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Abstract: Background: Asthma is a chronic inflammatory condition linked to hyperresponsiveness
in the airways. There is currently no cure available for asthma, and therapy choices are limited.
Asthma is the result of the interplay between genes and the environment. The exact molecular genetic
mechanism of asthma remains elusive. Aims: The aim of this study is to provide a comprehensive,
detailed molecular etiology profile for the molecular factors that regulate the severity of asthma
and pathogenicity using integrative bioinformatics tools. Methods: The GSE43696 omnibus gene
expression dataset, which contains 50 moderate cases, 38 severe cases, and 20 healthy controls, was used
to investigate differentially expressed genes (DEGs), susceptible chromosomal loci, gene networks,
pathways, gene ontologies, and protein–protein interactions (PPIs) using an intensive bioinformatics
pipeline. Results: The PPI network analysis yielded DEGs that contribute to interactions that differ
from moderate-to-severe asthma. The combined interaction scores resulted in higher interactions
for the genes STAT3, AGO2, COL1A1, CLCN6, and KSR for moderate asthma and JAK2, INSR,
ERBB2, NR3C1, and PTK6 for severe asthma. Enrichment analysis (EA) demonstrated differential
enrichment between moderate and severe asthma phenotypes; the ion transport regulation pathway
was significantly enhanced in severe asthma phenotypes compared to that in moderate asthma
phenotypes and involved PER2, GCR, IRS-2, KCNK7, KCNK6, NOX1, and SCN7A. The most enriched
common pathway in both moderate and severe asthma is the development of the glucocorticoid
receptor (GR) signaling pathway followed by glucocorticoid-mediated inhibition of proinflammatory
and proconstrictory signaling in the airway of smooth muscle cell pathways. Gene sets were shared
between severe and moderate asthma at 16 chromosome locations, including 17p13.1, 16p11.2,
17q21.31, 1p36, and 19q13.2, while 60 and 48 chromosomal locations were unique for both moderate
and severe asthma, respectively. Phylogenetic analysis for DEGs showed that several genes have
been intersected in phases of asthma in the same cluster of genes. This could indicate that several
asthma-associated genes have a common ancestor and could be linked to the same biological function
or gene family, implying the importance of these genes in the pathogenesis of asthma. Conclusion:
New genetic risk factors for the development of moderate-to-severe asthma were identified in this
study, and these could provide a better understanding of the molecular pathology of asthma and
might provide a platform for the treatment of asthma.

Keywords: severe and mild asthma; bioinformatics; gene ontology; genotype-phenotype correlations;
protein-protein interaction; gene networks

1. Introduction

Asthma is a common complex chronic disorder affecting adults and children. It results due to the
interplay of genetic factors and the environment [1]. Symptoms of acute asthma include coughing,
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chest tightness and chest pain, wheezing, nocturnal worsening, and difficulty sleeping [2]. Asthma
is a highly heterogeneous disorder that manifests with multiple clinical phenotypes that might have
different risk factors and therapeutic responses [3]. Severe asthma tends to be distinguished by ongoing
symptoms, heterogeneous pathobiology, inflammation of the airways and clinical characteristics,
which are poorly controlled by the present standard of care [4,5]. Asthmatic patients seem to be more
vulnerable to diseases and chronic comorbidities that are correlated with worse outcomes of asthma [1].

Earlier genetic research showed that asthma could be inherited with incomplete penetrance in a
Mendelian autosomal dominant fashion [6], which is common among individuals with a family history
of the disease [7]. Recently, polygenic, codominant, and multifactorial modes of inheritance have
been reported [8]. Monozygotic twins are at a significant risk of developing asthma than dizygotic
twins [9,10].

Approximately 38% of childhood asthma is attributed to combinatorial genetic factors [11].
Normal and moderate asthma patients clustered separately from the extreme category of asthma,
indicating significant changes in gene expression linked to the progression of asthma [12]. To date,
a small portion of 38 genomic loci contributing to asthma has been mapped [13]. These loci are
demonstrating genetic heterogeneity of the disease that might be responsible for the variable disease
manifestations. Most genes associated with asthma show an increased risk of 1.2 [14], and these are
mostly involved in the immune system, muscle, and lung function [15].

Studying complex diseases such as asthma requires a general understanding of their pathogenesis,
natural history, and mapping of candidate genes using system-level analysis at the cell scale. Network
analysis for asthma-related genes through protein–protein interactions (PPIs) is an alternative method
for evaluating the dynamic influences of associated candidate genes. Such analysis could propose
a list of gene drug targets [16]. In addition, disease databases are valuable tools for investigating
asthma epidemiology, providing real-world data on the symptoms and genetic background of asthma
patients [17].

