just the oscillatory part when calculating the derivatives of Pg(k, µ) as above.

Seo and Eisenstein [34] provided a useful fitting function for forecasting H and DA

constraints from the BAO signal alone. We use our own fitting method here because it
was most compatible in the context of our code, but our results agree well with published
forecasts that use the Seo and Eisenstein method to predict constraints on H(z) and DA(z),
including a consistent lnH-lnDA correlation factor of 0.4.

AP Test

The AP test provides constraints on H(z) and DA(z) by requiring that these values scale
appropriately to preserve isotropy when the observed galaxy power spectrum is converted
into real space coordinates. If the assumed product H(z)DA(z) is wrong, anisotropies
will appear in the model. For AP information to be at its strongest, the redshift-space
distortion effect must be well constrained so the two effects can be distinguished. Here, we
extract tightest constraints that would be available from the AP test alone by holding the
redshift space distortions fixed.

The AP test provides its constraints through changes in the observed galaxy power
spectrum with the observation angle. The derivatives used are therefore as follows:

∂Pg(k, µ)

∂ lnDA

=
∂Pg(k, µ)

∂µ2

∂µ2

∂ lnDA

, (2.9)
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∂Pg(k, µ)

∂ lnH
=
∂Pg(k, µ)

∂µ2

∂µ2

∂ lnH
. (2.10)

When the AP test is used alone, it provides a correlation coefficient between H and DA

of −1 [39]. Adding further distance information, such as standard rulers in the shape of
the matter power spectrum, constrains H and DA individually and allows this degeneracy
to be broken.

2.2.3 Structure Growth

RSD

The RSD is an anisotropy that arises in the observed redshift-space power spectrum because
the measured redshift of a particular galaxy is a function not just of the Hubble flow but
also its peculiar velocity. The [b+ f(k)µ2]

2
factor of Equation 2.2 is used to account

for the Kaiser effect [15] resulting from structure formation, which causes an apparent
strengthening of the clustering amplitude along the line of sight as objects fall into high-
density regions. Galaxy survey measurements can be used to constrain fσ8, where f is the
structure growth rate and σ8 the normalisation of the power spectrum amplitude, through
analysis of this anisotropic signal.

White et al. [40] previously provided a method for isolating the information available
from RSD in galaxy surveys, isolating f and keeping σ8 fixed. We follow their example
here, but include the scale-dependence of f(k), and marginalise over both the bias and the
entire matter power spectrum (which includes σ8), using the following derivatives:

∂Pg(k, µ)

∂θ
=
∂Pg(k, µ)

∂f(k)

∂f(k)

∂θ
=

[
2µ2

b+ f(k)µ2

]
Pg(k, µ)

∂f(k)

∂θ
, (2.11)

∂Pg(k, µ)

∂Pbc(k)
=
[
b+ f(k)µ2

]2
. (2.12)

We also marginalise over the distance parameters H(z) and DA(z) using the derivatives
given in Equations 2.6 and 2.7. We can also choose to extract constraints using the product
fσ8 if we do not wish to isolate the effect on the structure growth rate. σ8 is calculated
as an integral over the matter power spectrum and therefore also theoretically contains
information on the suppression of the small-scale matter power by massive neutrinos.

The Small-Scale Suppression of the Structure Growth Rate

The treatment described in the previous section uses information from both the (constant)
large-scale value of f(k) and the small-scale suppression of f(k) to derive constraints. We
can now isolate the information available from the scale-dependent component of f(k)
alone. We re-write f(k) as

f(k) = f1.f2(k). (2.13)
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Figure 2.3: The derivative of the matter power spectrum with respect to the neutrino mass,
holding the amplitude of the power spectrum fixed.
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Figure 2.4: The derivative of the structure growth rate with respect to the neutrino mass,
holding the amplitude of the power spectrum fixed.
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Here f1 is the value of f on large scales (k = 10−3 h Mpc−1 to be specific, where it
is still constant, although the exact scale chosen should not matter) and f2(k) is a scale-
dependent correction factor (equal to one on large scales). To isolate the information
from the neutrino suppression of f on small scales, we replace f in our derivatives with f2

multiplied by the fiducial value of f1 and marginalise over f1 as an additional Fisher matrix
parameter alongside the other cosmological parameters. In other words, f1 is taken as a
constant outside the derivative and df/dθα becomes f1.(df2/dθα). This method removes
any assumptions about the large-scale value of f and therefore can allow for the possibility
of alternative gravity models. Figure 2.4 shows the derivatives of f(k) with respect to the
neutrino mass with f1 held constant at a range of redshifts.

The Small-Scale Suppression of the Matter Power Spectrum

In order to obtain the information contained in the power spectrum shape alone, we must
exclude the information from the BAO feature, which we have already accounted for. We
extract the derivatives of Ps with respect to the cosmological parameters following the
method outlined in Section 2.2.1. In the rest of this section, Pbc refers to the smoothed
matter power spectrum.

As in the case of the structure growth factor f , we want to extract the scale-dependent
component of Pbc alone as an information source, neglecting the amplitude of the power
spectrum (see Figure 2.3). As before, we introduce a new parameterisation

Pbc(k) = P1.P2(k), (2.14)

where P1 is the matter power spectrum value at k = 10−3 h Mpc−1 (the point of normal-
isation should not matter, and we try to avoid the edges where interpolation effects are
stronger). The derivative of our Fisher matrix becomes:

∂P (k, µ)

∂θα
=
∂P (k, µ)

∂Pbc

∂Pbc
∂θα

=
[
b+ f(k)µ2

]2
P1
∂P2

∂θα
(2.15)

The derivatives of Pbc with respect to Mν obtained from CLASS are provided in Figure
2.3 with P1 held fixed before smoothing. We marginalise over P1, bias, the structure growth
rate f , and the distance parameters H(z) and DA(z).

2.3 Results

2.3.1 Priors

We should begin by understanding how parameters are correlated with each other in the
CMB prior. The prior only really constrains θs, ns and ωb. In some cases, we demonstrate
the effect of adding information on parameters related to the amplitude of the fluctuations
of the CMB: As exp(−2τ) and τ (see Sections 2.3.3 and 2.4.3). The remaining parameters
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Parameter 1σ error
ln(1010As) 1.0

τ 0.5
Mν (eV) 1.0
ωcdm 0.2
Ωk 0.1
w0 1.0
wa 3.0

Table 2.3: 1σ uncertainties imposed on the cosmological parameters as initial priors. θs,
ns and ωb are constrained by the CMB prior.

- Mν , ωcdm, Ωk, w0 and wa - all modify R, but as the other prior parameters are held
fixed, their effects are completely degenerate and they are unconstrained from the prior
alone without additional information. A useful study of the degeneracies between Mν

and parameters in CMB data is provided in [41]. We add wide Gaussian priors on these
unconstrained parameters to keep their values sensible. The general intention is that the
results that follow should be relatively independent of the exact priors chosen. Table 2.3
summarises these prior values.

2.3.2 Distance Information: BAO and AP

Constraints on the distance parameters H(z) and DA(z) are derived from two main sources
in galaxy surveys. The AP test constrains the product of H(z) and DA(z) by requiring
that the galaxy clustering pattern derived from observations be isotropic. The BAO scale
imprinted on the galaxy clustering pattern breaks the degeneracy between H and DA

and allows them to be measured individually. Roughly speaking, the AP test constrains
DA(z)H(z) and the BAO signal constraints DA(z)2/H(z) [e.g. 39].

H and DA change with θs and the matter density. The strength of distance information
in constraining the neutrino mass lies in its ability to break the correlation between ωcdm
and Mν in the CMB prior. The effects of increasing either ωcdm or Mν on H and DA

are strongly degenerate, leading to strong anti-correlation between the two parameters
that breaks the degeneracy created by the CMB constraints. The associated disadvantage,
however, is that distance information is in fact sensitive to the sum of Mν and ωcdm, of
which Mν makes up a tiny fraction. Understanding the relationship between Mν and ωcdm
is the key to understanding the constraints on Mν provided by distance probes. Figures
2.5 and 2.6 show the effect of changing these parameters on H and DA as a function of
redshift.

Increasing ωcdm or Mν in the ΛCDM context requires that ΩΛ is decreased to maintain
the critical energy density. At higher redshifts, the increase in Ωm is the dominant effect
on H(z), which is then increased relative to the fiducial model. In the later, dark-energy-
dominated regime, the decrease in ΩΛ dominates the change in H(z), which is now reduced
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compared to in the fiducial model. The effects are not completely degenerate as the
crossover occurs at a higher redshift with additional massive neutrinos than with additional
cold dark matter, as a result of the historical relativistic nature of the massive neutrinos.
These changes in H(z) mean that DA(z) is increased relative to the fiducial model at the
redshifts covered by our surveys. The similarity in the effects of increasing ωcdm and Mν on
the distance parameters (i.e. both increase H at high z and decrease it at low z, and both
increase DA, particularly at late times) makes the two parameters highly anti-correlated.

Figures 2.5 and 2.6 also show the impact of varying w0, wa and Ωk on the distance
parameters, helping us understand how freeing these parameters can affect the constraint
on Mν . Increasing w0 or wa reduces H(z) in the later, dark-energy-dominated regime, but
increases it at higher redshifts. This effect is qualitatively similar to that of increasing Mν

and ωcdm, and the corresponding effects on DA(z) are also similar. Freeing w therefore
weakens the constraint on ωcdm considerably. However, the constraints on Mν are much
less affected because Mν starts to suppress H(z) at much higher redshifts, and the slope
of the derivative is much less steep than for the other parameters, allowing this effect to
be distinguished.

On the other hand, Figures 2.5 and 2.6 also show that the shape of the derivative of Ωk

is very similar to that of Mν , though inverted. The effects of Ωk and Mν on both distance
parameters are quite clearly degenerate, and the effect of an increase in Ωk could quite
clearly be compensated by a reduction in Mν , and vice versa. These effects are reflected
in the results we obtain.

Figure 2.7 shows a breakdown of the distance constraints on Mν for a series of cosmo-
logical models. It is clear that the vast majority of the distance information comes from
the BAO signal. It is also clear that in all cases, the constraints are significantly degraded
when Ωk is allowed to vary. If BAO information is included, the constraints are not very
sensitive to assumptions about the dark energy equation of state.

With the BAO feature smoothed out, H(z) and DA(z) become strongly anti-correlated,
due to the AP test dominating the remaining information. Using the BAO feature alone,
there is a consistent correlation coefficient of approximately 0.4. With all of the distance
information, the correlation is approximately -0.4 to -0.5.

Table 2.4 shows the intermediate constraints on H(z) and DA(z) for Euclid in each bin,
which are often quoted in other works and therefore useful for comparisons.

2.3.3 Structure Growth Information

Sources of information on the growth of structure include the shape and amplitude of the
matter power spectrum, and the observed anisotropies created by RSD.

RSD

We can use RSD to extract constraints on the product fσ8 or on f marginalised over σ8

if we want to isolate constraints from the structure growth rate alone. It is important to
note that σ8 is calculated as an integral over the matter power spectrum, and therefore also
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Figure 2.5: Derivatives of H(z) with respect to various cosmological parameters as a func-
tion of redshift.
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Figure 2.6: Derivatives of DA(z) with respect to various cosmological parameters as a
function of redshift.
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Figure 2.7: A breakdown of the forecasted distance information constraints on Mν for
Euclid (including a CMB prior on θs, ns and ωb), for a variety of models. It is clear that
the primary source of constraining information is the BAO signal. All of the constraints
are weakened considerably if Ωk is allowed to vary, and in the AP only case this results in
effectively no constraint.
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z σ(H(z))(%) σ(DA(z))(%)
0.65 1.69 1.41
0.75 1.34 1.02
0.85 1.23 0.93
0.95 1.18 0.9
1.05 1.15 0.89
1.15 1.14 0.88
1.25 1.14 0.89
1.35 1.16 0.92
1.45 1.21 0.98
1.55 1.29 1.08
1.65 1.44 1.24
1.75 1.67 1.49
1.85 2.08 1.93
1.95 2.82 2.73
2.05 5.94 6.12

Table 2.4: Constraints on H(z) and DA(z) using the BAO wiggles only.

contains information on the overall shape of the matter power spectrum, which is altered
by massive neutrinos. The relationship between σ8 and Mν is therefore quite complex.

We begin by considering the information available from constraints on f alone,
marginalised over σ8. Figure 2.8 provides the key results for Euclid in two different cases.
The upper panel demonstrates the constraining power of f(k) values at all scales (including
both the large-scale values and the relative change on small scales characteristic of massive
neutrinos). We see that the constraints vary significantly depending on the cosmological
model adopted. The lower panel shows the constraints if only the scale-dependence of f is
considered, with the large-scale value of f being marginalised over. Here we see that the
results are completely independent of the choice of cosmological model. This is because
the scale-dependence of the structure-growth rate probed is a unique indicator of massive
neutrinos, and is not replicated by the additional parameters we can include.

We briefly deconstruct the constraints we see in the upper panel of Figure 2.8. Figure
2.9 demonstrates the effect of changing the most relevant cosmological parameters on the
large-scale value of f . Adding information on the large-scale structure growth rate to the
CMB prior provides an improvement in the neutrino mass constraints by inverting the
correlation between ωcdm and Mν in the CMB prior, as both parameters increase f by
adding additional matter.

Increasing w0 or wa reduces f at higher redshifts and increases it at lower redshifts, so
these two parameters become correlated with Mν at the redshifts covered by our surveys,
weakening the neutrino mass constraint. The effect of freeing Ωk is quite complex. It can
be seen from Figure 2.9 that the effects of ωcdm and Ωk on f are strongly degenerate. We
may expect Mν and Ωk to be correlated because the former increases f and the latter
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reduces it. However, ωcdm is strongly anti-correlated with Mν , as discussed previously, and
is much more strongly correlated with Ωk than Mν is. So the net effect, including the
distance prior, is an anti-correlation between Mν and Ωk. This results in the weakening
of constraints with free curvature seen in Figure 2.8. In general, we marginalise over
Pbc, b, H(z) and DA(z) here. Fixing H(z) and DA(z) in this case can actually improve
constraints quite significantly (from 0.24 eV to 0.17 eV for Euclid in the ΛCDM case).
This demonstrates the complementarity of BAO and RSD information.