To understand the genetic causes of a complex disease such as asthma, a multidisciplinary analysis
approach is needed to connect such a variety of resources and extract useful and conclusive information.
Therefore, I decided to study the comprehensive genetic susceptibility profile for asthma patients
using an integrative bioinformatics platform, mainly to evaluate the genetic susceptibility profile
of moderate and severe asthma, and determine the molecular factors that regulate the severity and
pathogenicity of asthma. To achieve this goal, I attempted (a) to identify genes showing significant
differences in expression between patients with asthma endotypes and controls; (b) to study gene
networks, families, pathways, ontologies and protein–protein interactions affecting asthma; (c) to
assess single nucleotide variations in asthma-related genes, and (d) to determine genetic similarities
between asthma-related genes.

2. Results

2.1. DEG Identification

A total of 417 DEGs were detected through the analysis of moderate, severe asthma and
asthma-phase related (moderate-to-severe) phenotypes (Table S1).The samples were derived from
human fresh bronchial epithelial cells from normal and asthmatic patients. A total of 108 samples
were in this data set, which included 20 normal controls, 50 moderate asthma patients, and 38 severe
asthma patients. The top 250 DEGs for each of the moderate and severe asthma groups were generated
by comparing the 50 moderate and 38 severe asthmatic patients individually with the 20 normal
controls. Additionally, the top 250 DEGs were developed to classify moderate-to-severe genes by
comparing the 50 moderate asthma samples to the 38 severe asthma samples (Figure 1B–D and Table S1).
The human genome information of GRCh38 (Venter et al., 2001), http://m.ensembl.org/Homo_sapiens/
Info/Annotation#assembly, was used to demonstrate all genes that are significantly differentiated among
the comparison methods and their corresponding chromosomal location (Figure 1G). The disease–gene
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association p-value scores (−1og10) in moderate asthma-related genes ranged from 3.2 (ZNF862) to 6
(PER2) (Figure 1D and Table S2), while in severe asthma-related genes, it varied from 2.2 (TMCC1)
to 6 (SLCO1B3, and WNK4) (Figure 1C and Table S2). In moderate-to-severe asthma-related genes,
it ranged from 3 (AIM1L) to 7.73 (WNK4) (Figure 1B and Table S2).
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Figure 1. Circos configuration demonstrates differentially expressed genes (DEGs) between severe
and moderate asthma, severe and control, moderate and control asthma levels in black type font
and their corresponding chromosome and karyotype location locations in red type font (G), related
diseases count (F), pathogenic SNPs count (E), p-values count (−log10) of significantly differentiated
genes of GSE43696 between moderate and control, (D) severe and control (C), and severe-to-moderate,
(B) asthma levels and hypothetical links of genes with high-sequence similarity (A).

2.2. Pathogenic SNP Analysis among DEGs in Asthmatic Patients

The Ensembl database was used to search pathogenic SNPs and related diseases (Figure 1E,F and
Table S1). A high frequency of shared pathogenic SNPs related to type I osteogenesis imperfecta disease
(161 SNPs) and Lynch syndrome (40 SNPs) were detected among moderate asthma-related genes.
Moreover, patients with severe asthma shared 164 and 57 pathogenic SNPs in genes related to type I
osteogenesis imperfecta disease and inborn genetic diseases, respectively. The moderate-to-severe
asthma phase shared a high number of genes with inborn genetic diseases (59 SNPs), achromatopsia 3
(63 SNPs), and hereditary cancer-predisposing syndrome (80 SNPs) (Figure 1F and Table S2). CNGB3,
BMPR1A, PKP2, and COL1A1 had the highest number of pathogen-associated SNPs (63, 76, 94, and 284,
respectively) (Figure 1E and Table S1).

2.3. Chromosomal Locations of DEGs among Asthma Patients

The genome localization of DEGs in asthma patients showed a high abundance for chromosomal
locations, including 17q25.3, 6q22.32, 2q13, 19q13.1, and 2q37.3 in patients with moderate asthma,
17q21.2, 6p21.31, and 1p36 in patients with severe asthma, and 17q12 in patients with moderate-to-severe
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asthma (Figures 1G and 2 and Table S1). Intersection of chromosome locations of asthma-associated
DEGs has shown a high number of chromosome regions shared between severe and moderate-to-severe
asthma profiles (Figure 2).
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2.4. Sequence Similarities between DEGs in Asthmatic Patients