We can next examine the constraints achievable from the combination f(k)σ8. In this
case, the choice of whether to include information on As exp(−2τ) and τ in the CMB prior
plays a crucial role in the constraints on Mν obtained.

Figure 2.10, which shows a breakdown of the RSD constraints for Euclid with three
possible choices of CMB prior, distinguished by different fill patterns. The largest error
bars correspond to the four-parameter CMB prior we have used so far (constraining θs, ns
and ωb). Constraining σ8 requires a meaningful prior on As, which itself requires reasonable
constraints on τ as As exp(−2τ) is the parameter measured from the CMB. In the case
in which As exp(−2τ) and τ are not included in the CMB prior, the constraints on Mν

ultimately become controlled by the uncertainty on these two parameters, and freeing other
parameters makes little difference, giving very uniform constraints across the cosmological
models we consider. Including the constraining power of the CMB on As exp(−2τ) and τ
can improve the constraints significantly, as seen from the difference in the bars in Figure
2.10. When As is reasonably constrained, the constraint on Mν becomes dominated by
how well τ is known. The middle bars show the constraints when prior information from
Planck on τ and As exp(−2τ) is included. This corresponds to constraints of σ(ln 1010As) ≈
0.04 and σ(τ) ≈ 0.02 from the distance prior alone. The shortest bars include the prior
information from Planck 2015 [28] on As exp(−2τ) but assume that τ is known perfectly.
Further discussion on this topic is provided in Section 2.4.3.

The Shape of the Matter Power Spectrum

The cumulative effect of neutrinos suppressing the structure growth rate f over time is
a corresponding small-scale suppression in the matter power that increases in magnitude
with time. We can isolate this effect by taking the power spectrum amplitude outside the
derivative and smoothing out the BAO signal. Figure 2.11 shows the constraints obtained
from this signal alone. We see that the constraints are relatively robust against variations
in the model, as we would expect. We also note that these constraints are tighter than
those from the scale-dependence of f(k), as the fractional change in the matter power
spectrum caused by massive neutrinos at low redshifts is larger than the fractional change
in the growth factor.

2.3.4 Combining the Suppression Signals

The suppression of Pbc(k) and f(k) caused by massive neutrinos on small scales can be
combined to maximise the constraint from this effect. The result is dominated by the shape
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Figure 2.8: A breakdown of the forecasted constraints on Mν from RSD for Euclid (includ-
ing a CMB prior on θs, ns and ωb), for a variety of models. In both cases, RSD are used to
constrain the structure growth rate f marginalised over the matter power spectrum (which
includes σ8). The lower panel gives the constraints from the scale-dependence of f(k) alone
(the large-scale amplitude of f(k) is taken outside the derivatives and marginalised over).
The upper panel gives the constraints available from both the large-scale amplitude and
scale-dependence of f(k).

of Pbc, and information from the effect on f is a much more minor contribution, but does
provide some improvement on the constraints from Pbc alone. Figure 2.12 demonstrates
this. This combination is the most robust probe of the neutrino mass that we identify in this
work. As Figure 2.12 demonstrates, the constraints are not dependent on basic assumptions
about the dark energy equation of state or curvature. The constraints provided by this
combination are also competitive with constraints from distance probes and RSD.

2.3.5 Combined Information

Ultimately, the constraints from the total galaxy power spectrum can be broken down into
two categories - distance constraints (BAO, AP, etc.) and constraints from the growth of
structure (the shape and amplitude of the matter power spectrum, RSD, etc.). Combining
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Figure 2.9: The derivatives of f(z) with respect to the parameters Mν , ωcdm, w0, wa and
Ωk. The effects of adding extensions to the ΛCDM model on the neutrino mass constraints
can be understood by comparing these derivatives. The values of f used are those for
k = 10−3h Mpc−1. The derivatives with respect to ωcdm and Ωk have been re-scaled by a
factor of 0.1 for plotting purposes.

these two probes to extract the maximum amount of information is powerful. Figure 2.13
shows a breakdown in the combined constraints for Euclid, without any CMB prior being
included for As exp(−2τ) and τ (the effect of adding these priors is demonstrated in Section
2.4.3). We see that the constraints suffer considerably if more model parameters are allowed
to vary. For example, assuming ΛCDM with Euclid gives a constraint of 0.037 eV. This
weakens to 0.07 eV for our most complex model. This emphasises the inherent weakness of
taking constraints from the entire observed galaxy power spectrum without closer analysis.
We emphasise that the constraints derived here are somewhat larger than other published
results. This is because of the choice of the compressed likelihood prior (see Section 2.2.1),
which constrains only θs, ns and ωb, and does not include the constraining power of CMB
lensing (see Section 2.4.2 for discussion).
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Figure 2.10: A breakdown of the forecasted constraints on Mν from RSD for various priors
and cosmological models. In this case, RSD is used to constrain fσ8 (the shape of the
matter power spectrum is marginalised over). The different fill patterns represent different
prior conditions on As exp(−2τ) and τ (from longest to shortest: no CMB information
on As exp(−2τ) and τ , Planck priors on As exp(−2τ) and τ , and Planck 2015 priors on
As exp(−2τ) with perfectly-known τ). Note that the length of the x-axis has been altered
here for greater precision.
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Figure 2.11: A breakdown of the forecasted constraints on Mν for Euclid from the scale-
dependent suppression of the matter power spectrum characteristic of massive neutrino
free-streaming. The amplitude of the matter power spectrum at k = 10−3 h Mpc−1 is
marginalised over.
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Figure 2.12: This figure combines the constraints from the free-streaming signals in both
f(k) and Pbc(k) for Euclid. We see through comparison with Figure 2.11 that the constraint
is dominated by information from the shape of the matter power spectrum.
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Figure 2.13: The total combined neutrino mass constraint forecasts for Euclid. No CMB
prior on As exp(−2τ) or τ is included.

2.4 Discussion

2.4.1 Significance

In the previous section, we isolated the neutrino mass information available from the
distinctive effects of neutrino free-streaming on Pbc(k) and f(k) in galaxy surveys. The
constraints from this signal alone are weaker than the combined constraints that are usually
quoted. However, the probes we have emphasised are directly relateable to neutrino physics
and are relatively insensitive to the assumed cosmological model, unlike in the combined
case. In a time when the ΛCDM model still leaves many open questions, an upper limit
on the neutrino mass can only be asserted with confidence if the constraint is reasonably
independent of small changes in the assumptions about the underlying cosmology. The
unique effects of massive neutrinos on the growth of structure provide this. Our calculations
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therefore provide conservative constraints that should be convincing to particle physicists
and those working outside the cosmology community.

There are effects beyond the cosmological extensions that we have considered here
that also induce a scale-dependence in the structure growth rate, for example, modified
gravity models such as f(R) theories (a study of the degeneracies between f(R) gravity
and massive neutrinos was carried out in [42]). However, we consider it unlikely that the
characteristic scale and magnitude of the suppression caused by massive neutrinos would
be exactly replicated by another effect, particularly if the redshift-dependence of the effect
could be measured.

2.4.2 Choice of CMB prior

Our forecasted constraints are somewhat weaker than those in other published work because
of our choice of a very conservative CMB prior, which neglects some important effects that
can help constrain Mν . The most significant of these is CMB lensing, which probes the
shape and amplitude of the matter power spectrum directly, and is considered in [43, 44, 21,
26, 41]. As our aim in this chapter has been to disentangle neutrino mass constraints, using
a very simple prior made sense, and for testing the cosmological dependence of different
probes, we also needed a cosmology-independent prior. In Chapter 3, we expand on this
work to analyse the effects of including full information from primary CMB anisotropies
and CMB lensing in particular.

2.4.3 Sensitivity to priors on As and τ

The small-scale CMB temperature power spectrum is sensitive to the parameter com-
bination As exp(−2τ) [45], making As and τ very strongly correlated when using CMB
temperature anisotropy data alone. Strengthening the constraint on τ is often specified as
a recommended route towards improving constraints on Mν [e.g. 21, 46]. The constraints
on the neutrino mass from structure growth information (parameterised, for example, by
fσ8) are sensitive to the primordial amplitude As, but not sensitive to τ . However, because
As and τ are so strongly correlated in the CMB prior, adding the prior makes the constraint
on Mν strongly dependent on the weak constraint on τ provided by CMB polarisation. Ul-
timately, when constraints are strong enough, the τ constraint becomes the limiting factor
when trying to strengthen the constraint on Mν . This is why we can obtain significant
improvements in some of our results by extending our compressed likelihood CMB prior to
also include constraints on As exp(−2τ) and τ . We can expect the weak constraints on τ
from Planck to be significantly improved by 21 cm emission measurements used to probe
the epoch of reionisation [46], and we provide results for fixed τ to give forecasts in the
most optimistic cases.

In Figure 2.14, we show how the neutrino mass constraint is limited by the constraint
on τ when τ is included in the CMB prior. In Figure 2.15, we demonstrate the impact
on the neutrino mass constraints from Euclid when τ is perfectly known. As previously
noted, distance measurements have no dependence on As, and are therefore unaffected by
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our choice to improve constraints on these parameters. But in the case of structure growth
probes there is a significant improvement, which ultimately leads to an improvement in
the combined constraints, particularly for the simpler models.

2.4.4 Choice of Power Spectrum

One subtlety that was pointed out to us after the submission of our article [25] is that the
galaxy power spectrum (Eq. 2.2) should be calculated not as

Pg(k, µ) =
[
b+ fm(k)µ2

]2
Pm(k) + n̄−1

g , (2.16)

but as

Pg(k, µ) =
[
b+ fbc(k)µ2

]2
Pbc(k) + n̄−1

g . (2.17)

While Pm is the power spectrum including the contribution of massive neutrinos, Pbc is the
power spectrum of baryons and cold dark matter only, and fbc is the growth rate corre-
sponding to this power spectrum. The motivation for this is that neutrino perturbations do
not contribute to the formation of galaxy haloes. In the published article [25], the results
were calculated using Equation 2.16 with a brief discussion of the effects of using Equation
2.17 provided in an appendix. The effects can now be more fully understood by comparing
the results provided in this chapter with those in that article. A comparison shows that
the changes are minor and all of the qualitative results hold.

2.4.5 Non-Linear Effects

The minimum scale chosen for most of our calculations (kmax = 0.2 h Mpc−1) is a scale at
which non-linear effects may play a small role. However, the primary aim of the present
work is to examine the relative strength of the different probes we describe, and one could
expect that all of these constraints would be modified similarly by the inclusion of non-
linearities. We have also run our results for kmax = 0.15 h Mpc−1 and find that there is
not a significant qualitative change in our conclusions. In Chapter 4, we extend the work
of this chapter into the mildly non-linear regime.

2.5 Conclusions

In this chapter, we have analysed the various components of the observed linear galaxy
power spectrum as will be measured by future galaxy redshift surveys to determine how
these different components can contribute to a determination of the total neutrino mass,
Mν . Adding massive neutrinos to a cosmological model alters the expansion rate (an
effect that can be identified through measurements of H(z) and DA(z) derived from the
AP test and standard rulers such as the BAO signal). Massive neutrinos also modify
the structure growth rate (an effect that can be measured using RSD). The most unique
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Figure 2.14: Contour plot demonstrating how the constraints on Mν from the CMB prior
and the combined galaxy redshift survey information become dominated by the constraints
on τ when Planck priors on As exp(−2τ) and τ are included. Note that in the CMB prior
only case, an ‘extra Mν constraint’ is included to keep the 1σ error on Mν below 0.1
eV. This is purely for demonstrative purposes - without this the CMB prior would only
impose an error of 1.0 eV (see Table 2.3), which would inflate the axis scales and make
the contour for the CMB prior combined with Euclid (σMν ≈ 0.03 eV) difficult to make
out. We see that when the CMB prior alone is used, there is little correlation between Mν

and either As or τ , but the latter two are strongly correlated with each other. When the
combined information from the Euclid survey is added, Mν becomes strongly correlated
with As, making it also strongly correlated with τ . τ is currently only weakly constrained
by CMB polarisation information, so the neutrino mass constraint becomes limited by our
knowledge of the value of τ .
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Figure 2.15: The forecasted constraints from Euclid, with the combined constraints broken
down into their broad components, for various choices of prior for As exp(−2τ) and τ .
The different fill patterns represent these different priors (from longest to shortest: no
CMB information on As exp(−2τ) and τ , Planck 2015 priors on As exp(−2τ) and τ , and
Planck 2015 priors on As exp(−2τ) with perfectly-known τ). The x-axis of the distance
information panel is extended to keep roughly the same scale as the other two panels for
comparison.
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identifier of massive neutrinos, however, is a small-scale relative suppression in the matter
power spectrum and in the structure growth rate, as the free-streaming of massive neutrinos
reduces clustering on small scales. This is a probe of the neutrino mass that provides
constraints that are independent of simple extensions to the assumed cosmological model.
In this chapter, we have disentangled all of these measurement tools, and demonstrated
the sensitivity of each to the assumed cosmological model. We have used a minimalistic
CMB prior (constraining R, lA, ωb and ns), which provides constraints that are relatively
insensitive to the assumed curvature or dark energy equation of state.

We have also provided forecasts of the neutrino mass constraint using all of the infor-
mation available in the observed galaxy power spectrum combined. These constraints can
be weakened by more than a factor of two when the curvature or dark energy parameters
are allowed to vary. We have confirmed that the combined constraints on Mν are limited
by the accuracy to which τ is known [21] and clarified the reason for this.

To extract the most robust constraints possible on Mν , future surveys should focus on
constraining Pbc(k) and f(k) as precisely as possible, which requires solid measurements of
the broadband shape of the galaxy power spectrum and redshift-space distortion analysis
that considers the scale-dependence of f . Large-scale and small-scale values of Pbc and
f can be compared to attempt to identify the relative suppression of structure growth
caused by massive neutrino free-streaming. As the magnitudes of these two effects varies
somewhat with redshift, surveys with deeper redshift surveys may provide more definitive
results by showing a contrast between the signals measured at different redshifts.



Chapter 3

CMB Anisotropies and CMB Lensing

Much of the content of this chapter has been published in [36].