The BLAST sequence alignment tool was used to infer sequence similarity between DEGs and
to screen for genes with a high similarity and common functions (Figure 1A). The BLAST analysis
showed that MBP and WNK2 DEGs have five other similar genes in the asthma-related gene group.
When comparing gene sequences using sequence similarity, 20 genes have more than two similar
genes, indicating gene clustering and a possible common function (Figure 1A). Multiple sequence
alignment is a great tool that can be used effectively for gene clustering, in which genes with a similar
sequence structure are clustered into one category. This technique is very useful in the study of family
genes, which are supposed to control specific biological tasks [18]. These clustered genes are commonly
translated into phylogenetic trees, which depict the genetic relationship between genes. Genes with
high sequence similarities and possible common functions are clustered in one branch. Using this
approach, I tried to combine asthma-related gene details with phylogenetic analysis to obtain a more
definitive understanding of their typical role (Figure 3). Phylogenetic analysis, gene expression in the
asthma phase and the statistical significance of asthma-related genes resulted in DEGs clustered into
five main categories (Figure 3).
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p-values of these genes are shown (−log10).

2.5. PPI Network Interaction

I have used the STRING tool to evaluate the PPI network for DEGs for patients with moderate,
severe, and moderate-to-severe asthma (Figure 4). PPI analysis revealed that some genes have a
highly significant association with the different types of asthma; these include: PER2, SLAMF7,
SOD2, BCL3, TLL1, SIGLEC8, and NAV2 for moderate asthma (Figure 4A), SLCO1B3, DNAJC1,
WNK4, TPO, TMEM74B, TGM7, and PLAC4 for severe asthma (Figure 4C), and WNK4, SLCO1B3,
KCNN4, CPXM1, SYT13, KRT73, SEMA3E, CD2AP, IL20RB, and NAT8B for moderate-to-severe asthma
(Figure 4F). The Cytoscape network analysis tool was used to analyze the clustering gene networks
of moderate- (Figure 4B), severe- (Figure 4D), and moderate-to-severe-associated genes (Figure 4F).
Protein Interaction Network Analysis for Multiple Sets (PINA4MS) is a Cytoscape plug-in used to
evaluate all GSE datasets, thus enhancing the analytical efficacy and visualizing the common DEGs [19].
I used this tool to visualize and link severe, moderate, and moderate-to-severe asthma-related DEGs
using the PPI network. It also was used to visualize common and unique genes for each phase
(Figure 5A,B). This interaction between different stages of asthma shows that no shared genes have been
detected between different sets of comparisons. Although several shared genes have been detected
between severe and moderate asthma (12 genes) and between severe and moderate-to-severe asthma
(17 genes) (Figure 5B). Some genes were shared between severe and moderate asthma, and these
include COL1A1, PER2, FAM83D, ERGIC1, and BCL3. ERBB2, PTK6, FKBP5, and WNK4 (Figure 5A).
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Figure 4. Protein–protein interaction (PPI) network interaction using STRING for moderate (A), severe
(C) and (E) moderate-to-severe asthma phenotype using Cytoscape tool. Cytoscape network analysis
was used to calculate the comprehensive set of topological parameters for moderate (B), severe (D)
and (F) moderate-to-severe asthma phenotypes PPI networks (grey boxes). These parameters describe
the degree of interaction and includes descriptive statistics such as the number of nodes, self-loops,
and edges, the number of shortest paths, and the network radius, density, diameter, centralization,
and clustering coefficient. See Cytoscape Network Analyzer Manual (http:/manual.cytoscape.org/en/

stable/Network Analyzer.html) for more details. The confidence score for each interaction is linked
to the thickness and opacity of the edge. The node color is associated with the asthma-association
significance score of the DEGs.
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Figure 5. The PPI networks for DEGs differentiated in the three gene sets using Protein Interaction
Network Analysis for Multiple Sets (PINA4MS). (A) PPI network, (B) the number of intersected
genes through moderate (M-vs-C), severe (S-vs-C), and moderate-to-severe (M-vs-S) asthma gene
sets. The color and shape of the edge (link) is related to the type of interaction (protein–protein or
kinase-substrate interaction), where looped edges suggest that DEGs have a self-gene correlation.
The color of the node of DEGs is associated with its participation in the asthma profiles studied.
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2.6. Enrichment Analysis

To understand the DEG sets between the moderate and severe asthma gene sets, I have used the
MetaCore software from Clarivate Analytics to perform an enrichment analysis (EA), which includes
pathway maps, GO processes, and process networks. EA comprises matching gene IDs of potential
targets for “common” and unique DEG sets with gene IDs in MetaCore functional ontologies.