3.1 Introduction

In Chapter 2, we thoroughly deconstructed the constraints on the sum of neutrino masses,
Mν , achievable with upcoming spectroscopic galaxy surveys. Our focus was to understand
how sensitive forecasts were to cosmological assumptions (specifically about curvature and
the dark energy equation of state), and to understand where the majority of the constrain-
ing power came from. We found that constraints could degrade significantly when moving
beyond ΛCDM depending on the data that was used. For example, we showed that con-
straints derived from distance probes, such as baryon acoustic oscillations (BAOs), could
become several factors weaker if curvature was allowed to be non-zero.

We determined that the most reliable probe of Mν , due to its robustness against changes
in the underlying cosmology, was the distinctive scale-dependent free-streaming signature
that massive neutrinos imprint on the underlying matter power spectrum and the structure
growth rate, and provided a method of extracting isolated constraint forecasts from these
effects alone. We demonstrated that, if measured, these signals could provide neutrino mass
constraints that are insensitive to the assumed cosmology. Significantly, these constraints
are also independent of τ , the optical depth to the cosmic microwave background (CMB).

In this work, we extend our analysis considerably to include forecasts from future CMB
experiments. In Chapter 2, we used a very conservative Planck prior, the compressed
likelihood prior [29], which aims to provide constraints from effective observables only, and
is therefore insensitive to assumptions about curvature and dark energy. Here we want to
expand our calculations to include the full benefits provided by CMB surveys, including
the temperature power spectrum from Planck [47] and forecasted polarisation anisotropy
measurements and CMB lensing.

We perform calculations for three combinations. First, we examine the most opti-
mistic case, analysing the advantages of combining CMB lensing measurements with full
broadband galaxy power spectra from spectroscopic surveys. Second, we look at the com-
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bination of BAO measurements from galaxy surveys with CMB lensing, a combination that
has been very popular in existing forecasts [48, 26, 21]. Finally, we demonstrate that our
cosmology-independent free-streaming constraints from [25] can be improved by combin-
ing with powerful CMB measurements, while still remaining cosmology-independent. We
consider these constraints the most robust forecasts.

The primary motivation for combining the free-streaming constraints with CMB fore-
casts is that the CMB lensing power spectrum also contains a relative suppression on small
scales caused by the effects of neutrino free-streaming, analogous to that in the matter
power spectrum. While the galaxy power spectrum is a biased measurement of the matter
power spectrum, CMB lensing probes the matter power spectrum directly. Additionally,
while the galaxy power spectrum contains contributions from the baryon and cold dark
matter transfer functions only, the matter power spectrum probed by CMB lensing in-
cludes all matter, including massive neutrinos. It seems reasonable the CMB lensing could
provide a useful complement to these measurements.

Additionally, forecasted constraints on Mν from upcoming galaxy surveys based on
the full galaxy power spectrum will primarily be limited by weak constraints on τ (see
[25] and also [21]). The correlation between the two parameters arises from both being
strongly correlated with As, as described in Chapter 2. As shown here and also recently
by [49], CMB lensing could help overcome this obstacle somewhat through its potential for
constraining As.

We work exclusively in the linear regime in this work. Analysis of the effects of imple-
menting the next-to-leading-order (NLO) power spectrum is performed in Chapter 4.

This chapter is organised as follows. We outline our methodology in Section 3.2, and in
Section 3.3 we provide a detailed breakdown of the effects of combining CMB lensing infor-
mation with various types of galaxy survey forecasts, with some discussion. We conclude
in Section 3.4.

3.2 Methodology

Our calculations in this work focus on the combination of CMB and spectroscopic galaxy
surveys. Our Fisher matrix implementation for galaxy surveys and our fiducial cosmology
are the same as in Chapter 2.

There are some minor changes to our method. The list of cosmological parameters
we use and their fiducial values remain consistent with those in Chapter 2. However, we
also now add to the list Neff to account for the degeneracy between Neff and Mν in CMB
observables. This was not possible when using the Planck compressed likelihood, as the
compressed likelihood priors are provided for a certain combination of free parameters, and
we could not obtain one that also kept Neff free. Constraints in this paper are therefore
marginalised over a total set of parameters: θs, As, Neff, ns, ωcdm, ωb and τ in all cases.
For the extended models, the list may be extended to include some or all of Ωk, w0 and
wa.
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In this section, we discuss our Fisher matrix implementation for forecasting CMB con-
straints. The covariance matrix for a particular set of angular power spectra is given by

〈∆Cxy
l ∆Cmn

l 〉 =
1

(2l + 1)fskydl
(Cxm

l Cyn
l + Cxn

l Cym
l ). (3.1)

Here, fsky is the fraction of the sky observed. The Cl values on the right-hand side of
Equation 3.1 must include appropriate noise terms for auto-correlation power spectra. We
propagate the forecasted Cl measurement accuracies into constraints on our cosmological
parameters using the Fisher matrix formalism. We use the temperature anisotropy power
spectrum and noise from the Planck Legacy Archive (2018 data release) [5]. At low l,
the noise values are not symmetric. We take the larger values in each case. We use the
temperature power spectrum in the range 2 ≤ l ≤ 2500.

We forecast polarisation constraints for future surveys. We generate theoretical un-
lensed auto-correlation spectra CEE

l using the Boltzmann code CLASS [9]. The noise term
for the polarisation auto-correlation spectra is calculated as:

N−1
l =

∑
i

∆P−2
i exp

[
−l(l + 1)θ2

i /8 ln 2
]
, (3.2)

where i indexes the frequency band, ∆Pi is measured in µK-arcmin and θi is the FWHM
beam size in arcmin. We calculate the polarisation power spectra for l values of 30-2500.

Finally, we include the forecasted cross-correlation between the Planck temperature
power spectrum and future polarisation power spectrum measurements (CTE

l ). We cal-
culate the covariance using the existing temperature power spectrum and noise and the
theoretical E-mode polarisation power spectrum and noise outlined above. We extract the
noise for Planck for insertion into Equation 3.1 from the published variance values in the
Planck Legacy Archive assuming fsky = 0.5. In our calculations, we also include a prior of
σ(τ) = 0.008 (as quoted for TT,TE,EE+lowE in [5]).

When taking the derivatives of the theoretical CMB temperature and polarisation power
spectrum with respect to the cosmological parameters, we do not include the effects of CMB
lensing on the power spectrum. It is important to note that we take this approach only
because we want to separate clearly the contributions of primary anisotropies and lensing
to the constraints. For other purposes, it would make more sense to use the lensed TT,
TE and EE spectra, as these are what are measured by real experiments, and delensing is
very difficult in practice. It has been shown that cross-correlation terms between lensed
temperature and polarisation spectra and the lensing power spectrum itself contribute
negligibly to the covariance matrix [50, 51], so one would not need to worry about double-
counting information when taking this approach.

For lensing forecasts, we require the CMB lensing convergence power spectrum Cκκ
l .

When two surveys cover a shared area of the sky, we can also use the cross-correlation
between galaxy positions and the convergence map as an additional information source.
This requires the angular galaxy clustering power spectrum Cgigi

l and the cross power
spectrum Cgiκ

l (i indexes a specific redshift bin of the galaxy survey). All of these spectra
can be derived from matter power spectra Pm(k, z) (see e.g. [52]) generated using CLASS.
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We calculate the galaxy power spectra for different redshift bins i making the approxi-
mation that all galaxies are at the mean redshift zi (i.e. assuming a Dirac delta-function
distribution). The Limber approximation fails for thin redshift distributions, so we use the
exact equation

Cgigi
l =

2

π

∫
dkk2b2

iPbc(zi, k)j2
l [kdA(zi)]. (3.3)

In the previous article, we assumed a maximum wavenumber in each redshift bin of
kmax = 0.2 h Mpc−1. For consistency, we calculate the angular galaxy power spectra in
these calculations up to the corresponding appropriate lmax value, by converting kmax into
units of Mpc−1 and then multiplying by the comoving angular diameter distance at the
given mean redshift, dA(z) = DA(z) × (1 + z). We calculate the appropriate lmin value
likewise, basing the value on the survey area.

The factor b2
iPbc(zi, k) corresponds to the three-dimensional galaxy power spectrum,

Pgg(zi, k). As in our previous work, we assume linear galaxy bias. The subscript bc em-
phasises that massive neutrinos do not contribute to the galaxy power spectrum but only
cold dark matter and baryons. bi is the fiducial linear galaxy bias and jl is the spherical
Bessel function.

For the convergence power spectrum, we use the Limber approximation [17]:

Cκκ
l =

(
4πGρm,0

c2

)2 ∫ z?

0

dz(1 + z)2

(
dA(z, z?)

dA(z?)

)2 Pmm

[
k = l+1/2

dA(z)
, z
]

H(z)
. (3.4)

ρm,0 is the comoving matter density, z? is the redshift of last scattering, and dA(z, z?)
represents the comoving angular diameter distance between the two redshifts. Accounting
for curvature, this is calculated as [53]:

dA(z1, z2) = fk,2(χ)

√
1 + Ωk

(
fk,1(χ)

DH

)2

+ fk,1(χ)

√
1 + Ωk

(
fk,2(χ)

DH

)2

, (3.5)

fk(χ) =
1√
k

sinh
(
χ
√
k
)

Ωk > 0,

= χ Ωk = 0,

=
1√
k

sin
(
χ
√
k
)

Ωk < 0,

(3.6)

where k = −Ωk(H0/c)
2 and DH = (c/H0) is the Hubble distance.

In this case, the requirement to evaluate Pm(z) for such a large number of redshifts
presents somewhat of an inconvenience. As massive neutrinos change the shape of the
matter power spectrum over time, it is not sufficient to simply multiply Pm(0) by a scale-
independent growth factor D(z)2 at each instance. We output Pm(k) at a large number of
redshifts using CLASS, and interpolate the table at the necessary redshifts.
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Figure 3.1: Example convergence, galaxy and cross-power spectra for Euclid and the Si-
mon’s Observatory Large Aperture Telescope (LAT) with corresponding noise. The galaxy
power spectrum corresponds to the central redshift bin of the Euclid survey (z=1.35) with
a b = 1.51.

We also use the Limber approximation to calculate the galaxy-convergence cross-power
spectrum [52]:

Cgiκ
l =

(
4πGρm,0

c2

)
(1 + zi)

dA(zi, z?)

dA(zi)dA(z?)
biPcb,m

[
k =

l + 1/2

dA(zi)
, zi

]
. (3.7)

Here the factor biPbc,m corresponds to the matter-galaxy cross-power spectrum.

In the case of the CMB lensing auto power spectrum, the corresponding noise is that
associated with the reconstruction of the CMB lensing potential from CMB observations,
which is calculated using the algorithm provided by Okamoto & Hu [54] by interfacing
the Fortran module FUTURCMB (provided by [55]) with our code. This must be rescaled by
a factor of 1

4
[(l + 2)!/(l − 2)!] for use with the convergence κ (as opposed to the lensing

potential φ) power spectrum. For the galaxy power spectra, the shot noise term is given by
the inverse of the surface density of the galaxies in the particular redshift bin in steradians,
n−1
g .

We do not include cross-spectra between redshift bins. Following [56], we assume
that the covariance between Pgg and Cgκ

l can be neglected, and we can therefore do the
Fisher matrix calculations for the two-dimensional and three-dimensional power spectra
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calculations separately and simply add the output Fisher matrices, i.e.:

F = F (CTT
l , CTE

l , CEE
l ) + F (Pgg(k, z)) + F (Cκκ

l ) + F (Cgκ
l ). (3.8)

Because we treat CMB lensing with a separate Fisher matrix for analysis purposes, the
cross-correlation between the temperature and polarisation power spectra and the lensing
power spectrum is not included. We also ran tests in which CTκ

l and CEκ
l were included,

and found the change in the constraints to be less than 1% in all cases.

3.3 Results and Discussion

3.3.1 Survey Data

In our galaxy clustering paper, we focused on constraints from Euclid. Here we focus on
forecasts from the combination of Euclid and Simons Observatory (see Section 1.7.3) with
existing information from Planck, in the forms of the CMB temperature power spectrum
and a prior on τ of σ(τ) = 0.008. For the galaxy-CMB lensing cross-correlation, we assume
maximum overlap between Euclid and Simons Observatory. We present constraints for a
wider range of survey combinations in Appendix B.

3.3.2 Results from the CMB Alone

Figure 3.2 shows the forecasted constraints on Mν from Planck and Simons Observatory
alone for various cosmologies. The constraints from temperature and polarisation alone
are relatively weak but also insensitive to changes in curvature or the dark energy equation
of state. Most of the information on Mν comes from unlensed temperature anisotropy
information, with the unlensed E-mode polarisation mostly improving constraints through
tightening the constraints on other parameters rather than being directly sensitive to Mν .

Adding CMB lensing improves the constraints significantly. To determine how much the
free-streaming effect on Cκκ

l contributes to the constraints, panel (b) shows the constraints
from the shape of Cκκ

l alone (changes in the overall amplitude of the power spectrum in
the derivatives are neglected). Panel (c) shows the constraints when the full Cκκ

l is used.
Both the dark energy equation of state and curvature parameters add a scale-dependent
effect that is somewhat degenerate with the neutrino effect in panel (b). However, because
Ωk is quite well constrained from temperature and polarisation data, and the dark energy
equation of state parameters are not, freeing w has a much more significant effect on the
Mν constraint.

When full lensing information is used in panel (c), the constraints on Mν are much
improved. However, here the curvature parameter degrades Mν more so than w. This is
because a very small change in Ωk produces a much larger change in the amplitude of Cκκ

l

than w. The results are now strongly cosmology-dependent.
Adding CMB lensing makes Mν correlated with As, and therefore with τ (as As and τ

are strongly degenerate in CMB measurements) unless we have a cosmic-variance-limited
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Figure 3.2: A breakdown of forecasted constraints from the CMB alone. 1σ constraints on
Mν are shown along the x-axes for the cosmological models shown on the y-axes. Panel (a)
shows the constraints on Mν that we derive using the current unlensed Planck temperature
power spectrum (2 ≤ l ≤ 2500), forecasted E-mode polarisation information from Simons
Observatory (30 ≤ l ≤ 2500) and their cross-correlation. Panel (b) adds constraints from
the shape of the convergence power spectrum only (to capture the free-streaming effect).
Panel (c) replaces this with full forecasted CMB lensing constraints.
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measurement of E-mode polarisation at l ≤ 30. This is analogous to what happened when
the CMB prior was combined with galaxy power spectrum measurements in our previous
work [25]. However, in the case of Figure 3.2, our constraint on τ from Planck is already
quite strong. Fixing τ causes only a minor improvement in the ΛCDM case in panel (c).
For the other models, the constraints on the additional extension parameters remain the
limiting factor.

3.3.3 Full Galaxy Power Spectra

Figure 3.3 presents forecasted constraints from the Euclid full galaxy power spectrum and
Planck/Simons Observatory both with and without CMB lensing information included for
a range of cosmologies. Note that the x-axis scale is reduced by a factor of 10 compared
to that in Figure 3.2. The cross-hatched bars are the results for a 1σ prior on τ of 0.008,
and the solid bars are the results if τ is fixed.

We first examine the ΛCDM case, with the weaker constraint on τ . As emphasised
in previous work [25], for a powerful galaxy survey like Euclid, if the full galaxy power
spectrum is used with CMB information, the constraints on Mν come to be limited by the
weak constraints on τ . The cause of this is that the effects of Mν and As on the galaxy
power spectrum are strongly degenerate, and As and τ are measured in combination from
the CMB. CMB lensing does not provide any additional direct information on τ , but does
help constrain As better. This leads to the very modest improvement in σ(Mν) seen in
Figure 3.3 when comparing panels (a) and (b). Because of our strong τ prior, the relative
gain from adding CMB lensing is relatively small (about 5%). The scale-dependent effect
of Mν on the CMB lensing power spectrum is sub-dominant here. Panel (c) shows that the
gain when adding cross-correlation information between galaxy positions and the lensing
map is more significant, particularly for the more complex models. This gain seems to come
primarily from the scale-dependence in the galaxy-CMB cross-power spectrum imprinted
by Mν , and therefore reduces the cosmological dependence somewhat as well.

The solid bars show what can be achieved if τ is perfectly constrained. Adding CMB
lensing when τ is already well constrained provides very little benefit, because As is already
well constrained, though there is some mild improvement for the more complex models.
Galaxy-CMB lensing helps very little here because the constraints are already quite strong.

It is significant to note that in all cases, the constraints on Mν still depend quite heavily
on the cosmological model assumed. CMB lensing does contribute to tightening constraints
on curvature [57], but the dark energy equation of state can degrade constraints on Mν

considerably, particularly when the constraint on τ reaches its limit.
Neglecting galaxy-CMB lensing, the relationship between the ΛCDM constraints in the

panels in Figure 3.3 can be understood completely in terms of the degeneracy between Mν ,
As and τ . Imposing a particular relative improvement in the constraints on one of these
parameters leads to an almost equal relative improvement in the constraints on the other
two. Figure 3.4 shows this relationship in contour form. While CMB lensing is useful for
improving the constraints on these three parameters, it is less powerful than the Planck τ
prior we include.
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Figure 3.3: Forecasted constraints on Mν for a combination of Simons Observatory/Planck
and Euclid. The full (broadband) galaxy power spectra are used to generate the Euclid
Fisher matrix. Panel (a) shows the constraints without any lensing information, panel
(b) full CMB lensing information and panel (c) further adds the cross-correlation between
galaxy positions in Euclid and the CMB lensing map (assuming maximum overlap between
the two surveys). In each case, the cross-hatched bars represent the results with a 1σ prior
on τ of 0.008, and the solid bars represent the results when τ is fixed.
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Figure 3.4: The relationship between the constraints on Mν , As and τ from Euclid
(marginalised over the other parameters in the text) with and without CMB lensing for
various τ priors. The errors on these three parameters are very strongly correlated, to
the extent that a change in the error on one of these parameters leads to an equal relative
error change on the other two parameters. CMB lensing can help improve these constraints
when τ is weakly constrained, but has much less impact when a τ prior from Planck is
included.
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3.3.4 BAO-Only Information

The combination of BAO and CMB lensing data is a common focus in forecasts [48, 26, 21].
As can be seen in Figure 3.5, the constraints from Euclid from BAOs alone are much
weaker than those from the full power spectrum (note the x axis scale has been increased
by a factor of 5 relative to Figure 3.3), but a better relative improvement is obtained by
combining with CMB lensing information, particularly for the more complex models. As
was highlighted in Chapter 2, there is a strong degeneracy between Mν and Ωk in their
effects on cosmological distance parameters, as is clear from panel (a). In Chapter 2, there
was very little interaction between Mν and the dark energy equation of state parameters
in the BAO-only case. However, we can see from panel (a) that there is a significant
degeneracy between w0/wa and Mν here. This is a result of using the Planck temperature
power spectrum and Simons Observatory polarisation forecasts instead of the compressed
likelihood prior used in Chapter 2.

We first examine the case without CMB lensing. BAO information does not constrain
As or τ , but CMB lensing does. Because of the lack of information on As, the degeneracy
between Mν and As (and therefore τ) that arises in the combined case does not arise here.
Therefore, looking at panel (a) of Figure 3.5, one can see that fixing τ makes no difference
to the neutrino mass constraint.

Once CMB lensing is added, the τ degeneracy is re-established to a degree (see panels
(b) and (c)). CMB lensing contributes in multiple ways here, primarily by adding structure
growth information, including the scale-dependent suppression of the CMB lensing power
spectrum by the neutrinos. Because the BAO-only constraints are sufficiently weak, CMB
lensing can contribute significantly to improving constraints.

CMB lensing also tightens the constraints on curvature significantly (by a factor of 2
in the ΛCDM + Ωk case), breaking the Mν-Ωk degeneracy in panel (a). CMB lensing does
not contribute significantly to constraining the dark energy equation of state parameters,
but the suppression in the power spectrum caused by massive neutrinos helps reduce the
degeneracy between the two.

Galaxy-CMB lensing also helps improve constraints significantly, as can be seen in
panel (c). However, although the scales in the plot make it difficult to see, the constraints
are still relatively cosmology-dependent, degrading by about 40% for a free dark energy
equation of state.

3.3.5 Free-Streaming Information

Figure 3.6 shows how CMB lensing affects our ‘free-streaming’ constraints. Massive neutri-
nos suppress the growth of structure on small scales to a degree that is primarily dependent
on the total neutrino mass. This creates a small but distinctive scale-dependent signature
in both the matter power spectrum and in the structure growth rate f (which can be mea-
sured independently using redshift-space distortions). If measured, the magnitude of the
suppression can be used to obtain a cosmology-independent and τ -independent probe of
the neutrino mass, as discussed extensively in Chapter 2. Our ‘free-streaming’ constraint
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Figure 3.5: As for Figure 3.3, but with the constraining power from Euclid provided by
constraints on H(z) and DA(z) derived from the BAO wiggles. Note that the x axis here
has been extended by a factor of 5 compared to Figure 3.3.
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Figure 3.6: As for Figure 3.3, but with the constraining power from Euclid only deriv-
ing from the scale-dependence of the power spectrum and structure growth rate, using
the method developed in [25]. In this case, the CMB lensing and galaxy-CMB lensing
constraints are also derived only from the scale-dependence of the derivatives.
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forecasts are calculated by isolating the scale-dependence in the matter power spectrum
as the observable in our Fisher matrix, and marginalising over the overall amplitude, and
doing likewise for the structure growth rate.

This is the first time that we present the free-streaming constraints in combination with
a full CMB temperature and polarisation forecast. We see that the gains are significant
over the Planck compressed-likelihood prior used previously, and that the final constraints
remain effectively cosmology-independent (see panel (a)).

In panel (b), we add CMB lensing. Here we isolate the suppression in the conver-
gence power spectrum alone and neglecting all amplitude information, and this improves
constraints by about 7% in all cases. Although we showed in Section 3.3.2 that the free-
streaming signature in the CMB lensing power spectrum can provide meaningful con-
straints, the constraints from the galaxy power spectrum are much stronger, so the relative
improvement when adding the shape of the CMB lensing power spectrum is somewhat
small.

However, in panel (c) we add galaxy-CMB lensing (excluding amplitude information
as before, to extract the scale-dependence of the measurement only), and find that the
constraints are much improved, while still remaining quite cosmology-independent. We
can therefore conclude that by isolating the scale-dependent effect of free-streaming in the
galaxy power spectrum, CMB lensing power spectrum, and galaxy-CMB lensing cross-
power spectrum, one can extract robust, cosmology-independent (and τ -independent) con-
straints on the neutrino mass of approximately 0.05 eV when combining Simons Observa-
tory and Euclid. We consider this measurement approach to be the most robust.

3.3.6 Comparisons with Previous Work

It is difficult to do direct comparisons between various forecasts of this type in the literature
because of the many different assumptions that can be made, from survey choice to error
management to cut-off scales. However, comparisons with some recent works can provide
some reinforcement for the results provided here, particularly to manage scepticism about
the Fisher matrix methodology, and can also provide some interesting insights. Here we
examine how our full galaxy clustering constraints compare to those in the literature.

The authors of [58] provide some MCMC forecasts for Euclid galaxy clustering assuming
ΛCDM+Mν +Neff. They take Planck as their CMB survey and also include cosmic shear,
but their results are very close to ours (21 meV in our case vs. 24 meV or 27 meV
in their realistic and conservative cases, respectively). This could further support our
conclusion here that galaxy clustering information really is dominant over CMB and lensing
information (in this case, cosmic shear).

In [59], table 4 gives an uncertainty on Mν of 17 meV for CMB-S4 and Euclid in the
ΛCDM+Mν + Neff case. Our corresponding value is 21 meV. Their final constraint on
τ is also stronger than ours, so correcting for that leaves our constraint at 17 meV. The
fact that these values are identical despite the fact that we assume different CMB surveys
highlights that future CMB surveys may not offer a huge improvement over Planck to Mν

constraints when combined with powerful measurements of the full redshift-space power
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spectrum, other than by improving the constraint on τ .

3.4 Conclusions

This chapter represents a continuation of our work in Chapter 2. While there we focused on
spectroscopic galaxy surveys alone, here we have expanded our analysis to include the full
power of planned CMB experiments. We consider three possible methods of constraining
Mν from galaxy surveys and the effects of CMB lensing on each: the use of the full redshift-
space galaxy power spectrum, the use of BAOs alone to infer distance constraints, and the
use of the signatures of neutrino free-streaming only (a newly-developed method from
Chapter 2).

Overall, we have shown that CMB lensing measurements are a much less powerful
probe of the neutrino mass than large-scale structure surveys for the scales considered.
When combined with the full galaxy power spectrum from a spectroscopic galaxy survey
like Euclid, CMB lensing contributes to constraints on Mν primarily by tightening con-
straints on As, as these two parameters are very strongly correlated in the measured galaxy
power spectrum. This correlation is also the source of the Mν-τ degeneracy that limits Mν

constraints when CMB and galaxy clustering measurements are combined. However, if τ
is already well constrained, the primary gain from adding CMB lensing becomes redun-
dant. Adding galaxy-CMB lensing can help improve neutrino mass constraints further,
but requires significant overlap between the galaxy clustering and CMB surveys being
considered.

CMB lensing primarily contributes to BAO-only constraints on Mν by improving con-
straints on curvature and by adding information on structure growth. As we emphasised
previously, Mν and Ωk are highly degenerate in their effects on distance parameters at
low redshifts. This means allowing for a very small non-zero curvature can degrade the
constraints on Mν by several factors. CMB lensing can help mitigate this effect.

Finally, we look at the cosmology-independent free-streaming-only constraining method
we developed in [25]. Combining the free-streaming constraints from a survey like Euclid
with a full CMB temperature/polarisation forecast improves the constraints significantly
while still keeping them cosmology-independent. The gains from including the shape of the
CMB lensing power spectrum are small (see Figure 3.6). Although the free-streaming signal
in the CMB lensing power spectrum can significantly improve CMB-only constraints, it is
much weaker than the corresponding signal in the galaxy power spectrum. The constraining
power of galaxy-CMB lensing is much more useful.

In combinations of galaxy clustering and CMB lensing measurements, the galaxy power
spectrum is a much more powerful probe of Mν . As τ is better constrained, the infor-
mation provided by CMB lensing will become redundant in neutrino mass constraints.
The constraints provided by the full galaxy power spectrum will also become increasingly
cosmology-dependent as τ becomes better known. BAO-only constraints become more
robust when combined with CMB lensing but waste a lot of valuable information. The
constraints extracted through the effects of free-streaming on the power spectrum, on the
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other hand, are cosmology-independent and independent of τ . They are also stronger than
those from BAO measurements and CMB lensing combined for almost all models. Us-
ing the current Planck temperature power spectrum, the forecasted Simons Observatory
E-mode polarisation spectrum and the free-streaming signals extracted from the Euclid
galaxy power spectrum, reliable 1σ constraints on Mν of approximately 0.08 eV can be
achieved. This can be improved to 0.075 eV if CMB lensing is included, or 0.05 eV if
galaxy-CMB lensing is included.



Chapter 4

Beyond Linearity

4.1 Introduction

A consistent caveat to our results in Chapters 2 and 3 was that we worked only with the
linear galaxy and CMB lensing power spectra, a treatment which becomes increasingly
invalid on small scales and at late times. We included scales no smaller than kmax =
0.2 h Mpc−1, as is a popular choice in the literature, but non-linear effects can become
significant on larger scales than this (see Figure 4.1).

Major neutrino mass constraint forecast papers in the literature have focused on the
linear power spectrum for galaxy redshift surveys (e.g. [59] [32]). They often make use
of a gradual removal of information on small scales instead of a sharp cut-off as we do,
but the results are still reasonably consistent. In this chapter, we take the next step and
extend to the next-to-leading-order or one-loop power spectrum. The aim is to see whether
the broad qualitative principles extracted in the previous chapters still hold true, and to
develop an impression of how much constraints can be expected to relax once non-linear
effects are consistently accounted for. Understanding the impact of these effects will be
vital to allow us to make full use of the wealth of information that will be provided by
upcoming surveys.