2.6.1. Comparative Pathways and Gene Ontology Process Analysis between Moderate and Severe
Asthma Gene Sets

The number of genes recognized by this database was 163 for moderate asthma and 224 for severe
asthma. Of these, 43 genes were common between the two phenotypes, 120 were unique to moderate
asthma gene set and 181 were unique to the severe asthma gene set (Figure 6A). The top ten pathways that
were enriched in both moderate and severe asthma gene sets are represented in Figure 6B. It seems that
the most enriched pathway is the development glucocorticoid receptor signaling pathway; this pathway
was enriched equally between the two gene sets. However, the glucocorticoid-mediated inhibition of
proconstrictory and proinflammatory signaling in airway smooth muscle cell pathways has shown
more enriched gene sets that belong to the severe phenotype (Figure 6B). I used a MetaCore analysis
to study the GO biological processes of the gene sets for both the moderate and severe phenotypes.
These GOs are involved in many biological processes, which are listed from 1–10 according to their
significant association (Figure 6C). These processes are involved in the circulatory system process,
regulation of systemic arterial blood pressure, and regulation of ion transmembrane transport.
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Figure 6. (A) The gene content is aligned between the moderate and severe asthma gene sets. The intersection
set of experiments is defined as “common” and marked as a blue/white striped bar. The unique genes for
moderate asthma are marked as orange, and for severe asthma as blue colored bars. (B) Canonical pathway
maps represent a set of signaling and metabolic maps covering human in a comprehensive way. All maps
are created by Clarivate Analytics scientists by a high-quality manual curation process based on published
peer-reviewed literatures. (C) These are gene ontology (GO) cellular processes. As most GO processes have
no gene/protein content, the “empty terms” are excluded from p-value calculations.
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2.6.2. Pathway Map Analysis

The most enriched pathway in both moderate and severe asthma is the development glucocorticoid
receptor signaling pathway, which includes the upregulation of GCR, GCR alpha, and GCR beta
(Figure 7A), and this is indicated with a full-red color thermometer labeled with “1” for the genes
belonging to the moderate asthma phenotype and “2” for the severe asthma phenotype. The second
enriched pathway is the glucocorticoids-mediated inhibition of proconstrictory and proinflammatory
signaling in the airway smooth muscle cells pathway, in which the MRLC gene is involved in moderate
asthma phenotype and the PLA2, p38 MAPK, and PA24A genes are involved in the pathogenesis of the
severe asthma phenotype (Figure 7B).
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It is the top scored map (map with the lowest p-value) based on the enrichment distribution.
Experimental data from all files is linked to and visualized on the maps as thermometer-like
figures. Up-ward thermometers have red color and indicate up-regulated signals. (B) Map of
the Glucocorticoids-mediated inhibition of pro-constrictory and pro-inflammatory signaling in airway
smooth muscle cells. The second scored map (map with the second lowest p-value) based on the
enrichment distribution sorted by “common” set. Experimental data from all files is linked to and
visualized on the maps as thermometer-like figures. Up-ward thermometers have red color and
indicate up-regulated signals. The details of the symbols used in this Figure are available here:
https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf.

2.6.3. Process Network Analysis

The vast majority of the network that is manually curated with Clarivate Analytics was examined
with our DEGs that are specific for moderate and severe asthma through common genes that are
involved in the gene network and in the pathogenesis of either asthma phenotype. Interestingly,
the most significant process network is involved in the signal transduction of leptin signaling, followed
by the inflammation IFN gamma signaling process network (Figure 8).
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of the genetic background of asthma could be given by the use of omics technology in patients
with asthma in different ethnic groups [20–22]. In the present work, I used the GSE43696 and the
GEO2R tool to individually analyze the top 250 DEGs (p-value < 0.001) for the moderate, severe,
and moderate-to-severe asthma phenotypes (Figure 1 and Table S1). This study compared to a
previously published research, using the same dataset [23], provides detailed information on the
DEGs, gene enrichment networks, and biological pathways that are involved in asthma pathogenicity.
In addition, this study dissects the role of the potential genetic factors in the severity of the asthma
phenotypes. It also provides a more comprehensive interpretation of the activity of these DEGs linked
to their location of chromosome and karyotype, related diseases, pathogenic SNPs, and highlights
genes with sequence and function similarities. PPI network analysis yielded DEGs that contribute to
interactions that are distinguished from moderate-to-severe asthma. For example, in severe asthma,
the combined interaction scores for the STAT3, AGO2, COL1A1, CLCN6, and KSR1 genes yielded a
higher interaction for the moderate asthma phenotype (Figure 4A), and the JAK2, INSR, ERBB2, NR3C1,
and PTK6 genes (Figure 4C) were more interactive for the severe asthma phenotype. The CD1C,
TLR7, PTK2, CD1E, CD1A, and ERBB2 genes had a higher rate of engaging protein interactions in
the PPI for the moderate-to-severe asthma phenotype (Figure 4E). The combination of these genes
might explain the high genetic complexity and phenotypic heterogeneity of asthmatic patients. For
instance, the STAT3 transcription factor is essential for an acute phase response, and for cytokine
signaling. Previous reports suggested that STAT3 acts as a new allergic response epithelial regulator;
therefore, recent studies support targeting this molecule as the basis for novel asthma therapy [24,25].
Similarly, JAK2 controls white blood cells, a number of red blood cells and platelets that are correlated
with severe asthma. Recent clinical validations indicate that inhibition of the JAK2/STAT6 signaling
pathway may be considered for ovalbumin-induced asthma therapies [26]. Thus could confirm the
strong association of JAK2, STAT3 and severe asthma. Erb-B2 tyrosine kinase 2 (ErbB2) was found to be
highly correlated with asthma and was suggested to be a novel therapeutic target for asthma [27,28].
Moreover, both NR3C1 and COL1A1 were linked to inflammation in asthmatic airways [29,30]. While,
clinical studies have reported that NR3C1 is strongly associated with asthma severity [31].