4.2 Methodology

Our basic approach follows that of Chapters 2 and 3, and the reader can refer to those
chapters for the fiducial model. We forecast constraints for spectroscopic galaxy clustering
measurements from Euclid and CMB lensing measurements from Simons Observatory.
We use the same prior for CMB anisotropy information as that used in Chapter 3 - a
combination of the existing Planck temperature data, forecasted Simons Observatory E-
mode polarisation data and the cross-correlation between the two. We also include a prior
on τ in all cases of σ(τ) = 0.008. CMB lensing is analysed separately in Section 4.3.4. We
work once again with kmax = 0.2 h Mpc−1.
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Figure 4.1: A comparison of the fiducial linear and NLO galaxy power spectra at z = 1.35
(the central redshift bin for Euclid) with µ = 0. The galaxy power spectrum is ultimately
enhanced on small scales when moving to next-to-leading order.

4.2.1 Implementation of the NLO Power Spectra

In a recent paper, the authors of [19] presented the first complete expression for the per-
turbative next-to-leading-order (NLO) or 1-loop power spectrum in redshift space. Using
the approach developed in [60], they were able to order the contributing terms in a consis-
tent way and keep the contributions appropriately general. They also include the leading
higher-derivative bias and velocity terms in their formalism. Their rigorous approach leads
to a complex but complete final expression for the redshift-space power spectrum that
makes minimal assumptions. We implement their formalism here. The authors emphasise
the importance of accounting for line-of-sight-dependent selection effects in the calcula-
tion of the galaxy power spectrum unless physical arguments can be made for neglecting
them. We neglect selection effects for most of this article, but justify this and provide some
extended calculations in Section 4.4.2.

The NLO redshift-space power spectrum provided by [19] is calculated using a total
of 28 independent loop integrals, and requires specification of 14 free bias parameters,
2 velocity bias parameters and 3 stochastic parameters (or 5 bias, 1 velocity bias and 3
stochastic parameters, if selection effects are neglected). The latter choice applies in most
of this chapter. The next-to-leading-order galaxy power spectrum can be summarised in
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m 0 1 2 3 4 5 6 7 8
p 0,2,4,6 1,3,5 0,2,4,6 1,3,5 2,4,6 3,5 4,6 5 6

Table 4.1: The (m, p) pairs summed over in Equation 4.5.

the following form in redshift space:

Pgg,s(k, µ) = P l+hd
gg,s (k, µ) + P 2−2

gg,s (k, µ) + 2P 1−3
gg,s (k, µ), (4.1)

where

P l+hd
gg,s (k, µ) = [b1 − bηf(k)µ2]2PL(k) + P {0}ε

− 2{b1b∇2δ − µ2f(k)bη[b∇2δ + b1β∇2v + b1βδ2‖vµ
2]

+ µ4f(k)2b2
η[β∇2v + βδ2‖vµ

2]}k2PL(k)

+ k2P {2}ε − µ2k2P {2}εεη ,

(4.2)

P 2−2
gg,s (k, µ) =

4∑
n=0

∑
(m,p)

An(m,p)(f(k), bO)Imp(k)µ2n, (4.3)

P 1−3
gg,s (k, µ) =

3∑
l=0

5∑
n=1

C1−3,l
n (f(k), bO)In(k)(µ)PL(k)L2l. (4.4)

The coefficients An(m,p) and C1−3,l
n and their input bias parameters bO can be obtained from

a MATHEMATICA notebook provided as supplementary material associated with [19]1. These
coefficients significantly improve the calculation time by combining contributions to give
the minimum number of integrals. We highlight again that we include the scale-dependence
in f(k) when performing our calculations.

The loop integrals Imp are calculated as

Imp(k) = 2

∫
p

pp−2k6−p

|k − p|4 (k̂ · p̂)mPL(p)PL(|k − p|)− 2δp6
m+ 1

(∫
p

[PL(p)]2
)
. (4.5)

The second term simply subtracts the constant low-k limit when p = 6. The 23 (m, p)
pairs are given in Table 4.1.

Equation 4.5 presents difficulties when k ≈ p. We handle this using a method provided
by [61], where it is noted that equal contributions are made to P22 as p → 0 and p → k.

1https://github.com/djeong98/pkgs_supplement

https://github.com/djeong98/pkgs_supplement
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We can take advantage of this fact by dividing up the integral into ranges of p, excluding
the range where p→ k and doubling the term for p→ 0.

∫
p

= 2

∫ ε

0

dp

∫ 1

−1

dµ+

∫ k−ε

ε

dp

∫ 1

−1

dµ+

∫ k+ε

k−ε
dp

∫ (k2+p2−ε)/2kq

−1

dµ+∫ kmax

k+ε

dp

∫ 1

(k2+p2−k2max)/2kq

dµ

(4.6)

The five loop integrals in Equation 4.4 are more straightforward to calculate and take the
form

I1(k) = k2

∫
p

k · p
p2|k − p|2 (1− µ2

k,p)PL(p),

I2(k) = k2

∫
p

p2

p2|k − p|2 (1− µ2
k,p)PL(p),

I3(k) =

∫
p

[
p2

|k − p|2 (1− µ2
k,p)− 2

3

]
PL(p),

I4(k) =

∫
p

[
(k̂ · p̂)2

|k − p|2 (1− µ2
k,p)− 2

15

]
PL(p),

I5(k) =

∫
p

[
(k̂ · p̂)4

p2|k − p|2 (1− µ2
k,p)− 2

35

]
PL(p).

(4.7)

We note that in calculating the galaxy power spectrum, PL(k) always means PL,bc(k) and
f is fbc, for the reasons outlined in Section 2.4.4.

Even with the simplification given in Equation 4.6, the requirement to calculate all of
the integrals needed for the Fisher matrix calculation in a reasonable timeframe presented
some issues. Calculating numerical derivatives requires two calculations per cosmological
parameter (we have 11) plus one fiducial calculation per redshift bin (of which we have 15),
with a total of 28 loop integrals calculated in each case. For the In(k) integrals required for
P 1−3
gg,s , the python scipy.integrate.quad function was sufficiently efficient and accurate

with limit=10. But for the Imp(k) integrals required for P 2−2
gg,s , a FORTRAN implementation

had to be adopted, using a Romberg integration function qromb from Numerical Recipes
2.

Our calculations clearly now have a far greater number of nuisance parameters. We
choose to exclude selection effects for most of this chapter (see our discussion of this in
Section 4.4.2). P l+hd

gg,s then contains three free bias parameters (b1, b∇2δ and b∇2v) and two

new stochastic terms (P
{2}
ε and P

{0}
εεη ). P 2−2

gg,s adds two additional free bias parameters, b2

and bK2 . Adding P 1−3
gg,s requires btd. In total, therefore, we require values for 5 new bias

parameters and 3 stochastic amplitudes.

2Available at https://wwwmpa.mpa-garching.mpg.de/~komatsu/crl/list-of-routines.html.

https://wwwmpa.mpa-garching.mpg.de/~komatsu/crl/list-of-routines.html
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Parameter Fiducial value
b1 b1(z)D(z) = 0.76
b∇2δ R2

L

b∇2v R2
L

b2 0.412− 2.143b1 + 0.929(b1)2 + 0.008(b1)3

bK2 −2
7
(b1 − 1)

btd
23
42

(b1 − 1)

P
{0}
ε n−1

g

P
{2}
ε 0

P
{0}
εεη 0

Table 4.2: Fiducial values for the NLO bias and stochastic parameters required for calcu-
lation of the NLO galaxy power spectrum.

The fiducial values for all the free bias and stochastic parameters are given in Table
4.2. RL represents the Lagrangian radii of haloes, calculated using typical halo masses at
each redshift derived from the halo mass function of [62]. ng is the galaxy number density.
The choice for b1 is consistent with the previous chapters and [25, 36]. The fitting formula
for b2 was taken from N-body simulations and provided by [63]. The equations for bK2 and
btd were both derived from Lagrangian LIMD calculations [19].

We want to avoid placing any significant priors on the parameters in Table 4.2. However,
because of the large number of weakly constrained parameters in some cases, some initial
prior must be placed on these parameters to keep the Fisher matrix invertible. We choose
these priors to be large enough that increasing them by an order of magnitude has no
significant impact on the final neutrino mass constraints. We settled on a 1σ error of 10
for each of the bias parameters and 100,000 for each of the stochastic parameters. The
choice not to place meaningful priors on these parameters is a conservative approach.

The CMB lensing power spectrum is calculated as in Equation 3.4, but this time using
the NLO matter power spectrum, calculated as in Appendix C (Equations C.17-C.21)
using a publicly available code3. Calculating the matter power spectrum at the large
number of redshifts required by Equation 3.4 would be very time-consuming, but it is also
improper to scale between different redshifts using the growth factor D(z) because of the
redshift-dependent shape of the power spectrum when massive neutrinos are included. To
account for this, we calculate the NLO matter power spectra independently for 0 < z < 3,
but scale backwards using the growth factor beyond z = 3, where the suppressin due to
free-streaming is less substantial.

4.2.2 Deconstructing Constraints on Mν

Following our work in Chapters 2 and 3, we seek not only to calculate the best possible
neutrino mass constraints achievable from future surveys, but also to deconstruct the ori-

3https://wwwmpa-garching.mpg.de/komatsu/CRL/powerspectrum/density3pt/

https://wwwmpa-garching.mpg.de/komatsu/CRL/powerspectrum/density3pt/
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gins of these constraints. In Chapter 3 we focused on comparing the ‘combined’ constraints
from the full galaxy power spectrum with the constraints from BAOs only and those from
the scale-dependent free-streaming signature in the power spectrum induced by massive
neutrinos. Here we repeat this approach, dividing our results into three classes - combined,
BAO-only, and free-streaming.

The combined constraints are the most straightforward. As in Chapter 2, in all cases
we create a covariance matrix for the galaxy power spectrum using Equation 2.1. The
derivatives of Pgg,s(k, µ) (Equation 4.1) with respect to the cosmological parameters are
then used to propagate the constraints on the power spectrum into constraints on the
cosmological parameters. To include full distance information, the scales in the power
spectrum must be re-scaled to account for the dependence of the observed scales on H(z)
and DA(z), as in Equation 2.3.

In the BAO-only case, as in Chapter 2, the galaxy power spectrum is rewritten as the
sum of two components, Pgg,s(k) = PS(k) +PBAO(k), with the fitting being done using the
method outlined in Section 2.2.1. PBAO(k) is used as the observable, and a 2 × 2 H(z)-
DA(z) Fisher matrix is then extracted and used to generate constraints on the fiducial
cosmology.

The free-streaming case is now more complicated. We want to isolate the information
contained in the scale-dependence of the matter power spectrum, PL(k), and the structure
growth rate, f(k), to isolate the suppression in the small scale power caused by massive
neutrinos. Before calculating the components of the power spectrum (Equations 4.2 - 4.4)
to calculate our derivatives, we renormalise Pm(k) and f(k) to have the same amplitude
as in the fiducial case at a scale of 0.005 h Mpc−1. Therefore, only the scale-dependence is
varied.

4.3 Results

4.3.1 Full Galaxy Power Spectra

Figure 4.3 shows the forecasted constraints on Mν for Euclid using the full galaxy power
spectrum as a constraining tool. The cross-hatched bars show the constraints with σ(τ) =
0.008, and the solid bars show the constraints if τ is held fixed. Looking at the former case
first, we see as before that the constraints are weakened on extending to the NLO power
spectrum. As emphasised in previous chapters, these combined constraints are strongly
cosmology-dependent, and constraints assuming flatness or a simple cosmological constant
should therefore be presented cautiously both in forecasts and when derived from real data.
Here we see that the dependence of the constraints on the cosmology is even more stark
when using the NLO power spectrum.

Figures 4.4 and 4.5 show the log derivatives of Pgg,s with respect to the 9 nuisance
parameters. We see that quite a number of these parameters change the power on small
scales, and would therefore lessen the information on Mν available from its characteristic
suppression of the power spectrum on these scales. Extending to the NLO power spectrum
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Figure 4.2: Contours showing the relationship between the different nuisance parameters
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trum is used, and the blue contours represent the constraints when only the free-streaming
signature in the power spectrum is used.
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Figure 4.3: Constraint forecasts on Mν for Euclid using the full galaxy power spectrum.
The solid bars shows the constraints with τ fixed and the cross-hatched bars the constraints
with σ(τ)=0.008.

but fixing the new parameters recovers almost the same constraints as in the linear power
spectrum case (0.023 eV vs. 0.022 eV) for ΛCDM, and when the new parameters are left
free to vary the constraint weakens to 0.03 eV. However, on examining how the different
parameters interact to produce this change, it becomes clear that there is no particular
parameter that can specifically account for it. As might be expected from Figures 4.4
and 4.5, many of the nuisance parameters are quite strongly correlated with each other,
and many of the new parameters show some degree of degeneracy with Mν (see the pink
contours in Figure 4.2). Nevertheless, we highlight the following interesting findings:

• In the linear case, imposing a prior on b1 has the potential to significantly improve
constraints on Mν - if b1 is fixed in each redshift bin, the Mν constraint jumps from
0.022 eV to 0.16 eV. In the non-linear case, fixing b1 improves the constraint only
from 0.030 eV to 0.029 eV. The constraint on b1 is weakened by more than a factor
of 3 in a given redshift bin compared to in the linear case, but this still means it is
relatively quite well-constrained compared to the other bias parameters. Its effect on
the constraint on Mν is therefore minimal. Fixing b2 instead, for example, improves
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bias parameters as a function of scale. The derivative with respect to b1 has had a factor
of 1 subtracted for the readability of the plot.

the constraint to 0.028 eV.

• The nuisance parameter most strongly correlated withMν in this case is the stochastic
parameter P

{2}
ε . We note that adopting a model for the Finger-of-God effect could

lead to a decent prior on P
{2}
ε . The higher derivative bias parameter b∇2δ is also

correlated with Mν , and one can see from Figure 4.2 that P
{2}
ε and b∇2δ are also

quite strongly correlated with each other, likely because both scale as k2.

• The two bias parameters associated with operators derived from the tidal field, bK2

and btd, are very strongly anti-correlated with each other, as is clear from Figure
4.2. We discuss the reason for this strong degeneracy in Section 4.4.1. Mν shows
some correlation with both parameters. However, because of the strong degeneracy
between the parameters, fixing one without the other has very little impact on the
neutrino mass constraint, as the other can compensate for its effect. In this way, these
two bias parameters behave like a single effective parameter in this case. Although
constraining either does not improve the constraints on Mν at all, imposing a prior
on both leads to some improvement. P

{0}
ε is also strongly correlated with bK2 .