This study demonstrated an important role of INSR (insulin receptor) in asthma. The PPI
network analysis, among other genes, identified INSR to be more closely related to severe asthma,
as it was more interactive in this phenotype (Figure 4A,B and Table S2). This could suggest its
potential role in developing complications of asthma. INSR has a potential role in mediating
insulin-like growth factor 2 (IGF2) signaling and therefore regulates cell proliferation, growth, migration,
differentiation, and survival. It was reported that, INSR has a high correlation with asthma and
diabetes [32,33]. Similarly, I have found that discoidin domain receptor 1 (DDR1/PTK3) is strongly
linked to chronic obstructive pulmonary disease (COPD), a type of obstructive pulmonary disease
typified by having long-term respiratory problems and a weak airflow [34]. Moreover, chloride
voltage-gated channel 6 (CLCN6) was found to be involved in lung vasodilatation, pulmonary
permeability, and bronchorelaxation and is correlated with disorders, including neural tube defects,
folate sensitivity, and benign childhood epilepsy [35,36]. The presence of the argonaut (Ago2) gene
among highly associated asthma genes in this study could support previous reports involving
posttranscriptional miRNA silencing and asthma. It was assumed that changes in the expression
of several miRNAs are correlated with the development of asthma [37]. The interaction of genes,
including CD1(c, e, a) and TLR7, in the transition to the severity of asthma could be correlated with its
previously published roles in the severity of asthma [38,39]. The high number of genes belonging to
the family differentiation cluster (CD) confirms their key role in asthma severity. Such role have been
validated through functional validation [40]. Additionally, studying the moderate-to-severe asthma
PPI network revealed a higher cluster coefficient than that in the moderate and severe asthma PPI
networks (Figure 4E,F), indicating that genes are more actively connected and belong to a common
complex network.
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EA showed differential enrichment between the moderate and severe asthma phenotypes for
various signaling pathways and biological processes in GO (Figure 6 and Table S3). A review of the
path map showed that the most enriched common pathway is the development glucocorticoid receptor
(GR) signaling pathway, which includes the upregulation of GCR, GCR alpha, and GCR beta in patients
with moderate and severe asthma phenotypes (Figure 6A and Table S3). GR is the receptor to which
cortisol and other glucocorticoids attach, is expressed in nearly every cell in the body and regulates
genes that control metabolism, development, and immune response. The correlation between GR
and asthma has been studied, as alternative splicing of GR mRNA expression could identify asthma
phenotypes, and some GR genes are reported to be highly correlated with asthma [41,42]. The second
enriched pathway is the glucocorticoid-mediated inhibition of proinflammatory and proconstrictory
signaling in the airway smooth muscle cell pathway, in which the MRLC gene is involved in moderate
asthma and the PLA2, p38 MAPK, and PA24A genes are involved in the pathogenesis of severe asthma
(Figure 6B and Table S3). In this respect, arachidonyl phospholipids are selectively hydrolyzed by the
protein PA24A; therefore, differences in species and distribution of lipids in the lungs are involved
in the effects of cystic fibrosis, lung cancer, and asthma [43,44]. Methylation activity of some genes
belonging to the MAPK family has been reported to be highly correlated with remission of asthma [45].