In all, it is not unpromising that leaving all of the bias and stochastic parameters free only
weakens the constraints on Mν from 0.023 eV to 0.03 eV, particularly considering that
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most of the new parameters show some degree of degeneracy with Mν .
Finally, it is interesting to note that the Mν-τ degeneracy, a significant focus of much

recent forecast work on neutrino mass constraints from large-scale structure [21, 25, 36, 64,
49, 59] becomes much less significant when considering the NLO galaxy power spectrum.
Instead the neutrino mass constraint is supported primarily by other degeneracies.

4.3.2 Free-Streaming Information

Figure 4.6 shows the results achievable using only the information contained in the scale-
dependence of the matter power spectrum and structure growth rate, f(k). This should
isolate the effects of free-streaming as the constraining quantity. It can be seen that
although the constraints are weakened somewhat by extending to the NLO power spectrum,
they remain independent of changes in curvature and the dark energy equation of state. The
relative change is also surprisingly small, considering the addition of 5 new bias parameters
and 2 new stochastic parameters, all with a scale-dependent effect. The constraints change
from about 0.08 eV in the linear case to about 0.12 eV in the NLO case.

Interestingly, fixing all of the new nuisance parameters in the NLO case improves the
constraint only to 0.09 eV, which is weaker than the constraint of 0.082 eV in the linear
case. From Figure 4.7, we can see that the free-streaming signal is actually enhanced in
the NLO case, and on investigation of the Fisher matrix, the information content on Mν
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Figure 4.6: Constraint forecasts on Mν for Euclid allowing only the scale-dependence of
the underlying matter power spectrum and structure growth rate to vary.

is actually increased. So the cause of this difference is not a change in the strength of the
signal in the power spectrum itself. The issue lies in the new degeneracy with b1. Note
that in the case of the linear power spectrum, extracting only the scale-dependence means
treating the amplitude of the power spectrum as a free parameter, and b1 does not scale
with k, so has no effect on the final constraint on Mν . Fixing b1 plus all the new nuisance
parameters gives a slightly better constraint in the NLO case than in the linear case, as
expected.

Now we can investigate, as before, which of the new parameters contribute in particular
to the weakening of the constraints on Mν seen in Figure 4.6. As can be seen from Figure
4.2, the story is generally similar to that in the combined case, except for b1 and P

{0}
ε .

This makes sense, as the other nuisance parameters do not change the large-scale power
spectrum, so their effects when only the scale-dependence is considered are identical to
those in the combined case. The most significant difference is the impact of the constraint
on b1. Fixing b1 improves the constraint on Mν by about 10% (while this had a negligible
effect in the combined case). We note that it would not be hard to place a prior on b1

derived from analytical calculations or simulations, or to better constrain it by measuring
the bispectrum.
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Figure 4.7: The suppression in the linear and NLO power spectra caused by adding massive
neutrinos, holding the overall matter density fixed. We can see that the suppression of the
power spectrum is somewhat stronger in the NLO case.

Ultimately, considering that seven new nuisance parameters have been added to the
calculation, all with scale-dependent effects, a degradation in the overall constraints of
only 50% is quite remarkable. The cause of this is that the scale-dependence caused by
neutrino free-streaming begins to take effect on much larger scales than those on which
the scale-dependence of the bias parameters starts to be significant. Increasing the total
neutrino mass shifts the free-streaming scale to higher k, and could therefore lead to greater
degeneracy with the new parameters. This possibility is explored in Section 4.4.3.

4.3.3 BAO-Only Information

Figure 4.8 shows a comparison of the forecasted constraints on Mν using constraints on
H(z) and DA(z) from the BAO feature in the power spectrum only. As is well-known,
BAOs are favoured for their robustness against non-linear effects, and that is reflected
here. We see that the constraints are degraded much less than in the free-streaming-only
and combined cases on moving from the linear to NLO power spectrum.

Table 4.3 shows the intermediate constraints on H(z) and DA(z) for these two calcu-
lations, and we can see that there is some moderate relaxation of the constraints in the
NLO case. This has only a moderate impact on the final Mν constraints, and this might
suggest that the Mν constraint from distance constraints has a limit, and does not improve
persistently with decreasing error bars on H(z) and DA(z).
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Figure 4.8: Constraint forecasts on Mν for Euclid using distance information from the
BAO feature only.

We can still seek to understand the small difference in the constraints. Fixing the
bias and stochastic parameters in the NLO calculation does not improve the constraints
on the distance parameters to the level of the LO case. The source of the degradation
in the constraints is therefore not any degeneracy with the new bias parameters, but the
weakening of the BAO feature in the NLO power spectrum itself. We have ignored the
possibility of BAO reconstruction here, so it is a reasonable approximation to conclude that
extending into the next-to-leading-order regime has no effect on BAO constraints on the
neutrino mass. Extending to full distance information constraints (including, for example,
the Alcock-Paczyński test) could result in a greater difference between the LO and NLO
cases. However, BAOs dominate the overall distance constraints, as was seen in Chapter
2.

4.3.4 CMB Lensing

In Chapter 3, we showed that adding CMB lensing to galaxy clustering information only
made a very significant difference to constraints on Mν when only BAO information was
used. The free-streaming-only and combined constraints were too strong to benefit much
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Figure 4.9: The NLO constraints on Mν with (solid) and without (cross-hatched) CMB
lensing, for the three measurement methods considered. Note the different x-axis scales.
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z σ(H(z))LO(%) σ(DA(z))LO(%) σ(H(z))NLO(%) σ(DA(z))NLO(%)
0.65 1.69 1.41 2.24 1.88
0.75 1.34 1.02 1.78 1.35
0.85 1.23 0.93 1.62 1.22
0.95 1.18 0.9 1.53 1.16
1.05 1.15 0.89 1.47 1.12
1.15 1.14 0.88 1.44 1.11
1.25 1.14 0.89 1.42 1.11
1.35 1.16 0.92 1.42 1.13
1.45 1.21 0.98 1.46 1.18
1.55 1.29 1.08 1.54 1.28
1.65 1.44 1.24 1.69 1.46
1.75 1.67 1.49 1.93 1.74
1.85 2.08 1.93 2.36 2.22
1.95 2.82 2.73 3.17 3.13
2.05 5.94 6.12 6.63 7.04

Table 4.3: A comparison of the constraints on H(z) and DA(z) achievable using the BAO
feature in the linear and NLO galaxy power spectra, marginalised over nuisance parameters
(bias and stochastic parameters).

from this addition. As the constraints are weaker when using the NLO power spectrum, it
is worth returning to this analysis.

Figure 4.9 shows the effect of adding CMB lensing to the three galaxy clustering mea-
surements considered thusfar. Note the different scales on the x-axes. Because the con-
straints from BAOs are roughly the same at linear and next-to-leading order, the results of
adding CMB lensing are more or less the same as in Chapter 3. The combined constraints
are weakened sufficiently that CMB lensing can now make a meaningful contribution to
the constraints, at least for the more complex cosmological models, particularly those with
a free dark energy equation of state.

The free-streaming constraints are also improved by CMB lensing. In this case we take
only the shape of the CMB lensing power spectrum as the observable and marginalise
over its amplitude so that the constraints come from the scale-dependence of the power
spectrum only. The improvement is more significant than in the linear case and the results
remain cosmology-independent. We have not implemented NLO galaxy-CMB lensing yet,
but based on the results of Chapter 3 it is likely that that would also significantly strengthen
the constraints. For now we leave this for future work.
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4.4 Discussion

4.4.1 Degeneracy between Bias Parameters

We highlighted in Section 4.3.1 that there was a significant anti-correlation between the two
parameters associated with the tidal field, bK2 and btd. An examination of the contributions
of these terms to the power spectrum reveals why.

Both btd and bK2 contribute to the P13 term. In [19], the authors show that the con-
tributions of the associated operators to P13 are linearly proportional. Their contributions
are identical apart from a constant factor of 5/2, making the effects of varying the two bias
parameters fully degenerate.

bK2 also contributes to the P22 term, while btd does not, preventing the two parameters
from being perfectly anti-correlated. However, on inspection, we see that the relative
change in P22 when varying bK2 is significantly smaller than that in P13, so changing P13

is the dominant effect of bK2 . bK2 and btd therefore remain quite strongly anti-correlated,
even after marginalisation over other parameters.

4.4.2 Selection Effects

The observed galaxy power spectrum will always have a dependence on galaxy properties
that alter the probability of a given galaxy being observed. Biases that arise in the observed
power spectrum as a result of the specific subset of galaxies observed are called selection
effects. Many selection effects are included by default in the bias expansion used here, but
we have neglected selection effects that depend on the line-of-sight in this analysis. We
will now justify this.

One particularly crucial selection effect arises from the dependence of the apparent
brightness of a galaxy on its orientation with respect to us, as brighter galaxies are more
likely to be detected. This selection effect is degenerate with the Kaiser effect [65], con-
tributing the bη in Equation 4.2, which we fix to −1 when neglecting selection effects. We
can briefly examine the impact of freeing bη to get an impression of its impact.

Without any prior on bη, in the combined case for ΛCDM, the NLO constraint on
Mν degrades from 0.032 eV to 0.045 eV. Imposing a 1σ prior on bη of 0.05 improves the
constraint to 0.036 eV. Freeing bη does not have any significant effect on the BAO-only or
free-streaming constraints.

We finally note that Euclid will also image the galaxies that they observe [23]. This
should allow for the intentional selection of a galaxy sample in such a way as to minimise
any selection effects.

4.4.3 Varying Mν

In Section 4.3.2 we found that the scale-dependent suppression in the power spectrum
caused by neutrinos is not particularly degenerate with any of the new parameters. The
suppression of the power spectrum by neutrino free-streaming starts at larger scales than
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those at which the scale-dependent effects of the new bias parameters become significant.
However, as we saw in Section 1.2, the free-streaming scale kFS increases with the neutrino
mass. It is therefore worth investigating whether the constraints for a higher neutrino mass
would be further weakened.

We ran the results again for an increased Mν of 0.27 eV assuming 3 degenerate mass
states, and the constraints were better by about 10% than for our usual fiducial model.
Therefore, any weakening of the constraints due to greater degeneracy with the non-linear
bias parameters is more than compensated for by the increased amplitude of the suppression
that comes with higher mass neutrinos.

4.4.4 Neutrino-Induced Bias

Something we have neglected in our treatment in this chapter is the effects of massive
neutrinos themselves on the bias parameters. As we have seen, the free-streaming of
massive neutrinos introduces a scale-dependence in the growth of perturbations, not just
for neutrinos, but also cold dark matter and baryons. This should then result in some
scale-dependence in the bias parameters. This was studied in detail by [66] for b1, who
modified the spherical collapse and peak-background split derivations of the large-scale
bias to account for this. Including this scale-dependent bias should work counter to the
suppression caused by massive neutrinos, theoretically weakening the signal. The same
effect should also cause a scale-dependence in the higher-order bias parameters.

This is a complicated topic and a full model of the next-to-leading-order power spectrum
that accounts for this effect has yet to be developed. In addition, there is some disagreement
about whether the effect should be measurable at all, as it has not been identifiable in some
N-body simulations [67][68][69]. We therefore leave this at present for future work.

4.4.5 Comparisons with Previous Work

Despite the wide array of cosmological neutrino mass constraint forecasts available in the
literature, very few have been performed beyond the linear regime, and direct comparisons
are often complicated by different initial assumptions.

A recent article [70] performed an MCMC forecast for Euclid to 1-loop order. Combin-
ing the current Planck likelihood with their Euclid forecast, they quote a constraint of 24
meV, which exactly matches our constraint for ΛCDM if Neff is not allowed to vary (as in
[70]).

This consistency may be a fluke, but we also showed in [36] that our Fisher matrix
constraints were remarkably consistent with the MCMC forecasts of [59]. In both cases,
the decision to use an existing Planck likelihood instead of a forecast CMB prior did
not seem to significantly impact the results, emphasising the dominance of the galaxy
clustering information. The choice to control errors on small scales using a gradually
increasing uncertainty instead of a sharp k cut-off at k = 0.2 h Mpc also does not seem to
generate incongruencies between the results.
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The authors of [70] also examined the specific contribution of BAOs to their final
constraints, and found it to be modest. This emphasises our point in our previous work
and here that neutrino mass constraints from BAOs alone waste a great deal of usable
information.

4.5 Conclusions

In this chapter, we have dealt with an important caveat of our conclusions in the previous
two chapters by extending our calculations to account for next-to-leading-order corrections
to the galaxy and CMB lensing power spectra. Using the formalism of [19], we extended our
Fisher matrix calculations to include an additional five higher-order galaxy bias parameters
and two new stochastic parameters. Given that many of these new parameters suppress
the galaxy power spectrum on small scales (see Figures 4.4 and 4.5), and since we identified
the suppression of the small-scale power spectrum by neutrinos to be a crucial constraining
component in previous chapters, it could be expected that Mν would become significantly
more difficult to measure robustly.

As in the previous chapter, we take Euclid as an example future survey and focus on
three types of constraint - ‘BAO-only’constraints, which use only constraints on the expan-
sion rate derived from measurements of the BAO scale in the power spectrum; cosmology-
independent ‘free-streaming’ constraints, which isolate the constraining information in the
matter power spectrum and growth-factor only; and ‘combined’ constraints, which use
the full observed galaxy power spectrum, naturally including all expansion information,
redshift-space distortions, and the shape of the power spectrum. The BAO-only con-
straints were barely weakened at all by extending to the non-linear power spectrum, but
therefore remained very sensitive to minimal extensions to the underlying cosmology, in-
cluding non-zero curvature or w 6= −1, even when combined with full CMB information.
The free-streaming constraints remained independent of these extensions, but the 1σ error
expected from Euclid was degraded from about 0.08 eV to 0.12 eV. This was despite the
small-scale suppression in power by massive neutrinos actually being enhanced in the NLO
case (see Figure 4.7). Adding the shape of the CMB lensing power spectrum provided a
small improvement. We did not consider galaxy-CMB lensing here but based on the results
from Chapter 3, we can assume it was likely that this would also improve the constraints
significantly. The forecasted combined constraints are weakened from 0.022 eV to 0.032
eV on extending to NLO, a comparable amount to the free-streaming constraints. These
results also remain very sensitive to assumptions about cosmology, degrading by several
factors if curvature and the dark energy equation of state are allowed to vary (see Figure
4.3), although CMB lensing measurements from a future experiment like Simons Obser-
vatory can help break some of the degeneracies to a degree (see Figure 4.9). The relative
impact of improving constraints on the optical depth to the CMB, τ , is also significantly
reduced due to the large number of new weakly-constrained parameters.

We chose not to include all possible selection effects in the general analysis, presenting
only a summary analysis in Section 4.4.2. Including a full treatment of selection effects
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would probably have the greatest effect on the combined constraints because of their de-
generacy with redshift-space distortions. We also have not accounted for possible scale-
dependence in the bias parameters caused by massive neutrinos (see Section 4.4.4), but
leave this as future work. However, despite these caveats, our results are also quite conser-
vative, considering we do not impose any priors on any of the bias parameters, although
theoretically motivated priors or constraints from N-body simulations could reasonably be
applied.
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Chapter 5

Conclusions

Traditional experiments have so far failed to provide us with meaningful measurements of
the neutrino mass scale. As an alternative, science has turned to precision cosmology. The
strongest bounds on the total neutrino mass come from cosmological measurements, and
this is likely to remain the case for the foreseeable future. The promise of an explicit neu-
trino mass detection has helped motivate a large number of currently planned cosmological
surveys.

Cosmic microwave background and large-scale structure measurements provide comple-
mentary measurements of the early and late universe that we connect using the concordance
ΛCDM model. This model has been incredibly successful in helping us to fit our obser-
vations of the universe using a surprisingly small number of parameters. However, it is
not without its challenges. The goal of this thesis has been to provide insight into how
confident we can be in constraints on Mν that are extracted from fits to cosmological data,
given our significant ignorance about many elements of our universe, and several issues
that still plague the ΛCDM model despite ever-increasing precision.

Existing and forecasted neutrino mass constraints in the literature often combine sev-
eral datasets and extract constraints using global fits to a very small number of parameters.
In this thesis and the publications contributing to it, we have for the first time thoroughly
deconstructed these constraints, seeking to understand in a more analytical way the de-
generacies between different parameters and how robust different probes of the neutrino
mass are against changes in the underlying cosmology. We believe this new approach could
and should be applied more broadly in the field of precision cosmology, to a wide array of
problems. As we have shown in this thesis, it can quite easily lead to important insights
that are easily missed with more automated analysis approaches.

This work has resulted in many interesting conclusions. In Chapter 2, we analysed in
detail the constraints on the neutrino mass available from galaxy redshift surveys, assum-
ing minimal CMB information. The influence of massive neutrinos on the galaxy power
spectrum can be divided into two broad categories. First, they modify the expansion rate
of the universe. This is measured at low redshifts by galaxy surveys using standard rulers,
like baryon acoustic oscillations (BAOs), and the Alcock-Paczyński test. Secondly, mas-
sive neutrinos change the growth of structure, modifying both the shape and amplitude
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of the power spectrum and structure growth rate, f , with the latter being constrained
using redshift-space distortions. Most importantly, massive neutrinos uniquely create a
relative suppression in the growth of structure below a characteristic free-streaming scale.
This introduces a scale-dependent effect in the power spectrum and structure growth rate.
While we have shown that neutrino mass constraints based on BAO measurements only
or on the full redshift-space galaxy power spectrum are heavily dependent on cosmological
assumptions, if the scale-dependent signal is isolated and used alone as a probe (‘free-
streaming’ constraints), the resulting constraints are cosmology-independent and still rel-
atively powerful. We also clarified the origin of the degeneracy between the neutrino mass
and the optical depth to the CMB in cosmological measurements for the first time. Our
free-streaming constraints are independent of this degeneracy.

In Chapter 3, we extended our calculations to include more CMB information, includ-
ing both primary anisotropies and CMB lensing. We showed that information from the
temperature and E-mode polarisation spectra could be added to the free-streaming con-
straints while keeping them cosmology-independent, improving constraints significantly.
We also showed that an analogous method to that used in Chapter 2 could be applied to
the CMB lensing and galaxy-CMB lensing power spectra to extract only the free-streaming
effect as a probe, and that this information could be combined with the galaxy survey free-
streaming information to improve constraints even further while maintaining cosmology
independence. We showed that the combined constraints on the neutrino mass from a
survey like Euclid will not gain much from adding CMB lensing, particularly as τ is bet-
ter constrained, but that BAO-only constraints improve significantly, largely because they
are originally so weak. Both the combined constraints and BAO-only constraints remain
strongly cosmology-dependent even when CMB lensing is added.

In Chapter 4, we analysed how the constraints from the previous chapters change when
we extend our calculations to the next-to-leading-order power spectrum. Including next-
to-leading-order contributions enhances the power spectrum on small scales. We discover
that although the suppression of the power spectrum by massive neutrinos on small scales
is actually enhanced in the NLO case, the total constraining power is still reduced because
of degeneracies with the large number of additional nuisance parameters. Therefore, our
free-streaming constraints are weakened somewhat, but remain cosmology independent.
Our combined constraints are weakened by a greater fraction. BAO-only constraints are
not altered much at all by non-linearities, but still waste a lot of useful information.

All in all, our free-streaming constraints remain the only cosmology-independent con-
straints on the neutrino mass, and we therefore consider this method the most robust
approach to extracting constraints. Even though they are weakened when extending to
the non-linear regime, they remain competitive with BAO and CMB lensing constraints.
Constraints from all other information sources (including BAO-only and combined con-
straints) should be approached with caution.

What does all of this mean for the future? There are a great number of conclusions
that can be drawn. Cosmological surveys intended to measure the neutrino mass robustly
should focus on designing their surveys to measure the broadband shape of the power
spectrum as precisely as possible, in order to allow extraction of the free-streaming signal.
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When considering combined constraints, additional constraints on the τ , such as from 21-
cm surveys or improved polarisation measurements, could be a useful complement. The
constraining power of distance measurements like BAOs when it comes to the neutrino
mass is very limited relative to what can be achieved using the full power spectrum.

In the future, this work could be extended in many different directions. We have already
mentioned that the impact of neutrino free-streaming on the galaxy power spectrum is
redshift-dependent. It would be very interesting to determine how measurable this redshift-
dependence will be in future surveys, and to determine how surveys could be optimised to
detect this.

Of course, the application of the results of this thesis to actual data, when the time
comes, in order to provide robust cosmology-independent neutrino mass constraints, is the
most exciting prospect.
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Appendix A

Survey Parameters

Here we present the parameters for the planned galaxy clustering and CMB surveys we
consider in this thesis. Euclid is the only galaxy survey considered in the main text, but
we present forecasts for a further four galaxy surveys in Appendix B.

The additional surveys we account for are HETDEX (Table A.2), PFS (Table A.3),
DESI (Table A.4) and WFIRST (Table A.5).

Our HETDEX [71] survey model consists of two redshift bins, with a total redshift
range of 1.9 ≤ z ≤ 3.5 and an area of 425 deg2. The model comprises a total volume of 2
Gpc3/h3 and a total of 0.8 million galaxies [72]. We assume a constant bias of b(z) = 1.5.

For PFS, we use the survey parameters and bias values specified in table 2 of [73].
Under these specifications, PFS will have a redshift range of 0.6 ≤ z ≤ 2.4 and an area of
1464 deg2, providing a total volume of 9.91 Gpc3/h3 and 4.18 million galaxies across all
redshift bins.

For DESI, we refer to table 2.3 of [74]. The authors provide a range of survey plans. The
main survey covers a redshift range of 0.6 ≤ z ≤ 1.9 with an area of 14000 deg2. Redshift
bin volumes are provided in units of Gpc3/h so we recalculated them in units of Gpc3/h3

to comply with our code. The total volume was then calculated to be 57.36 Gpc3/h3

with 22.35 million galaxies in total for three individual galaxy populations - emission line
galaxies (ELGs), luminous red galaxies (LRGs) and quasars (QSOs). Here we use data
from only the ELGs for a more direct comparison with other surveys. We use the fiducial
bias formulae provided in section 2.4.2 of [74].

There is much less specific survey information available for Euclid [23, 24] and WFIRST
[75, 76]. We follow tables 6 and 7 of [32], respectively, for these two surveys. In the
case of Euclid, this assumes a survey area of 15000 deg2 and a redshift range of 0.6 ≤
z ≤ 2.1, corresponding to a survey volume of 72 Gpc3/h3 with a total galaxy count of
50 million galaxies. We assume a bias scaling of b(z)D(z) = 0.76. For WFIRST, the
survey area is 2000 deg2 and the redshift range is 1 ≤ z ≤ 2.8. The survey volume is
13.55 Gpc3/h3, containing 26.5 million galaxies. We calculate the bias in this case as
b(z) = 1.5 + 0.4(z − 1.5).

The survey parameters assumed for Simons Observatory are taken from Table 1 of [2],
with both the Small Aperture and Large Aperture Telescopes being included.
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Euclid
z Volume (h−3 Gpc3) Ng (millions) b1

0.65 2.59 1.65 1.07
0.75 3.07 4.425 1.12
0.85 3.52 5.7 1.17
0.95 3.93 5.85 1.23
1.05 4.29 5.6625 1.28
1.15 4.62 5.2875 1.34
1.25 4.9 4.875 1.39
1.35 5.14 4.275 1.45
1.45 5.35 3.525 1.51
1.55 5.52 2.775 1.57
1.65 5.66 2.0625 1.62
1.75 5.78 1.4625 1.68
1.85 5.88 0.975 1.74
1.95 5.95 0.6 1.8
2.05 6.01 0.225 1.86

Table A.1: Survey parameters for Euclid.

HETDEX
z Volume (h−3 Gpc3) Ng (millions) b1

2.2 0.80971 0.445 1.5
3.0 1.18553 0.3468 1.5

Table A.2: Survey parameters for HETDEX.

PFS
z Volume (h−3 Gpc3) Ng (millions) b1

0.7 0.59 0.1121 1.18
0.9 0.79 0.474 1.26
1.1 0.96 0.5568 1.34
1.3 1.09 0.8502 1.42
1.5 1.19 0.6545 1.5
1.8 2.58 0.7998 1.62
2.2 2.71 0.7317 1.78

Table A.3: Survey parameters for PFS.
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DESI (ELG)
z Volume (h−3 Gpc3) Ng (millions) b1

0.65 2.8 0.433 1.18
0.75 3.2 3.18 1.24
0.85 3.56 2.69 1.3
0.95 3.89 2.93 1.36
1.05 4.17 2.02 1.42
1.15 4.42 1.89 1.48
1.25 4.63 1.87 1.54
1.35 4.81 0.732 1.6
1.45 4.97 0.652 1.67
1.55 5.09 0.461 1.73
1.65 5.19 0.176 1.79

Table A.4: Surve parameters for DESI. Note that we only include the emission-line galaxy
population here (see [74]).

WFIRST
z Volume (h−3 Gpc3) Ng (millions) b1

1.05 0.57 2.1246 1.32
1.15 0.62 2.3552 1.36
1.25 0.65 2.7754 1.4
1.35 0.69 3.1054 1.44
1.45 0.71 3.378 1.48
1.55 0.74 3.1518 1.52
1.65 0.76 2.661 1.56
1.75 0.77 2.1836 1.6
1.85 0.78 1.7394 1.64
1.95 0.79 1.3436 1.68
2.05 0.8 0.322 1.72
2.15 0.81 0.3018 1.76
2.25 0.81 0.2736 1.8
2.35 0.81 0.2312 1.84
2.45 0.81 0.192 1.88
2.55 0.81 0.1562 1.92
2.65 0.81 0.1252 1.96
2.75 0.81 0.098 2.0

Table A.5: Survey parameters for WFIRST.
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Simons Observatory LAT (fsky = 0.4)
Freq. (GHz) T Noise (µK arcmin) P Noise (µK arcmin) FWHM (arcmin)
27.0 71.0 100.5 7.4
39.0 36.0 50.9 5.1
93.0 8.0 11.3 2.2
145.0 10.0 14.1 1.4
225.0 22.0 31.1 1.0

Table A.6: Survey parameters for Simons Observatory: Large Aperture Telescope.

Simons Observatory SAT (fsky = 0.1)
Freq. (GHz) T Noise (µK arcmin) P Noise (µK arcmin) FWHM (arcmin)
27.0 35.0 49.5 91.0
39.0 21.0 29.7 63.0
93.0 2.6 3.7 30.0
145.0 3.3 4.7 17.0
225.0 6.3 8.9 11.0

Table A.7: Survey parameters for Simons Observatory: Small Aperture Telescope.
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Extended Results

We hope the previous chapters leave the reader with little doubt that this thesis represents
one of the broadest and deepest ranges of cosmological neutrino mass constraint forecasts
ever conducted. Here we will try to provide a summary of results for other planned galaxy
surveys for the curious reader. Using the broad conclusions reached, we try to focus on
the most significant numbers, from which it should be possible to intuitively infer related
results using the examples provided in this thesis.

We do not include here galaxy-CMB lensing from Chapter 3 or next-to-leading-order
results from Chapter 4, because both are computationally time consuming to generate.
It should be possible to extrapolate results for both by comparing with the examples for
Euclid in those chapters.

We divide our results for galaxy surveys into two sections: results combined with exist-
ing Planck data and results combined with eventual Simons Observatory data. We extract
the constraints from Planck using the same method to extract constraints from the temper-
ature power spectrum alone in Chapter 3 Section 3.2, using the Planck 2018 data release,
but also using the EE and TE power spectra, and using the lensed power spectra when
CMB lensing is included. We do not include the combination of free-streaming clustering
information and CMB lensing in the Planck case, as we have not extracted constraints
from the shape of the CMB lensing power spectrum alone from the Planck data.
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Euclid + Planck ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.023 0.036 0.025 0.052 0.045 0.058
Combined + Fixed τ 0.01 0.028 0.013 0.044 0.038 0.051
Combined + CMB Lensing 0.023 0.036 0.025 0.052 0.045 0.058
Combined + CMB Lensing + Fixed τ 0.01 0.028 0.013 0.045 0.038 0.051
BAO 0.12 0.23 0.2 0.39 0.37 0.64
BAO + CMB Lensing 0.093 0.15 0.15 0.2 0.22 0.25
BAO + CMB Lensing + Fixed τ 0.09 0.15 0.14 0.19 0.21 0.24
Free-Streaming 0.084 0.087 0.085 0.087 0.1 0.1

Table B.1: Neutrino mass constraint forecast summary for Planck and Euclid.