Process network analysis showed that the most significant process network participates in the
signal transduction of leptin signaling, followed by the inflammation IFN gamma signaling process
network (Figure 8). Previously, the connection between leptin signaling and asthma was reported,
and this association could be triggered by the role of this process in maintaining energy homeostasis
and body weight; hence, leptin deficiency could provoke cardiovascular disease, dyslipidemia, insulin
resistance, stroke, and type 2 diabetes. Thus, airway epithelial leptin signaling is speculated to be
involved in asthma pathogenesis [46,47]. Curiously, the inflammatory IFN gamma signaling process
network highlighted in this study is closely linked to the JAK/STAT signaling cascade, and two genes,
STAT3 and JAK2, belong to the signaling complex (Figure 1 and Table S1). Both genes have a high
correlation with asthma pathogenicity (>3.5 p-value (−log10)), where JAK2 and STAT3 were linked to
moderate and severe asthma phenotypes and have a high number of pathogenic SNPs (8 and 24 SNPs,
respectively) and related human diseases (18 and 37 diseases, respectively) (Figure 1 and Table S1).
Moreover, IFNs have been reported as essential mediators of the pathogenesis of asthma [48,49].
Interestingly, the ion transportation regulation pathway was significantly enriched in the severe asthma
phenotype compared to the moderate asthma phenotype (Figure 6C). The genes involved in such
regulation include PER2, GCR, IRS-2, KCNK7, KCNK6, NOX1, and SCN7A (p-value of 0.0006) (Table S3).
PER2 had a high significance in the moderate-to-severe asthma dataset (Figure 1 and Table S1). This is
not surprising, given that polymorphisms in this gene could increase the risk of developing certain
cancers and have been associated with sleep disorders [50].The association between asthma and
sleep disorders could explain the high level of circadian CLOCK-related gene expression (PER2 and
GCR) and the high interaction activity of the TIMELESS gene in PPIs for the moderate-to-severe
asthma phenotype (Figure 4C). Such an association has been discussed in some studies on gene
expression [51], indicating the consequences of such mechanical surveillance disorder and the severity
of asthma. Similar to the INSR gene mentioned earlier, IRS-2 is an insulin receptor substrate that is
highly associated with diabetes and obesity and negatively controls alternative macrophage activation
and allergic inflammation of the lungs. The two genes KCNK7 and KCNK6 belong to the KCNK family
of genes that are significantly enriched among the severe asthma patients compared to the moderate
asthma phonotype. Interestingly, these two genes together with SCN7A control the K2P potassium
and voltage-gated sodium channels, respectively, where its regulation in vascular smooth muscle cells
could be a pathophysiological key to the severity of asthma [52]. Moreover, NOX1 is an oxidative
stress-induced gene that is highly linked to lung inflammation in asthma and COPD disorders [53].

The involvement of ion regulation in the pathogenesis of asthma has been reported to be involved
in the identification of therapeutic targets or pathophysiological mechanisms for better control of the
disease [54]. This is regarding its participating in the development of epithelium-based hydroelectrolytic
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secretions in the control of intracellular Ca(2+) rates and therefore remodeling of airway smooth
muscle cells in asthma. Ion channels have therefore been the focus of a number of studies aimed
at understanding the pathophysiological mechanisms of asthma or identifying therapeutic targets
for stronger disease control [55]. Glucocorticoids are potent anti-inflammatory substances that are
widely used in the treatment of asthma. Their effect is mainly due to their interaction with the
glucocorticoid receptor that affects the glucocorticoid responsive elements in the promoter region
of genes or to the interaction between the glucocorticoid/glucocorticoid receptor complex and other
transcription factors, especially activating protein-1 or nuclear factor-kappa B [56,57]. GABA receptors,
together with other factors, including GCR, bestrophin-2, and RAPL3, are common risk factors between
moderate and severe asthma phenotypes (Table S2). GABA receptors respond to the neurotransmitter
gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the vertebrate CNS;
GABA has been shown to regulate smooth muscle contraction in the airway and may be correlated
with asthma pathogenesis [58].