WFIRST + Planck ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.032 0.058 0.035 0.072 0.079 0.09
Combined + Fixed τ 0.02 0.052 0.024 0.064 0.074 0.083
Combined + CMB Lensing 0.032 0.058 0.035 0.072 0.079 0.09
Combined + CMB Lensing + Fixed τ 0.02 0.052 0.024 0.065 0.073 0.083
BAO 0.18 0.3 0.27 0.51 0.42 0.67
BAO + CMB Lensing 0.13 0.19 0.17 0.22 0.25 0.27
BAO + CMB Lensing + Fixed τ 0.12 0.18 0.16 0.22 0.24 0.26
Free-Streaming 0.18 0.18 0.18 0.18 0.18 0.18

Table B.2: Neutrino mass constraint forecast summary for Planck and WFIRST.

DESI (ELG) + Planck ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.026 0.047 0.028 0.064 0.055 0.069
Combined + Fixed τ 0.014 0.041 0.017 0.058 0.049 0.062
Combined + CMB Lensing 0.026 0.047 0.028 0.065 0.056 0.069
Combined + CMB Lensing + Fixed τ 0.014 0.041 0.017 0.059 0.049 0.063
BAO 0.15 0.27 0.24 0.54 0.38 0.68
BAO + CMB Lensing 0.11 0.17 0.16 0.21 0.23 0.25
BAO + CMB Lensing + Fixed τ 0.11 0.16 0.15 0.2 0.23 0.25
Free-Streaming 0.11 0.12 0.11 0.12 0.12 0.12

Table B.3: Neutrino mass constraint forecast summary for Planck and DESI (ELG only).
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PFS + Planck ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.038 0.08 0.04 0.087 0.099 0.1
Combined + Fixed τ 0.029 0.074 0.032 0.081 0.094 0.097
Combined + CMB Lensing 0.038 0.08 0.04 0.087 0.099 0.1
Combined + CMB Lensing + Fixed τ 0.029 0.074 0.032 0.081 0.093 0.097
BAO 0.22 0.32 0.34 0.56 0.43 0.68
BAO + CMB Lensing 0.14 0.19 0.18 0.23 0.26 0.27
BAO + CMB Lensing + Fixed τ 0.14 0.19 0.17 0.22 0.25 0.27
Free-Streaming 0.22 0.22 0.22 0.22 0.22 0.22

Table B.4: Neutrino mass constraint forecast summary for Planck and PFS.

HETDEX + Planck ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.09 0.17 0.09 0.17 0.22 0.23
Combined + Fixed τ 0.085 0.16 0.086 0.17 0.21 0.23
Combined + CMB Lensing 0.087 0.16 0.088 0.17 0.2 0.21
Combined + CMB Lensing + Fixed τ 0.081 0.16 0.082 0.16 0.2 0.21
BAO 0.55 0.57 0.61 0.67 0.62 0.71
BAO + CMB Lensing 0.25 0.31 0.25 0.32 0.33 0.34
BAO + CMB Lensing + Fixed τ 0.24 0.31 0.24 0.31 0.33 0.33
Free-Streaming 0.47 0.5 0.48 0.5 0.5 0.5

Table B.5: Neutrino mass constraint forecast summary for Planck and HETDEX.

Euclid + S.O. ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.022 0.035 0.024 0.043 0.044 0.049
Combined + Fixed τ 0.0096 0.027 0.011 0.033 0.036 0.041
Combined + CMB Lensing 0.021 0.034 0.023 0.041 0.042 0.046
Combined + CMB Lensing + Fixed τ 0.0095 0.025 0.011 0.03 0.033 0.035
BAO 0.088 0.15 0.15 0.32 0.21 0.44
BAO + CMB Lensing 0.046 0.066 0.046 0.067 0.075 0.082
BAO + CMB Lensing + Fixed τ 0.034 0.052 0.035 0.057 0.061 0.073
Free-Streaming 0.078 0.08 0.078 0.08 0.081 0.081
Free-Streaming + CMB Lensing (Shape) 0.073 0.075 0.074 0.075 0.076 0.076

Table B.6: Neutrino mass constraint forecast summary for Simons Observatory and Euclid.
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WFIRST + S.O. ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.031 0.055 0.034 0.06 0.073 0.077
Combined + Fixed τ 0.02 0.048 0.022 0.051 0.067 0.07
Combined + CMB Lensing 0.031 0.051 0.033 0.053 0.06 0.061
Combined + CMB Lensing + Fixed τ 0.019 0.041 0.019 0.042 0.049 0.049
BAO 0.14 0.2 0.22 0.4 0.23 0.44
BAO + CMB Lensing 0.058 0.072 0.061 0.078 0.077 0.086
BAO + CMB Lensing + Fixed τ 0.043 0.059 0.051 0.069 0.064 0.079
Free-Streaming 0.16 0.16 0.16 0.16 0.16 0.16
Free-Streaming + CMB Lensing (Shape) 0.12 0.14 0.12 0.14 0.14 0.14

Table B.7: Neutrino mass constraint forecast summary for Simons Observatory and
WFIRST.

DESI (ELG) + S.O. ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.025 0.045 0.027 0.051 0.053 0.056
Combined + Fixed τ 0.014 0.038 0.015 0.043 0.045 0.048
Combined + CMB Lensing 0.024 0.043 0.026 0.047 0.049 0.052
Combined + CMB Lensing + Fixed τ 0.013 0.033 0.015 0.035 0.039 0.04
BAO 0.11 0.16 0.2 0.41 0.23 0.46
BAO + CMB Lensing 0.052 0.067 0.052 0.069 0.076 0.086
BAO + CMB Lensing + Fixed τ 0.039 0.053 0.041 0.058 0.063 0.079
Free-Streaming 0.1 0.1 0.1 0.1 0.1 0.1
Free-Streaming + CMB Lensing (Shape) 0.091 0.097 0.092 0.097 0.097 0.097

Table B.8: Neutrino mass constraint forecast summary for Simons Observatory and DESI
(ELG only).

PFS + S.O. ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.037 0.072 0.039 0.075 0.086 0.087
Combined + Fixed τ 0.028 0.066 0.029 0.067 0.079 0.08
Combined + CMB Lensing 0.036 0.061 0.037 0.061 0.068 0.068
Combined + CMB Lensing + Fixed τ 0.025 0.049 0.025 0.05 0.056 0.059
BAO 0.18 0.22 0.29 0.43 0.26 0.46
BAO + CMB Lensing 0.062 0.073 0.068 0.081 0.078 0.09
BAO + CMB Lensing + Fixed τ 0.046 0.061 0.058 0.074 0.066 0.085
Free-Streaming 0.18 0.18 0.18 0.18 0.18 0.18
Free-Streaming + CMB Lensing (Shape) 0.13 0.16 0.13 0.16 0.16 0.16

Table B.9: Neutrino mass constraint forecast summary for Simons Observatory and PFS.
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HETDEX + S.O. ΛCDM +w0 +Ωk +w0,Ωk +w0, wa +Ωk, w0, wa
Combined 0.087 0.14 0.088 0.16 0.16 0.18
Combined + Fixed τ 0.082 0.14 0.083 0.15 0.15 0.17
Combined + CMB Lensing 0.06 0.078 0.068 0.087 0.08 0.089
Combined + CMB Lensing + Fixed τ 0.045 0.069 0.058 0.081 0.071 0.084
BAO 0.46 0.48 0.48 0.51 0.49 0.52
BAO + CMB Lensing 0.067 0.083 0.13 0.13 0.084 0.13
BAO + CMB Lensing + Fixed τ 0.05 0.076 0.13 0.13 0.077 0.13
Free-Streaming 0.39 0.39 0.39 0.39 0.39 0.39
Free-Streaming + CMB Lensing (Shape) 0.15 0.26 0.16 0.26 0.26 0.26

Table B.10: Neutrino mass constraint forecast summary for Simons Observatory and HET-
DEX.
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Appendix C

Cosmological Perturbation Theory

The Vlasov or collisionless Boltzmann equation governs the evolution of the phase space
distribution of a nonrelativistic, collisionless fluid

df

dτ
=
∂f

∂τ
+
p

ma
· ∇f − am∇Φ · ∂f

∂p
= 0. (C.1)

where f = f(x,p, τ) is the number density in phase space, p is the comoving momentum
and Φ is the gravitational potential, given by the Poisson equation

∇2Φ(x, τ) =
3

2
H2Ωm(τ)δ(x, τ). (C.2)

One can derive the continuity and Euler equations by taking moments of the Vlasov equa-
tion

∂δ(x, τ)

∂τ
+∇ · [1 + δ(x, τ)]v(x, τ) = 0, (C.3)

∂v(x, τ)

∂τ
+H(τ)v(x, τ) + v(x, τ) · ∇v(x, τ) = −∇Φ(x, τ), (C.4)

where H = Ha is the conformal expansion rate, δ(x, τ) is the matter density field, v(x, τ)
is the velocity field. We assume here that there is no anisotropic stress (σij = 0).

Together, the continuity, Euler and Poisson equations determine the evolution of density
and velocity perturbations over time.

C.1 Linear Perturbation Theory

On large scales and at early times, while the fluctuations in these fields are still small, the
equations above can be linearised, giving

∂δ(x, τ)

∂τ
+ θ(x, τ) = 0, (C.5)
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∂v(x, τ)

∂τ
+H(τ)v(x, τ) = −∇Φ(x, τ). (C.6)

Here θ(x, τ) = ∇ · v(x, τ) is the divergence of the velocity field, and therefore satisfies

∂θ(x, τ)

∂τ
+H(τ)θ(x, τ) +

3

2
Ωm(τ)H2(τ)δ(x, τ) = 0. (C.7)

Equation C.5 can now be solved using Equation C.7 to give the evolution of the matter
density perturbations

d2δ(x, τ)

dτ 2
+H(τ)

dδ(x, τ)

dτ
− 3

2
Ωm(τ)H2(τ)δ(x, τ) = 0. (C.8)

Equation C.8 always has two solutions that determine the evolution of the density pertur-
bations as a function of the scale factor, expansion rate and matter density, usually called
fast-growing and slow-growing modes. For example, one can show that during matter dom-
ination, density perturbations grow proportionally to the scale factor. In the radiation-
dominated era, sub-horizon perturbations grow as ln(a). During the current era, with a
significant contribution from dark energy, the rate of growth of perturbations with respect
to the scale factor is somewhat suppressed compared to that during matter domination.

A final step usually taken is to rewrite Equation C.8 in Fourier space in terms of a scale-
independent linear growth factor D(τ) = δ(x, τ)/δ(x, 0). Crucially, however, the growth
factor is actually not scale-independent in the case of a cosmology with massive neutrinos,
because of the scale-dependent contribution of neutrinos to the growth of perturbations
(see Section 1.2).

C.2 Non-Linear Perturbation Theory

In linear perturbation theory, different modes evolve independently of each other. Moving
beyond this regime, the coupling of different modes must be accounted for. We begin by
returning to the original master equations (Equations C.2-C.4). We take the divergence
of the Euler equation (Equation C.4) and substitute for Φ to get the following results in
Fourier space

∂δ(k, τ)

∂τ
+ θ(k, τ) = −

∫
d3k1d

3k2δD(k − k12)α(k1,k2)θ(k1, τ)δ(k2, τ), (C.9)

∂θ(k, τ)

∂τ
+H(τ)θ(k, τ)+

3

2
ΩmH2(τ)δ(k, τ) = −

∫
d3k1d

3k2δD(k−k12)β(k1k2)θ(k1, τ)θ(k2, τ),

(C.10)
where k12 = k1 + k2 and

α(k1,k2) =
k12 · k1
k2

1

, (C.11)
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Figure C.1: Source: [77]. Feynman diagrams representing the one-loop contributions to
the power spectrum.

β(k1,k2) =
k2

12(k1 · k2)

2k2
1k

2
2

. (C.12)

Perturbation theory solves such equations with perturbative expansions around the linear
solutions up to a given order

δ(k, τ) =
∞∑
n=1

δn(k, τ), (C.13)

θ(k, τ) =
∞∑
n=1

θn(k, τ). (C.14)

We can use Equations C.9 and C.10 to write δ and θ up to nth order as

δn(k) =

∫
d3q1...

∫
d3qnδD(k − q1...n)Fn(q1, ..., qn)δ1(q1)...δ1(qn), (C.15)

θn(k) =

∫
d3q1...

∫
d3qnδD(k − q1...n)Gn(q1, ..., qn)δ1(q1)...δ1(qn). (C.16)

To first order, F1 = G1 = 1 and we recover the linear case. Fn and Gn for other orders can
be extracted by inserting these equations into Equations C.9 and C.10. A useful way to
examine the contributions to the evolution at different orders is using Feynman diagrams.
Examining the contribution to the power spectrum from second order perturbation theory,
one discovers that there is a contribution of the same order that arises from third-order
perturbation theory (see Figure C.1). These terms are combined to give the ’next-to-
leading-order’ or ’one-loop’ power spectrum.

To summarise, at next-to-leading order, the power spectrum is equal to the linear power
spectrum with two additional contributions

PNLO(k) = PL(k) + P (22)(k) + 2P (13)(k), (C.17)

P (22)
mm (k) = 〈δ(2)(k)δ(2)(k′)〉 = 2

∫
p

[F2(p,k − p)]2PL(p)PL(|k − p|), (C.18)
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P (13)
mm (k) = 〈δ(1)(k)δ(3)(k′)〉 = 3PL(k)

∫
p

F3(p,k − p)PL(p). (C.19)

The relevant kernels are given by [78]:

F2(k1,k2) =
5

7
+

2

7

(k1 · k2)2

k2
1k

2
2

+
k1 · k2
2k1k2

(
k1

k2

+
k2

k1

)
, (C.20)

F3(k1,k2) =
k2

1

252

[
12

(
k2

1

k2
2

)
− 158 + 100

(
k2

k1

)2

− 42

(
k2

k1

)4

+

3

k5
1k

3
2

(k2
2 − k2

1)3(2k2
1 + 7k2

2) ln

(
k1 + k2

k1 − k2

)]
.

(C.21)
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