One of largest study of asthma genetics was conducted in 2010, which genotyped 10,365 patients
vs. 16,110 controls to test for an association between 582,892 SNPs and asthma. This previous
study identified genes on chromosomes 2 (IL1RL1/IL18R1), 6 (HLA-DQ), 9 (IL33), 15 (SMAD3),
17 (ORMDL3/GSDMB), and 22 (IL2RB) correlated with asthma [11]. Consistent with my findings
(Figure 1 and Table S2), this study reported that moderate and moderate-to-severe asthma phenotypes
share part of the same genetic structure. It also indicates that part of the same genetic architecture is
shared by moderate and severe asthma phenotypes, which confirm current study findings (Figure 1
and Table S1). Additionally, I can confirm that IL1 family members of IL1R2 have a high significance
in severe and moderate-to-severe asthma gene sets, in which p-values are > 4.4 (−log10) (Figure 1
and Table S1). Recently, an asthma study was performed in 2019, genotyped patient-level data for
two UK cohorts and then used data from the UK Biobank to gather genomic patient-level data for
cases and controls with European descent [59]. They concluded that certain SNP occurrences in genes
such as CD247, ERBB2, IL1RL1 and several interleukin family genes are strongly correlated with
moderate-to-severe asthma. In accordance with the current study, ERBB2 was found to be strongly
associated with severe-to-moderate and severe asthma (Figure 1 and Table S1). Additionally, I found
that CD2AP, which is highly interacted with CD247 is highly correlated with moderate-to-severe
asthma (Figure 1 and Table S1). Moreover, genome variation of 350,000 individuals were studied
to identify novel loci of asthma. Several novel SNPs with large effect on asthma were identified
in TNFRSF8/CD302 and BHMG1 genes [60]. Taking in consideration that, Basic helix–loop–helix
and HMG-box containing 1 (BHMG1) contains bHLH and HMG-box protein domains. In current
investigation, CD302 was strongly correlated with moderate-to-severe asthma (Figure 1 and Table S1).
In addition, BHLHE22 and HMGN2, which contain bHLH and HMG-box protein domains, have been
found to be highly associated with severe and moderate-to-severe asthma, respectively (Figure 1 and
Table S1). In this regard, 113 unique candidate genes were found to be strongly correlated with asthma
by studying the genetic variation of 37,846 British white individuals diagnosed with asthma (Pividori
et al., 2019). Several of these genes belonged to the family of Solute Carrier protein family. In current
study, I have found 12 Solute Carrier genes that are strongly asthma-related, with three, three and two
unique association with moderate, moderate-to-severe and severe asthma, respectively (Figure 1 and
Table S1). In addition, I have compared my findings to those reported by Pividori et al. [61], where they
reported a high association between FAM105A, HNF1A, and childhood and adult–child-shared asthma,
respectively. My findings have linked both of FAM105A and HNF1A Antisense RNA 1 (HNF1A-AS1)
to moderate-to-severe and severe asthma (Figure 1 and Table S1).

Three gene sets have been shared in 16 chromosomal locations (Figures 1 and 2 and Table S1);
these sites include 17p13.1, 16p11.2, 17q21.31, 1p36, and 19q13.2, which are closely linked to asthma,
especially those located on chromosome 17 [62]. The 17q12 was reported to be the most significant
asthma-associated locus [61]. My findings have shown that 17q12 is shared between moderate, severe,
and moderate-to-severe asthma, which may confirm its high significance in asthma pathogenicity
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(Figures 1 and 2 and Table S1). Phylogenetic analysis using DEG sequences between the three different
gene sets has provided very comprehensive information about the relationship between these genes
and the stage of the disease, chromosomal locations or synonymous gene names (Figure 3). Several
genes intersect in asthma phases, in which RAB24 and ADAMTS19 are located in the same branch in
a set of moderate-to-severe asthma genes (Figure 3); these genes are linked to immune gene airway
diseases and autophagy [63], suggesting the involvement of these genes in the pathogenesis of asthma.

The use of different bioinformatics research methods in the current study has shed some light on
the strength and weakness of these analytical techniques. A number of potential asthma-associated
DEGs have been successfully identified in the PPI study, however this survey is mostly based on our
current knowledge of known protein interactions and current statistical models. Phylogenetic analysis
based on sequence similarity was useful in clustering genes with related functions. However, I should
assume that alignment of sequences depending on the protein structure will be more efficient. Thus,
we could cluster asthma-associated genes according to their common protein domains. Current work
has linked multiple analytical methods through the study of asthma, such as gene-related pathogenic
SNPs, sequence similarity, and chromosome location analyses. I have shown that, the analysis of
pathogenic SNPs linked to asthma and other diseases could connect asthma to such disorders and
perhaps explain some of its pathogenicity. Genes with a large number of disease-associated SNPs
may be used to relate DEGs analysis to other omics studies, such as protein structure prediction and
genome wide association analyses. However, a higher number of samples may be required to study
the complex evolution of asthma, where independent replication of findings is required to assess the
validity of my results.

4. Materials and Methods

4.1. Data Retrieval

The data used in this work have been retrieved from the Gene Expression Omnibus database
of NCBI (GEO, http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO Series accession
ID GSE43696 [64]. These data are based on the Affymetrix human genome gene chip set, revealing
the gene expression profiles of 108 bronchial epithelial cell (BEC) samples isolated from 20 normal
controls, 50 mild-moderate asthmatic patients, and 38 severe asthmatic patients. The identification of
DEGs in the transcription profile was analyzed using the default parameters in the GEO2R statistical
tool [65] using default parameters. Control transcription profiles of patients with mild-moderate or
severe asthma were compared to determine asthma severity-related DEGs.

4.2. Gene Ontology Enrichment and Protein–Protein Interaction Network Analysis

To evaluate the functional annotation and analysis of the vast number of gene profiles within the
results, I entered all DEGs into the Database for Annotation, Visualization and Integrated Discovery
(DAVID) online tool using the Affymetrix identity code. DAVID identifies canonical pathways related to
specific genes by estimating the p-value based on a hypergeometric study to determine the probability of
a gene array being correlated with a pathway [66]. The interconnection of selected genes dependent on
literature-based annotations was generated by GeneGO™MetaCore™ software (Encinitas, CA, USA).
The evaluation of the PPI network and gene ontology (GO) enrichment was conducted with the STRING
database system [67]. Cytoscape software was used to visualize the structures of protein–protein
networks [67]. The Protein Interaction Network Analysis for Multiple Sets (PINA4MS) Cytoscape
plugin was used to allow the visualization of the shared expressed genes using default parameters [19].
The online tool Draw Venn Diagram (http:/bioinformatics.psb.ugent.be/webtools/Venn/) was used
to sketch a Venn diagram to demonstrate some analysis information. Local ClustalW was used to
confer gene similarities using default parameters [68]. The iToL phylogenetic configuration was used
for constructing a phylogenetic tree [69]. Enrichment analysis (EA) consists of matching gene IDs
of possible targets for the “common”, and “unique” sets with gene IDs in functional ontologies in
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MetaCore. The probability of a random intersection between a set of IDs, the size of target list with
ontology entities is estimated in p-value (<0.0001) of hypergeometric intersection. The lower p-value
means higher relevance of the entity to the dataset, which shows in higher rating for the entity.

4.3. Genes and Single Nucleotide Polymorphism (SNP) Analysis

The Ensembl database [70] was used to fetch information of previously published pathogenic
SNPs related to asthma-associated genes using Ensembl-BioMart [71]. The ClinVar database was used
to search for known disease-associated SNPs [72]. The local BLASTp tool [73] was used to detect
possible sequence similarities between amino acid sequences of asthma-associated DEGs. DEGs with
alignment length of more than 300 amino acids, sequence similarity of 70% for the aligned area and
e-value < 0.0001 were considered similar to each other. Circos software [74] was used to depict different
obtained data on the human genome (GRCh38). Tools used to perform these analyses are described in
File S1.

5. Conclusions

Asthma is a complex disease that has yet to be defined genetically. This study used a comprehensive
molecular bioinformatics approach to delineate the molecular genetic profile of asthma. The PPI
network analysis identified DEGs that contribute to the development of severe asthma. These genes
may explain certain features of asthma severity, including allergic response (STAT3) and inflammation
in asthmatic airways (NR3C1 and COL1A1). It also highlighted genes that link severe asthma to
hematopoietic system disorders (JAK2). EA showed differential enrichment between moderate and
severe asthma phenotypes and shed light on the proinflammatory signaling of the airway smooth
muscle pathway, in which the MRLC gene is involved in the pathogenesis of moderate asthma and the
PLA2, p38 MAPK, and PA24A genes are involved in the pathogenesis of severe asthma. Analysis of the
process network recorded the significance of the inflammation IFN-gamma signaling process network
and ion transport regulatory pathway when comparing severe and moderate asthma phonotypes.
It also illustrated the role of some CLOCK-related circadian genes (PER2 and GCR). The chromosomal
location analysis of asthma-associated genes shows 16 chromosomal loci shared between moderate
and severe asthma phenotypes, some of which are closely related to asthma (17p13.1, 16p11.2, 17q21.31,
1p36, and 19q13.2). Additionally, I have identified novel genetic risk factors for the development
of moderate-severe asthma that will provide a better understanding of this difficult-to-treat patient
population. My results suggest that the genes that contribute to the pathogenesis of moderate asthma
are unique to those involved in the pathogenesis of severe asthma and that even the genes that play a
role as a hub between the different genes are also different; this is an important observation, as it will
guide therapeutic developments by refining the drug development targets.

Supplementary Materials: Can be found at http://www.mdpi.com/1422-0067/21/11/4022/s1. File S1.
The programming scripts and software parameters used in this study. Table S1. DEGs information GSE43696 for the
top 250 DEGs (p-value < 0.001) for both the moderate, severe asthma and asthma-phase related (moderate-to-severe)
phenotypes individually. (A) The significance p-value (−log10) for asthma-associated genes related to moderate,
severe and asthma-phase, here known single nucleotide variation (B) associated pathogenic SNPs (C) and the
intersection of their chromosomal location among the three gene sets (D). Table S2. Significant gene networks
and their associated biological processes. Table S4. The analysis report of gene enrichment for asthma-associated
genes. Table S3. The analysis report of gene enrichment for asthma-associated genes.
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